
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Lausanne, EPFL
2010

Prof. Ph. Renaud, président du jury
Prof. P.-A. Farine, Dr C. Botteron, directeurs de thèse

Prof. E. Firouzi, rapporteur
Dr D. Manetti, rapporteur
Dr J.-L. Nagel, rapporteur

Architecture of a Real-Time Platform Independent GPS L1
Software Receiver

Grégoire WAELCHLI

THÈSE NO 4832 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 12 NOVEMBRE 2010

À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'ÉLECTRONIQUE ET TRAITEMENT DU SIGNAL

SECTION DE MICROTECHNIQUE

Résumé

Les assistants personnels numériques ou les téléphones mobiles modernes
ne se limitent plus aux fonctions basiques de communication, mais font
également office de récepteurs pour le Système de Positionnement Global
(GPS). Le marché croissant d’appareils portables qui intègrent ces fonc-
tionnalités stimule le développement d’une nouvelle génération de récep-
teurs à base logicielle. Au lieu d’intégrer une puce électronique supplé-
mentaire dédiée au traitement du signal GPS, l’objectif est d’exploiter
le microprocesseur déjà présent dans l’appareil afin d’y programmer les
fonctionnalités du récepteur. L’intérêt d’une telle solution réside dans
l’économie réalisée en termes d’espace et de coûts. Elle offre de surcroît
une grande flexibilité et peut facilement évoluer par une simple mise à
jour du logiciel, dans la perspective de futurs développements. Comparée
à un récepteur matériel, dont la structure est figée, une solution logicielle
constitue donc un précieux outil de recherche.

Grâce aux processeurs embarqués toujours plus performants, il devient
imaginable de programmer un récepteur logiciel offrant des performances
équivalentes à celles d’un récepteur traditionnel. Cependant, au vue de la
complexité des différentes opérations à effectuer dans le traitement du sig-
nal GPS, l’implantation directe de l’architecture d’un récepteur classique
sur un processeur n’est pas réalisable, même pour le plus puissant des or-
dinateurs. Ainsi, de nouvelles stratégies sont à considérer pour diminuer le
nombre d’opérations à réaliser, et par conséquent la charge du processeur.
Une première solution consiste à utiliser des micro-instructions spécifiques
qui permettent au processeur de traiter plusieurs données à la fois. La
parallélisation des opérations diminue leur temps d’exécution de façon sig-
nificative, mais restreint la portabilité de la solution, optimisée pour un
type particulier de processeur. Une alternative exploite la nature même
du signal, représenté sous la forme de un ou plusieurs bits d’information.

i

Résumé

Une opération complexe, nécessitant un temps de calcul important, peut
ainsi être décomposée en plusieurs opérations logiques qui s’effectuent très
rapidement entre ces différents bits. L’inconvénient inhérent à cette méth-
ode est son manque de flexibilité puisque son efficacité devient dépendante
de la structure du signal et varie donc selon la configuration du récepteur.

Ce travail de thèse s’est inscrit dans le cadre d’un partenariat industriel
d’une durée de deux ans (2007-2009) avec l’entreprise U-blox AG à Thalwil.
Il a eu pour objectif le développement d’un récepteur logiciel GPS L1 fonc-
tionnant en temps réel. Le principal défi de ce projet a consisté à fournir
des performances équivalentes à celles d’un récepteur conventionnel, tout
en conservant une grande flexibilité afin de permettre la programmation du
logiciel sur tout type de processeur. Dans cette perspective, de nouveaux
algorithmes ont été développés afin d’optimiser au maximum le nombre,
ainsi que la complexité des opérations à effectuer, en vue de diminuer la
charge du processeur. Le principe général consiste à regrouper les don-
nées dont certaines caractéristiques sont identiques et de les manipuler
par lots plutôt qu’individuellement. Ainsi, il devient possible de réduire
progressivement le flux d’information à traiter, et par conséquent le nom-
bre d’opérations à effectuer. Une toute nouvelle architecture de récepteur
a été proposée et validée à travers la réalisation d’un prototype fonction-
nel, démontrant de ce fait la faisabilité du concept.

Mots-clés:

GPS, récepteur logiciel, temps réel, traitement par lot, portabilité, nouvelle
architecture, charge de calcul.

ii

Abstract

Personal digital assistants or mobile phones applications are not anymore
restricted to multimedia or wireless communications, but have been ex-
tended to handle Global Positioning System (GPS) functionalities. Con-
sequently, the growing market of GPS capable mobile devices is driving
the interest of software receiver solutions as they provide several advan-
tages with respect to traditional hardware implementations. First, they
share the same system resources such as the processor, embedded mem-
ory and power with other system units, reducing both the size and the
costs of their integration. Second, they can be easily reprogrammed - via
a firmware update - for incorporating the latest developments, such as the
exploitation of the future satellites signals or some improved multipath
mitigation techniques. Finally, they offer a more flexible solution for rapid
research and development as compared to conventional hardware receivers
where the chip design is fixed and obtained after a long integration process.

With the increasing performance of modern processors, it becomes now
feasible to implement in software a multi-channel GPS receiver operating
in real-time. However, a major problem with the software architecture is
the large computing resources required for the digital signal processing.
Former studies have demonstrated that a straightforward transposition of
traditional hardware based architectures into software would lead to an
amount of integer operations which is not suitable for today’s fastest com-
puters. From this observation, several strategies have been proposed in
the literature in order to reduce the complexity of the receiver operations.
The first one relies on the utilization of advanced microprocessor instruc-
tions set which provides the capability of processing vectors of data by
operating on multiple integer values at the same time. This results in sig-
nificant gains in execution speed, but also severely limits the portability of
the code, since the operations are tied to specific processors architectures.

iii

Abstract

Another alternative consists in exploiting the native bitwise representation
of the signal. The data bits are stored in separate vectors on which logical
parallel operations can be performed. The objective is to take advantage
of the universality, high parallelism, and speed of the bitwise operations
for which a single integer operation translates into a few simple parallel
logical relations. However, the inherent drawback of the bitwise process-
ing is the lack of flexibility as the complexity becomes bit-depth dependent.

This thesis has been carried out in the framework of a two-year industrial
project (2007-2009) in collaboration with U-blox AG in Thalwil. It aimed
to the realization of a multi-channel, platform-independent real-time GPS
L1 software receiver. The main challenge of this project consisted in pro-
viding real-time performances while keeping the portability of the code to
make the receiver suitable for any type of software implementation. In that
sense, new techniques and algorithms have been developed for optimizing
the processing chain in order to lower the processor load. The main idea
consists in regrouping data which share the same characteristics, and pro-
cess them in batches instead of sequentially. This way, it becomes possible
to progressively reduce the data throughput and consequently the amount
of operations to perform. A completely new receiver architecture has been
proposed and validated through the realization of a functional prototype,
thus demonstrating the feasibility of the concept.

Keywords:

GPS, software receiver, real-time, batch processing, platform-independent,
new architecture, computational load

iv

Acronyms

ADC Analog to Digital Converter . 2
ASIC Application Specific Integrated Circuit . 2
BOC Binary Offset Carrier (m,n). .20
BPSK Binary Phase Shift Keying. .18
CA Coarse Acquisition . 11
CBOC Composite BOC. 21
CDMA Code Division Multiple Access . 16
CPU Central Processing Unit . 41
CS Commercial Service . 20
DC Direct Current . 124
DFT Discrete Fourier Transform . 38
DLL Delay Lock Loop . 48
DSP Digital Signal Processor . 66
E Early . 31
FFT Fast Fourier Transform . 37
FLL Frequency Lock Loop. 48
FPGA Field Programmable Gate Array . 4
GLONASS Global Orbiting Navigation Satellite System 3
GNSS Global Navigation Satellite System . 1
GPS Global Positioning System . 1
HOW Handover Word . 15
IF Intermediate Frequency. .23
L Late . 31

v

Acronyms

L1 Link 1 . 11
L2 Link 2 . 11
LNA Low-Noise Amplifier . 23
LO Local Oscillator . 58
LUT Look Up Table . 70
NCO Numerically Controlled Oscillator. .28
OS Open Service . 20
P Prompt. .31
P(Y) Precise . 11
PC Personal Computer . 123
PCB Printed Circuit Board . 123
PDA Personal Digital Assistant . 1
PLL Phase Lock Loop . 48
PRN Pseudo Random Noise . 15
PRS Public Regulated Service . 20
PVT Position - Velocity - Time . 2
RAM Random Access Memory . 153
RF Radio Frequency. .2
SIMD Single Instruction Multiple Data . 63
SNR Signal-to-Noise Ratio . 20
SoL Safety of Life Service . 20
SPI Serial Peripheral Interface . 56
SSE Streaming SIMD Extension . 64
TCXO Temperature Controlled Crystal Oscillator 59
TLM Telemetry word. .15
TOW Time Of Week. .15
USB Universal Serial Bus . 56
VGA Variable Gain Amplifier . 23
VHDL Very high speed integrated circuit High Density Language124
XO Crystal Oscillator . 59

vi

Nomenclature

Operators and functions

& Logical AND

| Logical OR

∧ Logical XOR

∼ Logical complement

� Logical right shift

� Logical left shift

Re(x) Real part of x

Im(x) Imaginary part of x

bxc floor(x) function that rounds the value of x towards the
nearest smallest integer

dxe ceil(x) function that rounds the value of x towards the
nearest largest integer

O(x) Operator counting the number of bits equal to ’1’ in the
word x

Constants

π ≈ 3.14 Pi

c ≈ 3 · 108 Speed of light [m/s]

k ≈ 1.38 · 10−23 Boltzmann constant [J/K]

vii

Nomenclature

Variables

ωL1 GPS L1 angular frequency [Hz]

ω Carrier angular frequency (plus Doppler) [Hz]

ω̃ Estimated carrier angular frequency (plus Doppler) [Hz]

∆ω Carrier angular frequency mismatch [Hz]

ω0d Natural radian frequency of the DLL [Hz]

ω0f Natural radian frequency of the FLL [Hz]

ω0p Natural radian frequency of the PLL [Hz]

φL1 GPS L1 carrier phase [rad]

φ Carrier phase [rad]

φ̃ Estimated carrier phase [rad]

∆φ Carrier phase mismatch [rad]

ρ Pseudorange [m]

τ Offset of the local code replica [chips]

a Average number of samples per carrier interval

aj Carrier samples accumulator

aoff Carrier samples accumulator offset

Aj Samples boundaries of the carrier interval j

b Average number of samples b per chip

bk Code samples accumulator

boff Code samples accumulator offset

B Constant chip sums summation interval

Bxk Samples boundaries of the chip k (x ∈ E, P, L)

Bc GPS L1 CA code null-to-null bandwidth [Hz]

Bn Equivalent noise bandwidth of the signal [Hz]

viii

Nomenclature

Bnd Noise bandwidth of the DLL [Hz]

Bnf Noise bandwidth of the FLL [Hz]

Bnp Noise bandwidth of the PLL [Hz]

c(t) Continuous GPS L1 CA code

c(n) Discrete GPS L1 CA code

cx(n) E, P, and L local code replicas (x ∈ E, P, L)

C(k) Local code replica (kthchip)

d Distance between the satellite and the receiver [m]

d(t) Continuous GPS L1 data message

d(n) Discrete GPS L1 data message

Df Carrier freqeuency discriminator [Hz]

Dφ Carrier phase discriminator [rad]

Dτ Code discriminator [chips]

fL1 GPS L1 carrier frequency [Hz]

fL2 GPS L2 carrier frequency [Hz]

fc Local code replica frequency [Hz]

∆fc Local code replica frequency drift [Hz]

fd Residual Doppler frequency [Hz]

fs Sampling frequency [Hz]

∆fs Sampling frequency drift [Hz]

∆f Frequency mismatch [Hz]

δf Frequency resolution [Hz]

G Gain

I(t), Q(t) Continuous complex signal

I(n), Q(n) Discrete complex signal

ix

Nomenclature

Im(n), Qm(n) mth bit of I(n) and Q(n)

Ix(n), Qx(n) Complex signal after code removal (x ∈ E, P, L)

Ixm(n), Qxm(n) mth bit of Ix(n) and Qx(n) (x ∈ E, P, L)

Ibb(n), Qbb(n) Complex signal after carrier removal

Ibb,m(n), Qbb,m(n) mth bit of Ibb(n) and Qbb(n)

Ix, Qx Complex correlation results (x ∈ E, P, L)

Ĩx, Q̃x Estimated complex correlation results (x ∈ E, P, L)

(Ix)′, (Qx)′ Approximated complex correlation results (x ∈ E, P, L)

Inc NCO increment

j Index of the carrier interval

J Number of carrier intervals per integration period

k Index of the chip

K Number of chips per integration period

K(n) Complex local carrier replica

Km(n) mth bit of K(n)

M Number of quantization bits

n Positive integer denoting the nth sample

N Number of points of the FFT

Nb Number of bits per CPU word

Nc Number of satellite channels

Np Number of pre-detection sums

Ns Number of samples accumulated over the period Tint

Nclk Number of NCO clock cycles to achieve one carrier period

P xj Complex partial sum j (x ∈ E, P, L)

Pe Probability of having an erroneous sample in a chip sum

x

Nomenclature

Pn Thermal noise power [dBW]

r Average number of chips per carrier interval

rj Carrier chips accumulator

roff Carrier chips accumulator offset

Rxj Chips boundaries of the carrier interval j (x ∈ E, P, L)

R(∆τ) Autocorrelation function of the GPS L1 CA code

sin(j), cos(j) Complex carrier magnitude of the carrier interval j

Sn Complex chip sum n

Sxm Sum of the mth bits of Ix(n) over the period Tint
tsat Biased satellite clock reading the time at which the signal

leaves the satellite [s]

trec Biased receiver clock reading the time at which the signal
reaches the receiver [s]

δtsat Bias error of the satellite clock [s]

δtrec Bias error of the receiver clock [s]

Tsat Reference time at which the signal leaves the satellite [s]

Trec Reference time at which the signal reaches the receiver [s]

Td Update time of the DLL [s]

Tp Pre-detection time [s]

Ts Sampling period [s]

Tcode Code period [s]

Tint Integration period [s]

Tpf Update time of the PLL-assisted-FLL [s]

v Number of chip sums per pre-detection sum

vi Pre-detection chip sums accumulator

Vi Chip sums boundaries of the pre-detection sum i

W NCO accumulator bit width

xi

Nomenclature

xii

Contents

Résumé i

Abstract iii

Acronyms v

Nomenclature vii

1 Introduction 1
1.1 Principle of a software receiver 2
1.2 Benefits of a software receiver 3
1.3 Compromises of a software receiver 3
1.4 History of software receivers 5
1.5 Presentation of the thesis 7

1.5.1 Context of the thesis and partnership 7
1.5.2 Organization of the report 8

1.6 Contributions of the thesis 9
1.7 Summary . 10

2 GPS signals & receiver operations 11
2.1 GPS signals . 11

2.1.1 GPS signals components 12
2.1.2 GPS L1 CA signal modulation 18
2.1.3 Galileo E1 signals 20

2.2 Receiver RF front-end . 23
2.2.1 Direct sampling . 25
2.2.2 Bandpass sampling 25

2.3 Receiver base-band processing 27
2.3.1 Carrier and code generation 28

xiii

Contents

2.3.2 Base-band demodulation 30
2.4 Receiver base-band algorithms 35

2.4.1 Acquisition algorithms 35
2.4.2 Tracking algorithms 43

2.5 Receiver PVT solution computation 50
2.5.1 Principle of the satellite positioning 50
2.5.2 Pseudoranges measurement 52

2.6 Summary . 54

3 Challenges of a software receiver 55
3.1 Data rate . 55
3.2 Computational load . 56
3.3 Oscillator drift . 58
3.4 Summary . 61

4 Existing architectures of a software receiver 63
4.1 Alternate data processing 63

4.1.1 Single Instruction Multiple Data 63
4.1.2 Instruction pipelining 65
4.1.3 Digital Signal Processor 66
4.1.4 Bitwise processing 66
4.1.5 Distributed arithmetic 71

4.2 Carrier generation . 75
4.2.1 Off-line carrier generation 76
4.2.2 Single frequency carrier generation 79

4.3 Code generation . 79
4.3.1 Off-line code generation 80

4.4 Summary . 82

5 New architecture of a software receiver 83
5.1 General concept . 83
5.2 Base-band pre-processing 85
5.3 Base-band processing . 85

5.3.1 Batch processing applied to carrier removal 85
5.3.2 Batch processing applied to code removal 90
5.3.3 Proposed base-band architecture 93

5.4 Base-band algorithms . 101
5.4.1 Acquisition algorithms 101
5.4.2 Tracking algorithms 104

5.5 Pseudoranges measurement 104
5.6 Summary . 105

xiv

Contents

6 Performance of the new architecture 107
6.1 Performance of the batch-processing 107

6.1.1 Accumulation . 107
6.1.2 Real-time code generation 108
6.1.3 Code mixing . 109
6.1.4 Real-time carrier generation 110
6.1.5 Carrier mixing . 111

6.2 Architecture trade-offs . 115
6.2.1 Effects of the constant chip sums size 115
6.2.2 Effects of the carrier boundaries approximation . . . 116
6.2.3 Code replica time delay 117

6.3 Extension to Galileo E1 OS 117
6.4 Summary . 119

7 Implementation of the new architecture 121
7.1 Demonstrator description 121

7.1.1 RF front-end . 122
7.1.2 Host computer . 123

7.2 Base-band pre-processing implementation 124
7.3 Base-band processing implementation 127
7.4 Base-band algorithms implementation 132

7.4.1 Acquisition algorithms implementation 132
7.4.2 Tracking algorithms implementation 137

7.5 Performance of the implementation 138
7.5.1 Static position (simulated signal) 139
7.5.2 Static position (real signal) 143
7.5.3 Dynamic trajectory (simulated signal) 147
7.5.4 High dynamic (simulated signal) 150
7.5.5 Post-processing time 153
7.5.6 Processor load and memory requirements 157

7.6 Summary . 161

8 Conclusion 163
8.1 Achievements of the thesis 164
8.2 Future steps . 166

Bibliography 174

Acknowledgments 175

Curriculum Vitae 178

xv

Contents

xvi

Chapter 1

Introduction

Personal Digital Assistants (PDAs) or mobile phones applications are not
anymore restricted to multimedia or wireless communications, but have
been extended to handle Global Navigation Satellite System (GNSS) func-
tionalities. The new generation of portable devices is becoming suitable
for use as navigators thanks to their large displays, their improved storage
capacities and the increasing number of developers creating software ap-
plications for them. Accordingly to an electronics market research [iSu08],
the cellphones are expected to replace the personal navigation devices as
primary Global Positioning System (GPS) receivers by 2011. One major
drive in this fast development can be credited to the US Enhanced 911
mandate, under which the location of any cellphone must be available to
emergency call dispatchers since the end of 2005 [Pub10].

But the use of the GNSS technology in the cellular handset has some
drawbacks. The functionalities are usually implemented using a standalone
hardware module, introducing a relatively expensive item to integrate into
such cost sensitive devices. However, with the increasing performance
of modern embedded processors, it becomes now feasible to implement a
GNSS receiver in software, where all the basic operations are performed
on a general purpose microprocessor. In that case, both the receiver and
the device can share the same system resources, reducing both the size
and the costs of their integration. Consequently, the fast growing market
of GNSS capable mobile devices is driving the interest of the software
receiver solutions, as they present many advantages, especially in term of
costs, with respect to the traditional hardware implementations.

1

Chapter 1 - Introduction

1.1 Principle of a software receiver
In a generic GNSS receiver, the satellites signals traveling through space
are first received by the antenna, then properly conditioned through the
Radio Frequency (RF) front-end, before being digitized by means of an
Analog to Digital Converter (ADC). The resulting data samples are then
transmitted to the receiver digital processing unit in order to extract all
the information necessary to compute the Position - Velocity - Time (PVT)
solution. The block diagram of a typical GNSS receiver is illustrated in
Figure 1.1.

RF front-end
& ADC PVT solutionDigital signal

processing

Figure 1.1: Generic GNSS receiver block diagram.

In today’s most mass market receivers, the complete digital signal pro-
cessing chain is implemented on an Application Specific Integrated Circuit
(ASIC). The use of a hardware chip, designed for this particular task only,
is motivated by the power demanding nature of the operations that need
to be performed continuously and at high speed.

The software receiver aims to substitute the dedicated hardware chip for
a general purpose programmable microprocessor in order to fully process
the data samples in software. The primary objective of this approach
is to separate the analog signal conditioning (in the hardware RF front-
end) from the digital signal processing (in software), so that any low-level
receiver functionality modification can be operated by a simple firmware
update. The second objective is to sample the signal as close as possible as
to the antenna, in order to perform the maximum number of operations on
the microprocessor and thus, reduce the hardware part to the minimum,
with direct implication on the overall cost.

2

1.2 - Benefits of a software receiver

1.2 Benefits of a software receiver
The first gain of a software receiver lies in its powerful flexibility. While
the ASIC functionalities are by definition restricted to the particular de-
sign of the chip, signal processing in software can easily be reprogrammed
via a firmware update for integrating the latest developments. Flexibility
and updating capabilities will become even more important in the near
future as the world of global navigation is frenetically evolving. For exam-
ple, the Russian Federation is currently modernizing its Global Orbiting
Navigation Satellite System (GLONASS) while the European Union and
China are about to introduce their own full satellites constellations (re-
spectively named Galileo and Compass) within the next few years. The
users of software receivers will derive full benefit from these new signals
with a simple firmware upgrade, without purchasing new hardware com-
ponents. A software receiver thus constitutes a unique tool for research
and development purposes, as it can accommodate different sorts of RF
front-ends with various sampling frequencies and data types.

Another key feature of the software approach is the cost saving opportu-
nity. Many handsets now embed a powerful applications host processor
for decoding streaming music and video files. The software flexibility al-
lows the device to dynamically change its functionalities and when these
services are not in use, the application processor is available to perform
GNSS signal processing. This also enables more flexible power manage-
ment than hardware based approaches, since different parts of the system
can be individually controlled. Consequently, in a host system equipped
with a microprocessor, both the receiver and the device can share the same
resources, such as the memory and the power, reducing both the size and
the costs of their integration, since the ASIC is no more needed.

1.3 Compromises of a software receiver
Implementing a GNSS receiver in software is not straightforward. The
large computing resources required for performing the different operations
on a microprocessor constitute a major issue, as compared to a hard-
ware design where the chip is specifically designed for this task and can
thus handle much higher data throughput. Several studies (e.g. [Hec06])
demonstrated that a direct transposition of traditional hardware based
architectures into software leads to an amount of arithmetic operations
which is simply not suitable for real-time applications.

3

Chapter 1 - Introduction

This is the inherent trade-off of the software versus hardware approach,
since the flexibility is obtained at the cost of lower processing power capa-
bilities. However, a compromise between the hardware and the full soft-
ware implementation can be obtained with a design based on Field Pro-
grammable Gate Array (FPGA). The latter consists in a re-configurable
integrated circuit containing programmable blocks that can be configured
to perform any complex logical functions that an ASIC could do. FPGAs
are increasingly preferred to microprocessors in conventional high perfor-
mance applications since their architecture offers massive parallelism logic
resources, providing a considerable computational throughput even at a
low clock rates. The trade-off between flexibility and processing power of
the different receiver designs is illustrated in Figure 1.2.

ASIC FPGA
Microprocessor

assembly
language

Microprocessor
high-level
language

HighLow

High Low

Flexibility

Data throughput

Figure 1.2: Trade-off between the high data throughput of the ASIC
and the flexibility of the software.

The exact definition of a software receiver always brings some confusion
among engineers and many consider the FPGA approach as a full software
solution since it is reconfigurable [Bro07], [Pur05] or [Gan04]. However,
the terminology “software” usually implies that the processing of the signal
is carried out by a programmable microprocessor, excluding the FPGA
design, which is generally specified using a hardware description language.
Consequently, the FPGA based receivers are not further considered in this
work.

4

1.4 - History of software receivers

1.4 History of software receivers
The idea of a receiver performing signal processing in software is not new,
but the increasing performances of digital electronics are making practical
today many concepts that were only theoretically possible two decades ago.
Although the terminology of Software Defined Radio was first proposed by
Joseph Mitola in 1991 and officially published in 1992 [Mit92], the soft-
ware receiver finds its origins in projects of defense in the United States
and Europe since the late 1970’s. One of the first large-scale software re-
ceiver initiatives was an US military project named SpeakEasy, which was
motivated by the communication interoperability problems between the
different military branches having dissimilar radio systems [Lac95]. The
proliferation of incompatible equipments became a significant logistic bur-
den and the project sought to implement the basic radio functions in a full
digital, software programmable base-band signal processor. The objective
was to emulate more than 15 different military radios, with the ability of
integrating new modulation standards in the future. The radio receiver
basic architecture was built around a RF front-end feeding an ADC, the
latter being connected to a bank of processors (40 MHz Texas Instrument)
and FPGAs. The project was successfully demonstrated in 1994 and was
the first known to use FPGAs for the digital processing of radio data.
However, it involved several hundred of processors that filled the back of
a truck and took three years of software development for a platform that
became obsolete after a few months only [Bos04]. Furthermore, the soft-
ware was tied to the specific hardware assembly language, plus all of the
specialized glue code to get the processors working together. These ob-
servations made that the software portability should become a key goal in
the future projects.

One of the first initiatives related to GNSS civilian applications goes back
to 1988, with the proposition of a new approach using a general purpose
microprocessor to perform the digital processing [Mat88]. The primary
objective was to speed-up the time requested to acquire four satellites in a
hand-held navigation system receiver. The basic idea was to first process a
single satellite at once in order to download the ephemeris data. Then, the
receiver would be activated every two or five minutes - to make a quick re-
acquisition of the four satellites to find the position - and shutdown, leaving
the position displayed in-between two operations. In normal operation,
knowing the satellites to search for and, by predicting the clock drift over
a few minutes, the worst case acquisition time was less than 12 seconds.

5

Chapter 1 - Introduction

In 1997 the Ohio University developed a software receiver based on a novel
bandpass sampling front-end design for processing multiple GNSS trans-
missions (GPS and GLONASS). The signal was post-processed in software
using the Matlab programming language and one second of data required
about 45 seconds of processing time (200 MHz Intel Pentium Pro) [Ako97].
Although a programming in C language would definitively offer improved
performances as compared to theMatlab implementation, the author raised
the question of the ability of a software receiver to ever process the incom-
ing data in real-time. Even though he recognized that this was not feasible
at the time, he was quite confident that it would be in the near future,
motivated by Moore’s law, which states that the processing power doubles
every 18 months [Sch96].

Based on the previous work of [Ako97], the Stanford University succeeded
in 2001 to implement a complete four channels GPS receiver operating
in real-time on a x86 based processor (650 MHz AMD Duron) [Ako01a].
Since then, many universities and companies have been active in the field
of software receivers. For example, in 2003, the Cornell University pre-
sented a 12 channels GPS L1 software receiver running in real-time on a
personal computer (1.7 GHz AMD Athlon) [Led03].

More recently, the research activities have focused on the development of
software receivers capable of processing the next generation of satellites
signals such as Galileo E1-B [Led06a] or GPS L5 [Mon07].

6

1.5 - Presentation of the thesis

1.5 Presentation of the thesis
This Ph.D. thesis work considers the realization of a multi-channel GPS L1
software receiver operating in real-time on a general purpose microproces-
sor. It focuses mainly on the development of a new base-band architecture
for minimizing the computational load of the different operations involved
in the digital signal processing chain. The two main challenges of this work
consist in:

• operating the receiver in real-time with hardware-like performances
and minimal processor load;

• keeping the software portable to make the receiver suitable for any
type of processor (platform-independent).

1.5.1 Context of the thesis and partnership
This thesis has been carried out in the framework of a two-year industrial
project (2007-2009) in collaboration with u-blox AG, aiming to the realiza-
tion of a multi-channel, platform-independent real-time GPS L1 software
receiver. The receiver was successfully implemented on a host computer
communicating with a front-end unit for receiving the digitized satellites
signals, and an external unit integrating the PVT solution computation.

Some contributions to the research activities were also carried out in the
framework of several other research and development projects:

• SARBACAN (Safety And Rescue BeAcon development with CANada)
for the development of a software architecture able to process the new
Galileo E1 modulation, as well as to decode the search and rescue
messages.
Main industrial partners: KANNAD, u-blox AG, Novatel;

• GRDB (Galileo Receiver for Distress Beacon) for the realization of
a Galileo receiver prototype able to process the new BOC(1,1) mod-
ulation, as well as to decode the search and rescue messages.
Industrial partner: Martec Serpe IESM (MSI) now KANNAD.

7

Chapter 1 - Introduction

1.5.2 Organization of the report
The objective of the present thesis is to provide to the reader all the
information necessary to fully apprehend the challenges of implementing
a receiver in software. The document is subdivided into eight chapters, as
follows:

• Chapter 2 introduces the basic structure of the broadcasted GPS
L1 signal and details the different receiver operations involved in its
processing, from the signal reception at the antenna up to the PVT
solution computation;

• Chapter 3 identifies the inherent constraints of realizing a receiver
in software as compared to a traditional hardware based implemen-
tation;

• Chapter 4 reviews the state-of-the-art in the field of software re-
ceivers. Different algorithms and architectures proposed in the liter-
ature for optimizing the receiver complexity and achieving real-time
performances are presented. Their advantages and limitations are
also discussed;

• Chapter 5 describes the main contribution of this work and presents
new algorithms for minimizing the computational load of the basic re-
ceiver operations. Finally it contains the proposition of a completely
new receiver architecture suitable for a real-time implementation on
a general purpose microprocessor;

• Chapter 6 analyzes the theoretical performance of the proposed ar-
chitecture in terms of the amount of integer operations to perform
each second. The trade-offs and limitations of the receiver are also
discussed, as well as its ability to accommodate the next generation
of GNSS signals;

• Chapter 7 details the implementation of the proposed architecture
in a demonstrator and evaluates the performance of the receiver in
terms of accuracy and processor and memory requirements;

• Chapter 8 summarizes the achievements of this thesis.

8

1.6 - Contributions of the thesis

1.6 Contributions of the thesis
Most of the existing software receivers are tied to specific implementations
that severely limit their portability or their flexibility. In order to imple-
ment a software receiver operating in real-time on different platforms and
accommodating various signals configurations, there is a need for a new
architecture combining both flexibility and efficiency. In this context, the
main contributions of this thesis in the field of the software receivers are:

• development of a completely novel receiver base-band architecture
suitable for a real-time software implementation on a general purpose
microprocessor;

• development of an algorithm based on batch processing for the real-
time generation of the local carrier replicas;

• development of an algorithm based on batch processing for the real-
time generation of the local code replicas;

• development of an algorithm based on distributed arithmetic for op-
timizing the operations involved in the base-band processing;

• realization of a GPS L1 receiver demonstrator operating in real-time
on different host computers equipped with various processors.

Part of this thesis work has been the subject of various publications:

Patents:

• C. Buergi, G. Waelchli, and M. Baracchi. “A method of processing
a digital signal derived from a direct-sequence spread spectrum sig-
nal and a receiver for carrying out the method”. European Patent
09405207.3, November 2009;

• C. Buergi, G. Waelchli, and M. Baracchi. “A method of processing a
digital signal derived from a direct-sequence spread spectrum signal
and a receiver”. US Patent 12/694,145, January 2010.

Journals:

• M. Baracchi, G. Waelchli, C. Botteron, and P.-A. Farine. “Real-
time GNSS software receiver: challenges, status and perspectives”.
My coordinates, VI(5):7–9, 2010;

9

Chapter 1 - Introduction

• G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine. “Dis-
tributed arithmetic for efficient base-band processing in real-time
GNSS software receivers”. Hindawi, Journal of Electrical and Com-
puter Engineering, January, 2010;

• M. Baracchi, G. Waelchli, C. Botteron, and P.-A. Farine. “Real-time
GNSS software receiver: challenges, status and perspectives”. GPS
World, 20(9):40–47, 2009.

Conferences:

• G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine. “Batch
processing for efficient base-band operations in real-time GNSS soft-
ware receivers”. Institute of Navigation GNSS 2010. Portland, OR,
USA, September 21-24 2010;

• G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine. “Real-
time carrier generation for a GNSS software receiver”. International
Symposium on GPS/GNSS 2009. Jeju, South Korea, November 4-9
2009;

• M. Baracchi, G. Waelchli, C. Botteron, and P.-A. Farine. “Real-
time GNSS software receiver: challenges, status and perspectives”.
European Navigation Conference on GNSS 09. Naples, Italy, 3-6
May 2009;

• G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine. “Perfor-
mances of a new correlation algorithm for a platform-independent
GPS software receiver”. 2009 International Technical Meeting of the
Institute of Navigation, pp. 1062–1067. Anaheim, CA, USA, Jan-
uary 26-28 2009;

• G. Waelchli, G. Zamuner, D. Manetti, M. Frei, F. Chastellain, E.
Firouzi, C. Botteron, P.-A. Farine, and P. Brault. “Development,
implementation and validation of a real-time Galileo E1 signal ac-
quisition and tracking scheme”. European Navigation Conference on
GNSS 07, pp. 626–634. Geneva, Switzerland, May 29-June 1 2007.

1.7 Summary
Chapter 1 introduces the concept of a software receiver and explains the
motivations of implementing the complete digital processing chain on a mi-
croprocessor. From this, the objectives of this thesis work are described.

10

Chapter 2

GPS signals & receiver
operations

In order to fully apprehend the challenges of a software receiver, it is first
necessary to understand the structure of the broadcasted GPS signals, as
well as the different receiver operations involved in its processing. A brief
overview is given in this chapter.

2.1 GPS signals
The GPS is a US navigation system providing positioning and timing ser-
vices to worldwide users. It relies on a constellation of 24 operational
satellites orbiting in six quasi circular planes, approximately 20’200 km
above the earth surface. Each satellite broadcasts two signals at the same
time, namely Link 1 (L1) and Link 2 (L2), made of three components:

1. a carrier frequency fL1 (1’575.42 MHz) or fL2 (1’227.6 MHz);

2. a data message containing the information relative to the satellites
orbits and necessary to compute the user PVT solution;

3. two unique identification codes, namely Coarse Acquisition (CA) and
Precise (P(Y)), proper to each satellite. The CA code, freely acces-
sible, is sent on the L1 carrier only. The P(Y) code, encrypted and
restricted to authorized users, is transmitted on both L1 and L2
bands at the same time.

11

Chapter 2 - GPS signals & receiver operations

2.1.1 GPS signals components
GPS carrier frequency

The transmission of data from the satellites to the receiver requires a
proper carrier signal with a frequency not influenced by weather phenom-
ena like rain, snow or clouds, and robust to ionospheric delays (more impor-
tant for frequency ranges below 100 MHz and above 10 GHz). The carrier
must also be large enough to allow high bandwidth data modulation with
the different identification codes. Based notably on these constraints, the
choice of fL1 = 1′575.42 MHz and fL2 = 1′227.6 MHz center frequencies
is advantageous.

The carrier frequency is affected by the Doppler effect, induced by the
relative motion between the satellite and the receiver (see Figure 2.1).
The received frequency increases as the satellite approaches and decreases
as it recedes from the user. The variation ∆f of the initial frequency f0
can be estimated as:

∆f = vs,r
c
· f0 [Hz] (2.1)

where vs,r = vs − vr is the velocity of the satellite vs relative to the
velocity of the receiver vr;
c ≈ 3 · 108 m/s is the speed of light.

RS

vsv

vs
β

vr

R

Figure 2.1: Doppler effect on the carrier frequency induced by the
relative velocity between satellite vehicle vs and the receiver vr.

12

2.1 - GPS signals

The speed vsv of the satellite vehicle can be estimated as:

vsv = 2 · π ·Rs
Ts

= 2 · π · 26′560′000
11 · 3600 + 58 · 60 + 2 ≈ 3874 m/s (2.2)

where Rs=26’560 km is the average radius of the satellite orbit;
Ts=11 h, 58 m, 2 s is the orbital time of the satellite.

The Doppler is induced by the velocity component vs of the satellite vehicle
toward the user that can be expressed as:

vs = vsv · sin(β) ≈ 3874 · sin(β) m/s (2.3)

The maximum absolute Doppler is obtained when the satellite elevation
is at the horizontal position referenced to the user, corresponding to an
elevation angle βlim of:

sin(βlim) = R

Rs
= 6′360

26′560 ≈
1
4 (2.4)

Consequently, the maximum absolute Doppler velocity, which is along the
horizontal direction, becomes:

vs max = vsv · sin(βlim) ≈ 920 m/s (2.5)

This speed is equivalent to a high-speed military aircraft. In comparison,
the additional Doppler shift caused by a terrestrial vehicle is often very
small (vr max < 50 m/s), even if the motion is directly toward the satel-
lite to produce the higher effect [Tsu05]. Consequently, for the GPS L1
frequency and for terrestrial applications, the maximal absolute Doppler
shift can reasonably be estimated as:

∆fmax = vs,r max
c

· fL1 = 920 + 50
3 · 108 · 1.5 · 109 ≈ 5 kHz (2.6)

The Doppler also affects the code frequency, but in a lesser extent because
of the much lower frequency of the CA code as compared to the carrier
(the ratio is 1’540). The maximal absolute Doppler on the code can thus
be estimated as 3.2 Hz.

13

Chapter 2 - GPS signals & receiver operations

GPS data message

The GPS message is a continuous data stream providing the receiver the
information necessary for the PVT solution computation. Each satellite
relays the following information:

• system time and clock correction values;

• its own exact orbital data (ephemeris);

• other satellites approximated orbital data (almanac);

• system health, etc.

The navigation message consists in 25 frames (or pages) of 1500 bits each,
transmitted at the rate of 50 bps in 12.5 minutes. Each frame is distributed
into five subframes of 300 bits that are in turn divided into 10 words of 30
bits. The structure of the complete navigation message is represented in
Figure 2.2.

Navigation
message

0
12.5 minutes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

30 seconds

Frame

Data

H
O

W

TL
M

0 1 2 3 4 5 6 7 8 9

8 bits 16 bits 6 bits

Preamble ParityReserved

7 bits17 bits 6 bits
Time of week

(TOW) ParityID

Satellite clock
and data health

Subframe 0

Ephemeris

Subframe 1

Ephemeris

Subframe 2
Almanacs
Sat 25-32

Subframe 3
Almanacs
Sat 1-24

Subframe 4

6 seconds

0.6 second 0.6 second

Subframe

Word

Telemetry word (TLM) Handover word (HOW)

Figure 2.2: Structure of the GPS L1 navigation message [Zog09].

14

2.1 - GPS signals

The first word of every subframe is the Telemetry word (TLM), used for
synchronization purpose. It is followed by the Handover Word (HOW),
containing the Time Of Week (TOW), which counts the time elapsed since
the beginning of the GPS week (every Sunday at 00h00), by increment of
6 seconds. The eight remaining data words are specific to each subframe.

The first subframe contains the clock information and the health of the
broadcasting satellite. It also transmits the week number, counting the
number of weeks elapsed since the beginning of the GPS time (Sunday 6th
January 1980 at 00h00). Subframes 2 and 3 hold the ephemeris, or exact
orbital parameters, specific to the satellite. The first three subframes are
identical for all the 25 frames and therefore the most important data for the
position determination are transmitted every 30 seconds. The subframes
4 and 5 contain the almanacs, or approximated orbital characteristics, of
the whole constellation. Each satellite broadcasts the almanac data for all
the satellites, but only its own ephemeris data. A more detailed analysis
of the message structure is provided in [Tsu05].

A receiver must have collected the complete ephemeris of at least four
satellites in order to be able to compute its position. Depending on the
information a priori known and their actuality, the procedure can require
more or less time, and can be classified as follows [ike10]:

• cold start: no a priori information about the satellites is known. This
happens when the receiver was switched off for a long time or has
moved a few hundreds kilometers away from its last position fix;

• warm start: the time of the receiver and the almanac data are known,
but the ephemeris data are out of date. This happens when more
than 3–6 hours have elapsed since the last position fix;

• hot start: the time of the receiver and the almanac data are known
and the ephemeris data are up-to-date. This happens when the re-
ceiver is turned on at approximately the same position within 2 hours
after the last position fix.

GPS identification codes

The identification codes used in GPS consist in binary sequences that
appear to be random with noise like properties, but which are actually
deterministic. Because of these characteristics, they are referred as Pseudo
Random Noise (PRN) codes.

15

Chapter 2 - GPS signals & receiver operations

Since all the satellites broadcast on the same L1 and L2 carrier frequen-
cies, the signals origin is distinguished by assigning each satellite a unique
PRN code. This technique of data multiplexing is known as Code Divi-
sion Multiple Access (CDMA) [Raz98]. The receiver can then identify and
decode a specific satellite data by correlating (i.e. multiplying and accu-
mulating) the incoming signal with a locally generated replica of the code.
The PRN codes have excellent autocorrelation properties and are highly
mutually orthogonal, so that it is unlikely that one satellite signal will be
misinterpreted as another under normal signal conditions [Sar80].

GPS CA code The CA code, also known as Gold code as Robert Gold
described it in 1967 [Gol67], consists in a 1023 chips sequence (the name
“chip” is used instead of “bit” as no information is carried by the code). It
is generated at the rate of 1.023 MHz which corresponds to an equivalent
main lobe null-to-null bandwidth of 2.046 MHz. Each code epoch lasts one
millisecond and repeats itself every millisecond. Every CA code sequence
is constructed by combining different outputs of two 10-cell shift registers
with proper feedback and the satellite identification is determined by the
two output positions of the second register [Kap06].

Two fundamental properties of the GPS L1 CA code can be expressed as
follows [Bor07]:

1. Nearly no cross-correlation: all the CA codes are nearly uncorrelated
with each other. That is, for two codes Ci and Cj of the satellites i
and j, the cross-correlation function Rij(m) can be expressed as:

Rij(m) =
1022∑
k=0

Ci(k) · Cj(k +m) ≈ 0 for all m (2.7)

2. Nearly no correlation except for zero lag: all the CA codes are nearly
uncorrelated with themselves, except for zero lag. That is, for the
code Ci of the satellite i, the autocorrelation function Rii(m) can be
expressed as:

Rii(0) =
1022∑
k=0

Ci(k) · Ci(k) = 1023

Rii(m) =
1022∑
k=0

Ci(k) · Ci(k +m) ≈ 0 for m 6= 0 (2.8)

16

2.1 - GPS signals

An example of the autocorrelation function of the GPS L1 CA code is
illustrated in Figure 2.3.

200

400

600

800

1000

1200

ut
oc

or
re

la
tio

n
am

pl
itu

de

-200

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

A
ut

oc
or

re
la

tio
n

am
pl

itu
de

Code lag m [chip]

Figure 2.3: Autocorrelation function R11(m) of the GPS L1 CA code.
R11(0) = 1023 while |R11(m 6= 0)| ≤ 65.

GPS P(Y) code The P(Y) code consists in a sequence of approximately
2.3 · 1014 chips, generated at the rate of 10.23 MHz, which corresponds to
an equivalent main lobe null-to-null bandwidth of 20.46 MHz. The code
is constructed by combining two original PRN sequences of respectively
15’345’000 and 15’345’037 chips. Thus, the P(Y) code period theoreti-
cally lasts more than 38 weeks, but is currently reset and repeated every
week [Kap06]. The actual P(Y) code is not directly transmitted, but is
encrypted by an auxiliary Y sequence. The resulting code is mainly used
for military purpose and is not available to civilian users.

Table 2.1 summarizes the main signals characteristics of the GPS L1 and
L2 signals.

17

Chapter 2 - GPS signals & receiver operations

GPS L1 GPS L2

Carrier frequency 1’575.42 MHz 1’227.6 MHz

Code rate 1.023 MHz (CA)
10.23 MHz (P(Y)) 10.23 MHz (P(Y))

Code length 1023 chips (CA)
2.3 · 1014 chips (P(Y)) 2.3 · 1014 chips (P(Y))

Data rate 50 bps

Table 2.1: Characteristics of the GPS L1 and L2 signals.

2.1.2 GPS L1 CA signal modulation
This section focuses now on the L1 band and the CA code in particular,
since it is public and used by all the current civilian GPS receivers. All
the GPS satellites are equipped with four extremely stable atomic clocks
producing a frequency of 10.23 MHz from which are derived the carrier
frequency, the data message and the identification codes. The GPS L1
CA signal is obtained by first combining the low bit-rate data message
(50 bps) with the high CA code frequency fc = 1.203 MHz, spreading the
data spectrum over an approximately 2 MHz bandwidth. Assuming that
both the binary sequences are represented with 1’s and -1’s values, the
latter operation translates into a simple multiplication. The resulting se-
quence then modulates the carrier signals L1 using the Binary Phase Shift
Keying (BPSK) scheme, where each data transition affects the carrier fre-
quency by a 180◦ phase shift. An example of BPSK modulation is shown
in Figure 2.4.

The signal broadcasted by each satellite in the GPS L1 CA band can be
represented as follows [Die95]:

s(t) = at · d(t) · c(t) · cos(ωL1 · t+ φL1) (2.9)

where at is the signal amplitude;
d(t) = ±1 is the data message, specific to each satellite;
c(t) = ±1 is the CA code sequence, specific to each satellite;
ωL1 = 2 · π · fL1 is the L1 carrier angular frequency [Hz];
φL1 is the L1 carrier phase [rad].

18

2.1 - GPS signals

CA code

Data

Carrier

Broadcasted
satellite signal

CA code data

1

-1

1

-1

1

-1

Figure 2.4: Example of BPSK modulation [Bor07].

A block diagram of the GPS L1 CA signal generation is given in Figure 2.5.

Navigation message

CA code

L1 carrier

Carrier
generator
1'575 MHz

PRN code
generator
1.023 MHz

Data
generator

50 bps

Broadcatsed
satellite signal

-1

1

-1

1

Figure 2.5: Generation of the GPS L1 CA signal [Zog09].

According to the standard positioning service signal specification [US 95],
the minimal signal power received on earth (in open sky conditions) is
between -160 and -158 dBW, depending on the satellite elevation angle.
Considering the approximately 2 MHz null-to-null bandwidth of the CA
code signal and a receiver temperature T = 290 degrees K, the signal
power is well below the thermal noise floor defined as:

Pn = 10 · log10(k · T ·Bn) ≈ −141 dBW (2.10)

where k ≈ 1.38 · 10−23 J/K is the Boltzmann constant;
Bn is the equivalent noise bandwidth of the signal [Hz].

19

Chapter 2 - GPS signals & receiver operations

Thus, under normal operating conditions, the Signal-to-Noise Ratio (SNR)
at the receiver input is between -19 and -17 dB. The signal is dominated
by noise and requires further appropriate processing to be detected.

2.1.3 Galileo E1 signals
Galileo is a GNSS system currently developed by the European Union in
cooperation with the European Space Agency. It will rely on a constel-
lation of 30 satellites orbiting on three circular plans at an altitude of
23’222 km above the earth surface. The system will provide several navi-
gation services, broadcasted on different frequencies with different modu-
lation schemes [Eur10b]:

• the Open Service (OS) will be free for anyone to access and will
be broadcasted in two frequency bands, centered at 1’191.795 and
at 1’575.42 MHz. The receivers processing the two bands should
achieve a horizontal accuracy <4 m, while the receivers that use
only a single band will achieve an accuracy of <15 m, comparable to
what the civilian GPS L1 CA service provides today [Zog09]. It is
expected that most of the future mass market receivers will process
both the GPS L1 CA and the Galileo OS signals for obtaining a
maximum of coverage;

• the encrypted Commercial Service (CS) will be available for a fee. It
will offer a higher data throughput rate and enable the users to im-
prove the accuracy. It will be broadcasted in three frequency bands,
the two used for the OS signals plus at 1’278.75 MHz;

• the encrypted Public Regulated Service (PRS) and Safety of Life
Service (SoL) will both achieve an accuracy comparable to the OS,
but with an improved robustness against jamming and faster and
more reliable detection of problems. They target security authorities
(police, military, etc.) and safety-critical transport applications (air-
traffic control, automated aircraft landing, etc.).

As compared to the BPSK modulation, the Galileo signals are character-
ized by the introduction of a square wave sub-carrier modulation known as
Binary Offset Carrier (m,n) (BOC), where m stands for the ratio between
the sub-carrier frequency and the reference frequency f0 = 1.023 MHz, and
n stands for the ratio between the code rate fc and f0. The goal of the
BOC modulation is to better distribute the signal over the bandwidth in
order to improve the immunity to thermal noise and to multipath errors.

20

2.1 - GPS signals

It also helps minimizing the mutual impact when used simultaneously with
another modulation such as the BPSK, since their power spectrum density
maxima are separated [Mar03]. This is illustrated in Figure 2.6.

-85

-80

-75

-70

-65

-60

er
 s

pe
ct

ra
l d

en
si

ty
 [d

bm
/H

z]

-95

-90

-85

-80

-75

-70

-65

-60

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 [d

bm
/H

z]

Deviation from median frequency [MHz]

Figure 2.6: Comparison between the power spectral density of the
BOC(1,1) (blue curve) and the BPSK (red curve) modulations. The
signals strength is normalized to 1 W [Zog09].

However, the drawback of the BOC modulation is the ambiguity of the
autocorrelation function caused by the introduction of additional lobes.
This increases the risk of false peak detection and makes the acquisition
process more complex [Wae07]. Figure 2.7 compares the GPS L1 CA auto-
correlation function with the BOC(1,1) one, that presents two secondary
negative lobes disposed around the main peak.

The rest of this section focuses on the freely accessible Galileo E1 OS
signal, transmitted on the 1’575.42 MHz carrier frequency. It is composed
of two channels, the data signal E1-B and the dataless signal E1-C, also
called pilot and made of an identification code only [Eur10a]. Both are
based on a combination of two BOC modulations (referenced as Composite
BOC (CBOC)) added together with different weighting, as follows [Zog09]:

CBOCE1 = 10
11 · BOC(1, 1) + 1

11 · BOC(6, 1) (2.11)

21

Chapter 2 - GPS signals & receiver operations

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
ut

oc
or

re
la

tio
n

am
pl

itu
de

(n
or

m
al

iz
ed

 to
 1

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

A
ut

oc
or

re
la

tio
n

am
pl

itu
de

(n
or

m
al

iz
ed

 to
 1

)

Code offset [chip]

Figure 2.7: Comparison between the Galileo E1-B BOC(1,1) (blue
curve) and the GPS L1 CA (red curve) autocorrelation functions.

The Galileo E1 OS signal has a code length of 4092 chips generated at the
rate of 1.023 MHz. Each code epoch lasts 4 milliseconds and repeats itself.
For the pilot channel, a secondary code of 25 chips extends the repetition
interval to 100 milliseconds [Eur10a]. The main signal characteristics are
regrouped in Table 2.2.

Galileo E1-B Galileo E1-C

Carrier frequency 1.575.42 MHz

BOC modulation CBOC

Code rate 1.023 MHz

Sub-carrier rate 1.023 MHz + 6.138 MHz

Code length 4092 chips 4092 x 25 chips

Data rate 250 bps -

Table 2.2: Characteristics of the Galileo E1 signal. The E1-C channel
uses both a primary code of 4092 chips modulated by a secondary one
of 25 chips, resulting in a 4092 x 25 code length and called tiered code.

22

2.2 - Receiver RF front-end

2.2 Receiver RF front-end

The RF front-end constitutes the first element of the processing chain. It
is responsible for receiving, conditioning and digitizing the incoming signal
in order to provide the microprocessor with a proper digital data stream.
The satellites signals traveling through space are first captured by the
receiver antenna that induces a voltage which amplitude is too weak and
its frequency too high to be directly processed by most ADCs. Therefore,
the front-end utilizes a combination of amplifier(s), filter(s), and mixer(s)
in order to properly condition the signal prior to digitization. An example
of the processing chain of a RF front-end is illustrated in Figure 2.8.

LNA

VGA

VGA

90°

Bandpass
filter

Lowpass
filter

Variable Gain
Amplifier

Low-Noise
Amplifier Amplifier

Figure 2.8: Example of a typical RF front-end topology.

The first component after the antenna is generally a Low-Noise Amplifier
(LNA). Since the requested gain may be higher than 100 dB to fit closely
the ADC voltage input range (typically of a few hundreds millivolt), sev-
eral amplifiers are usually used and distributed along the front-end [Tsu05].
The amplified signal then goes through a bandpass filter centered at the
carrier frequency in order to attenuate the out-of-band RF interferences
entering the rest of the processing chain. If the total gain is too high, the
output signal will be saturated and if too low, the dynamic range of the
ADC will not be fully exploited. For this reason, the last amplification
stage is usually a Variable Gain Amplifier (VGA).

The signal is then down-converted from the RF to a lower Intermediate
Frequency (IF), generally of a few megahertz, which is more suitable to
operate the upcoming analog-to-digital conversion. The frequency transla-
tion is performed in a mixer that multiplies the signal with a local complex
carrier (i.e. sine and cosine) that is derived from the reference oscillator.

23

Chapter 2 - GPS signals & receiver operations

The process operates through the following trigonometric identities:

cos(ω1 · t) · cos(ω2 · t) = 1
2 · [cos ((ω1 − ω2) · t) + cos ((ω1 + ω2) · t)]

sin(ω1 · t) · sin(ω2 · t) = 1
2 · [cos ((ω1 − ω2) · t)− cos ((ω1 + ω2) · t)]

sin(ω1 · t) · cos(ω2 · t) = 1
2 · [sin ((ω1 − ω2) · t) + sin ((ω1 + ω2) · t)]

(2.12)

The mixing process generates both a lower and an upper signal compo-
nent, the latter being rejected by a post mixer lowpass (or bandpass) filter.
It also preserves the signal properties (Doppler and PRN code) since only
the carrier frequency is lowered. The mixer down-converts the input sig-
nal into two sets of real and imaginary data, generally denoted as I(t) and
Q(t). Depending on the architecture, some front-ends may only output
one single real data stream I(t).

The final component of the front-end is the ADC which is responsible
for the analog signal conversion into digital samples at the frequency fs.
The ADC is generally preceded by an anti-aliasing bandpass filter around
the CA code that limits the band to the frequencies of interest. Because
of the narrower bandwidth of the CA code, the P(Y) code is filtered out,
distorted and cannot be demodulated [Bor07]. At the front-end output, the
GPS L1 CA signal contribution from each satellite can be mathematically
expressed as:

I(n) = an · d(n) · c(n) · cos(ω · n · Ts + φ)
Q(n) = an · d(n) · c(n) · sin(ω · n · Ts + φ) (2.13)

where an is the signal amplitude;
n is a positive integer denoting the nth sample;
n · Ts = n/fs is the sampling time [s];
ω is the carrier angular frequency (plus Doppler) [Hz];
φ is the carrier phase [rad].

Depending on the front-end components specifications or the design trade-
offs, multiple stages of amplification, filtering and frequency translation
may be required to obtain the desired output IF. However, this may be
not desirable for a software receiver, where the objective is to place the
ADC as close as possible to the antenna for minimizing the components.
In that sense, new approaches exploiting a simplified front-end topology
have been proposed in the literature and are described hereafter [Ako96].

24

2.2 - Receiver RF front-end

2.2.1 Direct sampling
The minimal front-end design is obtained by sampling the incoming RF
signal directly at the carrier frequency, without any prior down-conversion.
Accordingly to the Nyquist theorem, the lowest sampling rate must be at
least twice the highest signal frequency component. Considering the GPS
L1 carrier frequency fL1 and the CA code bandwidth Bc, this translates
into the following requirement:

fs > 2 ·
(
fL1 + Bc

2

)
≈ 2 · 1.576 GHz = 3.152 GHz (2.14)

Ideally the digitization would take place right next to the antenna, but
proper signal amplification and filtering is still required in order to fit the
input range of the ADC and avoid aliasing. Consequently, the direct sam-
pling technique requires a state-of-the-art amplifier and an ADC operating
at a frequency higher than 3 GHz, as well as a bandpass filter centered at
the RF carrier frequency. The fabrication of components operating at such
high frequencies remains critical and their integration in the front-end de-
sign may drastically impact the cost of the receiver. But, most of all, the
direct sampling results in a prohibitive data rate of at least 3 Gbps that
cannot be handled and further processed by a microprocessor. Therefore,
this type of implementation is impractical for the time being and alterna-
tive approaches must be considered.

2.2.2 Bandpass sampling
The bandpass sampling technique exploits the information bandwidth of
the signal rather than the carrier frequency. The idea is that a bandpass
signal can be translated to a lower frequency band if sampled at a rate
greater than twice its bandwidth. Considering the null-to-null bandwidth
Bc of the GPS L1 CA code, the constraint of Equation 2.14 is relaxed and
the minimal frequency becomes:

fs > 2 ·Bc = 2 · 2.046 MHz = 4.092 MHz (2.15)

Consequently, the incoming RF signal is intentionally undersampled to
achieve frequency translation via aliasing [Ako99]. If the sampling fre-
quency is properly chosen, the process folds the entire information band-
width, together with noise, into the resulting sampled band of [0; fs/2] Hz
without generating interferences. The principle is illustrated in Figure 2.9.

25

Chapter 2 - GPS signals & receiver operations

1 3

2 4

5

6

7

fs / 2 fs 3·fs / 2 2·fs 5·fs / 2 3·fs0 7·fs / 2

1

Sampling

Figure 2.9: Fan-fold paper showing the spectrum of a bandpass signal.
After sampling, all of the sheets superimposed on top of each other and
fold into the band between 0 and fs/2 Hz [Pen10].

By varying the sampling frequency, the aliasing components of the discrete
spectrum shift left and right, up to a point where they overlap. The
criterion ensuring that no part of the signal information bandwidth Bc
will fold on the top of itself can be expressed as [Tse02]:

2 · fL1 +Bc
m

≤ fs ≤
2 · fL1 −Bc
m− 1 [Hz] (2.16)

where m is an arbitrary positive integer in the range 1 ≤ m ≤ 2·fL1+Bc

2·Bc

For m = 1, the above equation states the Nyquist sampling criterion of
Equation 2.14. For m > 1, fs becomes smaller than the Nyquist frequency
and subsampling is operated.

The incoming 1’575 GHz carrier frequency can thus be undersampled at
a few megahertz, relaxing the ADC speed requirements and the resulting
data rate. However, the bandpass sampling still imposes severe constraints
on the hardware components. First, both the amplifier and the ADC in-
puts must accommodate the L1 carrier frequency. Second, a very narrow
bandpass filter centered at the RF carrier frequency is required, as all the
frequencies ranging from 0 Hz to the input bandwidth of the ADC will be
aliased and fold into the band of interest, thus degrading the SNR.

26

2.3 - Receiver base-band processing

Considering the GPS L1 CA code bandwidth, the required quality factor
Qf of the filter is expressed as:

Qf = fL1

Bc
= 1′575 MHz

2.046 MHz ≈ 770 (2.17)

This value is extremely high as compared to commercial filters with a qual-
ity factor typically of 50 [Bor07]. Consequently, to relax the constraints
on the filter bandwidth and overcome the issue of related noise aliasing,
much higher sampling frequencies have to be used. Here lies the first com-
promise of a software receiver, where the simplification of the front-end
design negatively impacts both the cost and the complexity of the system.
Bandpass sampling may be the answer to achieve digitization closer to the
antenna, but too many constraints still limit its realization as compared
to traditional IF translation1, which provides higher flexibility.

2.3 Receiver base-band processing
The base-band processing is the core of the receiver and aims to down-
convert the RF front-end output signal to base-band (i.e. where the signal
spectrum is centered at 0 Hz) in order to extract the information necessary
to the PVT solution computation. The traditional hardware receivers are
organized in a parallel structure where the incoming signal is distributed to
the multiple satellite channels (typically 12) responsible for the simultane-
ous processing of the different satellites. The typical channelized structure
of a receiver is illustrated in Figure 2.10.

Base-band processing

RF front-end
& ADC PVT solutionChannel

processing

1

Nc

Figure 2.10: Channelized organization of the base-band processing.

1Bandpass sampling may also be applied at IF, which allows to suppress the last
down-conversion stage. However this does not go toward the initially targeted RF
front-end design simplification.

27

Chapter 2 - GPS signals & receiver operations

The operations are identical for all the satellite channels and consist in
locally generating a local replica of the carrier and code for sequentially
removing the residual carrier (IF plus Doppler) and the CA code from
the incoming signal, and finally accumulating the resulting samples over
a predetermined period. Since all these operations are performed at the
system frequency rate and concurrently for several satellites, the base-band
processing is traditionally implemented in an ASIC to ensure the real-time
operation of the receiver.

2.3.1 Carrier and code generation
The base-band demodulation requires the local generation of the complex
carrier (for the carrier down-conversion) and code replicas (for the code
removal). In traditional hardware receivers, both the carrier and code
waveforms are produced by means of a Numerically Controlled Oscillator
(NCO), which emulates a digital frequency generator by increasing a phase
accumulator with a phase increment on a per sample basis. The accumu-
lated phase value is then looked up in a table and converted into the
corresponding amplitude in order to recreate the desired waveform sam-
pled at the system frequency [Kap06]. One entire cycle is completed each
time the NCO accumulator overflows, as illustrated in Figure 2.11. The
generated frequency f is proportional to the sampling frequency fs and
the phase increment Inc:

f = fs · Inc
2W [Hz] (2.18)

where W is the accumulator bit width.

The NCO frequency resolution δf is given by:

δf = fs
2W [Hz] (2.19)

For a 32-bit accumulator, the resolution of a NCO operating at a few
megahertz is in the range of a few millihertz.

As the incoming satellites signal is quantized withM bits, it is usually suf-
ficient to represent the values taken by the local carrier as M -bit integer
as well, reducing the frequency waveform to 2M+1 phases that assume 2M
different values. Three bits are enough for encoding the sine and cosine
waveforms with good performances, as no more than 0.02 dB loss can be
expected during the Doppler removal process [Die95].

28

2.3 - Receiver base-band processing

Time

Time

S
in

e
C

os
in

e

Time

1 / fs

2W-1
Inc

0 1 2 3 45 6 7

A
cc

um
ul

at
ed

 p
ha

se

5 6 7 0

Figure 2.11: NCO staircase output converted into a complex waveform.

Table 2.3 regroups the different magnitude levels of a 3-bit quantized com-
plex carrier, while Figure 2.12 compares the original sine wave with the
3-bit quantized one.

Carrier phase 0 1 2 3 4 5 6 7

Sine 1 3 4 5 5 4 3 1

Cosine 5 4 3 1 -1 -3 -4 -5

Carrier phase 8 9 10 11 12 13 14 15

Sine -1 -3 -4 -5 -5 -4 -3 -1

Cosine -5 -4 -3 -1 1 3 4 5

Table 2.3: 3-bit sine and cosine quantization values.

29

Chapter 2 - GPS signals & receiver operations

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

A
m

pl
itu

de

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 45 90 135 180 225 270 315 360

A
m

pl
itu

de

Angle [deg]

Figure 2.12: 3-bit quantized sine wave (blue curve) versus original
continuous sine wave (red curve).

The code replicas are synthesized in the same way, directly from the phase
of the code NCO, but without generating the sine and cosine components.
The same clock and frequency properties described above also apply.

2.3.2 Base-band demodulation
For the sake of simplicity, the description of the demodulation is given
here for one satellite only. The residual carrier ω is first wiped-off by
multiplying the incoming signal samples with the local complex carrier
wave, synthesized by the carrier generator at the estimated frequency ω̃
and phase φ̃. If the RF front-end outputs complex-valued IF samples (i.e.
both I(n) and Q(n)), the mixing is implemented as [Die95]:

Ibb(n) = I(n) · cos(ω̃ · n · Ts + φ̃) +Q(n) · sin(ω̃ · n · Ts + φ̃)

Qbb(n) = Q(n) · cos(ω̃ · n · Ts + φ̃)− I(n) · sin(ω̃ · n · Ts + φ̃) (2.20)

The frequency translation operates through Equation 2.12 and the mixer
outputs two separate in-phase and quadrature sequences Ibb(n) and Qbb(n)
in the base-band.

30

2.3 - Receiver base-band processing

The result of the down-conversion can be expressed as:

Ibb(n) = an · d(n) · c(n) · cos(∆ω · n · Ts + ∆φ)
Qbb(n) = an · d(n) · c(n) · sin(∆ω · n · Ts + ∆φ) (2.21)

where ∆ω = ω − ω̃ is the angular frequency mismatch [Hz];
∆φ = φ− φ̃ is the phase mismatch [rad].

Note that for real-valued IF input samples (i.e. I(n) only), the mixer
generates both a lower and an upper sideband component, adding an extra
term in Equation 2.21 at approximately twice the original IF signal:

Ibb(n) = an
2 · d(n) · c(n) · cos(∆ω · n · Ts + ∆φ)

+ an
2 · d(n) · c(n) · cos((ω + ω̃) · n · Ts + φ+ φ̃)

Qbb(n) = an
2 · d(n) · c(n) · sin(∆ω · n · Ts + ∆φ)

− an
2 · d(n) · c(n) · sin((ω + ω̃) · n · Ts + φ+ φ̃) (2.22)

However, the influence of this extra high frequency component is mini-
mized through the upcoming correlation process acting as a lowpass filter,
as explained hereafter.

The next step is to remove the CA code from the two signals Ibb(n) and
Qbb(n), by correlating them with a local code replica. To ensure further
proper tracking operations, three different time delayed replicas of the
code, denoted as cE(n), cP (n), and cL(n) are used. The indexes Early (E),
Prompt (P), and Late (L) refer to the time shift of each replica with respect
to the incoming signal code phase, cP (n) being aligned and producing the
maximum correlation, cE(n) and cL(n) being respectively shifted a frac-
tion of chip earlier and later, producing part of the maximum correlation.
Ibb(n) and Qbb(n) are thus multiplied point by point with these three code
replicas to produce six signal components IE(n), IP (n), and IL(n), and
QE(n), QP (n) and QL(n). The latter are separately accumulated over the
integration period Tint to produce three in-phase and quadrature correla-
tor outputs denoted as IE , IP , and IL, and QE , QP and QL.

31

Chapter 2 - GPS signals & receiver operations

Ix =
Ns−1∑
n=0

Ibb(n) · cx(n) =
Ns−1∑
n=0

Ix(n)

Qx =
Ns−1∑
n=0

Qbb(n) · cx(n) =
Ns−1∑
n=0

Qx(n) (2.23)

where x ∈ {E,P, L};
Ns = fs · Tint is the number of samples accumulated over Tint.

The correlation operation de-spreads the signals Ibb(n) and Qbb(n) and
achieves proper gain in order to recover them from the noise floor. The
process acts as a low pass filter which bandwidth B is inversely propor-
tional to the integration period Tint:

B = 1
Tint

[Hz] (2.24)

By coherently processing 1 ms of data, corresponding to one complete
CA code period, the equivalent bandwidth of the signal becomes 1 kHz.
However, this also affects the equivalent noise bandwidth in Equation 2.10
and the thermal noise power becomes Pn = −174 dBW for Bn = 1 kHz,
so producing a SNR of 14 dB (-160 + 174 dB) at the correlator output
[Tsu05]. More generally, increasing the coherent integration time by a
factor m with respect to 1 ms provides an additional correlation gain G
of:

G = 10 · log10(m) (2.25)

For example, doubling the integration time to 2 ms leads to a 3 dB in-
crease of the SNR at the correlator output, and so on. The length of the
integration time is theoretically limited by the navigation data occurring
every 20 ms. However, when knowing the value of the transmitted data
bits, this time can be additionally increased to achieve higher sensitivity
[Zog09].

32

2.3 - Receiver base-band processing

Under the assumption that no data bit transition occurs during the integra-
tion interval (i.e. d remains constant), Equation 2.23 can be approximated
by [Die95]:

Ix ≈ an ·Ns · d ·Rx(∆τ) · sin(π ·∆f · Tint)
π ·∆f · Tint

· cos(π ·∆f · Tint + ∆φ)

Qx ≈ an ·Ns · d ·Rx(∆τ) · sin(π ·∆f · Tint)
π ·∆f · Tint

· sin(π ·∆f · Tint + ∆φ)

(2.26)

where Rx(∆τ) is the autocorrelation function of the CA code defined
as:

Rx(∆τ) =
{

1− |∆τ | for |∆τ | < 1 chip;
≈ 0 for |∆τ | ≥ 1 chip.

(2.27)

The implementation of the above base-band demodulation results in the
two generic satellite channel architectures, respectively with real and com-
plex input data, illustrated in Figure 2.13. If both the code and the carrier
are perfectly replicated (i.e. ∆τ = 0, ∆f = 0, and ∆φ = 0), the mag-
nitudes of the in-phase correlator outputs are maximum and the energy
equally distributed between the E and L components. On the other hand,
any code misalignment introduces a correlation loss and produces an im-
balance between the E and L correlator outputs. In the same way, if a
carrier mismatch subsists, the in-phase and quadrature correlation results
are time modulated by a residual frequency and their amplitude affected
by an additional loss.

After each integration, all the correlation results are dumped and trans-
mitted to the base-band algorithms in order to extract the information
necessary to the receiver operations. When the receiver stands in acqui-
sition and searches for a satellite, these values are used to determine the
presence or not of the signal, while in tracking they are used for refining
the carrier and code parameters estimation.

33

Chapter 2 - GPS signals & receiver operations

Q(n)

I(n)

cL (n
)

cP
(n

)

cE
(n

)

si
n(

n)

co
s(

n)

Ibb(n)

Qbb(n)

IE

IP

IL

QE

QP

QL

∑

∑

∑

∑

∑

∑

∑

∑

I(n)

cL (n
)

cP
(n

)

cE
(n

)

si
n(

n)

co
s(

n)
Ibb(n)

Qbb(n)
∑

∑

∑

∑

∑

∑

Carrier
generator

Code
generator

Carrier
generator

Code
generator

IE(n)

IP(n)

IL(n)

QE(n)

QP(n)

QL(n)

IE(n)

IP(n)

IL(n)

QE(n)

QP(n)

QL(n)

IE

IP

IL

QE

QP

QL

Figure 2.13: Real and complex generic base-band architectures with re-
spectively carrier removal, code removal and accumulation stages. Only
one single satellite channel is illustrated.

34

2.4 - Receiver base-band algorithms

2.4 Receiver base-band algorithms
The base-band algorithms are executed only once per integration, at a
much lower rate than the base-band operations. They are often carried
out by a small microprocessor (as well as the PVT solution computation),
generally directly integrated within the ASIC.

2.4.1 Acquisition algorithms
After powering up the receiver, each satellite channel is attributed a satel-
lite to search for and starts replicating and testing all the possible phases
of its local code replica until it correlates with the incoming signal. The
receiver must also detect the satellite in the carrier frequency dimension in
order to compensate for the Doppler effect due to the relative motion be-
tween the satellite and the receiver. The Doppler frequency range is thus
swept with a constant step size (also called bin width) until the carrier
matching is achieved. Consequently, the acquisition consists in a two-
dimensional search process with the uncertainty ranging from [0; 1023]
chips for the code and from [-5; 5] kHz for the carrier frequency, as illus-
trated in Figure 2.14.

Figure 2.14: Two-dimensional code and frequency search space.

For each tested code and frequency combination (also called cell), the
envelope Env of the signal is computed as follows:

Env =
√
I2 +Q2 = a ·Ns ·R(∆τ) ·

∣∣∣∣[sin(π ·∆f · Tint)
π ·∆f · Tint

]∣∣∣∣ (2.28)

35

Chapter 2 - GPS signals & receiver operations

If the signal envelope is higher than a pre-defined threshold, the satellite
is declared as present and the satellite channel switches to tracking with
the estimated code phase and carrier frequency. Otherwise it keeps testing
the remaining cells until the whole uncertainty space is swept.

The smaller the search step sizes of the code and frequency, the higher the
sensitivity, but also the complexity (i.e. the number of cells to test) and
thus, the time of the acquisition. Table 2.4 regroups different code step
size configurations with their impact on the search sensitivity.

Code step size
1
2 chip 1

4 chip 1
8 chip

Number of phases 2046 4092 8184

Minimal envelope 0.75 0.87 0.93

Maximal SNR loss 2.5 dB 1.12 dB 0.55 dB

Table 2.4: Minimal detected signal envelope (normalized to 1) for dif-
ferent code step sizes.

Figure 2.15 compares the impact of the carrier mismatch ∆f on the search
sensitivity, for two different integration times. The following rule of thumb
is generally admitted to fix the frequency step size (also called frequency
bin width) as a function of the integration time Tint [Kap06]:

∆f = 2
3 · Tint

[Hz] (2.29)

The higher the integration time is, the smaller the search frequency bin
width must be. The worst frequency mismatch (i.e. ∆f = 1

3·Tint
) leads to

an additional SNR degradation of 1.6 dB.

Serial search

The classical approach consists in sweeping the two-dimensional search
space in a sequential manner (i.e. cell by cell) until a correlation peak
is detected. The acquisition time is thus proportional to the number of
cells (i.e. the number of code phases times the number of frequency bins).
Assuming half a chip code step size and 1 ms coherent integration time
(∆f = 667 Hz), this represents more than 3000 cells to test per satellite.

36

2.4 - Receiver base-band algorithms

0.4

0.6

0.8

1
al

 e
nv

el
op

e
(n

or
m

al
iz

ed
 to

 1
)

0

0.2

0.4

0.6

0.8

1

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Si
gn

al
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

Doppler frequency mismatch [Hz]

Figure 2.15: Signal envelope versus Doppler mismatch for respectively
1 ms (blue curve) and 10 ms (red curve) integration times.

An example of a serial search implementation is illustrated in Figure 2.16.

2

2

Figure 2.16: Serial search architecture. The different code and carrier
combinations are sequentially tested.

The serial search is traditionally preferred in hardware receivers, since the
high parallelism capabilities of the ASIC can be exploited by implementing
many time-shifted code replicas concurrently to test several code phases at
once. However, in the case of a software receiver where all the operations
are executed sequentially by the microprocessor, performing a serial search
is too much time consuming. Therefore, Fast Fourier Transform (FFT)
based acquisition methods are preferred for their fastest execution times.

37

Chapter 2 - GPS signals & receiver operations

Parallel code search

The parallel code search tests all the possible code phases concurrently
for a given Doppler frequency. This is done by exploiting the properties
of the circular correlation in the frequency domain [Bor07]. The circular
correlation of the sequences x(n) and y(n) both with finite length N and
with periodic repetition are computed as:

z(n) = 1
N
·
N−1∑
m=0

x(m) · y(m+ n) (2.30)

The Discrete Fourier Transform (DFT) of the sequences x(n) and y(n)
both with finite length N are computed as:

X(k) =
N−1∑
n=0

x(n) · e−j2πkn/N

Y (k) =
N−1∑
n=0

y(n) · e−j2πkn/N (2.31)

The DFT of z(n) can be expressed as:

Z(k) =
N−1∑
n=0
·
N−1∑
m=0

x(m) · y(m+ n) · e−j2πkn/N

=
N−1∑
m=0

x(m) · ej2πkm/N ·
N−1∑
n=0

y(m+ n) · e−j2πk(m+n)/N

= X∗(k) · Y (k) (2.32)

where X∗(k) is the complex conjugate of X(k).

The FFT is an algorithm to compute the DFT efficiently. The two abbre-
viations are used equivalently throughout this document.

The input signal is first multiplied with the carrier to form a complex
signal that is transformed into the frequency domain via FFT. The FFT
of the locally generated PRN code is also computed. After multiplication
of these two sets of coefficients, the inverse FFT is performed to deter-
mine if a correlation peak is present. If not, the operation is repeated
for the next Doppler frequency bin. An example of a parallel code search
implementation is illustrated in Figure 2.17.

38

2.4 - Receiver base-band algorithms

2

Figure 2.17: Parallel code search architecture. For a given Doppler
frequency, all the code phases are tested at once.

Compared to the serial search, the parallel code search reduces the two-
dimensional space to the different carrier frequencies. As the FFT of the
generated PRN codes can be pre-computed and stored off line, each of
the frequency bin search consists in performing one FFT and one inverse
FFT. However, the frequency shift in the base-band (i.e. multiplication by
a complex carrier in the time domain) can be performed in the frequency
domain as well, where the multiplication is translated into a convolution
with a single Dirac function centered at the estimated Doppler frequency.
This corresponds to perform a simple cyclic shift of the FFT frequency
components (the spectrum of a FFT is periodic). However, as the Dirac
can only be positioned with a limited resolution, a quantization is intro-
duced on the demodulation frequency. The resolution δf can be defined
as:

δf = fs
N

[Hz] (2.33)

The effect of the limited resolution has to be added to the amplitude loss
caused by the Doppler frequency mismatch. Consequently, in the worst
case, the maximum frequency error is half a Doppler bin, plus half a FFT
frequency bin.

The parallel code search method outputs a correlation value for each sam-
ple. However, the number of samples per integration period is most likely
not a power of two and the input signal must be carefully rearranged with
left-zero padding. The advantage of using powers of two for the number
of samples is the use of fast algorithms for the FFT computation [Lin06].

39

Chapter 2 - GPS signals & receiver operations

Furthermore, due to the unknown code phase of the incoming signal, one
additional code period Tcode is needed to discard the end effect, as shown
in Figure 2.18.

In
co

m
in

g
si

gn
al

Time

Lo
ca

l r
ep

lic
a

Time

0

0

Tcode

2N points

Tcode

C
irc

ul
ar

 c
or

re
la

tio
n

Time

End effect discarded

2N points

Tcode

Figure 2.18: End effect due to zero padding.

Consequently, the optimal FFT size can be determined as:

N = 2dlog2(fs·(Tint+Tcode))e (2.34)

where dxe denotes the ceil(x) function that rounds the value of x
towards the nearest largest integer.

That is, for a sampling frequency fs = 4.092 MHz and an integration time
Tint = 1 ms, the FFT size will be N = 8192 points, providing a code step
size of roughly one fourth of a chip. The sampling frequency must thus be
chosen such as to provide a sufficient search phase resolution while keeping
the computational complexity to a reasonable level.

40

2.4 - Receiver base-band algorithms

A hardware implementation of the parallel code search method would
be penalized by prohibitive silicon area requested for implementing large
FFTs engine, as well as the relative low speed of the sampling frequency.
On the other hand, the software implementation can easily accommodate
large FFTs and can take advantage of the Central Processing Unit (CPU)
processing power to ensure high speed operations.

Parallel frequency search

The parallel frequency search tests all the Doppler bins concurrently for a
given code phase. The baseband signal is multiplied with the local code
replica and accumulated in order to form Np consecutive pre-detection
sums, with a pre-detection time Tp that is Np times smaller than the
integration time Tint. The Np results are then regrouped in a vector on
which a N -point FFT is computed, where N ≥ Np (zero padding is applied
if N > Np). Assuming Np large enough, all the Doppler bins are searched
in parallel for a given phase code. If no correlation peak is detected, the
operation is repeated with the next code phase. An example of a parallel
frequency search implementation is illustrated in Figure 2.19.

1
:
:

1
:
:

Np

Np

Figure 2.19: Parallel frequency search architecture. For a given code
phase, all the Doppler frequencies are tested at once.

The system is characterized by the following parameters:

• Np · Tp = Tint: total coherent integration time [s];

• 1
Tp

: new sampling rate and search bandwidth of the FFT [Hz];

• 1
Np·Tp

: frequency bin resolution (or bin width) [Hz].

41

Chapter 2 - GPS signals & receiver operations

Each point of the FFT is actually a detector for the maximum of corre-
lation for a given residual frequency. Consequently, the sensitivity of the
detection is thus altered by two processes as illustrated in Figure 2.20. The
integration time leads to a global power envelope (red curve) proportional
to sinc2 (π ·∆f · Tp), while the number of bins, and thus their frequency
width, leads to an envelope (blue curve) proportional to sinc2 (π ·∆f ·Tint).

0.4

0.6

0.8

1

1.2

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

0

0.2

0.4

0.6

0.8

1

1.2

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Po
w

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

Doppler frequency mismatch [Hz]

Figure 2.20: Sensitivity of a 4-point FFT detector with ± 2 kHz range.

The consequences are:

• the sensitivity reduces when the Doppler mismatch increases. The
worst loss occurs when ∆f = 1

2·Tp
;

• if the current Doppler shift falls between two Doppler bins, the sen-
sitivity will be even more reduced and two neighboring bins will fire
a response. In order to recover this loss, adjacent frequency bins can
be combined [Mat03] or [Tsu05].

The FFT should have frequency components covering the ±5 kHz Doppler
range in order to find the frequency mismatch in a single pass. Therefore,
the signal should be down sampled at a rate of 10 kHz, by using a pre-
detection time Tp = 100 µs. However, signals with a large Doppler shift
will suffer from a strong attenuation. This can be compensated by increas-
ing the coherent integration time Tint at the cost of a larger FFT.

42

2.4 - Receiver base-band algorithms

Typical FFT configurations are reported in Table 2.5.

Np Tp Tint
Doppler
range

Bin
width

Low sensitivity 10 (16) 100 µs 1 ms ±5 kHz 625 Hz

Mean sensitivity 16 100 µs 1.6 ms ±5 kHz 625 Hz

High sensitivity 128 100 µs 12.8 ms ±5 kHz 78 Hz

Table 2.5: Example of typical parallel frequency search configurations.

2.4.2 Tracking algorithms
The acquisition provides a rough estimation of the carrier frequency and
the code phase. The tracking algorithms aim to refine these parameters
in order to keep track of them over time and so maximize the amplitude
of the correlator outputs. If the satellite is properly tracked (i.e. ∆τ = 0,
∆f = 0, and ∆φ = 0 in Equation 2.26), both the carrier and the code
are removed from the incoming signal and only the data message remains,
modulating the sign of Ix over time, as illustrated in Figure 2.21.

-4000

0

4000

8000

12000

n-
ph

as
e

co
rr

el
at

or
 o

ut
pu

t

-12000

-8000

-4000

0

4000

8000

12000

0 100 200 300 400 500 600 700 800 900 1000

In
-p

ha
se

 c
or

re
la

to
r o

ut
pu

t

Time [ms]

Figure 2.21: In-phase correlator output when the satellite is properly
tracked. The sign changes represent the data bit transitions.

43

Chapter 2 - GPS signals & receiver operations

Many algorithms (hereafter referenced as discriminators) are proposed in
the literature for monitoring those parameters (see e.g. [Kap06]) and some
are given here as example.

Carrier frequency discriminator

If the carrier is properly replicated (i.e. ∆f = 0 in Equation 2.26), the
correlation results Ix and Qx contain no frequency component since ∆φ
is constant. On the other hand, if a carrier mismatch ∆f subsists, these
signals are modulated by a residual frequency and their amplitude affected
by a loss. The carrier frequency discriminator Df estimates the frequency
mismatch ∆f by monitoring the evolution of the vector sum of IP and QP
(known as phasor) at times t1 and t2. This is illustrated in the left-hand
part of Figure 2.22.

I

Q

P
2

I

Q

P
1

P
1

P
2

P
2

P
2

P
1

P
1

1

2

1

2

Figure 2.22: Phasor diagrams representing the frequency mismatch
between the satellite carrier and the local replica (respectively without
and with data bit transition).

The phasor rotates proportionally to the frequency error in the tracking
loop and the residual frequency is obtained by measuring the phase change
α over a fixed time interval t2 − t1 as:

Df = α

2 · π · (t2 − t1) = arctan 2 (cross, dot)
2 · π · (t2 − t1) [Hz] (2.35)

where cross = IP1 ·QP2 − IP2 ·QP1 = ‖−→IQP1 ‖ · ‖
−→
IQP2 ‖ · sin(α);

dot = IP1 · IP2 +QP1 ·QP2 = ‖−→IQP1 ‖ · ‖
−→
IQP2 ‖ · cos(α).

44

2.4 - Receiver base-band algorithms

There is no frequency ambiguity as long as the consecutive IP and QP

samples are taken within the same data bit interval. In this case, the
discriminator can distinguish any phase change α ∈ [−π; π], defining the
range of detectable frequency mismatches to:

−1
2 · (t2 − t1) < ∆f < 1

2 · (t2 − t1) [Hz] (2.36)

However, if a data bit transition occurs in between t1 and t2, the sign
of IP2 and QP2 is inverted with respect to IP1 and QP1 , thus introducing
an additional phase shift of π in the phasor diagram. Consequently, a
positive mismatch ∆f (respectively negative) inducing an absolute phase
shift |α| > π

2 and affected by a data bit transition is no more discernible
from a negative mismatch (respectively positive). This phenomenon is
illustrated in the right-hand part of Figure 2.22.

Carrier phase discriminator

If the carrier is properly replicated (i.e. ∆f = 0 in Equation 2.26), the
phasor stops rotating. However it may stop at any angle with respect
to the I axis, randomly distributing the energy between the in-phase and
quadrature signal components, as illustrated in Figure 2.23.

I

Q

Φ

P

P

Figure 2.23: Phasor diagram representing the phase mismatch between
the satellite carrier and the local replica.

45

Chapter 2 - GPS signals & receiver operations

The carrier phase discriminator Dφ estimates this residual phase ∆φ by
measuring the ratio between QP and IP :

Dφ = arctan
(
QP

IP

)
= arctan

(
sin(∆φ)
cos(∆φ)

)
[rad] (2.37)

If the phase is properly locked (i.e. ∆φ = 0), the in-phase component of
the signal is maximum (signal plus noise) while the quadrature part tends
to zero (noise only). The discriminator is insensitive to the presence of the
data modulation and is usually referenced as Costas discriminator, due to
the name of its original inventor.

Code phase discriminator

If the local replica is correctly aligned with the incoming signal code (i.e.
∆τ = 0 in Equation 2.26), the amplitude of the P correlator output is
maximal and those of the E and L components are equal. On the other
hand, if a phase mismatch subsists, the two latter outputs are unequal by
an amount which is proportional to the phase mismatch, as illustrated in
Figure 2.24.

P LE P LE P LE

Figure 2.24: E, P, and L correlator outputs with respect to the align-
ment between the incoming signal and the local code replicas [Kap06].

The code phase discriminatorDτ estimates the code mismatch ∆τ by mon-
itoring the amplitude distribution between the E and P correlator outputs.
The relation between the correlator outputs and the code mismatch ∆τ is
illustrated in Figure 2.25.

46

2.4 - Receiver base-band algorithms

Figure 2.25: E, P, and L correlator outputs when the code replica is
aligned with the incoming signal (plain arrows), respectively not aligned
(dashed arrows).

Thanks to the intercept theorem (also known as Thales’ theorem), stating
that all corresponding sides of similar triangles are proportional [Sti05],
∆τ can be expressed as:

∆τ = (1− d) ·∆y
y

[chips] (2.38)

Assuming a constant chip spacing d between the E and P, and respectively
the P and L code replicas, the values y and ∆y can be expressed as:

y = E′ + L′

2

∆y = E′ − L′

2 (2.39)

where E′ =
√

(IE)2 + (QE)2;
L′ =

√
(IL)2 + (QL)2.

Both the in-phase and quadrature components are used, making the result
independent of the carrier phase (cf. Equation 2.28). The code discrim-
inator Dτ , known as non-coherent early-minus-late envelope, takes the
following form:

Dτ = (1− d) ·
√

(IE)2 + (QE)2 −
√

(IL)2 + (QL)2√
(IE)2 + (QE)2 +

√
(IL)2 + (QL)2

[chips] (2.40)

47

Chapter 2 - GPS signals & receiver operations

Tracking loops

The different discriminator outputs are first filtered in order to reduce the
noise and produce a more accurate estimation of the measurements. The
filter outputs are then fed back to the base-band processing to update the
phase increment of the carrier and code NCOs, in order to reproduce a re-
fined version of the local signals replicas. This whole processing chain con-
stitutes the tracking loop, defined as Frequency Lock Loop (FLL), Phase
Lock Loop (PLL), or Delay Lock Loop (DLL) with respect to the type
of discriminator used. Generic carrier and code loops are illustrated in
Figure 2.26.

Code loop
discriminator

Carrier loop
discriminator

IP

QP
Carrier loop

filter

Code loop
filter

Scale factor
1'540

IE

QE

IL

QL

Code loop
NCO

Carrier loop
NCO

IF+fd

fc

Figure 2.26: Typical carrier and code loops, each composed of a dis-
criminator, a filter, and a NCO.

The carrier frequency and phase discriminators can either be integrated
into two separate FLL and PLL loops or can be operated continuously and
their output combined into a single FLL-assisted PLL loop [War98]. In this
case, when the FLL error is zeroed, the filter behaves as a pure PLL and
vice versa. For low dynamic environments, the signal lock is done in PLL
mode only with a minimal assistance of the FLL, while during acceleration
period, the FLL assistance increases and becomes pre-dominant in case of
high dynamic environment. An example of a second order lowpass FLL-
assisted PLL filter is shown in Figure 2.27.

The carrier filter output is scaled down by a factor 1’540 (corresponding
to the ratio between the carrier and code frequencies) and added to the
code filter output in order to provide Doppler aiding to the code loop.
The carrier loop jitter is less noisy than in the code loop, and the aiding
virtually removes all the line of sight dynamics from the code loop [Kap06].

48

2.4 - Receiver base-band algorithms

-1

ω0p
2 1/2Tpf

a2ω0p

ω0f Tpf

Figure 2.27: Block diagram of a second order PLL digital filter assisted
by a first order FLL. Since the frequency discriminator output is in unit
of Hertz and the phase discriminator in unit of phase, the frequency
insertion point into the filter is one integrator back from the phase one
[War98].

The code discriminator is integrated in a dedicated DLL loop. An example
of a typical second order lowpass filter is shown in Figure 2.28.

-1

ω0d
2 1/2Td

a2ω0d

Figure 2.28: Block diagram of a second order digital filter, excluding
the NCO integrator [Kap06].

49

Chapter 2 - GPS signals & receiver operations

2.5 Receiver PVT solution computation
The final task of the receiver is to compute the PVT solution, approxi-
mately once every second.

2.5.1 Principle of the satellite positioning
The user position is determined by trilateration, by computing the dis-
tances separating the receiver from the different satellites with known co-
ordinates in space. The exact space vehicle position, obtained from the
ephemeris data transmitted in the navigation message, and the distance
from the receiver define a spherical surface centered on the satellite. With
three satellites defining three spheres, the surfaces intersect at two points,
one being the position of the receiver. The principle for two satellites in
2D is illustrated in Figure 2.29.

Y
 c

oo
rd

in
at

es

X coordinates

d2 = c·Δt2d1 = c·Δt1

Xrec

Yrec

Receiver

Figure 2.29: The position of the receiver is given by the intersection
of the two circles of a radius di around the satellites i [Zog09].

The distance information d is established by measuring the propagation
time ∆t required by each broadcasted satellite signal to reach the receiver
antenna:

d = c ·∆t [m] (2.41)

where c ≈ 3 · 108 m/s is the speed of light.

By comparing the arrival time of the signal in the receiver with its emission
time from the satellite, it is possible to determine ∆t.

50

2.5 - Receiver PVT solution computation

Ideally, if both the satellite and the receiver clocks were perfectly synchro-
nized within the same reference time, the exact propagation time would
be obtained by subtracting the signal emission time from the satellite Tsat
from the signal reception time in the receiver Trec:

∆t = Trec − Tsat [s] (2.42)

However, practically this is generally not the case and both the satellite
and the receiver clocks have their own bias error from the reference time,
respectively δtsat and δtrec, which affects the measurement. The timing
relationships are illustrated in Figure 2.30.
where Tsat: reference time at which the signal leaves the satellite [s];

Trec: reference time at which the signal reaches the receiver [s];
tsat = Tsat + δtsat: biased satellite clock reading the time at

which the signal leaves the satellite [s];
trec = Trec + δtrec: biased receiver clock reading the time at

which the signal reaches the receiver [s].

sat rec

sat rec

recsat

Figure 2.30: Timing relationships between the measurements [Kap06].

Thus, the effective range measured ρ is denoted as pseudorange, as it is
determined by the time difference between two non-synchronized clocks
(satellite and receiver) multiplied by the speed of light:

ρ = c · (trec − tsat)
= c · [(Trec + δtrec)− (Tsat + δtsat)]
= d+ c · (δtrec − δtsat) [m] (2.43)

The different satellites clock biases are permanently monitored by the GPS
ground stations and corrections are broadcasted in the navigation message
in order for the receiver to re-synchronize the satellites emission times to
the reference time. Assuming that the offset δtsat can be compensated,
the above equation becomes:

ρ = d+ c · δtrec [m] (2.44)

51

Chapter 2 - GPS signals & receiver operations

Consequently, in order to determine the user position in three dimension
(Xrec, Yrec, Zrec), the pseudorange measurements of at least four satellites
are required - the fourth satellite necessary for the unknown receiver time
offset δtrec - resulting in the following system of equations:

ρ1 =
√

(X1 −Xrec)2 + (Y1 − Yrec)2 + (Z1 − Zrec)2 + c · δtrec [m]

ρ2 =
√

(X2 −Xrec)2 + (Y2 − Yrec)2 + (Z2 − Zrec)2 + c · δtrec [m]

ρ3 =
√

(X3 −Xrec)2 + (Y3 − Yrec)2 + (Z3 − Zrec)2 + c · δtrec [m]

ρ4 =
√

(X4 −Xrec)2 + (Y4 − Yrec)2 + (Z4 − Zrec)2 + c · δtrec [m] (2.45)

where (Xi, Yi, Zi) are the coordinates of the satellite i.

This set of non-linear equations is generally solved for the unknowns by
employing iterative techniques based on linearization (see [Kap06]).

2.5.2 Pseudoranges measurement
There is a one-to-one relationship between every code chip of the broad-
casted signal and the GPS time. The precise time of emission from the
satellite is equivalent to the phase of the PRN code with respect to the
beginning of the GPS week. When the broadcasted signal reaches the re-
ceiver, which is accurately reproducing the code replica correlating with
it, the phase offset of the replicated code with respect to the beginning
of the GPS week represents the emission time tsat of the satellite signal.
This is illustrated in Figure 2.31.

PRN code at emission time

Satellite clock at emission time

Receiver

PRN code replica at receiver time

Code NCO at receiver time

Emission time tsat

Reception time trec

Pseudorange measurements

Beginning of GPS week

T1 T2 T3 T4 T5

T1 T2 T3 T4 T5

Figure 2.31: Timing relation between the satellite emission time tsat

and the receiver reception time trec [Kap06].

52

2.5 - Receiver PVT solution computation

When the receiver takes a set of pseudoranges measurements at time trec
- with respect to its own internal clock - the base-band processing records
the current code NCO accumulator state. This provides the fractional part
of the currently generated chip within the code epoch. Since the CA code
repeats every millisecond and the time delays from the satellites are in the
range of 67 to 86 ms (for a user on the surface of the earth), there is a GPS
time ambiguity every millisecond. This is solved by decoding the timing
information provided in the navigation message in order to reconstruct tsat
with respect to the GPS time, as illustrated in Figure 2.32.

CA code Chip 0 Chip 1 Chip 1022Chip l

Code NCO

Data bit CA code
epoch 0

CA code
epoch 1

CA code
epoch 19

CA code
epcoh k

Chip 1021

Word Bit 0 Bit 1 Bit 29Bit j

CA code
epoch 18

Bit 28

Subframe TLM

Frame Subframe 0 Subframe 1 Subframe 2 Subframe 3 Subframe 4

HOW Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8 Word 9

977.5 nanoseconds = 1 CA code chip

1 millisecond = 1023 CA code chips

20 milliseconds = 20 CA code epochs = 1 bit

600 milliseconds = 30 bits

6 seconds = 10 words = 300 bits

30 seconds = 50 words = 1'500 bits

Figure 2.32: GPS L1 CA code timing relationships [Kap06].

53

Chapter 2 - GPS signals & receiver operations

2.6 Summary
Chapter 2 analyzes the structure of the broadcasted GPS L1 CA signal and
then reviews the successive receiver operations involved in its demodula-
tion, from the antenna up to the PVT solution computation. The different
processing stages are described from a traditional hardware receiver point
of view, in order for the reader to fully apprehend the specific constraints
inherent to a software implementation introduced in Chapter 3.

54

Chapter 3

Challenges of a software
receiver

The purpose of the software receiver is to entirely process the RF front-end
digital output stream on a general purpose microprocessor. This includes
all the base-band operations traditionally performed by an ASIC, as well
as the base-band algorithms and the PVT solution computation. The
implementation of the whole data processing chain in software imposes
specific constraints as compared to a classical hardware receiver.

3.1 Data rate
The ideal software receiver would place the ADC as close as possible to
the antenna for digitizing the incoming signal at twice the carrier fre-
quency. In addition to the practical constraints of its implementation, the
direct sampling generates a minimal data rate of 3.152 Gb/s (cf. Equa-
tion 2.14), which is for now a prohibitive rate for a microprocessor to
handle. More generally, the minimal data rate is fixed by the Nyquist
criterion and the data quantization. In order to capture the main lobe
null-to-null bandwidth of the CA code, the requested sampling frequency
is at least 4.092 MHz for real input samples or 2.046 MHz for complex
ones [Tsu05]. Assuming a 2-bit incoming signal, this represents a minimal
theoretical data throughput of 8.184 Mb/s between the ADC output and
the host system. Several common interfaces are available for embedded
applications and Table 3.1 provides a non exhaustive list.

55

Chapter 3 - Challenges of a software receiver

Data rate [Mb/s]

Controller Area Network (CAN) 1

RS-232 1.5

Microwire 3

Inter-Integrated Circuit (I2C) 3.4

Serial Peripheral Interface (SPI) 10

Firewire (IEEE 1394a/b) 400/800

Universal Serial Bus (USB) 12

Universal Serial Bus (USB) 2.0 480

Table 3.1: Maximal theoretical data rate of common host interfaces.

The Serial Peripheral Interface (SPI) and the Universal Serial Bus (USB)
interfaces can handle the minimal requested data rate of 8.184 Mb/s. How-
ever, only the Firewire and the USB 2.0 interfaces can accommodate higher
sampling frequencies or data bit-depths.

3.2 Computational load
The base-band processing is the heart of the receiver and constitutes the
most power-demanding task, since it manipulates the data at the system
sampling rate of several megahertz, in parallel for several satellite channels.
As a microprocessor handles the data in a sequential manner and has not
the ASIC capability of processing them in parallel (unless a multi-core ar-
chitecture or specific parallel instruction schemes are used), this represents
a heavy computational burden. In comparison, the base-band algorithms
and the PVT solution computation are executed at a much lower rate (less
than one kilohertz) and have thus a quasi negligible impact on the global
system performances. In order to fully apprehend the challenges of imple-
menting a GPS receiver in software, let us try to estimate the amount of
integer operations per second involved in the base-band processing. Re-
ferring to the generic complex architecture depicted in Figure 2.13, the
following tasks are executed in parallel for the Nc satellite channels at the
system sampling frequency:

56

3.2 - Computational load

1. synthesize the complex carrier at the IF (plus Doppler) frequency;

2. multiply the incoming complex signal with the local complex carrier;

3. synthesize the E, P, and L code replicas;

4. multiply the complex base-band signal with the E, P and L code
replicas;

5. accumulate the six resulting signals separately over the integration
period to form the IE , IP , IL, QE , QP , and QL correlation results.

The synthesis of the carrier and code replicas is traditionally achieved by
means of a NCO, as described in Subsection 2.3.1. This requires to up-
date a phase accumulator at the system sampling rate, and in parallel for
several satellite channels. A former study estimates that the dynamic gen-
eration of the digital sinusoid absorbs up to 30% of the time to generate
a correlation [Hec04]. Consequently, the implementation of a conventional
NCO in software is not adapted and makes the real-time signals generation
computationally too expensive.

For the sake of simplicity, we ignore the cost of generating the local carrier
and code sequences and focus on the multiply and accumulate operations
involved in the mixing and accumulation operations in Equation 2.20 and
Equation 2.23. In addition to the unavoidable load and store operations,
Table 3.2 provides a rough estimation of the amount of integer operations
per second necessary to process Nc satellite channels in the base-band:

additions # multiplications

Carrier mixing 2 · fs ·Nc 4 · fs ·Nc
Code mixing - 6 · fs ·Nc
Accumulation 6 · fs ·Nc -

Total 8 · fs ·Nc 10 · fs ·Nc

Table 3.2: Amount of integer operations per second involved in a com-
plex base-band architecture, assuming three code replicas(E, P and L).

Assuming a sampling frequency fs=4.092 MHz and a 12 satellite channels
receiver configuration, the base-band processing requires approximately
3.9 ·108 raw additions and 4.9 ·108 multiplications to perform each second.

57

Chapter 3 - Challenges of a software receiver

Depending on the processor architecture, the execution time of an integer
operation may fluctuate significantly. Table 3.3 provides the number of
clock cycles required for the core to execute all the micro-operations that
form an instruction (or latency) for different mass market processors:

Intel Pentium 4 Intel Core Duo Intel Core i7

Addition 1 1 1

Multiplication 14 4 3

Table 3.3: Latency of an integer addition and multiplication expressed
in processor clock cycles [Int09].

Depending on the processor, the operations of Table 3.2 require at least
1.9 · 109 clock cycles per second, without including the load of the carrier
and code generation. Furthermore, on a computer with a modern multi-
tasking operating system, the resources are spread among many different
programs running simultaneously. In order to retain the responsiveness of
the system, it is therefore advisable to limit the processing load of the GPS
software receiver to the half of the total CPU time. Consequently, in order
for the receiver to operate in real-time, the processing of one millisecond of
data must be achieved within half a millisecond, including the processing
of all the present satellites. By restricting the receiver activities to 50% of
the processor time, the base-band operations require a system clock faster
than 4 GHz. Consequently, a straightforward transposition of conventional
hardware-based architectures into software leads to an amount of opera-
tions that cannot be handled by today’s fastest computers [Hec06]. From
this statement, new strategies have to be considered in order to lower the
computational load of the base-band operations.

3.3 Oscillator drift
Generally, a single crystal oscillator serves as a reference in the receiver,
from which the desired frequencies of the different mixers are derived.
Most of the crystals oscillate in the range of a tenth or a few hundreds of
megahertz and are thus combined with a PLL to achieve the desired higher
frequency needed by the Local Oscillator (LO) for the GPS L1 carrier
down-conversion. In addition, the reference frequency is often divided to
feed the ADC and serves as sampling clock. So any frequency error/drift
of the crystal oscillator will affect the receiver at different points.

58

3.3 - Oscillator drift

Table 3.4 provides the characteristics of frequency stability for a Crystal
Oscillator (XO) and a Temperature Controlled Crystal Oscillator (TCXO),
two types of oscillators commonly found in consumer electronic products.

XO TCXO

Initial stability 7 ppm 1 ppm

Temperature stability 15 ppm 1 ppm

Aging stability 1 ppm / year 2 ppm / year

Table 3.4: Typical frequency stability for a XO and a TCXO [Rak10].

Assuming a one year old oscillator, the worst case frequency stability
reaches 23 ppm for the XO and 4 ppm for the TCXO.

The oscillator instability first impacts the carrier down-conversion process
by modifying the frequency of the local oscillator(s). This translates into
an equivalent Doppler shift on the carrier frequency. The effect is maximal
in the first RF down-conversion stage, where the local oscillator generates
a frequency in the vicinity of the GPS L1 carrier. The equivalent Doppler
shift ∆fd can be estimated as:

∆fd ≈ 1.575 · 109 · 23 · 10−6 = 35 kHz for the XO
∆fd ≈ 1.575 · 109 · 4 · 10−6 = 6 kHz for the TCXO (3.1)

Consequently, the IF can be off by up to ±35 kHz, respectively ±6 kHz, in
addition to the unavoidable ±5 kHz Doppler shift induced by the satellite
motion. This applies for both software and hardware receivers and affects
the search range in the acquisition procedure. However, the hardware re-
ceivers are generally driven by a dedicated quartz with a better stability
as compared to the software ones that are integrated in a low cost sys-
tem, which may be driven by a clock that is not optimized for ranging
applications. Therefore, it is desirable for a software receiver to extend
the Doppler frequency uncertainty to ±40 kHz in order to compensate for
any possible offsets.

59

Chapter 3 - Challenges of a software receiver

The clock drift also affects the ADC and the resulting sampling frequency.
This is not really an issue for conventional GPS receivers, simply because
the whole digital processing chain is driven by the same imperfect fre-
quency. The incoming samples and the locally generated sequences (i.e.
the carrier and code replicas) are subject to the same clock bias and the
time synchronization between them is kept. However, in a software re-
ceiver, the incoming signal is digitized at the sampling clock rate subject
to drift, while the local reference signals are software-generated according
to the nominal sampling frequency value. Consequently, the time separat-
ing two consecutive samples differs between the ADC output stream and
the locally generated sequences [Yan03]. This phenomenon is specific to
software receivers and translates into an equivalent Doppler shift which
mainly affects the code frequency, as illustrated in Figure 3.1.

1 / fs

Code with positive Doppler

Original code

Original code with clock drift

Figure 3.1: Effect of the Doppler on the code and equivalent sampling
times [Tsu05].

If the sampling frequency is decreased, the time separating two consecutive
samples is extended and so produces a data sequence where the code is
compressed. A similar way to represent the phenomenon is to keep the
nominal sampling frequency and apply a positive Doppler ∆fc that shrinks
the code in time. Both the sequences result in the same digital values. The
equivalent Doppler ∆fc on the code induced by a sampling frequency drift
can be estimated as (see [Tsu05]):

∆fc = −fc ·
∆fs

∆fs + fs
[Hz] (3.2)

where ∆fs is the sampling frequency variation [Hz].

60

3.4 - Summary

If the sampling frequency increases (∆fs > 0), then the equivalent Doppler
decreases (∆fc < 0) and vice-versa. The quartz instability thus induces a
code frequency drift ∆fc = 23 Hz, respectively ∆fc = 4 Hz, in addition
to the unavoidable ±3.2 Hz Doppler shift due to the satellite motion. In
the worst case, this may lead to a large code phase shift of one chip every
40 ms that needs to be compensated either by the local generation process
or by adapting the algorithms of the tracking program [Sch02].

3.4 Summary
Chapter 3 identifies the main constraints inherent to the software imple-
mentation of a GPS receiver. As compared to the traditional hardware
solution, specific problems such as the data throughput or the oscillator
drift have to be tackled. However, the main challenge resides in the com-
putational burden of the base-band operations, since a microprocessor has
not the ASIC capability of manipulating multiple data in parallel. Conse-
quently, new strategies have to be developed in order to lower the complex-
ity of the receiver and make its real-time functioning possible. The main
solutions currently proposed in the literature are reviewed in Chapter 4.

61

Chapter 3 - Challenges of a software receiver

62

Chapter 4

Existing architectures of a
software receiver

The tasks carried out by an ASIC are too computationally burdensome
to be implemented directly on a microprocessor and in that sense, new
strategies have to be developed in order to minimize the complexity of the
operations involved in the base-band processing. This chapter reviews the
main solutions proposed in the literature.

4.1 Alternate data processing
Several alternatives to the integer arithmetic of Table 3.2 have been pro-
posed in the literature to lower the computational burden of the base-band
processing, [Bar09], and [Bar10]. Some rely on the code optimization using
specific CPU functionalities for improving the efficiency and speed of the
data processing, while the others exploit the native bitwise representation
of the signal and use logical instructions. The different approaches are
detailed in the next sections.

4.1.1 Single Instruction Multiple Data
The Single Instruction Multiple Data (SIMD) are specific arithmetic CPU
instructions that operate on vectors of data. Unlike the standard instruc-
tions, the data are manipulated in blocks and several values can be loaded
and processed simultaneously to achieve data level parallelism.

63

Chapter 4 - Existing architectures of a software receiver

In other words, if the SIMD system works by loading, for example, four
data values at once, the operation being executed will apply to all the four
values at the same time, as illustrated in Figure 4.1.

SIMDStandard
instruction

Results

Data

Results

Instructions Instructions Data

Figure 4.1: Standard instruction versus SIMD [Cha07].

Intel deployed the first instance of SIMD under the name of MMX in
1995 with their Pentium line of microprocessors. The main usage of the
MMX instructions set relies on packed data, which means that instead
of using the whole register for a single 64-bit integer, two 32-bit integers,
four 16-bit integers, or eight 8-bit integers may be processed concurrently
[Int97]. Further extensions integrating floating point arithmetic were in-
troduced later to the x86 architecture under the name of Streaming SIMD
Extension (SSE) and consist of SSE1 to SSE5. On average, the SIMD
operations require more clock cycles to execute than the traditional x86
instructions. However, since they operate on multiple values at the same
time, SIMD can result in significant gains in execution speed, especially for
repetitive and parallel tasks like the ones involved in the base-band pro-
cessing. By optimizing the receiver code by means of SIMD, [Hec04] claims
more than 600% performance improvement with respect to the standard
integer implementation. Many software receivers proposed in the litera-
ture rely on the use of SIMD, such as for example [Cha06] or [Pan03].

However, the instruction sets are CPU architecture specific and old proces-
sors or non-x86 processors lack SSE entirely. Similarly, the next generation
instructions sets from Intel and AMD (respectively AVX and SSE5) will
most likely be incompatible with each other, forcing the programmers to
develop different software versions. Consequently, SIMD operations are
tied to specific implementations, which severely limit the portability of
the code.

64

4.1 - Alternate data processing

4.1.2 Instruction pipelining
The basic idea of the instruction pipelining is to split the processing of a
CPU instruction into a sequence of micro-operations that can be working
on the different stages of several instructions simultaneously. This way,
the processor does not wait until all the micro-operations are completed to
introduce the next instruction into the pipeline. The principle is illustrated
in Figure 4.2.

Waiting
instructions

Completed
instructions

Fetch
Decode
Execute

Write

Pipeline

1 2 3 4 5 6 7 8 9
Clock cycles

Figure 4.2: Generic four stages pipeline.

Consequently, pipelining does not reduce the time needed to complete an
instruction (or instruction latency), but increases the number of instruc-
tions that can be executed per unit of time (or instruction throughput).
Since in many cases, the instruction throughput can be significantly less
than its latency, it increases the amount of data that can be processed at
once. Table 4.1 regroups the throughput of the addition and the multipli-
cation instructions for different mass market processors.

Intel Pentium 4 Intel Core Duo Intel Core i7

Addition 0.5 0.5 0.33

Multiplication 3 1 0.5

Table 4.1: Throughput of an integer addition and multiplication ex-
pressed in CPU clock cycles. The throughput given in fraction of a clock
cycle occurs for multi-speed arithmetic units [Int09].

65

Chapter 4 - Existing architectures of a software receiver

Let us take the example of two consecutive multiplications performed on
an Intel Pentium 4. With a latency of 14 clock cycles per multiplication
(cf. Table 3.3), the two operations normally take 28 clock cycles to exe-
cute. However, the processor can take advantage of the low throughput
of the multiplication and schedule the second operation three clock cy-
cles later. Thanks to pipelining, multiplications will therefore only take
14 + 3 = 17 clock cycles to operate, assuming that the operands of the
second instruction do not depend on the result from the first operation.

The performance of a pipelined processor is hard to predict, since the
scheduling of the instructions relies on the dependency between the current
operand and the results of the previous operation. In order to take full
advantage of the pipelining, the structure of the program has to be adapted
and the operations have to be carefully reordered [Hec06].

4.1.3 Digital Signal Processor
A separate class of processors exists for achieving data level parallelism,
commonly referred to as Digital Signal Processor (DSP). While SIMD
extensions rely on the general-purpose portions of the CPU to handle the
program details, the DSPs are self-contained processors with their own in-
structions set. They offer great code optimization possibilities, as some are
capable of performing several multi-bit multiplications in parallel. Gen-
erally reserved to video or sound processing, DSPs are also well suited
for executing the correlation operations involved in a software receiver.
For example [Hum06] developed a receiver based on a 720 MHz Texas In-
strument DSP capable of running 43 satellite channels in parallel. Other
examples can be found in [Tia08] or [Ako01b].

With the perspective of developing a platform-independent software re-
ceiver, the solutions based on the code optimization or use of specific CPU
architectures will not be further considered in this document.

4.1.4 Bitwise processing
Contrary to SIMD operations, bitwise processing (sometimes also referred
in the literature as vector processing) uses universal CPU instructions
and exploits the native bit representation of the signal. The different
data bits are stored in separate words - generally one sign and one or
several magnitude words - between which logical operations are performed
independently.

66

4.1 - Alternate data processing

Thus, while the integer arithmetic interprets the data horizontally as a
single value, the bitwise processing manipulates the bits separately in a
vertical way, as illustrated in Figure 4.3.

0 0 1

0 1 1

1 0 0

1 0

1 0

0 1

1

0

0

Figure 4.3: 3-bit integer versus bitwise data representation.

The objective is to take advantage of the high parallelism and speed of
the bitwise operations for which a single integer operation translates into
one or a few simple logical relations performed in parallel on all bits of
the word. For example, the C programming language supports bitwise
manipulation of words by means of the operators listed in Table 4.2.

Symbol Operation

& logical AND

| logical OR

∧ logical XOR

∼ logical complement

� logical right shift

� logical left shift

Table 4.2: Available logical operators in C programming language.

Depending on the receiver configuration, the code and carrier mixing can
be carried out by a few basic logical operations, performed in parallel on
several samples, thus making the bitwise processing particularly efficient.
To illustrate this, let us consider the example of a real base-band architec-
ture, as shown in Figure 2.13.

67

Chapter 4 - Existing architectures of a software receiver

We assume here that the incoming signal I(n) is digitized with 2 bits per
sample {I1(n), I0(n)}, associated to the integer values {±1, ±3}. In the
receiver, I(n) is first mixed with a complex carrier K(n) quantized with 2
bits {K1(n), K0(n)}, associated to the integer values {±1, ±2}. The mix-
ing results in the base-band complex signal Ibb(n) and Qbb(n), taking one
of the integer values of Table 4.3 [Led04]. For notation simplicity, we only
provide the equations for the in-phase components (the same operations
apply for the quadrature components).

Local carrier K(n)

1 2 -1 -2

Si
gn

al
I
(n
) 1 1 2 -1 -2

3 3 6 -3 -6

-1 -1 -2 1 2

-3 -3 -6 3 6

Table 4.3: Integer output values Ibb(n) of the carrier mixer.

The table output is encoded with 3 bits {Ibb,2(n), Ibb,1(n), Ibb,0(n)} as
shown in Table 4.4.

Local carrier K1,0(n)

00 01 10 11

Si
gn

al
I 1
,0

(n
) 00 000 001 100 101

01 010 011 110 111

10 100 101 000 001

11 110 111 010 011

Table 4.4: Binary output code {Ibb,2(n), Ibb,1(n), Ibb,0(n)} of the carrier
mixer.

68

4.1 - Alternate data processing

The truth table of Table 4.4 translates into the following logical operations
between the different sign and magnitude bits:

Ibb,2(n) = I1(n)⊕K1(n)
Ibb,1(n) = I0(n)
Ibb,0(n) = K0(n) (4.1)

The carrier down-conversion is reduced to two logical operations which
can be performed concurrently on all the bits of the words. The PRN
code removal simply consists in a sign inversion, respectively non-inversion,
which translates into an exclusive OR between the code cx(n) and the sign
words:

Ix2 (n) = Ibb,2(n)⊕ cx(n) (4.2)

where x ∈ {E, P, L}.

Consequently, the complete carrier and code removal requires only eight
operations, for both in-phase and quadrature components and for all the
code replicas.

The next step consists in accumulating the different mixing results over
the integration period in order to form the correlation values. This is done
by counting the number of samples Ix(n) equal to ±1, ±2, ±3, and ±6.
However, as this information is vertically spread over the different sign and
magnitude words, a reconversion into the integer representation is finally
needed to perform the accumulation and the data readout. Thus, for each
of the eight above possible values, a new word is computed and contains a
‘1’ when the current operand equals the tested value and a ‘0’ otherwise.
This is done with the following logic relations [Led06b]:

P1x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
M1x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
P2x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
M2x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
P3x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
M3x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
P6x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n)
M6x(n) = Ix2 (n) · Ix1 (n) · Ix0 (n) (4.3)

69

Chapter 4 - Existing architectures of a software receiver

By taking advantage of the redundancy and storing intermediate results,
Equation 4.3 can be carried out with 15 operations. The next step is to
count the number of ’1’ contained in each of the so created eight words.
Many algorithms, such as [Bee72], or even specific CPU instructions exist
to perform this operation. However, a very straightforward solution con-
sists in implementing a Look Up Table (LUT) that is directly addressed
by the word itself and that outputs the number of ’1’ contained in the
address. The principle is illustrated in Figure 4.4.

Figure 4.4: LUT outputting the number of ’1’ contained in the 8-bit
input address.

The table must be able to fit into the microprocessor cache to allow fast
execution, but must be also large enough to minimize the memory accesses;
64 kB (16-bit addressing) is typically a good compromise.

Finally, the correlation results can be expressed as the following linear
combination:

Ix = 6 · [O(P6x)−O(M6x)] + 3 · [O(P3x)−O(M3x)]
+ 2 · [O(P2x)−O(M2x)] + [O(P1x)−O(M1x)] (4.4)

where O() is the operator counting the number of ’1’.

In addition to unavoidable load and store operations, Table 4.5 provides
a rough estimation of the amount of operations per second necessary to
process Nc satellite channels in the base-band (without carrier and code
generation). Note that the efficiency of the bitwise processing depends on
the register size of the host computer (8, 16, 32, 64 or 128 bits) which fixes
the maximal number of bits Nb processed per operation.

70

4.1 - Alternate data processing

bitwise
operations

LUT
accesses # additions

Carrier mixing 2 · fs ·Nc/Nb - -

Code mixing 6 · fs ·Nc/Nb - -

Accumulation 90 · fs ·Nc/Nb 48 · fs ·Nc/Nb 48 · fs ·Nc/Nb

Total 98 · fs ·Nc/Nb 48 · fs ·Nc/Nb 48 · fs ·Nc/Nb

Table 4.5: Amount of operations per second involved in the carrier
mixing, the code mixing and the accumulation.

As compared to a traditional implementation such as described in Ta-
ble 3.2, the integer multiplication, which requires several clock cycles in a
standard microprocessor, is advantageously replaced by logical operations
that execute rapidly and in parallel on the Nb word bits. This makes
the bitwise processing particularly efficient and well fitted for a software
implementation. However, the complexity of the receiver becomes now bit-
depth dependent and increases drastically with the number of bits used
for the signal and the carrier quantization (any additional bit doubles the
size of Table 4.3 and consequently the number of words to compute in
Equation 4.3). Furthermore, the execution speed is related to the proces-
sor register width, which fixes the number of bits Nb operated in parallel.
In conclusion, the inherent drawback of the bitwise processing is the lack
of flexibility and scalability as compared to integer operations.

4.1.5 Distributed arithmetic
The original concept of distributed arithmetic was developed for optimiz-
ing the implementation of digital filters on a FPGA [Act10]. The main idea
is to rearrange the multiplies and adds of a sum of products at the bit level
to take advantage of small tables of pre-computed sums [And99]. However,
we propose here to extend the concept to a GNSS software receiver design
in order to optimize the accumulations involved in the correlation process,
[Wae09a], and [Wae10].

71

Chapter 4 - Existing architectures of a software receiver

The accumulation consists in summing up the consecutive samples of the
signals IE(n), IP (n), and IL(n) and QE(n), QP (n), and QL(n) after the
code removal, as written in Equation 2.23:

Ix =
Ns−1∑
n=0

Ibb(n) · cx(n) =
Ns−1∑
n=0

Ix(n) (4.5)

where x ∈ {E, P, L};
Ns is the number of samples per integration.

For notation simplicity, we only provide the equations for the in-phase com-
ponents (the same operations apply for the quadrature components). Let
us express the signal Ix(n) as a linear combination of its M quantization
bits. We consider here the two’s complement notation which decomposes
the signal as follows:

Ix(n) = −2M−1 · IxM−1(n) +
M−2∑
m=0

2m · Ixm(n) (4.6)

where Ixm(n) is the mth bit of the signal Ix(n) at sampling time n.

We define the sum Sxm associated to the mth data bit Ixm(n) of the signal
Ix(n) as:

Sxm =
Ns−1∑
n=0

Ixm(n) (4.7)

where m ∈ [0, M − 1].

By combining and rearranging the terms of the above three equations, we
finally obtain:

Ix =
Ns−1∑
n=0

(
−2M−1 · IxM−1(n) +

M−2∑
m=0

2m · Ixm(n)
)

= −2M−1 · SxM−1 +
M−2∑
m=0

2m · Sxm (4.8)

The accumulation Ix is now expressed as a linear combination of M sums
Sxm. The challenge now consists in efficiently computing Equation 4.7 for
the M bits of Ix(n). Since Sxm is the arithmetic sum of all the mth bits
Ixm(n) over one integration period, it can be estimated by counting the
number of bits equal to the logical value ’1’. One straightforward solution
is to implement a LUT addressed by Ixm(n), as illustrated in Figure 4.4.

72

4.1 - Alternate data processing

An example of distributed arithmetic architecture is provided in Figure 4.5.

1 0 0 0 0 1 0 1

1 1 1 1 1 1 0 0

0 0 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 0 0 1 0 0 0 0

1 1 1 1 1 1 0 0

0 1 1 1 1 0 0 1

1 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0

bb,1

bb,0

bb,2

x

x

x

2
x

1
x

0
x

x

Figure 4.5: Example of distributed arithmetic with a 3-bit base-band
signal Ibb(n).

Thanks to the properties of the distributed arithmetic, the conversion from
the bitwise representation into the integer one is automatically performed
in parallel to the accumulation. No additional operations are required.
Furthermore, the architecture can easily accommodate various signal con-
figurations as the complexity stays almost proportional to the bit-depth of
the incoming signal I(n). However, the distributed arithmetic requires the
signals to accumulate Ix(n) to be expressed as a linear combination of its
M data bits. This introduces an additional constraint on the antecedent
bitwise processing, which may necessitate more complex logical operations
and more bits to represent Ix(n). To illustrate this point, let us come back
to the example of a 2-bit incoming signal mixed with a 2-bit complex car-
rier, as described in Subsection 4.1.4. The possible integer output values
of the carrier mixer are summarized in Table 4.3.

The appropriate binary representations of Ix(n) must be chosen in or-
der to minimize the antecedent number of bitwise operations necessary to
perform the carrier and code mixing. In this case, 4 bits are needed to
represent the content of Table 4.3 with respect to the following (heuristic)
bits decomposition:

Ibb(n) = −6 · Ibb,3(n) + 3 · Ibb,2(n) + 2 · Ibb,1(n) + Ibb,0(n) (4.9)

73

Chapter 4 - Existing architectures of a software receiver

With the above representation, Table 4.3 is encoded with 4 bits, as shown
in Table 4.6.

Local carrier K1,0(n)

00 01 10 11
Si
gn

al
I 1
,0
(n
) 00 0001 0010 1110 1101

01 0011 0111 1100 1000

10 1110 1101 0001 0010

11 1100 1000 0011 0111

Table 4.6: Binary output values {Ibb,3(n), Ibb,2(n), Ibb,1(n), Ibb,0(n)}
of the carrier mixer.

The truth table translates into the following logical operations between
the different sign and magnitude bits:

Ibb,3(n) = I1(n)⊕K1(n)
Ibb,2(n) = Ibb,3(n)⊕ (I0(n) ·K0(n))
Ibb,1(n) = Ibb,2(n)⊕ I0(n)⊕K0(n)
Ibb,0(n) = Ibb,2(n)⊕K0(n) (4.10)

By taking advantage of the redundancy and storing intermediate results,
the complete carrier removal is operated with 12 operations. Following
the carrier mixing operations, the code removal simply consists in a sign
inversion, respectively non inversion, which translates into an exclusive
OR between the code cx(n) and all the respective signal bits:

Ixm(n) = cx(n)⊕ Ibb,m(n) (4.11)

where x ∈ {E, P, L}.

The complete code removal is operated with 24 operations. From each of
the M words obtained with Equation 4.11, the sum Sxm is calculated by
means of a LUT and summed up with the previous ones in order to form
the final accumulation results expressed as:

Ix = −6 ·
∑

Sx3 + 3 ·
∑

Sx2 + 2 ·
∑

Sx1 +
∑

Sx0 (4.12)

74

4.2 - Carrier generation

In addition to unavoidable load and store operations, Table 4.7 provides
a rough estimation of the amount of operations per second necessary to
process Nc satellite channels in the base-band (without carrier and code
generation). It is assumed here that the processor manipulates data words
of Nb bits.

bitwise
operations

LUT
accesses # additions

Carrier mixing 12 · fs ·Nc/Nb - -

Code mixing 24 · fs ·Nc/Nb - -

Accumulation - 24 · fs ·Nc/Nb 24 · fs ·Nc/Nb

Total 36 · fs ·Nc/Nb 24 · fs ·Nc/Nb 24 · fs ·Nc/Nb

Table 4.7: Amount of operations per second involved in the carrier
mixing, the code mixing and the accumulation.

As compared to the classical bitwise processing of Subsection 4.1.4, the
distributed arithmetic may require more logical operations for the carrier
and code mixing. On the other hand, no additional stage is needed to
convert the data from the bitwise into the integer representation, mak-
ing this solution a prefect compromise between both approaches. In the
case of the proposed 2-bit data configuration, the distributed arithmetic
lowers the complexity by almost a factor two. It becomes even more effi-
cient for higher signal bit-depths setups, as the complexity grows almost
proportionally with the data bit quantization (cf. Equation 4.12), while it
increases exponentially in the standard implementation (cf. Equation 4.3).

4.2 Carrier generation

The generation of a complex carrier within the receiver is requested to per-
form the Doppler removal. However, the implementation of a conventional
NCO in software makes the real-time carrier generation computationally
too expensive and not adapted. As compilers’ trigonometric functions or
Taylor series decompositions for the sine or cosine are also too much time
consuming, new approaches have to be specifically developed.

75

Chapter 4 - Existing architectures of a software receiver

4.2.1 Off-line carrier generation
The off-line generation consists in pre-computing and storing a set of car-
rier frequency candidates instead of generating them in real-time. As it
would require a huge amount of memory to store all the possible fre-
quencies, the values are recorded at the system sampling frequency on
a coarse frequency grid and with a zero initial phase. The limited number
of available carrier frequencies introduces an additional mismatch δf in
the Doppler removal process which causes a correlation loss. This way,
Equation 2.26 becomes [Led03]:

(Ix)′ ≈ a ·Ns · d ·Rx(∆τ) · sin(π · (∆f + δf) · Tint)
π · (∆f + δf) · Tint

· cos(π · (∆f + δf) · Tint + ∆φ)

(Qx)′ ≈ a ·Ns · d ·Rx(∆τ) · sin(π · (∆f + δf) · Tint)
π · (∆f + δf) · Tint

· sin(π · (∆f + δf) · Tint + ∆φ) (4.13)

where ∆f is the error between the real and the estimated frequency [Hz];
δf is the error introduced by the frequency grid [Hz].

However, since the frequency mismatch δf is known, the approximated
results (Ix)′ and (Qx)′ can be corrected in order to recreate an estimation
Ĩx and Q̃x of the original accumulated values Ix and Qx, as follows:

Ĩx = (Ix)′ · cos(π · δf · Tint) + (Qx)′ · sin(π · δf · Tint)

Q̃x = (−Ix)′ · sin(π · δf · Tint) + (Qx)′ · cos(π · δf · Tint) (4.14)

These operations of rotation are performed only once per integration. The
development of Equation 4.14 leads to:

Ĩx ≈ a ·Ns · d ·Rx(∆τ) · sin(π · (∆f + δf) · Tint)
π · (∆f + δf) · Tint

· cos(π ·∆f · Tint + ∆φ)

Q̃x ≈ a ·Ns · d ·Rx(∆τ) · sin(π · (∆f + δf) · Tint)
π · (∆f + δf) · Tint

· sin(π ·∆f · Tint + ∆φ)

(4.15)

76

4.2 - Carrier generation

The comparison between Equation 2.26 and Equation 4.15 shows an addi-
tional offset δf in the quotient term which acts as an attenuating factor.
Consequently, the use of a restricted set of carrier frequencies introduces
more attenuation than the rigorous method, since the frequency error due
to the table quantization δf will be generally larger than the tracking error
∆f . However, if the frequency quantization is small enough relative to the
integration time, the extra attenuation becomes negligible. For example, if
a grid spacing of 150 Hz is selected for 1 ms integration time, |δf | < 75 Hz
and the additional loss is contained within 0.08 dB [Led03].

The stored carrier sequences length must be equal to the number of sam-
ples contained in one integration period. Consequently longer integration
times require longer sequences, but also finer grid spacing, so increasing
the memory requirements proportionally to the square of the coherent in-
tegration time. Table 4.8 estimates the memory requirements, assuming a
sampling frequency fs = 4.092 MHz and a ±5 kHz Doppler range.

Integration
time

Frequency
grid spacing

frequency
bins Memory

1 ms 150 Hz 67 548 kB

10 ms 15 Hz 667 54.8 MB

Table 4.8: Memory requirements for storing 1 and 10 ms complex
carrier sequences covering 10 kHz frequency range.

In order to reduce the length of the stored sequences, a set of initial phases
can be computed for each carrier candidate. By providing phase alignment
capabilities, it becomes possible to rebuild a complete continuous waveform
by juxtaposing several basic stored sequences [Nor04]. This way, the carrier
sequences length becomes quasi independent of the integration time and
can be selected with respect to the available memory space. The memory
organization takes the form illustrated in Figure 4.6.

77

Chapter 4 - Existing architectures of a software receiver

Samples

A
m

pl
itu

de

Φ0 Φ1 Φ2 Φ3
Φ4 Φ5 Φ6 Φ7

Phases

Φ0 Φ1 Φ2 Φ3
Φ4 Φ5 Φ6 Φ7

f2

f1

Figure 4.6: Pre-computed set of carrier frequencies (f1 and f2) and
their respective eight initial phases Φ0 − Φ7 [Nor04].

Typically carrier sequences length of 512 points are pre-computed with
eight different phases each. Table 4.9 estimates the memory requirements,
assuming a ±5 kHz Doppler range.

Integration
time

Frequency
grid spacing

frequency
bins Memory

1 ms 150 Hz 67 548 kB

10 ms 15 Hz 667 5.48 MB

Table 4.9: Memory requirements for storing 1 and 10 ms carrier se-
quences covering 10 kHz frequency range.

The pre-generation of the carrier is a very efficient alternative to the power-
hungry real-time generation. It is very popular and many implementations
proposed in the literature rely on it (see e.g., [Cha07] or [Led03]). However,
it still suffers from its large memory requirements and lack of flexibility. For
example, in case of strong oscillator drifts such as described in Section 3.3,
the whole Doppler space can easily shift a few kilohertz away, making
obsolete the set of pre-computed frequencies.

78

4.3 - Code generation

4.2.2 Single frequency carrier generation
The algorithm is implemented as a look-up table containing one single
pre-generated frequency. The objective is to perform the carrier removal
concurrently to all received satellite signals, once for all and with this
same frequency. Considering a Doppler range of ±5 kHz, the frequency
error most likely results in unacceptable loss levels. To overcome this, the
integration period Tint is split into U sub-intervals for which the partial
accumulations (Ixu)′ and (Qxu)′ are computed and rotated proportionally
to the frequency mismatch δf . The estimation Ĩx and Q̃x of the original
accumulated values Ix and Qx can be expressed as follows [Pet08]:

Ĩx =
U∑
u=1

(
(Ixu)′ · cos(π · δf · Tint · (2 · u− 1)

M
)
)

+
U∑
u=1

(
(Qxu)′ · sin(π · δf · Tint · (2 · u− 1)

M
)
)

Q̃x =
U∑
u=1

(
(−Ixu)′ · sin(π · δf · Tint · (2 · u− 1)

M
)
)

+
U∑
u=1

(
(Qxu)′ · cos(π · δf · Tint · (2 · u− 1)

M
)
)

(4.16)

Recursively applying the phase compensation for all the U sub-intervals
mitigates the effect of the large frequency error and, with a careful selec-
tion of U , the attenuation factor can be limited to reasonable values. As
the Doppler removal only needs to be performed once for all satellites, in
a single mixer, the complexity is significantly reduced. However, the al-
gorithm implementation remains difficult and necessitates some trade-offs
that further increases the mean power loss [Pet06]. Due to these practical
issues, the off-line carrier generation is generally preferred for its simplicity.

4.3 Code generation
The generation of the code replicas within the receiver is necessary to
perform the correlation with the incoming signal. However, the imple-
mentation of a conventional NCO in software makes the real-time code
generation computationally too expensive and new approaches have to be
specifically developed.

79

Chapter 4 - Existing architectures of a software receiver

4.3.1 Off-line code generation
Identically to the off-line carrier generation, this method consists in pre-
computing all the PRN codes and storing them in memory. Each sequence
is generated at the nominal code rate of 1.023 MHz, with no Doppler shift,
and sampled at the system frequency. The consequence of the zero Doppler
shift assumption is a small correlation power loss, which can be neglected if
the Doppler range is contained within ±5 kHz. The memory also includes
a selection ofm code sequences with different sampling offsets toff in order
to match as close as possible the phase of the incoming signal [Led03].

toff (l) = l

fs ·m
[s] (4.17)

where l is an integer defined as 1 ≤ l ≤ m.

The different timing relationships are illustrated in Figure 4.7. The offsets
grid spacing is chosen to be large enough to guarantee sufficient timing
resolution for the tracking while keeping a reasonable table size. The higher
the sampling frequency is, the lesser offsets are required and typically, for
a sampling rate fs = 4.092 MHz, less than 20 different offsets are stored,
such as to provide code alignment capabilities of a few meters.

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 off

s

b

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

off

off

off

Figure 4.7: Pre-computed set of PRN codes sampled with m different
initial phases.

As the code value is quantized with one bit only, it would be too much
memory consuming to store each sample separately as an integer. Conse-
quently, consecutive samples are regrouped into words of 8, 16, 32 or 64
bits and stored.

80

4.3 - Code generation

However, as the incoming signal code phase is random, the beginning of
the first code chip is most likely not synchronized with the beginning of
a word and may occur anywhere within it. This can be solved either by
storing all the possible phases in the memory or by shifting in real-time
the code appropriately, as illustrated in Figure 4.8.

-1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

-1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

-1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

-1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

s

b

Figure 4.8: Successive logical shifts of the stored PRN code sequence
to match the code phase of the incoming signal.

While the first solution increases the memory requirements proportionally
to the word size Nb, the second necessitates further data processing in
function of the phase mismatch (from 0 toNb/2 logical shifts to be operated
for each single word). The same also applies for the generation of the E
and L code replicas. Both can be pre-generated and stored individually
or can be real-time computed by shifting the reference sequence with the
appropriate number of samples (which also limits the time-delay resolution
to a multiple of one sampling period). Assuming a sampling frequency
fs = 4.092 MHz, the memory requirements for storing the 32 PRN codes
separately for the E, P, and L replicas are presented in Table 4.10.

Synchronization # code
offsets

code
shifts Memory

Logical shift 20 1 1 MB

Full storage 20 Nb Nb MB

Table 4.10: Memory requirements for storing the 32 PRN codes, sep-
arately for the E, P, and L replicas.

81

Chapter 4 - Existing architectures of a software receiver

The off-line generation of the code is very popular and overcomes the
high computational load inherent to the real-time generation. However, it
presents the same drawbacks as the off-line carrier generation (i.e. large
memory requirements up to several tens of megabytes and lack of flexibil-
ity). Furthermore, assuming zero Doppler shift on the code may become
an issue for long integration times or in case of strong oscillator drifts such
as described Section 3.3.

4.4 Summary
Chapter 4 reviews the different strategies proposed in the literature for
lowering the complexity of the base-band operations. Many solutions rely
on the use of specific CPU instructions schemes for improving the efficiency
of the processing at the cost of a restricted portability of the code. On
the other hand, the use of bitwise processing or the proposed distributed
arithmetic algorithm still suffer from lack of flexibility. They require the
front-end output stream to be specifically formatted, while any change
in the signals structure implies a significant adaptation of the code and
impacts the complexity. The synthesis of the carrier and code replicas also
constitute one of the main bottlenecks of the software implementation.
Since the computational load of generating them in real-time is too high,
both are generally computed off-line and stored in memory. This may
become an issue in case of strong oscillator drifts, since the whole Doppler
space can easily shift a few kilohertz away, making obsolete the set of
pre-computed carrier and code sequences.

82

Chapter 5

New architecture of a
software receiver

The feasibility of building a software receiver operating in real-time was
demonstrated in the literature. However, most of the proposed solutions
rely on the same well known principles, mainly based on the use of SIMD
and the pre-generation of the local signal replicas, and are tied to specific
configurations that severely limit their portability. Consequently, in order
to implement a software receiver operating in real-time on different plat-
forms and accommodating various signals configurations, there is a need
to develop a new architecture combining both flexibility and efficiency.

5.1 General concept
The fundamental concept of the proposed receiver architecture is derived
from the restricted frequencies range of the carrier internally generated.
The local carrier replicas are needed in the receiver to perform the down-
conversion of the incoming satellites signals to base-band by removing the
respective residual frequencies. These consist in the IF, given by the RF
front-end architecture and common to all the satellite channels, plus the
Doppler frequency fd, due to the relative motion between the satellite and
the user, which is specific to each satellite channel. The down conversion is
generally done in the receiver by removing simultaneously both the IF and
fd in a single mixer, requiring the frequency to be internally synthesized
at a few or several megahertz (f = IF+fd), as illustrated in Figure 5.1.

83

Chapter 5 - New architecture of a software receiver

Receiver

RF front-end
& ADC

LO = IF + fd

f = IF + fdf = IF + fd

f = 0 Hz

f = 1.575 GHz

Figure 5.1: Traditional carrier down-conversion where both IF and
residual Doppler are removed at once, using a single mixer.

By introducing an intermediate stage in-between the RF front-end and
the receiver, the down-conversion can be split into two distinct steps, as
illustrated in the Figure 5.2. The signal is first pre-converted to the residual
Doppler frequency by removing the IF of a few megahertz in a top-level
mixer common to all the satellite channels. Then, in a second stage, the
signal is further down-converted to base-band by removing the residual
Doppler frequency fd of a few kilohertz.

Receiver

RF front-end
& ADC

LO = fd

f = fdf = IF + fd

LO = IF

f = 0 Hz

f = 1.575 GHz

Figure 5.2: Two-step carrier down-conversion where the IF and the
residual Doppler are removed separately.

The progressive removal of the carrier frequency relaxes the constraints
on the second mixer, as the residual Doppler frequencies to be internally
synthesized are now in the range of a few kilohertz only, instead of a
few megahertz. This property can be largely exploited to simplify all the
carrier related operations, but it also impacts positively the complexity of
all the subsequent processing.

84

5.2 - Base-band pre-processing

5.2 Base-band pre-processing
The carrier IF removal is achieved by means of a base-band pre-processing
stage, introduced in between the RF front-end unit and the receiver. Since
the IF depends on the RF front-end architecture only, the frequency trans-
lation can operate concurrently for all the satellite channels in the following
ways:

• using a zero IF front-end [Raz98] which directly provides the digital
stream modulated at the residual Doppler frequency;

• implementing a digital IF mixer in hardware within the RF front-
end, in order to provide the receiver with a digital stream modulated
at the residual Doppler frequency;

• implementing a digital IF mixer in software within the receiver, in or-
der to provide the satellite channels with a digital stream modulated
at the residual Doppler frequency.

The oscillator inaccuracy affects the carrier down-conversion and trans-
lates into an equivalent Doppler shift common to all the satellite chan-
nels. However, this effect can be compensated by adjusting the local fre-
quency of the IF mixer accordingly (although this does not alleviate the
additional Doppler on the code frequency which still needs to be further
compensated). Therefore, we assume from now that the incoming signal
distributed into the different receiver satellite channels is modulated by an
absolute residual Doppler frequency within ±5 kHz.

5.3 Base-band processing
5.3.1 Batch processing applied to carrier removal
Real-time carrier generation

Let us consider the generation of the local carrier frequency by means of a
conventional NCO. From Equation 2.18, the number of clock cycles Nclk
needed to achieve one complete carrier period (i.e. when the accumulated
phase overflows the accumulator capacity), is given by:

Nclk = 2W

Inc
= fs
fd

(5.1)

85

Chapter 5 - New architecture of a software receiver

We make hereafter the distinction between a carrier phase, defined within
one carrier period, and a carrier interval which repeats and extends over
one complete integration period. Assuming a carrier quantized withM bits
that fix 2M+1 different phases, the average number of samples contained
in each carrier interval can be expressed as:

a = Nclk
2M+1 = fs

2M+1 · fd
(5.2)

Considering the residual Doppler range of ±5 kHz, Equation 5.2 typically
results in a hundred or thousand of samples per carrier interval. This order
of magnitude is to be compared with a NCO operating around the IF of
several megahertz and where a single carrier period is achieved within a few
clock cycles only. Thus, when generating a frequency of a few kilohertz
or less, the NCO phase accumulator increases very slowly and the rate
at which the carrier magnitude changes is very low as compared to the
sampling frequency. Since the carrier value keeps constant during several
hundreds of clock cycles and can therefore be easily predicted over time,
there is no more need to maintain the phase accumulator up to date on a
per sample basis. The structure of the NCO can thus be simplified, in order
to operate it at a much lower frequency, by predicting the sample times at
which the carrier transitions occur. In that sense, the initial NCO phase
accumulator is transformed into a samples accumulator aj incremented by
the average number of samples a per carrier interval j:

a0 = 0 (5.3)
aj = (j − 1) · a+ aoff 1 ≤ j < J

aJ = Ns

where aoff is the accumulator offset corresponding to the length of
the first carrier interval in samples (aoff ≤ a);
J is the number of carrier intervals per integration period.

The carrier accumulator is operated at a rate proportional to the Doppler
frequency and requires now J iterations instead ofNs. The samples bound-
aries of the J carrier intervals are provided by the sequence Aj given by:

Aj = bajc (5.4)

where bxc denotes the floor(x) function that rounds the value of x
towards the nearest smallest integer.

86

5.3 - Base-band processing

The carrier accumulator principle is illustrated in Figure 5.3.

1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0
off

Figure 5.3: Samples boundaries Aj of the carrier intervals.

Since the ratio of the carrier interval length a and the number of samplesNs
per integration most likely results in a non-integer value, the last interval,
respectively the first one, may overlap two consecutive integration periods
T1 and T2. The waveform continuity through the consecutive integration
periods is kept by controlling the phase of the generated carrier, by means
of aoff (T2) in Equation 5.3. The principle is illustrated in Figure 5.4.

1 off 2 2

1 2

2

J-1 1

S J-1 1

1

J-2 1 1 2 2 2S

31 16

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15NS-1

Figure 5.4: Jth carrier interval overlapping two consecutive integration
periods T1 and T2. The phase continuity is maintained by adjusting the
length aoff (T2) of the first carrier interval of T2.

If the end of the integration period T1 coincides with the end of the J th
carrier interval, then the carrier of T2 is generated with a zero initial phase
and aoff (T2) = a(T2). On the other hand, if a carrier interval overlaps two
consecutive integration periods, then the carrier of T2 is generated with a
phase offset and the length of the first carrier interval becomes:

aoff (T2) = a(T2) ·
(

1− Ns − aJ−1(T1)
a(T1)

)
(5.5)

87

Chapter 5 - New architecture of a software receiver

Carrier mixing

The base-band demodulation can be mathematically expressed from Equa-
tion 2.20 and Equation 2.23 as:

Ix =
Ns−1∑
n=0

cx(n) ·
[
I(n) · cos(ω̃ · n · Ts + φ̃) +Q(n) · sin(ω̃ · n · Ts + φ̃)

]
Qx =

Ns−1∑
n=0

cx(n) ·
[
Q(n) · cos(ω̃ · n · Ts + φ̃)− I(n) · sin(ω̃ · n · Ts + φ̃)

]
(5.6)

Practically the complex carrier is quantized with M bits and consists in a
waveform that takes any of the 2M discrete levels associated to the 2M+1

carrier phases (c.f. Subsection 2.3.1). When generated with a few kilohertz
or less, the carrier remains unchanged during many clock cycles as defined
in Equation 5.2, and many incoming samples I(n) and Q(n) are multiplied
by the same value in the base-band down-conversion. The distributive
law can be exploited and, instead of multiplying each data individually,
samples appertaining to the same carrier interval are first accumulated into
a batch (hereafter referred to as a partial sum) that is multiplied only once
with the respective carrier magnitude. This way Equation 5.6 becomes:

Ix =
J−1∑
j=0

cos(j)·

Aj+1−1∑
n=Aj

cx(n) · I(n)

+
J−1∑
j=0

sin(j)·

Aj+1−1∑
n=Aj

cx(n) ·Q(n)

Qx =

J−1∑
j=0

cos(j)·

Aj+1−1∑
n=Aj

cx(n) ·Q(n)

−
J−1∑
j=0

sin(j)·

Aj+1−1∑
n=Aj

cx(n) · I(n)

 (5.7)

where sin(j) and cos(j) denote the complex carrier magnitude taken
during the carrier interval j.

88

5.3 - Base-band processing

The data I(n) and Q(n) are first multiplied with the three code replicas
cx(n) and pre-accumulated into partial sums, accordingly to the carrier
interval boundaries defined by the sequence Aj in Equation 5.3. The J
partial sums are then multiplied with the respective carrier magnitudes
sin(j) and cos(j), and summed up to form the definitive correlation results
Ix and Qx. The carrier removal is now performed on each partial sum,
instead of each sample, at a rate proportional to the residual Doppler
frequency. The data are said to be batch processed. This translates into
a redistribution of the conventional base-band architecture, since the code
removal intervenes now first, as illustrated in Figure 5.5.

si
n(

j)

co
s(

j)

IE

IP

IL

QE

QP

QL

∑

∑

Carrier
generator

cL (n
)

cP
(n

)

cE
(n

)

∑

∑

∑

∑

∑

∑

Code
generator

Q(n)

I(n)

Partial sums

Aj

Figure 5.5: Base-band architecture with batch processing applied to
carrier removal. Carrier and code operations order is swapped as com-
pared to a traditional implementation.

Thanks to the carrier periodicity, every 2(M+1)th partial sum is multi-
plied by the same carrier magnitude. Consequently, instead of performing
J multiplications, all the 2(M+1)th partial sums are first regrouped per
phase and summed up to be multiplied at once at the end of each inte-
gration period. This way, the data throughput is further decreased from
the Doppler frequency to the number of carrier phases, quasi suppressing
all the multiplications involved in the carrier removal process. This makes
the carrier batch processing well fitted for a software receiver, as the com-
plexity of the carrier mixing is no longer sampling frequency dependent,
thus providing a maximum of flexibility for the implementation.

89

Chapter 5 - New architecture of a software receiver

5.3.2 Batch processing applied to code removal
Real-time code generation

Let us consider the generation of the local code replica by means of a
NCO. From Equation 2.18, the average number of samples contained in
each chip (or the number of clock cycles needed to achieve one complete
chip period) is given by:

b = 2W

Inc
= fs
fc

(5.8)

where fc is the chipping rate of the CA code.

Considering a sampling frequency fs = 4.092 MHz, approximately four
samples on average are contained in each chip. Thus, identically to the
carrier generation, the goal is to lower the operating frequency of the code
NCO by predicting the sample times at which the chip transitions occur.
In that sense, the initial NCO phase accumulator is transformed into a
samples accumulator bk incremented by the average number of samples b
per chip k:

bk = k · b+ boff 0 ≤ k < K + 1 =
⌈
Ns − boff

b

⌉
+ 1 (5.9)

where boff is the accumulator offset corresponding to the length of
the first incomplete chip in samples (boff < b);
K is the number of chips processed per integration period.

The code accumulator is now operated at a rate proportional to the code
frequency and requiresK iterations instead ofNs. The samples boundaries
of the K different chips are provided by the sequence Bk defined as:

Bk = bbkc (5.10)

The generation of the different time-delayed code replicas can be emulated
by shifting the boundaries of the sequence Bk by the desired amount of
samples ∆n. This way and from the single accumulator of Equation 5.9,
the chips boundaries of the E, P, and L code replicas are generated, with
a time delay resolution of one sampling period Ts:

BEk = bbkc BPk = bbkc+ ∆n BLk = bbkc+ 2 ·∆n (5.11)

90

5.3 - Base-band processing

The three sequences Bxk now define the chips boundaries of the E, P, and
L code replicas, as illustrated in Figure 5.6. The integration periods of the
P and L replicas are time shifted from Ts ·∆n and 2 · Ts ·∆n with respect
to the E one and thus define the same chips sequence.

0
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1
E

2
E

0
P

1
P

2
P

0
L

1
L

2
L

Δn

Δn

off

Figure 5.6: Chips boundaries of the E, P, and L code replicas.

The respective integration periods start at samplesBx0 , which coincide with
the beginning of the first complete chip, and end at BxK , which coincide
with the end of the last chip. The integrations are systematically run over
an integer number of chips, thus guarantying that none of them overlap
two consecutive integration periods T1 and T2. This condition simplifies
the upcoming code mixing operation. The code waveform continuity is
maintained by means of the accumulator offset boff in Equation 5.9 that
is adjusted as follows:

boff (T2) = bK(T1)−Ns (5.12)

Note that since the samples boundaries BxK of the last chips equal or
exceed Ns, dummy zero-valued samples may be needed to complete the
integration.

Code mixing

As defined in Equation 5.8, every chip value remains unchanged during
several clock cycles and as many incoming samples I(n) and Q(n) are
multiplied by the same chip during the code wipe-off process. Instead of
multiplying each data individually, samples appertaining to the same chip
are first accumulated into a batch (hereafter referred to as a chip sum)
that is multiplied only once with the same chip value.

91

Chapter 5 - New architecture of a software receiver

By applying batch-processing, Equation 5.6 becomes:

Ix =
K−1∑
k=0

C(k) ·
Bx

k+1−1∑
n=Bx

k

[
I(n) · cos(ω̃ · n · Ts + φ̃) +Q(n) · sin(ω̃ · n · Ts + φ̃)

]

Qx =
K−1∑
k=0

C(k) ·
Bx

k+1−1∑
n=Bx

k

[
Q(n) · cos(ω̃ · n · Ts + φ̃)− I(n) · sin(ω̃ · n · Ts + φ̃)

]
(5.13)

where C(k) is the chip value taken during the chip sum k.

The data I(n) and Q(n) are first down-converted to base-band and pre-
accumulated into chip sums, accordingly to the chips boundaries defined by
the sequences Bxk in Equation 5.11. The K chip sums are then multiplied
with their respective code value C(k) and summed up to form the definitive
correlation results Ix and Qx. The resulting base-band architecture is
illustrated in Figure 5.7.

C
(k

)

IE

IP

IL

QE

QP

QL

∑

∑

∑

∑

∑

∑

Code
generator

∑

∑

I(n)

Chip sums

si
n(

n)

co
s(

n)

∑

∑

Carrier
generator

Q(n)

Ibb(n)

Qbb(n)

Bk
x

Figure 5.7: Base-band architecture with batch processing applied to
code removal.

92

5.3 - Base-band processing

5.3.3 Proposed base-band architecture
The principle of batch processing can be further exploited and applied to
both the carrier and code removal, by taking advantage of the architec-
ture redistribution in Figure 5.5. The objective is to progressively reduce
the data throughput from the sampling frequency to the code frequency,
and finally to the number of carrier phases. This is achieved by first ac-
cumulating the incoming samples into complex chip sums, each one being
multiplied by its corresponding chip value. The products are then summed
up over the different carrier intervals in order to form the partial sums on
which the carrier removal is further performed.

The operations described in Subsection 5.3.2 remain the same for the
code removal. However, the batch processing applied to carrier removal
is slightly modified, since the partial sums are now formed by summing
up consecutive chip sums instead of samples. The average number of chip
sums contained in each partial sum can be expressed as:

r = a

b
= fc

2M+1 · fd
(5.14)

The carrier accumulator of Equation 5.3 is transformed in order to predict
the chip times (instead of the sample times) where the carrier transitions
occur. It consists now in a chips accumulator rj incremented by the average
number of chips r per carrier interval j:

r0 = 0
rj = (j − 1) · r + roff 0 < j < J

rJ = bK

b
(5.15)

where roff is the accumulator offset corresponding to the length of
the first carrier interval in chips (roff ≤ r);

Since the ratio of chips per carrier interval in Equation 5.14 most likely
results in a non-integer value, the J boundaries of the different intervals
need to be approximated by rounding the sequence rj toward the nearest
integer.

93

Chapter 5 - New architecture of a software receiver

Since the integration periods of the the E, P, and L code replicas are
time shifted with respect to each other, the chip sums boundaries of the
intervals have to be re-estimated separately, by taking into account the
respective delays ∆n and 2 ·∆n as follows:

RE0 = 0 REj = round (rj)

RP0 = 0 RPj = round
(
rj −

∆n
b

)
RL0 = 0 RLj = round

(
rj −

2 ·∆n
b

)
(5.16)

The principle of the chips accumulator is illustrated in Figure 5.8, with
the three sequences Rxj defining the carrier intervals boundaries in terms
of chip sums for the respective E, P, and L code replicas. Note that the
number of chip sums contained in each of the jth interval may differ for
each of the replicas.

1
L

0 1 2 3 4 5

2
L

0
L

1
E

1
P

2
P

2
E

0
E

0
P

3
L

3
P

3
E

6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8

Figure 5.8: Carrier intervals boundaries of the three E, P, and L code
replicas.

Since the number of carrier intervals per integration period most likely
results in a non-integer value, the last interval, respectively the first one,
may overlap two integration periods T1 and T2. The waveform continuity
through the consecutive integration periods is kept by controlling the phase
of the generated carrier, by means of roff (T2) in Equation 5.15. The
principle is illustrated in Figure 5.9.

94

5.3 - Base-band processing

1 2

J-1 1J-2 1 1 2 2 2

21

K-5 K-4 K-3 K-2 K-1 0 1 2 3 4

J 1S

off 2S J-1 1

Figure 5.9: Jth carrier interval overlapping two consecutive integration
periods T1 and T2. The phase continuity is maintained by adjusting the
length roff (T2) of the first carrier interval of T2.

If the end of the Kth chip of the integration period T1 coincides with the
end of the J th carrier interval, then the carrier of T2 is generated with a
zero initial phase and roff (T2) = r(T2). On the other hand, if a carrier
interval overlaps two consecutive integration periods, which is most likely
the case, then the carrier of T2 is generated with a phase offset and the
length of the first interval becomes:

roff (T2) = r(T2) ·
(

1− rJ(T1)− rJ−1(T1)
r(T1)

)
(5.17)

95

Chapter 5 - New architecture of a software receiver

By introducing the batch processing for both the carrier and code removal,
the base-band demodulation in Equation 5.6 becomes:

Ix =
J−1∑
j=0

cos(j)·

Rx
j+1−1∑
k=Rx

j

C(k) ·

Bx
k+1−1∑
n=Bx

k

I(n)

+
J−1∑
j=0

sin(j)·

Rx
j+1−1∑
k=Rx

j

C(k) ·

Bx
k+1−1∑
n=Bx

k

Q(n)

Qx =

J−1∑
j=0

cos(j)·

Rx
j+1−1∑
k=Rx

j

C(k) ·

Bx
k+1−1∑
n=Bx

k

Q(n)

−
J−1∑
j=0

sin(j)·

Rx
j+1−1∑
k=Rx

j

C(k) ·

Bx
k+1−1∑
n=Bx

k

I(n)

 (5.18)

The data I(n) and Q(n) are pre-accumulated into chip sums, accordingly
to the chips boundaries defined by the sequences Bxk in Equation 5.11. The
K chip sums are then multiplied with their respective code value C(k) and
the products accumulated into partial sums, accordingly to the carrier in-
terval boundaries defined by the sequences Rxj in Equation 5.16. The J
partial sums are distributed over the 2(M+1) carrier phases, multiplied
with the respective carrier magnitudes sin(j) and cos(j), and summed up
to form the definitive correlation results Ix and Qx. The principle of batch
processing applied to carrier and code removal is illustrated in Figure 5.10.

For each satellite channel the complex chip sums are now directly computed
from the incoming samples as follows:

S(Bxk : Bxk+1 − 1) =
Bx

k+1−1∑
n=Bx

k

(I(n) + i ·Q(n)) (5.19)

96

5.3 - Base-band processing

0

0
1

0

Tim
e

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

B
5 P

B
4 P

B
3 P

B
2 P

B
1 P

B
0 P

B
6 P

2
3

4
5

0
1

2
3

4

1
2

3

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

R
3 P

6

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

1
2

3
4

5
6

7
0

1
2

3
4

5
6

R
2 P

R
1 P

R
0 P

Σ
Σ

Σ
Σ

Σ

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

-1
-1

1
-1

1
-1

-1
1

1
-1

1
-1

-1
-1

1
1

-1
1

-1
-1

1
-1

1
-1

-1
Σ

Σ
Σ

Σ
S

am
ples(n)

C
hip sum

s(k)

P
artial sum

s(j)

P
artial sum

s(j)

C
arrier phases

P
R

N
 code(k)

C
hip sum

s(k)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
C

arrier intervals(j)

Figure 5.10: Batch processing applied to carrier and code operations
[Bue09] and [Bue10].

97

Chapter 5 - New architecture of a software receiver

They can be regrouped into a complex matrix of the size [K x 3], where
each row represents a chip k, and each column a code offset, respectively
0, ∆n, and 2 ·∆n. The matrix takes the form of Table 5.1.

Code delay in samples (E, P, and L)

0 ∆n 2 ·∆n

C
hi
p
in
de

x
k

0 S(BE
0 :BE

1 -1) S(BP
0 :BP

1 -1) S(BL
0 :BL

1 -1)

1 S(BE
1 :BE

2 -1) S(BP
1 :BP

2 -1) S(BL
1 :BL

2 -1)

2 S(BE
2 :BE

3 -1) S(BP
2 :BP

3 -1) S(BL
2 :BL

3 -1)
...

...
...

...

K-1 S(BE
K-1:BE

K-1) S(BP
K-1:BP

K-1) S(BL
K-1:BL

K-1)

Table 5.1: Chip sums matrix.

For a given sampling frequency, the chip sums size depends on the code
frequency and is therefore specific to each satellite channel. However,
although the number of samples per chip sum changes and is either floor(b)
or ceil(b), the summation can, with negligible effects (see Subsection 6.2.1),
always run over a constant samples interval defined as:

B = round
(
fs
fc

)
= round(b) (5.20)

Assuming an unique summation intervalB, each chip sum is now computed
as in Equation 5.21 and the matrix takes the form of Table 5.2.

S(Bxk : Bxk +B − 1) = SxBk
=
Bx

k +B−1∑
n=Bx

k

(I(n) + i ·Q(n)) (5.21)

With the length of the summation interval set constant, many chip sums
are commonly shared by the different satellite channels. Instead of re-
computing separately all the chip sums for each satellite channel, the ob-
jective is to compute them once for all.

98

5.3 - Base-band processing

Code delay in samples (E, P, and L)

0 ∆n 2 ·∆n
C
hi
p
in
de

x
k

0 S(BE
0 :BE

0 +B-1) S(BP
0 :BP

0 +B-1) S(BL
0 :BL

0 +B-1)

1 S(BE
1 :BE

1 +B-1) S(BP
1 :BP

1 +B-1) S(BL
1 :BL

1 +B-1)

2 S(BE
2 :BE

2 +B-1) S(BP
2 :BP

2 +B-1) S(BL
2 :BL

2 +B-1)
...

...
...

...

K-1 S(BE
K-1:BE

K-1+B-1) S(BP
K-1:BP

K-1+B-1) S(BL
K-1:BL

K-1+B-1)

Table 5.2: Chip sums matrix with a constant summation interval of B.

Consequently, for each of the incoming sample I(n) and Q(n), a complex
chip sum Sn is formed by summing up B consecutive data values, starting
from the sample n in question. The process takes place iteratively with two
additions and subtractions per complex chip sum, instead of the 2 · (B−1)
additions originally required in Equation 5.21:

S0 =
B−1∑
n=0

(I(n) + i ·Q(n)) (5.22)

Sn+1 = Sn + I(n+B)− I(n) + i · [Q(n+B)−Q(n)] 0 ≤ n < Ns − 1

All the soNs resulting chip sums are chronologically collected into a vector,
common to all satellite channels and of the form of Table 5.3.

Sa
m
pl
e
in
de

x
n

0 S0=S(0:B-1)

1 S1=S(1:B)

2 S2=S(2:B+1)
...

...

Ns-1 SNs−1=S(Ns-1:Ns+B)
... 0

Table 5.3: Chip sums vector with a constant summation interval of B.

99

Chapter 5 - New architecture of a software receiver

The vector is addressed separately by each satellite channel, accordingly to
the sequences Bxk that directly provide the respective indexes of the 3 ·K
chip sums to select. The so formed E, P, and L chip sums sequences are
respectively of the form:

{SBE
0
, SBE

1
, SBE

2
, . . . SBE

K−1
}

{SBP
0
, SBP

1
, SBP

2
, . . . SBP

K−1
}

{SBL
0
, SBL

1
, SBL

2
, . . . SBL

K−1
} (5.23)

Each sequence is multiplied point by point with the same PRN code C(k)
and the products are summed over the different carrier intervals, accord-
ingly to the boundaries Rxj defined in Equation 5.16. The results are
distributed over the 2(M+1) carrier phases, multiplied by the respective
carrier magnitudes sin(j) and cos(j), and rearranged in order to form the
definitive correlation results Ix and Qx, [Bue09], and [Bue10]. This leads
to the new base-band architecture depicted in Figure 5.11.

C
(k

)

si
n(

j)

co
s(

j)

∑

∑

∑

∑

∑

∑

Carrier
generator

Code
generator

Re(SBk
E)

∑

∑
Q(n)

I(n)

Partial sumsChip sums

Rj
xBk

x

IE

IP

IL

QE

QP

∑

∑

QL

Re(SBk
P)

Re(SBk
L)

Im(SBk
E)

Im(SBk
P)

Im(SBk
L)

Figure 5.11: New base-band architecture based on batch processing.

100

5.4 - Base-band algorithms

5.4 Base-band algorithms
5.4.1 Acquisition algorithms
In order to make easier the coexistence of satellite channels in acquisition
and in tracking mode, the objective is to re-use the structure of the base-
band architecture for the acquisition. Accordingly to Equation 5.18:

• shifting the summation boundaries Bk by ∆n is equivalent to delay
the code replica by ∆n sample(s);

• shifting the chip C(k) from ∆k is equivalent to delay the code replica
by ∆k chip(s).

Consequently, multiplying consecutive time-delayed chip sums sequences
with the same code vector corresponds to test consecutive code phases
with one sample step size. In the same manner, for a given chip sums
sequence, circular-shifting the code vector chip by chip corresponds to test
consecutive code phases with one chip step size.

Parallel code search

The algorithm is based on the architecture described in Section 2.4.1, how-
ever it differs from it, since the FFT is not computed on the Ns incoming
samples, but on a chip sums sequence of length K. The latter is selected
from the chip sums vector, accordingly to the chip boundaries Bk of Equa-
tion 5.9, and is of the form:

{SB0 , SB1 , SB2 , . . . SBK−1} (5.24)

The local carrier is generated by means of Equation 5.15. Accordingly to
the carrier intervals boundaries REj , a sequence containing the K carrier
magnitude values, respectively associated to each chip sum, is produced
and is of the form:

{cos(0)− i · sin(0), . . . cos(K − 1)− i · sin(K − 1)} (5.25)

Both chip sums and carrier sequences are multiplied point by point and the
result is left zero padded in order to form a complex vector which length
N is a power of two given by:

N = 2dlog2(K)e (5.26)

101

Chapter 5 - New architecture of a software receiver

The so formed sequence is transformed into the frequency domain by FFT
and multiplied point by point with the FFT of the code (right zero padded
in order to form a N -point vector). The result of the multiplication is
transformed into the time domain by an inverse FFT and the absolute
value computed for providing the correlation between the input signal and
the PRN code. This allows testing all the possible code phases at once
with one chip step size, for a given Doppler bin. The operation is reiterated
with different carrier frequency vectors until the whole Doppler space is
swept. In order to test different code phases with one sample step size, the
whole operation is repeated by selecting a new chip sums sequence where
the summation boundaries are shifted by one sample with respect to the
previous one. The parallel code search architecture based on the batch
processing is illustrated in Figure 5.12.

C
(k

)

Code
generator

Chip sums

OutIFFT ||2

FFT

Conj

FFT∑

∑
Q(n)

I(n)

Bk
x

si
n(

j)

co
s(

j)

Carrier
generator

∑

∑

Figure 5.12: Batch processing applied to the parallel code search.

102

5.4 - Base-band algorithms

Parallel frequency search

The algorithm is based on the architecture described in Section 2.4.1, how-
ever it differs from it, since the pre-detection sums are not computed from
the Ns incoming samples but from a chip sums sequence of length K.
The latter is selected from the chip sums vector, accordingly to the chip
boundaries Bk of Equation 5.9, and is of the form:

{SB0 , SB1 , SB2 , . . . SBK−1} (5.27)

The code vector is formed by repeating several times the original PRN
code period to form a sequence of length K:

{C(0), C(1), C(2), . . . C(mod(K-1,1023))} (5.28)

Both chip sums and code sequences are multiplied point by point to remove
the code and the products are distributed over the Np pre-detection sums
intervals. The boundaries of the latter are predicted by a pre-detection
accumulator vi, incremented by the average number of chip sums v per
pre-detection sum:

vi = i · v 0 ≤ i < Np (5.29)

where v is given by:

v = Tp · fs
b

= Tp · fc (5.30)

The chip sums boundaries of the Np pre-detection sums are provided by
the sequence Vi defined as:

Vi = round(vi) (5.31)

The so formed pre-detection sequence is transformed into the frequency
domain by FFT (zero padding is applied if needed in order to form a
vector which length is a power of two). This allows testing all the possible
Doppler offsets at once for a given code phase. In order to test different
code phases with one chip step size, new partial correlations sequences
are recomputed by circular-shifting the code vector chip by chip. To test
different code phases with one sample step size, a new chip sums sequence is
selected by shifting the summation boundaries by one sample with respect
to the previous one.

103

Chapter 5 - New architecture of a software receiver

The parallel frequency search architecture based on the batch processing
is illustrated in Figure 5.13.

C
(k

)

Code
generator

∑

∑
Q(n)

I(n)

Chip sums

Bk
x

∑

∑

Pre-detection
accumulator

Pre detection
sums

OutFFT

1
:
:

1
:
:

Np

Np

Vi

Figure 5.13: Batch processing applied to the parallel frequency search.

5.4.2 Tracking algorithms
The real-time generation of both the carrier and the code allows a straight-
forward implementation of conventional tracking algorithms.

5.5 Pseudoranges measurement
The code phase measurements consist in determining the exact phase of
the locally generated code, at fixed time intervals, needed for further com-
puting the pseudoranges. Each phase is composed of an integer part,
given by the index of the chip generated at the time of measurement,
and a fractional part given by the state of the code accumulator at the
time of measurement. For all the satellite channels, the measurements are
synchronized with the Nsth sample, as illustrated in Figure 5.14.

104

5.6 - Summary

NS-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

K-1 1K-2 1 K 1

1

1 2

21

S

Figure 5.14: Code phase measurements synchronized with the N th
s

sample. F represents the fractional part of the chip generated at sample
time Ns.

The state of the code accumulator is known at samples times bK−1 and
bK that generally do not coincide with Ns (remember that the number of
chips processed per integration period is round up to the next integer and
that the boundaries of the last chip sum may exceed Ns). Consequently,
interpolation may be needed to estimate the fractional part F of the chip
generated at sample time Ns, as follows:

F = b+Ns − bK(T1)
b

(5.32)

The fractional part F of the chip is added to the integer part given by the
index of the chip K − 1 processed at sample time Ns. This finally forms
a value in the range [0; 1023[chips that is added to the code ambiguity,
resolved by decoding the navigation message, transformed into a distance
and further transmitted to the receiver PVT solution.

5.6 Summary
Chapter 5 introduces a completely new base-band architecture based on
the concept of batch processing of the incoming samples. The basic idea
consists in restricting the frequency of the carrier replica internally gen-
erated to a few kilohertz, so that its time evolution becomes very slow as
compared to the sampling frequency. Since the carrier magnitude remains
constant during hundreds or thousands of clock cycles, data appertaining
to the same intervals are accumulated into batches that are multiplied only
once by the corresponding carrier magnitude, instead of multiplying each
data separately.

105

Chapter 5 - New architecture of a software receiver

The same also applies for the code removal, where samples appertaining
to the same chip are summed up and multiplied only once by the chip
value. This results in a redistributed base-band architecture where the
data throughput is progressively decreased and consequently the amount
of operations involved is significantly reduced. The batch processing also
simplifies the code and carrier synthesis, as they now consist in predicting
the times where the chips, respectively the carrier intervals, transitions
occur. Both the carrier and code generators operate at a low frequency,
respectively proportional to the residual Doppler and the code rate, which
allows the real-time generation of the signals waveforms at any desired fre-
quency and with any phase. This makes any Doppler offset compensation
possible (especially on the code as compared to pre-generated sequences
that assume a zero frequency offset) and thus greatly simplifies the inte-
gration of the carrier and code blocks in the tracking loops.

106

Chapter 6

Performance of the new
architecture

The theoretical performance, as well as the trade-offs and limitations of
the proposed architecture are analyzed in this chapter. For each block of
Figure 5.11, the complexity in terms of the amount of integer operations
per second is computed. The ability of the receiver to accommodate some
future GNSS signals is also discussed.

6.1 Performance of the batch-processing
6.1.1 Accumulation
The accumulation takes place in two different phases. The incoming com-
plex samples are first summed up into complex chip sums that are it-
eratively computed with respectively two additions and subtractions. In
addition to the unavoidable load and store operations, Table 6.1 provides a
rough estimation of the amount of integer operations per second necessary
to compute the complex chip sums.

additions # multiplications

Chip sums 4 · fs -

Table 6.1: Amount of integer operations per second involved in the
complex chip sums computation.

107

Chapter 6 - Performance of the new architecture

Note that the complex chips sums computation is performed independently
of the number of satellite channels and represents an unavoidable basic
load.

The second accumulation phase intervenes after the code removal, when
the chip sums are summed up into partial sums. The accumulation is
performed at the code rate fc, in parallel for each of the E, P, and L signal
components. In addition to the unavoidable load and store operations,
Table 6.2 provides a rough estimation of the amount of integer operations
per second necessary to compute the partial sums for Nc satellite channels.

additions # multiplications

Partial sums 6 · fc ·Nc -

Table 6.2: Amount of integer operations per second involved in the
partial sums computation.

As compared to the traditional implementation in Table 3.2, the gain G
of the accumulation (chip sums and partial sums) in terms of the amount
of operations can be roughly estimated as:

G ∝ fs
2·fs

3·Nc
+ fc

(6.1)

Assuming a sampling frequency fs = 8 MHz and a 12 satellite channels
configuration, G ≈ 5.5. Note that the higher the sampling frequency is,
the better the gain is too.

6.1.2 Real-time code generation
The code generation consists in predicting the samples boundaries of the
different chips for the E, P, and L code replicas. It is implemented as a
samples accumulator incremented by the average number of samples per
chip, at a rate proportional to the code frequency fc. The P and L se-
quences are derived from the accumulator by adding a constant offset ∆n
and 2 · ∆n respectively. In addition to the unavoidable load and store
operations, Table 6.3 provides a rough estimation of the amount of inte-
ger operations per second necessary to generate the code for Nc satellite
channels.

108

6.1 - Performance of the batch-processing

additions # multiplications

Code generation 3 · fc ·Nc -

Table 6.3: Amount of integer operations per second involved in the
code generation.

As compared to the traditional implementation where the NCO operates
at the sampling frequency, the gain G in terms of the amount of operations
can be roughly estimated as:

G ∝ fs
fc

(6.2)

Assuming a sampling frequency fs = 8 MHz, G ≈ 8.

As the complexity is no longer sampling frequency dependent, flexibility
is achieved for the implementation and leads to an amount of operations
which is now fully suitable for a real-time software receiver. Furthermore,
as compared to the solution based on pre-computed and stored code se-
quences, the use of a NCO allows the continuous generation of the wave-
form at any desired frequency. This makes any Doppler offset compensa-
tion possible and also greatly simplifies the integration of the code block
in the receiver, as it will easily accommodate traditional tracking schemes.
Finally, the memory requirements are reduced to the strict minimum as
only 1023 chips per code need to be stored.

6.1.3 Code mixing
The code mixing is performed by multiplying the E, P, and L complex chip
sums sequences with the PRN code, chip by chip, at the code rate fc. In
addition to the unavoidable load and store operations, Table 6.4 provides a
rough estimation of the amount of integer operations per second necessary
to perform the code mixing for Nc satellite channels.

109

Chapter 6 - Performance of the new architecture

additions # multiplications

Code mixing - 6 · fc ·Nc

Table 6.4: Amount of integer operations per second involved in the
carrier mixing.

The code removal is performed on each chip sum, instead of each sample,
progressively decreasing the data throughput from the sampling to the
code frequency. As compared to the traditional implementation, where
the code mixing is performed at the sampling frequency, the gain G in
terms of the amount of operations can be roughly estimated as:

G ∝ fs
fc

(6.3)

Assuming a sampling frequency fs = 8 MHz, G ≈ 8.

6.1.4 Real-time carrier generation
The carrier generation consists in predicting the chips boundaries of the
different carrier intervals, for the E, P, and L signal components. It is
implemented as a chips accumulator incremented by the average number
of chips per carrier interval, at a rate proportional to the residual Doppler
frequency fd. The boundaries of the P and L sequences are derived from
the accumulator by subtracting a constant offset proportional to the repli-
cas delay ∆n and 2 ·∆n respectively. In addition to the unavoidable load
and store operations, Table 6.5 provides a rough estimation of the amount
of integer operations per second necessary to generate the carrier for Nc
satellite channels.

additions # multiplications

Carrier generation 3 · fd · 2M+1 ·Nc -

Table 6.5: Amount of integer operations per second involved in the
carrier generation.

110

6.1 - Performance of the batch-processing

As compared to the traditional implementation where the NCO is operated
at the sampling frequency, the gain G in terms of the amount of operations
can be roughly estimated as:

G ∝ fs
3 · fd · 2M+1 (6.4)

Assuming a sampling frequency fs = 8 MHz and 3-bit carrier quantization,
G > 30. The maximal performance is obtained when the residual Doppler
frequency is quasi null and there is only one single batch to process. The
computational burden of the real-time generation is drastically decreased.

The complexity of the carrier generation is no longer sampling frequency
dependent and leads to an amount of operations which is now fully suitable
for a real-time software receiver [Wae09b]. As compared to the solutions
based on the pre-computed and stored carrier sequences, the use of a NCO
allows the continuous generation of the exact waveform, at any desired
frequency. This makes any Doppler offset compensation possible and also
greatly simplifies the integration of the carrier block in the receiver as it
will easily accommodate traditional tracking schemes. Finally, the memory
requirements are reduced to the strict minimum and only 2M+1 carrier
magnitudes need to be stored.

6.1.5 Carrier mixing
The complex chip sums are distributed over the carrier intervals, accord-
ingly to the chips boundaries defined by the carrier generator, and accu-
mulated over the 2M+1 carrier phases. The carrier mixing is performed
at the end of each integration by multiplying each partial sum by its cor-
responding complex magnitude, and by finally recombining the in-phase
and quadrature components accordingly to Equation 2.20. This is done in
parallel for the three E, P, and L signal components. In addition to the
unavoidable load and store operations, Table 6.6 provides a rough estima-
tion of the amount of integer operations per second necessary to perform
the carrier mixing for Nc satellite channels.

111

Chapter 6 - Performance of the new architecture

additions # multiplications

Carrier mixing 6 · 2M+1 ·Nc/Tint 12 ·2M+1 ·Nc/Tint

Table 6.6: Amount of integer operations per second involved in the
carrier mixing.

The carrier removal is performed on each carrier phase, instead of each
sample, reducing the data throughput from the sampling frequency to the
number of carrier phases. As compared to the traditional implementation
where the down-conversion is operated at the sampling frequency, the gain
G in terms of the amount of operations can be roughly estimated as:

G ∝ fs · Tint
3 · 2M+1 (6.5)

Assuming a sampling frequency fs = 8 MHz, a 3-bit carrier quantization
and an integration time Tint = 1 ms, G ≈ 1.7 · 102. The computational
burden of the carrier mixing is drastically decreased.

With respect to Table 3.2, the main improvement lies in the quasi absence
of multiplications, making the carrier batch processing particularly well
suited for a software implementation. The process becomes now depen-
dent of the carrier quantization, but with a quasi negligible impact on the
global performance.

Table 6.7 and Table 6.8 summarize the above estimations of the amount
of integer operations per second necessary to generate the local code and
carrier replicas, and to perform the correlation related operations for Nc
satellite channels.

additions # multiplications

Code generation 3 · fc ·Nc -

Carrier generation 3 · fd · 2M+1 ·Nc -

Table 6.7: Amount of integer operations per second involved in the
real-time generation of the carrier and code.

112

6.1 - Performance of the batch-processing

additions # multiplications

Accumulation 4 · fs + 6 · fc ·Nc -

Code mixing - 6 · fc ·Nc

Carrier mixing 6 · 2M+1 ·Nc/Tint 12 ·2M+1 ·Nc/Tint

Table 6.8: Amount of integer operations per second involved in the
correlation related operations.

As compared to the complexity of the original base-band implementation
presented in Table 3.2, the main improvement lies in the quasi indepen-
dence of the overall complexity to the sampling frequency. The chip sums
computation, intervening at the beginning of the processing chain, is the
only operation performed at the sampling rate, thus allowing the receiver
to accommodate high sampling frequencies without penalizing the compu-
tational load of the subsequent operations. This is highlighted in Table 6.9,
which compares the amount of additions, respectively multiplications, in-
volved in the two architectures for different sampling frequencies. A 12
satellite channels receiver configuration with 3-bit signal quantization and
1 ms integration time are assumed.

Sampling frequency fs

4.092 MHz 8 MHz 16 MHz

additions

Standard processing 3.9 · 108 7.7 · 108 1.5 · 109

Batch processing 9 · 107 1 · 108 1.4 · 108

multiplications

Standard processing 4.9 · 108 9.6 · 108 1.9 · 109

Batch processing 7.4 · 107 7.4 · 107 7.4 · 107

Table 6.9: Comparison of the amount of additions and multiplications
per second involved in the standard and the batch processing (without
carrier and code generation).

113

Chapter 6 - Performance of the new architecture

The following observations can be concluded from the tables above:

• the complexity of the batch processing is reduced by roughly one
order of magnitude with respect to the standard processing, when
considering a sampling frequency of 8 MHz or higher;

• the amount of multiplications is now independent of the sampling
frequency;

• the complexity is split into the unavoidable basic load of the chip
sums computation (common to all the satellite channels) and the
additional tasks inherent to each satellite channel;

• the impact of the signals quantization (incoming satellite signal and
local carrier replica) on the receiver complexity is quasi negligible,
since all the operations are performed with integer arithmetic and do
not depend on the operands bit-depth. This makes the architecture
flexible and open to various signal configurations;

• the carrier is real-time synthesized with a complexity proportional
to the residual Doppler frequency. The waveform is generated con-
tinuously at any desired frequency, which makes it possible to com-
pensate natively for any residual Doppler;

• the code is real-time synthesized with a complexity proportional to
the code chipping rate. The waveform is generated continuously
at any desired frequency, which makes it possible to compensate
natively for any residual Doppler;

• the memory requirements are reduced to the strict minimum, as no
oversampled carrier or code sequences need to be stored.

In conclusion, the batch processing drastically reduces the complexity of
the base-band architecture, leading to an amount of operations which is
now fully suitable for a real-time implementation.

114

6.2 - Architecture trade-offs

6.2 Architecture trade-offs
6.2.1 Effects of the constant chip sums size
Since the size and the samples boundaries of the chips depend on the code
frequency, a chip sums sequence theoretically needs to be computed for
each of the E, P, and L signal components, in parallel for all the satellite
channels. This results in a very large amount of operations (∝ 6 · fs ·Nc),
not suitable for a real-time application. In order to simplify the chip sums
computation, their summation interval is set constant and of length B.
This assumption bears no consequences as long as the constant chip sum
length equals the initial one (i.e. B = Bxk+1−Bxk), but introduces an error
when it differs. The effect of accumulating the wrong number of samples
in the kth chip sum can occur in two different ways, depending on the
sampling frequency and thus, on the value of B:

1. if B = ceil(b), the sample Bxk + B − 1 is integrated twice, in two
consecutive chip sums;

2. if B = floor(b), the sample Bxk +B is dropped.
The impact on the correlation process depends on the probability Pe of
having a sample erroneously integrated or dropped that can be estimated
as:

Pe =
∣∣b−B∣∣

b
(6.6)

Consequently, the smaller the difference |b−B| is, the lesser the impact on
the autocorrelation function is, the worst case occurring when |b−B| = 0.5.
For example, with a sampling frequency fs = 8 MHz and accordingly to
Equation 5.8, b = 7.82 and the chip sums size is set to B = 8 samples.
This corresponds to the first case described above (i.e. B = ceil(b)), and
thus, according to Equation 6.6, the probability of integrating the same
value twice is Pe = 0.023 (approximately once every 43th sample). This
example has been simulated and is illustrated in Figure 6.1.

The right part of the peak remains unaffected while the left one is slightly
shifted, proportionally to the number of erroneously integrated samples
(Ns ·Pe = 8000·0.023 = 184 samples for the illustrated example). However,
since the probability of having a corrupted sample remains quasi constant
for all the satellite channels, this translates into a common correlation
peak offset that finally does not impact the PVT solution computation.
Consequently, with an appropriate selection of the sampling frequency, the
effect of using a constant chip sums size is quasi negligible.

115

Chapter 6 - Performance of the new architecture

5000

5500

6000

6500

7000

7500

8000
A

ut
oc

or
re

la
tio

n
am

pl
itu

de

4000

4500

5000

5500

6000

6500

7000

7500

8000

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

A
ut

oc
or

re
la

tio
n

am
pl

itu
de

Code offset [chip]

Figure 6.1: Effect of using a constant chip sums size on the auto-
correlation function with a sampling frequency fs = 8 MHz and an
integration time Tint = 1 ms. The blue curve represents the original
function, the red curve the affected one.

6.2.2 Effects of the carrier boundaries approximation

The partial sums are obtained by accumulating consecutive chip sums ac-
cordingly to the sequence Rxj defined in Equation 5.16. Since the number
of chips per carrier interval most likely results in a non-integer value, the
chip sums contained in each jth carrier interval are those which overlap,
either completely or by more than 50% at the boundaries of the inter-
val. Consequently, for each interval transition, the maximal number of
samples erroneously introduced in a partial sum is limited to half a chip.
This represents a few samples as compared to the partial sums size of sev-
eral hundreds or thousands samples. In the worst case, the percentage of
samples erroneously integrated in one carrier interval can be estimated as:

a

b
= fd · 2M+1

2 · fc
(6.7)

Assuming a 3-bit carrier quantization, this represents less than 4% of the
samples contained in one carrier interval. Furthermore, since the effect
is randomly distributed over the different intervals and averaged over one
integration period, it bears no consequence on the carrier NCO.

116

6.3 - Extension to Galileo E1 OS

6.2.3 Code replica time delay
The time delay between the E, P, and L code replica is emulated by shifting
the boundaries of the chip sums by a fixed number of samples ∆n. This
restricts the available shifts to integer multiples of the sampling period Ts
(i.e. the minimal spacing between the E and P or P and L replicas is one
sample). Consequently, the higher the sampling frequency is, the thinner
the replica spacing can be. However, this limitation can be resolved by
running three distinct samples accumulators independently, each with the
desired offset boff .

6.3 Extension to Galileo E1 OS
As compared to the BPSK modulation of the GPS L1 CA, the Galileo
E1 OS signals requires the additional sub-carrier square wave to be re-
moved during the code wipe-off process. The discussion focuses now on
the BOC(1,1) modulation since it holds more than 90% of the signal en-
ergy (cf. Equation 2.11). The effect of the BOC(1,1) on the code is to
split each chip into two sign-inverted halves, as illustrated in Figure 6.2.

Code

Sub-carrier

Code sub-carrier

1

-1

1

-1

1

-1

B

B/2

Figure 6.2: Square wave sub-carrier modulation of the BOC(1,1).

With an appropriate selection of the sampling frequency, the sub-carrier
removal can be directly integrated within the chip sums computation. If
the number of samples per chip rounded to the nearest integer B actually
results in an even value, the chip sums summation interval can be split
into two halves of B2 samples. The requirement for the sampling frequency
can be stated as:

round
(
fs
fc

)
= 2 · round

(
fs

2 · fc

)
(6.8)

117

Chapter 6 - Performance of the new architecture

If the above criterion is fulfilled, each chip sum Sn can now be formed
by summing up B

2 consecutive data values and subtracting the next B
2

consecutive ones, starting from the sample n in question, as follows:

Sn =
n+ B

2 −1∑
m=n

(I(m) + i ·Q(m))−
n+B−1∑
m=n+ B

2

(I(m) + i ·Q(m)) (6.9)

The computation of the chip sums can be performed iteratively with four
additions and four subtractions, as follows:

S0 =
B
2 −1∑
n=0

(I(n) + i ·Q(n))−
B−1∑
n= B

2

(I(n) + i ·Q(n)) (6.10)

Sn+1 = Sn + 2 · I(n+ B

2)− I(n+B)− I(n)

+ i · [2 ·Q(n+ B

2)−Q(n+B)−Q(n)] 0 ≤ n < Ns − 1

The chips sums are chronologically collected into a vector. The latter is
addressed by means of the code accumulator bk and further processed as
described in Subsection 5.3.3.

In addition to the unavoidable load and store operations, Table 6.10 pro-
vides a rough estimation of the amount of integer operations per second
necessary to process Nc satellite channels with the new batch processing
based architecture (without considering the carrier and code generation).
We assume here three different code replicas, namely E, P, and L.

additions # multiplications

Chip sums 8 · fs -

Code mixing - 6 · fc ·Nc
Carrier mixing 6 · 2M+1 ·Nc/Tint 12 ·2M+1 ·Nc/Tint
Accumulation 6 · fc ·Nc -

Table 6.10: Amount of integer operations per second for the processing
of the BOC(1,1) modulation (without code and carrier generation).

118

6.4 - Summary

As compared to Table 6.8, the BOC(1,1) modulation only requires twice
more iterations for the chip sums computation, which has no significant
impact on the overall complexity. With an appropriate selection of the
sampling frequency, the effect of the additional sub-carrier modulation
can thus be restricted to the chip sums computation, without penalizing
the other operations.

However, the GPS L2 P(Y) as well as some of the modernized signals
modulations (e.g. Galileo E5-A and E5-B [Eur10a]) rely on higher chip-
ping rates, and consequently higher sampling frequencies. If the effect
of the latter is limited to the chip sums computation, the impact of the
code frequency on the complexity is preponderant, as their dependence is
quasi linear. For example, increasing the code frequency from 1.023 to
10.23 MHz affects the overall complexity by nearly a factor of ten. Never-
theless, the batch processing still remains extremely efficient, as compared
to the integer implementation whose complexity is proportional to the
sampling rate (see Table 3.2) and thus penalized in the same proportions
by the frequency increase.

6.4 Summary
The key point of the proposed solution relies on the progressive data
throughput reduction, which is first decreased from the sampling rate of
several megahertz to the code rate of one megahertz, and finally to a fre-
quency proportional to the number of carrier phases. As compared to a
traditional hardware based receiver, where all the operations are performed
at the sampling frequency, the amount of integer additions and multiplica-
tions involved in the base-band processing is reduced by almost one order
of magnitude. Furthermore, performing all the operations with integer
arithmetic allows the signals structure to change significantly without any
code modification. This architecture thus provides great flexibility and
can easily accommodate various receiver configurations (signal and carrier
quantization, sampling frequency, etc.).

119

Chapter 6 - Performance of the new architecture

120

Chapter 7

Implementation of the
new architecture

The proposed receiver architecture was implemented in a demonstrator
for validating the different algorithms and demonstrating the feasibility
of the concept. It was successfully tested with different signal sources
(simulated and real ones), on various computers equipped with different
microprocessors. The details and the performance of the implementation
are presented in this chapter.

7.1 Demonstrator description
The demonstrator consists in a RF front-end receiving the satellites signals
either from an external antenna or a GPS simulator. The captured sig-
nal is properly conditioned, digitized, and further transmitted to the host
computer via the USB 2.0 interface. The software receiver processes the
incoming samples in order to extract the pseudoranges. These are trans-
mitted to the navigation solution that computes the PVT solution and
forwards the results to be displayed. The system is depicted in Figure 7.1.

An external aiding receiver (u-blox 5 GPS receiver [U-b10]) is connected
to the same signal source as the software receiver. The aiding receiver
acquires all the visible satellites, decodes the ephemeris data and the time
information (GPS week). These parameters are polled by the software
receiver - to determine the list of satellites to search for - and forwarded
to the PVT solution (provided by u-blox).

121

Chapter 7 - Implementation of the new architecture

Host computer

RF front-end

RF board FPGA Software
receiver

PVT solution

Display

Simulator

USB 2.0

Figure 7.1: Schema bloc of the demonstrator. The receiver is composed
of an external RF front-end unit connected to the host computer via
USB 2.0. The aiding receiver is not shown.

The different components of the demonstrator are detailed in the next
sections.

7.1.1 RF front-end

We make hereafter the distinction between the RF front-end, which con-
sists in the whole hardware part preceding the host computer, and the
RF board which is a single component of the latter. The RF front-end
is composed of two interconnected parts, namely the RF board and the
FPGA board.

RF board

The RF board is provided by the industrial partner u-blox AG. It consists
in a low-IF architecture with a quadrature down-conversion, completed
by a low noise amplifier at the input, several filters, and additional gain
stages. The board also embeds a dual channel 8-bit ADC providing a
complex digital output stream. A picture is shown in Figure 7.2.

122

7.1 - Demonstrator description

Figure 7.2: RF board (provided by u-blox AG) with a dual-channel
ADC.

The on board components are driven by an external 24 MHz reference
clock that fixes the data sampling frequency to 24 MHz and the carrier IF
to 3.42 MHz. The RF board is completed by an external FPGA board,
interfacing with the receiver and hosting additional digital processing.

FPGA board

The FPGA board [FPG10] interfaces the RF board to the host computer.
It relies on an Altera Cyclone II FPGA chip [Alt08] and also embeds a
Cypress USB 2.0 controller [Cyp06] for ensuring high speed data transfer
with the host. Furthermore, the board also provides the 24 MHz reference
clock to the RF board via a dedicated interconnecting Printed Circuit
Board (PCB). Additional digital base-band pre-processing is implemented
in the FPGA, mainly consisting in a mixer, for down-converting the carrier
IF to base-band, and a data bandwidth reduction stage for lowering the
samples bit rate (see Section 7.2 for more details). A picture of the board
is shown in Figure 7.3.

7.1.2 Host computer
The host running the software receiver is a standard Personal Computer
(PC) installed with Windows XP Professional SP3 operating system.

123

Chapter 7 - Implementation of the new architecture

Figure 7.3: FPGA board with embedded USB 2.0 controller.

7.2 Base-band pre-processing implementation
The base-band pre-processing is a top level unit common to all the satellite
channels and that is implemented in Very high speed integrated circuit
High Density Language (VHDL) in the FPGA. It is responsible for three
main functionalities:

1. the carrier IF removal;

2. the data filtering;

3. the data bandwidth reduction.

A block diagram of the base-band pre-processing stage is illustrated in
Figure 7.4. The RF board provides a complex digital stream sampled at
24 MHz with 8-bit data resolution. The signal is first high-pass filtered to
remove any residual Direct Current (DC) component before being down-
converted to baseband within a mixer operating at 3.42 MHz. The latter
frequency can be adjusted in order to compensate for the quartz offset. The
data resolution is also decreased to 3 bits during the mixing operations.
The base-band signal is then lowpass filtered and the sampling frequency
is decimated from 24 MHz to 8 MHz, the nominal frequency of the receiver
operations.

124

7.2 - Base-band pre-processing implementation

BWR
24/8

to USB
controller

LO = 3.42 MHz5 bits, IF = 3.42 MHz

3 bits,
IF = 0 Hz

Lowpass
filter

Highpass
filter

from ADC

Bandwidth
reduction

Fs = 8 MHz

Fs = 24 MHz

Figure 7.4: Base-band pre-processing stage with respectively high-pass
filtering, carrier down-conversion, lowpass filtering and data bandwidth
reduction.

The characteristics of the signal transmitted to the receiver are regrouped
in Table 7.1.

Signal properties

Data resolution 3-bit I & Q

Data sampling frequency 8 MHz

Carrier IF 0 Hz

Residual Doppler range ±5 kHz

Table 7.1: Characteristics of the receiver incoming signal I(n) and Q(n).

125

Chapter 7 - Implementation of the new architecture

The signal samples I(n) and Q(n) are originally represented as 3-bit signed
integers in the range [-4; 3]. However, to simplify their transmission to the
host computer and their future manipulation within the receiver, they are
converted into 3-bit unsigned integers in the range [0; 7] and rearranged
to form a 8-bit data word D(n). The structure of each data word is
represented in Table 7.2.

Data word D(n)

D7(n) D6(n) D5(n) D4(n) D3(n) D2(n) D1(n) D0(n)

0 I2(n) I1(n) I0(n) 0 Q2(n) Q1(n) Q0(n)

Table 7.2: 8-bit data organization for the USB transfer. I(n) and Q(n)
are encoded as 3-bit unsigned integer.

Sampling the signal at the frequency of 8 MHz represents a data rate
of 8 MB/s to be handled by the USB 2.0 interface. The continuous data
streaming is essential to keep the synchronization between the receiver and
the respective satellite signals. For this reason, the USB 2.0 controller is
configured in isochronous mode which provides time-critical data delivery,
like in audio and video applications, and guarantees the appropriate data
bandwidth during the transfers [Cyp06].

To ensure the uninterrupted handling of the incoming data, the samples
are alternately stored into two buffers of 160.000 bytes (corresponding to a
20 ms data sequence) within the host computer. While the USB controller
fills one of the two buffers with the new samples, the receiver processes
the previous 20 ms data sequence stored in the other one, and vice versa.
The principle is illustrated in Figure 7.5.

USB
controller

Software
receiver

Data buffer 1

Data buffer 2

160'000 samples

Figure 7.5: Twin data buffer. Each buffer is alternately accessed by
the USB controller and the receiver.

126

7.3 - Base-band processing implementation

7.3 Base-band processing implementation
All the base-band processing operations are implemented in C program-
ming language and compiled with Microsoft Visual Studio 2008.

We assume from now that the complex signal entering the receiver has
the properties regrouped in Table 7.1. We also assume a basic coherent
integration time Tint = 0.001 s, which fixes the number of samples per
integration to Ns = 8000. From each received data byte D(n), the samples
I(n) and Q(n), encoded as 3-bit unsigned integers, can be easily retrieved
with the following operations:

I(n) = D(n)� 4
Q(n) = D(n) & 7 (7.1)

where � represents the logical right shift operator;
& represents the logical AND operator.

Note that the reconversion from the unsigned to the signed integer repre-
sentation of the data occurs during the chip sums computation.

For each sample I(n) and Q(n), a complex partial sum is formed by accu-
mulating consecutive samples appertaining to the same chip. Considering
the nominal code frequency, the average number of samples b per chip is
given by Equation 5.8 as:

b = fs
fc

= 8 · 106

1.023 · 106 = 7.82 samples (7.2)

Practically, depending on the sampling phase and the code offset, the
number of samples per chip is either seven or eight (except for the first
and last chip which may be incomplete). However, in order to simplify the
chip sums computation, the summation interval is assumed constant and,
accordingly to Equation 5.20, becomes:

B = round(b) = 8 samples (7.3)

Every chip sum is now composed of the sum of eight consecutive samples.
The assumption of having a constant chip sums size introduces an error
in all the chip sums originally made of seven samples. Accordingly to
Equation 6.6, the probability Pe of having a sample which is integrated
twice is:

Pe =
∣∣b−B∣∣

b
= |7.82− 8|

7.82 = 0.023 (7.4)

127

Chapter 7 - Implementation of the new architecture

This implies integrating approximately every 43th sample twice and thus
corrupts roughly 184 samples per millisecond (see Figure 6.1).

With the summation interval constant, the 8000 chip sums can now be
computed recursively with only four operations, as shown in Equation 7.5.
This is to be compared to the original chip sum computation that originally
required 14 additions.

S0 =
7∑

n=0
(I(n)− 4 + i ·Q(n)− i · 4) (7.5)

Sn+1 = Sn + I(n+ 8)− I(n) + i · [Q(n+ 8)−Q(n)] 0 ≤ n < 7′999

The unsigned to signed integer reconversion of the samples is performed
in the first partial sum S0, by subtracting the value 4, and propagates
iteratively. The so computed chip sums are chronologically regrouped in
a vector that takes the form of Table 7.3.

Complex chip sums

Sa
m
pl
e
in
de

x
n

0 S0 = S(0:7)

1 S1 = S(1:8)

2 S2 = S(2:9)
...

...

7’999 S7′999 = S(7’999:8’006)
... 0

Table 7.3: Complex chip sums vector with a constant chip sums size
of 8 samples.

The vector is now addressed by means of the code accumulator providing
the samples boundaries of each chip through Equation 5.9. Assuming a
zero initial code offset (i.e. boff = 0), the accumulator bk is incremented
by the average number of samples per chip b = 7.82 as follows:

bk = k · 7.82 0 ≤ k < K + 1 = 1024 (7.6)

128

7.3 - Base-band processing implementation

Table 7.4 provides some values of the code accumulator as example.

Chip index k

0 1 2 3 . . . 1023

bk 0 7.82 15.64 23.46 . . . 8000

Bk 0 7 15 23 . . . 8000

∆Bk 7 8 8 8 . . . 8

Table 7.4: Code accumulator bk incremented by the average number
of samples per chip b = 7.82, samples boundaries Bk, and number of
samples per chip ∆Bk = Bk+1 −Bk.

In order to emulate the time shift between the code replicas, the chip sums
boundaries Bk are shifted by the desired amount of samples. We assume
here three samples replica spacing (i.e. ∆n = 3), which corresponds to
less than half a chip spacing. The indexes BEk , BPk , and BLk are com-
puted accordingly to Equation 5.11. Table 7.5 provides some values of the
accumulator as example.

Chip index k

0 1 2 3 . . . 1023

BEk 0 7 15 23 . . . 8000

BPk 3 10 18 26 . . . 8003

BLk 6 13 21 29 . . . 8006

Table 7.5: Chip sums boundaries BE
k , BP

k , and BL
k for the E, P, and

L code replicas respectively.

For each satellite channel, the chip sums vector is addressed by means of
BEk , BPk , and BLk for providing the appropriate E, P, and L chip sums
sequences as follows:

{S0, S7, S15, . . . S8000}
{S3, S10, S18, . . . S8003}
{S6, S13, S21, . . . S8006} (7.7)

129

Chapter 7 - Implementation of the new architecture

Each sequence is now multiplied point by point with the PRN code to
perform the code wipe-off. The products are then distributed into the
different carrier intervals in order to form the partial sums. Assuming a
local carrier resolution of 3 bits defining 16 different phases, the average
size of the partial sums a is given by Equation 5.2. Considering the highest
Doppler of 5 kHz, this leads to an average number of samples per carrier
interval of:

a = fs
2M+1 · fd

= 8 · 106

16 · 5′000 = 100 samples (7.8)

The average number of chip per carrier interval can now be estimated
accordingly to Equation 5.14 as:

r = a

b
= 100

7.82 = 12.79 chips (7.9)

The carrier interval boundaries are provided by the carrier accumulator rj ,
incremented by the average number of chips per carrier interval r = 12.79,
as follows:

rj = j · 12.79 0 ≤ j < 80
r80 = 1023 (7.10)

Table 7.6 provides some values of the accumulator as well as the chips
boundaries of the carrier intervals computed accordingly to Equation 5.16.

Carrier interval j

0 1 2 3 . . . 80

rj 0 12.79 25.58 38.36 . . . 1023

REj 0 13 26 38 . . . 1023

RPj 0 12 25 38 . . . 1023

RLj 0 12 25 38 . . . 1022

Table 7.6: Carrier accumulator rj incremented by the average number
of chips per carrier interval r = 12.79 and interval boundaries Rx

j .

130

7.3 - Base-band processing implementation

The partial correlations are now distributed and integrated over the differ-
ent carrier intervals accordingly to REj , RPj , and RLj . This results in three
E, P, and L sequences of partial sums P xj regrouped in Table 7.7.

Complex partial sums P xj

C
ar
rie

r
in
te
rv
al
j 0 PE(0:12) PP (0:11) PL(0:11)

1 PE(13:25) PP (12:24) PL(12:24)

2 PE(26:37) PP (26:38) PL(26:38)
...

...
...

...

79 PE(1010:1022) PP (1010:1022) PL(1010:1021)

Table 7.7: Complex partial sums associated to each carrier interval j.

Thanks to the carrier cyclicity, all the 16th partial sums are regrouped and
summed up to be multiplied only once by the same carrier magnitude. This
way, the partial sums are reduced to 16 batches T xl , each one associated
to a carrier phase l=mod(j, 16). The matrix of Table 7.7 takes the form
of Table 7.8.

Reduced complex partial sums T xl

C
ar
rie

r
ph

as
e
l 0 PE0 +PE16 ... +PE64 PP0 +PP16 ... +PP64 PL0 +PL16 ... +PL64

1 PE1 +PE17 ... +PE65 PP1 +PP17 ... +PP65 PL1 +PL17 ... +PL65

2 PE2 +PE18 ... +PE66 PP2 +PP18 ... +PP66 PL2 +PL18 ... +PL66
...

...
...

...

15 PE15+PE31 ... +PE79 PP15+PP31 ... +PP79 PL15+PL31 ... +PL79

Table 7.8: Reduced complex partial sums associated to each carrier
phase l.

The carrier removal is now operated by multiplying each of the 16 reduced
complex partial sums T xl of Table 7.8 by the respective carrier magnitudes
{±1,±3,±4,±5} given in Table 2.3.

131

Chapter 7 - Implementation of the new architecture

The products are then rearranged accordingly to Equation 2.20 to form
the definitive correlation results Ix and Qx as follows:

Ix = [Re(T x4) + Re(T x11) − Re(T x3) − Re(T x12)]
+ [Re(T x5) + Re(T x10) − Re(T x2) − Re(T x13)] · 3
+ [Re(T x6) + Re(T x9) − Re(T x1) − Re(T x14)] · 4
+ [Re(T x7) + Re(T x8) − Re(T x0) − Re(T x15)] · 5
+ [Im(T x0) + Im(T x7) − Im(T x8) − Im(T x15)]
+ [Im(T x1) + Im(T x6) − Im(T x9) − Im(T x14)] · 3
+ [Im(T x2) + Im(T x5) − Im(T x10) − Im(T x13)] · 4
+ [Im(T x3) + Im(T x4) − Im(T x11) − Im(T x12)] · 5

Qx = [Im(T x4) + Im(T x11) − Im(T x3) − Im(T x12)]
+ [Im(T x5) + Im(T x10) − Im(T x2) − Im(T x13)] · 3
+ [Im(T x6) + Im(T x9) − Im(T x1) − Im(T x14)] · 4
+ [Im(T x7) + Im(T x8) − Im(T x0) − Im(T x15)] · 5
− [Re(T x0) + Re(T x7) − Re(T x8) − Re(T x15)]
− [Re(T x1) + Re(T x6) − Re(T x9) − Re(T x14)] · 3
− [Re(T x2) + Re(T x5) − Re(T x10) − Re(T x13)] · 4
− [Re(T x3) + Re(T x4) − Re(T x11) − Re(T x12)] · 5 (7.11)

7.4 Base-band algorithms implementation
All the base-band processing operations are implemented in C program-
ming language and compiled withMicrosoft Visual Studio 2008. The FFTs
are computed by means of the open-source fftw3 library [Fri07].

7.4.1 Acquisition algorithms implementation
The receiver should accommodate a large Doppler range, mainly due to
the quartz offset which can be as large as ±40 kHz. Consequently, the
acquisition takes place in two steps, by first searching for all the satellites
over the full Doppler uncertainty with the parallel frequency search. Based
on this information, all satellites are re-acquired on specific frequency bins
(since the code phase estimation may be out of date due to a possible
quartz drift) by means of the parallel code search.

132

7.4 - Base-band algorithms implementation

Parallel frequency search implementation

The first acquisition is implemented as parallel frequency search, charac-
terized by the parameters summarized in Table 7.9.

Configuration of the parallel frequency search

Total coherent integration time Tint = Np · Tp 10 ms

Pre-detection time Tp 9.76 µs

FFT size Np 1024 points

Frequency search bandwidth 1
Tp

102’400 Hz

Frequency bin width 1
Np·Tp

100 Hz

Code step size ∆n 1 sample

Table 7.9: Characteristics of the incoming signal.

This configuration leads to the power envelope illustrated in Figure 7.6.

0.4

0.6

0.8

1

1.2

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

0

0.2

0.4

0.6

0.8

1

1.2

-50000 -25000 0 25000 50000

Po
w

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

Doppler frequency mismatch [Hz]

Figure 7.6: Global power envelope of the parallel frequency search.

133

Chapter 7 - Implementation of the new architecture

A sequence of 10’230 chip sums is selected from the chip sums vector,
accordingly to (cf. Equation 5.27):

{S0, S7, S15, . . . S79992} (7.12)

The code sequence of 10’230 chips is obtained by repeating 10 times the
original PRN code. Both sequences are multiplied point by point to remove
the code and the products are distributed over the 1024 pre-detection
sums. The average number of chip sums per pre-detection sum is given by
Equation 5.30:

v = Tp · fc = 9.76 · 10−6 · 1.023 · 106 = 9.99 chip sums (7.13)

The chips boundaries of the pre-detection sums are computed through
Equation 7.14 by accumulating v:

vi = i · 9.99 0 ≤ i < 1024 (7.14)

Some values of the accumulator are given in Table 7.10 as example.

Pre-detection sum i

0 1 2 3 . . . 1023

vi 0 9.99 19.98 29.97 . . . 10220

Vi 0 10 20 30 . . . 10220

Table 7.10: Accumulator vi incremented by the average number of
chips sums per pre-detection sum v = 9.99, and pre-detection sums
boundaries Vi.

The pre-detection sums sequence is formed by summing up the partial
correlations, accordingly to Vi, and transformed into the frequency domain
via FFT. The energy of each data bin is computed and compared to the
threshold to declare if the satellite is present or not. In order to recover
the loss that occurs when the Doppler shift falls between the two bins, the
difference of two adjacent bins response is also computed. This way, it
is theoretically possible to recreate a frequency component at the center
between the bins and thus recover about 3 dB of sensitivity [Tsu05]. This
is illustrated in Figure 7.7.

134

7.4 - Base-band algorithms implementation

1 2

1

1.2

ze
d

to
 1

)

0.6

0.8

1

1.2

 (n
or

m
al

iz
ed

 to
 1

)

0.4

0.6

0.8

1

1.2

r e
nv

el
op

e
(n

or
m

al
iz

ed
 to

 1
)

0

0.2

0.4

0.6

0.8

1

1.2

Po
w

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Po
w

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

Doppler frequency mismatch [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Po
w

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

Doppler frequency mismatch [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Po
w

er
 e

nv
el

op
e

(n
or

m
al

iz
ed

 to
 1

)

Doppler frequency mismatch [Hz]

Figure 7.7: The blue curve represents the original frequency bins re-
sponse with 100 Hz bin spacing. The red curve is obtained by subtracting
and normalizing two adjacent bins response.

In order to test the 1023 code phases with one eighth of chip step size, eight
chip sums sequences are selected with the summation boundaries shifted
by one sample with respect to each other:

{S0, S7, S15, . . . S79992}
{S1, S8, S16, . . . S79993}
{S2, S9, S17, . . . S79994}
...

...
...

...
...

{S7, S14, S22, . . . S79999} (7.15)

For each sequence, the whole search procedure is repeated by circular-
shifting 1022 times the code replica vector. This makes a maximum of
8 · 1023 = 8184 different code phases to test. To get rid of a possible data
bit transition, the whole search is performed on two consecutive data sets
of 10 ms.

135

Chapter 7 - Implementation of the new architecture

Parallel code search implementation

The parallel code search operates on specific frequency bins, accordingly
to the information provided by the first acquisition stage. Table 7.11
summarizes the re-acquisition parameters.

Configuration of the parallel code search

Total coherent integration time Tint 7 ms

FFT size N 8192 points

Code step size ∆n 1 sample

Table 7.11: Configuration of the parallel frequency search.

A sequence of 8’184 chip sums is selected from the chip sums vector, ac-
cordingly to (cf. Equation 5.24):

{S0, S7, S15, . . . S62553} (7.16)

The 8’184 points local carrier is generated accordingly to the interval
boundaries REj in Equation 5.15, and the respective carrier magnitudes
given in Table 2.3. Considering a 5 kHz frequency, this gives:

{5− i, 5− i, 5− i, . . . 5 + i} (7.17)

Both sequences are multiplied point by point and the result is left zero
padded (eight additional values are added) in order to form a vector of
8’192 points, accordingly to Equation 5.26. The latter is then multiplied
point by point in the frequency domain with the FFT of seven consecutive
PRN code periods (right zero padded with 1031 values to discard the end
effect), in order to form a vector of 8’192 points on which the inverse FFT
is executed. The energy of each data point is computed and compared to
the threshold to declare if the satellite is present or not.

In order to test the 1023 code phases with one eighth of chip step size,
eight chip sums sequences are selected, with the summation boundaries
shifted by one sample with respect to each other, as in Equation 7.15. To
get rid of a possible data bit transition, the whole search is performed on
two consecutive data sets of 10 ms.

136

7.4 - Base-band algorithms implementation

7.4.2 Tracking algorithms implementation
There is currently no data bit synchronization and decoding implemented,
since all the ephemeris data and time information are obtained by means
of the aiding receiver.

The code loop exploits a non-coherent early-minus-late envelope discrimi-
nator configured with a code replica spacing of three samples. Accordingly
to Equation 2.40, it can be expressed as:

Dτ = b− 3
b
· E − L
E + L

[chips] (7.18)

The E and L values are obtained by non-coherently accumulating 20 con-
secutive correlation results (each coherently integrated over one millisec-
ond). This guarantees the integrity of the DLL measurements, as they are
not affected by a data bit transition. The code discriminator output is
fed to the code filter, implemented as a standard second order lowpass, as
illustrated in Figure 2.28. The filter is updated every T = 0.02 s and is
configured with the parameters regrouped in Table 7.12.

Bnd 0.53 · ω0d 1Hz

ω2
0d - 3.56 Hz2

a2ω0d 1.414 · ω0d 2.67 Hz

Td - 0.02 s

Table 7.12: DLL filter coefficients [Kap06]. Bnd represents the noise
bandwidth of the DLL loop.

The carrier loop is implemented as a second order PLL assisted by a first
order FLL, as illustrated in Figure 2.27. The idea is to operate both the
FLL and PLL discriminators continuously and integrate them in a single
tracking loop. If the FLL error is zeroed, the filter becomes a pure second
order PLL and vice versa. The implemented frequency and phase discrim-
inators are described in Equation 2.35 and Equation 2.37 respectively. In
order to accommodate the quartz short term variations, a small measure-
ment time interval t2 − t1 is required for the frequency discriminator.

137

Chapter 7 - Implementation of the new architecture

Consequently, both discriminators are operated by coherently accumulat-
ing two consecutive correlation results over two milliseconds. Several phase
and frequency measurements are performed and averaged over 20 ms, so
minimizing the influence of a possible data bit transition. The filter is up-
dated every T = 0.02 s and is configured with the parameters summarized
in Table 7.13.

Bnf 0.25 · ω0f 2Hz

Bnp 0.53 · ω0p 12Hz

ω0f - 8 Hz

ω2
0p - 512.64 Hz2

a2ω0p 1.414 · ω0p 32 Hz

Tpf - 0.02 s

Table 7.13: PLL-assisted-FLL filter coefficients [Kap06]. Bnf and Bnp

represent the noise bandwidths of the FLL and PLL loops respectively.

7.5 Performance of the implementation
The purpose of the following subsection is to validate the proposed receiver
implementation in terms of position accuracy and CPU computational
load. Note that the objective here is not to achieve the best accuracy or
provide the highest sensitivity (the receiver is not optimized in that sense),
but to demonstrate that the proposed solution works properly in real-time.

Three different signal sources are used for the accuracy tests:

• a single channel Spirent GSS6100 simulator [Spi10], for testing spe-
cific algorithms of the receiver (useful for debugging purposes);

• a 12 channels Spirent GSS8000 simulator [Spi10], for testing the
receiver under controlled and reproducible conditions;

• a roof antenna, for testing the receiver with real satellites signals.

138

7.5 - Performance of the implementation

7.5.1 Static position (simulated signal)
The receiver is tested in static position under good sky view conditions,
at the nominal power level, with the simulation parameters summarized
in Table 7.14.

Position N 0◦0′, E 0◦0′, H 500 m

Simulation start time 8.7.2009 00h00

Simulation length 1 h

Number of test runs 20

Table 7.14: Parameters of the simulation for the static scenario.

The same scenario is repeated for the 20 runs and the receiver parameters
are reset before each new run. The results are presented in Figure 7.8
(single run illustrated) and Figure 7.9 (20 averaged runs illustrated). Each
figure is subdivided into four plots providing the following information:

1. a deviation map with the position error X (longitude) versus Y (lat-
itude);

2. a histogram of the position error for X (longitude) and Y (latitude);

3. an integrated position error for X (longitude) and Y (latitude);

4. a position error for X (longitude) and Y (latitude) versus time. The
plot also includes the number of satellites used by the PVT solution
for computing the position (shown in green).

139

Chapter 7 - Implementation of the new architecture

Figure 7.8: Static position with simulated signal (single run).

140

7.5 - Performance of the implementation

Figure 7.9: Static position with simulated signal (20 averaged runs).

141

Chapter 7 - Implementation of the new architecture

Table 7.15 summarizes the different accuracy achievements:

Single run 20 averaged runs

X Y X Y

Average error 2 m 0.3 m 1.8 m 0.3 m

Standard deviation error 2.4 m 1.7 m 2.3 m 1.7 m

Integrated error (50%) <1.9 m <1.2 m <2 m <1.1 m

Integrated error (90%) <4.8 m <2.6 m <4.8 m <2.5 m

Table 7.15: Accuracy achievements for the static position (simulated
signal).

The following observations can be concluded:

• the position error is kept within ±5 m in 90% of the time (over 20
hours of test). This corresponds to the accuracy that was expected
from the PVT solution provided by u-blox;

• the results are reproducible over the different runs. For example, the
distribution of the position error is very similar for a single run and
for all the runs. This also applies for the evolution of the error versus
time, where the trends are comparable in both figures;

• the positions are systematically affected by an offset of a few me-
ters that is attributed to the initial geometry of the constellation.
The satellites are not equally distributed in space and depending on
their respective sky elevation, some may impact the position accu-
racy more than others;

• the position offset evolved over time, influenced by the changes of the
constellation geometry. However, we assume here that the average
offset over a 12-hour observation period tends to zero, as observed
with the real signals tests in Subsection 7.5.2.

142

7.5 - Performance of the implementation

7.5.2 Static position (real signal)
The receiver is connected to a fixed antenna installed on the roof of the
IMT building in Neuchâtel. The configuration of the test is summarized
in Table 7.16.

Position N 46.99385◦, E 6.9405◦, H 450 m

First test start time 1.11.2009 14h28

Last test stop time 2.11.2009 8h28

Test length 1 h

Number of test runs 18

Table 7.16: Parameters of the tests for the static scenario.

Contrarily to the previous test with a simulated signal, the different runs
are done sequentially during one hour, for a total duration of 18 hours. The
receiver parameters are reset before each new run. The results are pre-
sented in Figure 7.10 (single run illustrated) and Figure 7.11 (18 averaged
runs illustrated).

143

Chapter 7 - Implementation of the new architecture

Figure 7.10: Static position with real signal (single run).

144

7.5 - Performance of the implementation

Figure 7.11: Static position with real signal (18 averaged runs).

145

Chapter 7 - Implementation of the new architecture

Table 7.17 summarizes the different accuracy results:

Single run 18 averaged runs

X Y X Y

Average error 0.9 m 1.2 m 0.5 m 0.8 m

Standard deviation error 3.2 m 4.3 m 7.9 m 10.2 m

Integrated error (50%) <2.1 m <2.1 m <2.4 m <2.4 m

Integrated error (90%) <5.2 m <6.8 m <9.4 m <11.8 m

Table 7.17: Accuracy achievements for the static position (real signal).

The following observations can be concluded:

• the measurements are not reproducible, since they are affected by
multi-path effect and temporary satellites signal masking;

• the multi-path effect, induced by the signal reflection on the sur-
rounding buildings and on the lake, can affect some of the satellites
signals (up to four satellites at the same time with measured code
delays of a few tens of nanoseconds). Since no multi-path mitiga-
tion is performed within the receiver, the position accuracy may get
strongly affected in the range of several tens of meters. This can be
observed in Figure 7.11;

• when the multi-path effect is minimal such as in Figure 7.10, the
position error is kept within ±7 m in 90% of the time;

• the position offset, influenced by the changes of the constellation
geometry, gets averaged over the 18 observation periods and tends
to zero, as illustrated in the error versus time plot of Figure 7.11.

146

7.5 - Performance of the implementation

7.5.3 Dynamic trajectory (simulated signal)
The receiver is tested in motion, following a square racetrack of 1.5 km side
length with a maximal speed of 50 km/h (on cornering) and 100 km/h (on
straight line). The simulation parameters are summarized in Table 7.18.

Start position (bottom left corner) N 46◦59′, E 6◦56′, H 500 m

Simulation start time 24.9.2009 06h00

Simulation length 3600 s

Number of test runs 10

Table 7.18: Parameters of the simulation for the dynamic trajectory.

The results are presented in Figure 7.12.

147

Chapter 7 - Implementation of the new architecture

Figure 7.12: Dynamic trajectory with simulated signal (single run).

148

7.5 - Performance of the implementation

Table 7.19 summarizes the different results.

Single run 10 averaged runs

X Y X Y

Average error -1 m -2.2 m -1 m -2.1 m

Standard deviation error 2.8 m 2.3 m 2.7 m 2.3 m

Integrated error (50%) <1.9 m <2.2 m <2 m <2.2 m

Integrated error (90%) <4.8 m <5 m <4.8 m <5 m

Table 7.19: Second scenario.

The following observations can be concluded:

• the position error is kept within ±5 m in 90% of the time (over all
the 10 test runs), which is comparable to the results obtained for the
static tests;

• the largest errors are observed when the vehicle drives along the
rounded corners of the rectangle. This translates into the “saw
tooth” appearance of the time plot;

• the reference track was recorded on the Spirent simulator with a
time resolution of 20 ms. The first 100 position fixes of the software
receiver were best matched with the positions of the reference track
to achieve time synchronization. For each subsequent position fix
the absolute position error (in X and Y) was calculated with respect
to the reference track.

149

Chapter 7 - Implementation of the new architecture

7.5.4 High dynamic (simulated signal)
The next tests are performed with the Spirent GSS6100 simulator on a
single channel. The objective is to test the robustness of the tracking loops
with respect to different high dynamic environments. The first test simply
consists in switching the software receiver on after a long inactivity period
(i.e. the prototype hardware components are at ambient temperature)
and starting an instantaneous acquisition. The progressive heating of the
board affects the quartz stability (which is not temperature compensated)
and translates into a residual Doppler offset varying in the range of sev-
eral kilohertz in less than one minute. Figure 7.13 shows respectively the
filtered output of the PLL-assisted-FLL and DLL, and the in-phase and
quadrature correlator outputs.

The second test is performed using the default high dynamic scenario
PROF1 of the simulator, consisting in a succession of acceleration and
deceleration phases interrupted by constant velocity periods. The simula-
tion parameters summarized in Table 7.20.

Jerk amplitude 20 m/s3 (0.33 s)

Maximum acceleration 6 m/s2

Period of constant acceleration 1.1 s

Period of constant velocity 1.1 s

Table 7.20: Parameters of the Spirent default scenario PROF1.

The results are presented in Figure 7.13 and Figure 7.14.

150

7.5 - Performance of the implementation

Figure 7.13: Doppler change due to the quartz heating. From top to
bottom: 1) PLL filter output, 2) DLL filter output, 3) in-phase (blue)
and quadrature (red) P correlator outputs.

151

Chapter 7 - Implementation of the new architecture

Figure 7.14: Spirent default scenario PROF1 with a maximal acceler-
ation of 6 m/s2. From top to bottom: 1) PLL filter output, 2) DLL filter
output, 3) in-phase (blue) and quadrature (red) P correlator outputs.

152

7.5 - Performance of the implementation

The software receiver can accommodate relatively high dynamic environ-
ments thanks to the short pre-detection time (2 ms) used in the carrier
discriminators and thanks to the PLL-assisted-FLL implementation of the
loop filter. For low dynamic environments, the signal lock is done in PLL
mode only with a minimal assistance of the FLL. During acceleration
period, the FLL assistance increases and becomes predominant in case of
high dynamic environment. This can be observed in Figure 7.13, where
a strong Doppler change (≈ 100 Hz/s) occurs during the first 30 seconds,
requiring a maximal assistance of the FLL to keep track of the satellite.
The acceleration then strongly decreases (≈ 10 Hz/s) and the signal gets
progressively phase locked thanks to the PLL, which becomes predomi-
nant.

7.5.5 Post-processing time
The main goal of this test is to estimate the computational load of the soft-
ware receiver by measuring the time needed to post-process one minute of
data, stored on the PC hard drive, with a 100% CPU load. The whole data
file (approximately 650 MB) is first transferred from the hard drive into
the PC Random Access Memory (RAM) and the software receiver starts
the processing flow and measures the time spent for both the acquisition
and tracking. This procedure is repeated with 1 up to 12 satellite channels,
on several platforms with different processor types and architectures. This
test gives an estimation of the brute processing load and demonstrates
the capability of the software to run in real-time mode on different CPU
architectures. The host systems specifications are given in Table 7.21.
The acquisition takes place in two steps, by first searching the satellite over
the full frequency uncertainty (±40 kHz) via the parallel frequency search.
Once acquired, a re-acquisition is operated on specific frequency bins over
the full code range via the parallel code search. Then the receiver switches
into tracking mode. The results are presented in Figure 7.15, Figure 7.16,
and Figure 7.17.

153

Chapter 7 - Implementation of the new architecture

PC
m
odel

D
ellPrecision

380
D
ellPrecision

380
A
sus

EeePC
1000H

PC
type

D
esktop

D
esktop

D
esktop

N
etbook

C
PU

m
odel

IntelC
ore

2
D
uo

E6700
A
M
D

A
thlon

64
3700+

IntelPentium
4

640
IntelA

tom
N
270

C
PU

type
D
ualcore

Single
core

Single
core

Single
core

C
PU

clock
2667

M
H
z

2210
M
H
z

3200
M
H
z

1600
M
H
z

C
PU

L1
cache

32
kB

per
core

16
kB

32
kB

C
PU

L2
cache

4
M
B

2
M
B

2
M
B

512
kB

H
yperthreading

N
o

N
o

Yes
Yes

System
m
em

ory
2048

M
B

1024
M
B

1024
M
B

2048
M
B

T
able

7.21:
Specifications

ofthe
different

host
system

s.

154

7.5 - Performance of the implementation

4

8

12

16
lle

l f
re

qu
en

cy
 s

ea
rc

h
tim

e
[s

]

0

4

8

12

16

1 2 3 4 5 6 7 8 9 10 11 12

Pa
ra

lle
l f

re
qu

en
cy

 s
ea

rc
h

tim
e

[s
]

Number of acquisition channels

Core 2 duo @ 2.66 GHz AMD Athlon @ 2.21 GHz Pentium 4 @ 3.2 GHz Atom @ 1.6 GHz

Figure 7.15: Time requested for the parallel frequency search in post-
processing mode (±45 kHz Doppler uncertainty).

1

2

3

4

ar
al

le
l c

od
e

se
ar

ch
 ti

m
e

[s
]

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

Pa
ra

lle
l c

od
e

se
ar

ch
 ti

m
e

[s
]

Number of acquisition channels

Core 2 duo @ 2.66 GHz AMD Athlon @ 2.21 GHz Pentium 4 @ 3.2 GHz Atom @ 1.6 GHz

Figure 7.16: Time requested for the parallel code search in post-
processing mode (seven Doppler bins).

155

Chapter 7 - Implementation of the new architecture

5

10

15

20

25

Tr
ac

ki
ng

 ti
m

e
[s

]

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Tr
ac

ki
ng

 ti
m

e
[s

]

Number of tracking channels

Core 2 duo @ 2.66 GHz AMD Athlon @ 2.21 GHz Pentium 4 @ 3.2 GHz Atom @ 1.6 GHz

Figure 7.17: Time requested for tracking 60 seconds of data in post-
processing mode.

Table 7.22 summarizes the different results of Figure 7.15, Figure 7.16,
and Figure 7.17.

Core 2 Duo Athlon Pentium 4 Atom

Acquisition 2.5 s 6.3 s 6.6 s 15.4 s

Re-acquisition 0.5 s 0.9 s 1.4 s 3.8 s

Tracking 7.6 s 9.9 s 10.2 s 24.2 s

Table 7.22: Post-processing time for the acquisition (parallel frequency
search), re-acquisition (parallel code search) and tracking (60 s of data)
of 12 satellites.

156

7.5 - Performance of the implementation

The following observations can be concluded:

• for the fastest configuration (Core 2 Duo with one single core used),
the tracking of 12 satellites is operated in less than 8 seconds, making
the execution more than seven times faster than real-time operations;

• for the slowest configuration (Atom), the tracking of 12 satellites is
operated in less than 25 seconds. This confirms the extremely fast
execution of the code and the efficiency of the implemented base-
band architecture;

• the acquisition time of the parallel frequency search depends on the
code phase of the incoming signal (since the algorithm sequentially
searches for all the code phases until a satellite is found). On the
other hand, the parallel code search is performed a fixed amount of
times (on seven neighboring Doppler bins) and results in execution
time proportional to the number of satellite channels;

• the code execution time strongly depends on the CPU architecture.

7.5.6 Processor load and memory requirements
The aim of this test is to measure the CPU load and the memory re-
quirements of the receiver, when operating in real-time with the complete
framework activated (USB, PVT solution, and display). The test is per-
formed with ten concurrent satellite channels on three of the platforms of
Table 7.21. The tool ProcessExplorer [Mic09] is used for measuring the
CPU activity. The results are presented in Figure 7.18, Figure 7.19, and
Figure 7.20.

157

Chapter 7 - Implementation of the new architecture

Figure 7.18: CPU load and memory requirements for the Core 2 Duo
clocked at 2.66 GHz. Since the CPU is a dual core, a load of 50%
represents one core fully sollicitated.

158

7.5 - Performance of the implementation

Figure 7.19: CPU load and memory requirements for the Pentium 4
clocked at 3.2 GHz, with the hyper-threading functionality enabled.

159

Chapter 7 - Implementation of the new architecture

Figure 7.20: CPU load and memory requirements for the Atom clocked
at 1.6 GHz, with the hyper-threading functionality enabled.

160

7.6 - Summary

Table 7.23 summarizes the different results of Figure 7.18, Figure 7.19,
and Figure 7.20.

Core 2 Duo Pentium 4 Atom

Maximal CPU load 22% 15% 40%

Averaged CPU load 15% 11% 32%

Memory load 4.3 MB 4.2 MB 4.3 MB

Table 7.23: CPU and memory requirements for the concurrent tracking
of ten satellites in real-time. The CPU activity of the Core 2 Duo is given
for one single core. Both the Pentium 4 and Atom have the hyper-
threading functionality enabled.

The following observations can be concluded:

• for the fastest configuration (Core 2 Duo), on average 15% of one
single core are solicited during the tracking of ten satellites;

• for the slowest configuration (Atom), on average 32% of the processor
time are used during the tracking of ten satellites;

• the memory requirements are of a few megabytes, regardless of the
configuration.

7.6 Summary
Chapter 7 describes the implementation of the proposed architecture in a
demonstrator. The latter consists in a RF front-end board (for capturing,
conditioning and digitizing the analog signal) connected via USB 2.0 to
a standard Windows based PC running the software, as well as the PVT
solution. The receiver is configured with a 3-bit complex input data stream
sampled at 8 MHz. This setup was tested with different signal sources on
several platforms equipped with various microprocessors. With simulated
satellites signals (generated with a Spirent GSS8000 simulator under clear
sky view), the position accuracy is better than ±5 m in 90% of the time
and the results are reproducible over the 20 hours test period.

161

Chapter 7 - Implementation of the new architecture

On the other hand, most of the measurements performed with real signals
(obtained from an external roof antenna) are affected by multipath. Since
no mitigation is performed within the receiver, the position sometimes
gets corrupted up to several tens of meters depending on the geometry of
the satellites constellation. In the best cases, the accuracy is higher than
±7 m in 90% of the time (one hour observation period), while over the 18
consecutive hours of test, the position error is kept within ±12 m in 90%
of the time. Regarding the computational load, the concurrent tracking
of ten satellites occupies less than 22% of the CPU time of one single core
of a Intel Core 2 Duo E6700 microprocessor (clocked at 2.66 GHz). The
memory requirements are limited to a few megabytes. This demonstrates
the feasibility of implementing a real-time software receiver on various
independent platforms and validates the proposed architecture.

162

Chapter 8

Conclusion

The aim of a software receiver is to substitute the dedicated hardware
chip by a programmable microprocessor, in order to process the digital
data stream in software. With modern mobile devices, such as PDAs and
smartphones embedding powerful microprocessors, the complete receiver
can be integrated with very few external components. The necessary hard-
ware part is reduced to the minimum (i.e. a RF front-end responsible for
the analog signal conditioning and digitization) and most of the system
resources, such as the processor and the memory, can be shared with the
host. The interest clearly lies in the low cost opportunity, but also in the
flexibility, since any low-level receiver functionality modification can be op-
erated by a simple firmware update. Such capabilities become even more
important as the world of global navigation is in complete effervescence,
with the introduction of new satellites constellations (GLONASS, Galileo,
Compass, ...) foreseen within the next few years. The users of software
receivers will derive full benefit from this next generation of signals, with
a simple software upgrade and without purchasing new hardware compo-
nents.

However, the implementation of the receiver in software introduces new
constraints as compared to hardware based solutions. The major issue is
the large computing resources required for the digital signal processing. A
straightforward transposition of the traditional architectures into software
leads to an amount of integer operations which is not suitable for today’s
fastest computers. Consequently, new approaches have to be considered,
in order to significantly reduce the computational load of the operations
involved in the receiver processing chain.

163

Chapter 8 - Conclusion

Many solutions proposed in the literature rely on the use of advanced CPU
instructions for improving the efficiency and speed of the processing, but
are tied to specific configurations that severely limit their portability. On
the other hand, the use of bitwise processing exploiting universal logical
operations still suffers from a lack of flexibility. It requires the front-end
output stream to be specifically formatted, while any change in the sig-
nals structure implies a significant adaptation of the code and impacts
the complexity. Consequently, in order to implement a software receiver
operating in real-time on different platforms and accommodating various
signals configurations, there is a need for developing a new architecture
combining both flexibility and efficiency.

8.1 Achievements of the thesis
This thesis work introduces a completely new receiver architecture based
on batch processing of the incoming samples. The basic idea consists in
restricting the frequencies range of the carriers internally generated to
a few kilohertz, so that their time evolution becomes very slow as com-
pared to the sampling frequency. Since the carrier magnitude remains
constant during hundreds or thousands of clock cycles, data appertaining
to the same carrier interval are accumulated into batches that are mul-
tiplied only once by the carrier value, instead of multiplying each data
separately. The same also applies for the code removal, where samples ap-
pertaining to the same chip are summed up and multiplied only once with
the chip value. The batch processing also simplifies the code and carrier
synthesis, as they now consist in predicting the times where the carrier,
respectively the chips, transitions occur. Both carrier and code generator
can be operated at a low frequency, proportional to the residual Doppler
and the code frequency respectively, thus allowing the real-time generation
of the signals waveforms continuously and at any desired frequency. This
way, the Doppler offset can be compensated natively during the carrier
and code generation process, which greatly simplifies the integration of
the blocks in the receiver, as they will easily accommodate conventional
tracking schemes. Finally, the memory requirements are reduced to the
strict minimum as no pre-generated sequences need to be stored.

164

8.1 - Achievements of the thesis

The key point of the proposed solution relies on the progressive data
throughput reduction, which is first decreased from the sampling rate of
several megahertz to the code rate of one megahertz, and finally to a fre-
quency proportional to the number of carrier phases. As compared to
a traditional hardware based receiver, where all the operations are per-
formed at the sampling frequency, the amount of integer additions and
multiplications involved in the base-band processing is reduced by almost
one order of magnitude. Since most of the operations, such as the carrier
and code synthesis, the carrier and code mixing, and the accumulation
are preformed at a relatively low frequency with respect to the nominal
sampling rate, the architecture can easily accommodate incoming signals
sampled at high frequencies. Furthermore, as the data are systematically
manipulated as integers (i.e. no bitwise processing is performed on the
data), the signal and carrier quantization can change without significant
code modification. This makes the proposed architecture extremely flexi-
ble and well suited for research and development.

The architecture was implemented in a demonstrator consisting in a RF
front-end board (for capturing, conditioning and digitizing the signal) con-
nected via USB 2.0 to a standard Windows based PC running the receiver
software, as well as the PVT solution. The receiver is configured with
a 3-bit complex input data stream sampled at 8 MHz. This setup was
successfully tested with various signal sources (simulated and real ones),
on four host computers equipped with different microprocessors. With
simulated satellites signals (generated with a Spirent GSS8000 simulator
under clear sky view), the position accuracy is better than ±5 m in 90%
of the time and the results are reproducible over the 20 hours test period.
On the other hand, most of the measurements performed with real signals
(obtained from an external roof antenna) are affected by multipath. Since
no mitigation is performed within the receiver, the position sometimes gets
strongly corrupted depending on the geometry of the satellites constella-
tion. However, when the effect is minimal, the accuracy is higher than
±7 m in 90% of the time for one hour observation period.

The brute computational load of the receiver was estimated by post-
processing 60 seconds of recorded data under a 100% CPU load. The
concurrent tracking of 12 satellites on an Intel Core 2 Duo E6700 (clocked
at 2.66 GHz) is performed in less than 8 seconds with one single core used,
making the execution seven times faster than the real-time operations.

165

Chapter 8 - Conclusion

The same procedure required 24 seconds on an Intel Atom N270 (clocked
at 1.6 GHz). The CPU load and the memory requirements of the system
were analyzed by operating the receiver in real-time with the complete
framework (USB, PVT solution and display) activated. The concurrent
tracking of 10 satellites occupies on average 15% of the CPU time of one
single core of an Intel Core 2 Duo E6700 microprocessor. The memory
requirements are limited to a few megabytes only. This demonstrates the
capability of the receiver to operate in real-time on different platforms with
a modest impact on the CPU load.

8.2 Future steps
• the ephemeris data and time information are provided by the aiding
receiver. There is currently no data synchronization and decoding
implemented, making the standalone functioning of the software re-
ceiver not possible. This also affects the tracking sensitivity, since
the absence of data bit synchronization restricts the coherent integra-
tion time to one or a few milliseconds. Implementing an algorithm for
the data bit detection would thus allow the use of longer integration
times and consequently improve the overall receiver sensitivity;

• the receiver operates either in acquisition or in tracking mode. There
is currently no way for a single satellite channel to switch back from
tracking to acquisition, making the re-acquisition of a satellite or the
acquisition of a new one not possible;

• the receiver currently processes the GPS L1 CA signal only. However,
the base-band architecture can be modified in order to accommodate
the next generation of satellites signals, such as Galileo E1 or Galileo
E5;

• in the perspective of developing a platform-independent receiver, the
software was voluntary not optimized to take advantage of func-
tionalities provided by modern processors (such as hyper-threading,
SIMD or multi cores capabilities). Tailoring the code for a spe-
cific application would definitively result in a significant performance
gain, making the proposed architecture even more efficient.

166

Bibliography

[Act10] Actel corporation. Designing FIR filters with Actel FP-
GAs. Application note AC120, 2010. http://www.actel.com/
documents/FIR_Filters_AN.pdf.

[Ako96] D. Akos and J. B. Tsui. “Design and implementation of a di-
rect digitization GPS receiver front end”. IEEE Transactions on
Microwave Theory and Techniques, 44(12):2334–2339, 1996.

[Ako97] D. Akos. A software radio approach to Global Navigation Satel-
lite System receiver design. Ph.D. thesis, University of Ohio,
1997.

[Ako99] D. Akos, M. Stockmaster, J. B. Tsui, and J. Caschera. “Di-
rect bandpass sampling of multiple distinct RF signals”. IEEE
Transactions on Communications, 47(7):983–988, 1999.

[Ako01a] D. Akos, P.-L. Normark, P. Enge, A. Hansson, and A. Rosen-
lind. “Real-time GPS software radio receiver”. 2001 National
Technical Meeting of the Institute of Navigation, pp. 809–816.
Long Beach, CA, USA, January 22-24 2001.

[Ako01b] D. Akos, P.-L. Normark, A. Hansson, A. Rosenlind,
C. Stahlberg, and F. Svensson. “Global positioning system soft-
ware receiver (gpSrx) Implementation in low cost/power pro-
grammable processors”. 14th International Technical Meeting of
the Satellite Division of the Institute of Navigation, pp. 2851–
2858. Salt Lake City, UT, USA, September 11-14 2001.

[Alt08] Altera corporation. Altera Cyclone II EP2C35 , 2008.
http://www.altera.com/products/devices/cyclone2/
cy2-index.jsp.

167

http://www.actel.com/documents/FIR_Filters_AN.pdf
http://www.actel.com/documents/FIR_Filters_AN.pdf
http://www.altera.com/products/devices/cyclone2/cy2-index.jsp
http://www.altera.com/products/devices/cyclone2/cy2-index.jsp

Bibliography

[And99] R. Andraka and A. Berkun. “FPGAs make a radar signal pro-
cessor on a chip a reality”. The 33rd Asilomar Conference on
Signals, Systems and Computers, vol. 1, pp. 559–563. Pacific
Grove, CA, USA, October 24-27 1999.

[Bar09] M. Baracchi, G. Waelchli, C. Botteron, and P.-A. Farine. “Re-
altime GNSS software receiver: challenges, status and perspec-
tives”. GPS World, 20(9):40–47, 2009.

[Bar10] M. Baracchi, G. Waelchli, C. Botteron, and P.-A. Farine. “Re-
altime GNSS software receiver: challenges, status and perspec-
tives”. My Coordinates, VI(5):7–9, 2010.

[Bee72] M. Beeler, R. Gosper, and R. Schroeppel. “Count ones - Item
169”. HAKMEM - MIT AI Memo, 239, 1972.

[Bor07] K. Borre, D. M. Akos, N. Bertelsen, and S. H. Jensen.
A Software-Defined GPS and Galileo Receiver: A Single-
Frequency Approach. Applied and Numerical Harmonic Analy-
sis. Birkhaeuser, Boston, MA. ISBN 0-8176-4390-7, 2007.

[Bos04] V. Bose. “A software driven approach to SDR design”. COTS:
The Journal of Military Electronics and Computing, January
2004.

[Bro07] A. Brown, B. Mathews, and D. Nguyen. “GPS/INS/STAR
tracker navigation using a software defined radio”. 29th Annual
AAS Guidance and Control Conference, vol. 128, pp. 111–122.
Breckenridge, CO, USA, February 4-8 2007.

[Bue09] C. Buergi, G. Waelchli, and M. Baracchi. “A method of pro-
cessing a digital signal derived from a direct-sequence spread
spectrum signal and a receiver for carrying out the method”.
European Patent 09405207.3, November 2009.

[Bue10] C. Buergi, G. Waelchli, and M. Baracchi. “A method of pro-
cessing a digital signal derived from a direct-sequence spread
spectrum signal and a receiver”. US Patent 12/694,145, Jan-
uary 2010.

[Cha06] S. Charkhandeh, M. Potovello, R. Watson, and G. lachapelle.
“Implementation and testing of a real-time software-based GPS
receiver for x86 processors”. 2006 National Technical Meeting of
the Institute of Navigation, vol. 2, pp. 927–934. Monterey, CA,
USA, January 18-20 2006.

168

Bibliography

[Cha07] S. Charkhandeh. X86-based real-time L1 GPS software receiver .
Ph.D. thesis, University of Calgary, 2007.

[Cyp06] Cypress Semiconductor corporation. EZ-USB FX2LP USB Mi-
crocontroller Datasheet. Document number: 38-08032, Rev. K,
2006. http://www.cypress.com.

[Die95] A. J. v. Dierendonck. Global Positioning System: Theory and
Applications Volume I , vol. 163 of Progress in Aeronautics and
Astronautics. American Institute of Aeronautics and Astronau-
tics, Inc., 370 L’Enfant Promenade, SW,Washington, DC. ISBN
1-56347-106-X, 1995.

[Eur10a] European Commission. European GNSS (Galileo) Open
Service Signal In Space Interface Control Document,
2010. http://ec.europa.eu/enterprise/policies/space/
galileo/open-service/index_en.htm.

[Eur10b] European Space Agency. Galileo services, 2010. http://www.
esa.int.

[FPG10] FPGA-DEV. Altera Cyclone II EP2C35 Entwicklungsboard
v1.1 , 2010. http://www.fpga-dev.de.

[Fri07] M. Frigo and S. G. Johnson. “FFTW: Fastest Fourier Transform
in the West”, 2007. http://www.fftw.org.

[Gan04] S. Ganguly. “Real-time dual frequency software receiver”. Po-
sition Location and Navigation Symposium, pp. 366–374. Mon-
terey, CA, USA, April 26-29 2004.

[Gol67] R. Gold. “Optimal binary sequences for spread spectrum multi-
plexing”. IEEE Transactions on Information Theory, 13(4):619–
621, 1967.

[Hec04] G. W. Heckler and J. L. Garrison. “Architecture of a reconfig-
urable software receiver”. 17th International Technical Meeting
of the Satellite Division of the Institute of Navigation, pp. 947–
955. Long Beach, CA, USA, September 21-24 2004.

[Hec06] G. W. Heckler and J. L. Garrison. “SIMD correlator library for
GNSS software receivers”. GPS Solutions, 10(4):269–276, 2006.

169

http://www.cypress.com
http://ec.europa.eu/enterprise/policies/space/galileo/open-service/index_en.htm
http://ec.europa.eu/enterprise/policies/space/galileo/open-service/index_en.htm
http://www.esa.int
http://www.esa.int
http://www.fpga-dev.de
http://www.fftw.org

Bibliography

[Hum06] T. E. Humphreys, M. L. Psiaki, and P. M. K. Jr. “GNSS receiver
implementation on a DSP: status, challenges, and prospects”.
19th International Technical Meeting of the Satellite Division
of the Institute of Navigation, pp. 2370–2382. Fort Worth, TX,
USA, September 26-29 2006.

[ike10] ikeGPS by Surveylab. GPS TTFF and startup modes, 2010.
http://www.ikegps.com/downloads/TTFFstartup.pdf.

[Int97] Intel corporation. Pentium overdrive processor with MMX tech-
nology for Pentium processor-based systems, 1997. http://www.
intel.com/design/archives/Processors/mmx.

[Int09] Intel corporation. Intel 64 and IA-32 architectures optimization
reference manual, 2009. http://www.intel.com/products/
processor/manuals.

[iSu08] iSuppli Market Research. Cell phones to overtake PNDs by
2011 , 2008. http://www.isuppli.com.

[Kap06] E. D. Kaplan and C. Hegarty. Understanding GPS: Principles
and Applications. Artech House Mobile Communications Series.
Artech House, Inc., Boston, 2nd ed. ISBN 1-58053-894-0, 2006.

[Lac95] R. J. Lackey and D. W. Upmal. “Speakeasy - the Military Soft-
ware Radio”. IEEE Communications Magazine, 33(5):56–61,
1995.

[Led03] B. M. Ledvina, S. P. Powell, P. M. Kintner, and M. L. Psiaki. “A
12-channel real-time GPS L1 software receiver”. 2003 National
Technical Meeting of the Institute of Navigation, pp. 767–782.
Anaheim, CA, USA, January 22-24 2003.

[Led04] B. M. Ledvina, M. L. Psiaki, S. P. Powell, and P. M. Kintner.
“Bit-wise parallel algorithms for efficient software correlation
applied to a GPS software receiver”. IEEE Transactions on
Wireless Communications, 3(5):1469–1473, 2004.

[Led06a] B. M. Ledvina, M. L. Psiaki, T. E. Humphreys, S. P. Powell, and
P. M. Kintner. “A real-time software receiver for the GPS and
Galileo L1 signals”. 19th International Technical Meeting of the
Satellite Division of the Institute of Navigation, pp. 2321–2333.
Fort Worth, TX, USA, September 26-29 2006.

170

http://www.ikegps.com/downloads/TTFFstartup.pdf
http://www.intel.com/design/archives/Processors/mmx
http://www.intel.com/design/archives/Processors/mmx
http://www.intel.com/products/processor/manuals
http://www.intel.com/products/processor/manuals
http://www.isuppli.com

Bibliography

[Led06b] B. M. Ledvina, M. L. Psiaki, S. P. Powell, and P. M. Kintner.
“Real-time software receiver”. US Patent US2006/0227856 A1,
October 2006.

[Lin06] W. H. Lin, W. L. Mao, H. W. Tsao, F. R. Chang, and W. H.
Huang. “Acquisition of GPS software receiver using split-radix
FFT”. 2006 IEEE International Conference on Systems, Man,
and Cybernetics, pp. 4608–4613. Taipei, Taiwan, October 8-11
2006.

[Mar03] N. Martin, V. Leblond, G. Guillotel, and V. Heiries. “BOC(x,y)
signal acquisition techniques and performances”. 16th Interna-
tional Technical Meeting of the Satellite Division of the Institute
of Navigation, pp. 188–198. Portland, OR, USA, September 9-12
2003.

[Mat88] P. G. Mattos. “A low-cost hand-held GPS navigation system
receiver”. Fourth International Conference on Satellite Systems
for Mobile Communications and Navigation, pp. 217–221. Lon-
don, UK, October 17-19 1988.

[Mat03] H. Mathis, P. Flammant, and A. Thiel. “An analytic way to
optimize the detector of a post-correlation FFT acquisition al-
gorithm”. 16th International Technical Meeting of the Satellite
Division of the Institute of Navigation, pp. 689–699. Portland,
OR, USA, September 9-12 2003.

[Mic09] Microsoft Corporation, Mark Russinovich. Process Ex-
plorer , 2009. http://technet.microsoft.com/en-us/
sysinternals/bb896653.aspx.

[Mit92] J. Mitola. “Software radios survey, critical evaluation and fu-
ture directions”. National Telesystems Conference 92 , pp. 15–23.
Washington, DC, USA, May 19-20 1992.

[Mon07] C. Mongrédien, M. E. Cannon, and G. Lachapelle. “Performance
evaluation of a GPS L5 software receiver using a hardware sim-
ulator”. European Navigation Conference on GNSS 07 . Geneva,
Switzerland, May 29 - June 1 2007.

[Nor04] P.-L. Normark and C. Stahlberg. “Spread spectrum signal pro-
cessing”. International Patent WO2004/036238 A1, April 2004.

171

http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

Bibliography

[Pan03] T. Pany, S. W. Moon, M. Irsigler, B. Eissfeller, and K. Fürlinger.
“Performance assessment of an under sampling SWC receiver for
simulated high-bandwidth GPS/Galileo signals and real signals”.
16th International Technical Meeting of the Satellite Division of
the Institute of Navigation, pp. 103–116. Portland, OR, USA,
September 9-12 2003.

[Pen10] Pentek incorporated. Putting undersampling to work. Tutorials,
2010. http://www.pentek.com/pildocs/6982/techother/
putundersamp.pdf.

[Pet06] M. G. Petovello and G. Lachapelle. “An efficient new method of
Doppler removal and correlation with application to software-
based GNSS receivers”. 19th International Technical Meeting of
the Satellite Division of the Institute of Navigation, pp. 2407–
2417. Fort Worth, TX, USA, September 26-29 2006.

[Pet08] M. G. Petovello and G. Lachapelle. “Methods and systems for
doppler frequency shift removal and correlation for software-
based receivers”. US Patent US2008/0007448 A1, 2008.

[Pub10] Public Safety and Homeland Security Bureau. Enhanced 9-
1-1 - Wireless Services, 2010. http://www.fcc.gov/pshs/
services/911-services/enhanced911/Welcome.html.

[Pur05] P. Puricer, P. Kovar, L. Seidl, and F. Vejrazka. “GNSS software
receiver - a versatile platform for navigation systems signals pro-
cessing”. 47th International Symposium ELMAR, pp. 249–252.
Zadar, Croatia, June 8-10 2005.

[Rak10] Rakon corporation. Datasheet, 2010. http://www.rakon.com/
Products/Pages/TCXOs.aspx.

[Raz98] B. Razavi. RF microelectronics. Prentice Hall Communications
Engineering and Emerging Technologies Series. Prentice Hall,
Upper Saddle River, NJ, USA. ISBN 0-13-887571-5, 1998.

[Sar80] D. V. Sarwate and M. B. Pursley. “Crosscorrelation properties of
pseudorandom and related sequences”. Proceedings of the IEEE ,
68(5):593–619, 1980.

[Sch96] B. Schaller. “The origin, nature, and implications of Moore’s
law: the benchmark of progress in semiconductor electronics”.
Microsoft corporation, September 26 1996. http://research.
microsoft.com/en-us/um/people/gray/Moore_Law.html.

172

http://www.pentek.com/pildocs/6982/techother/putundersamp.pdf
http://www.pentek.com/pildocs/6982/techother/putundersamp.pdf
http://www.fcc.gov/pshs/services/911-services/enhanced911/Welcome.html
http://www.fcc.gov/pshs/services/911-services/enhanced911/Welcome.html
http://www.rakon.com/Products/Pages/TCXOs.aspx
http://www.rakon.com/Products/Pages/TCXOs.aspx
http://research.microsoft.com/en-us/um/people/gray/Moore_Law.html
http://research.microsoft.com/en-us/um/people/gray/Moore_Law.html

Bibliography

[Sch02] J. J. Schamus, J. B. Tsui, and D. M. Lin. “Real-time soft-
ware GPS receiver”. 15th International Technical Meeting of the
Satellite Division of the Institute of Navigation, pp. 2561–2565.
Portland, OR, USA, September 24-27 2002.

[Spi10] Spirent Communications corporation. Product overview, 2010.
http://www.spirent.com/Positioning-and-Navigation/
What_is_GPS_Simulation.aspx.

[Sti05] J. Stillwell. The Four Pillars of Geometry. Springer Sci-
ence+Business Media. Springer, 233 Spring Street, New-York,
NY, USA. ISBN 0-387-25530-3, 2005.

[Tia08] J. Tian, W. Ye, S. Lin, and Z. Hua. “SDR GNSS receiver design
over stand-alone generic TI DSP platform”. 10th International
Symposium on Spread Spectrum Techniques and Applications,
pp. 37–41. Bologna, Italy, August 25-28 2008.

[Tse02] C. H. Tseng. “Bandpass sampling criteria for nonlinear systems”.
IEEE Transactions on Signal Processing, 50(3):568–577, 2002.

[Tsu05] J. B. Tsui. Fundamentals of Global Positioning System Re-
ceivers: A Software Approach. Wiley Series in Microwave and
Optical Engineering. John Wiley & Sons, Inc., New Jersey, 2nd
ed. ISBN 0-471-70647-7, 2005.

[U-b10] U-blox corporation. Product overview, 2010. http://www.
u-blox.com/en/gps-modules.html.

[US 95] US Department of Homeland Security. Global Positioning
System standard positioning service signal specification, 1995.
http://pnt.gov/public/docs/1995/signalspec1995.pdf.

[Wae07] G. Waelchli, G. Zamuner, D. Manetti, M. Frei, F. Chastellain,
E. Firouzi, C. Botteron, P.-A. Farine, and P. Brault. “Develop-
ment, implementation and validation of a real-time Galileo E1
signal acquisition and tracking scheme”. European Navigation
Conference on GNSS 07 , pp. 626–634. Geneva, Switzerland,
May 29 - June 1 2007.

[Wae09a] G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine.
“Performances of a new correlation algorithm for a platform-
independent GPS software receiver”. 2009 International Tech-
nical Meeting of the Institute of Navigation, pp. 1062–1067. Ana-
heim, CA, USA, January 26-28 2009.

173

http://www.spirent.com/Positioning-and-Navigation/What_is_GPS_Simulation.aspx
http://www.spirent.com/Positioning-and-Navigation/What_is_GPS_Simulation.aspx
http://www.u-blox.com/en/gps-modules.html
http://www.u-blox.com/en/gps-modules.html
http://pnt.gov/public/docs/1995/signalspec1995.pdf

Bibliography

[Wae09b] G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine. “Real-
time carrier generation for a GNSS software receiver”. Inter-
national Symposium on GPS/GNSS 2009 . Jeju, South Korea,
November 4-9 2009.

[Wae10] G. Waelchli, M. Baracchi, C. Botteron, and P.-A. Farine. “Dis-
tributed arithmetic for efficient base-band processing in real-
time GNSS software receivers”. Hindawi, Journal of Electrical
and Computer Engineering, January, 2010.

[War98] P. W. Ward. “Performance comparisons between FLL, PLL
and a novel FLL-assisted-PLL carrier tracking loop under RF
interference conditions”. 11th International Technical Meeting
of the Satellite Division of the Institute of Navigation, pp. 783–
795. Nashville, TN, USA, September 15-18 1998.

[Yan03] C. Yang. “Tracking of GPS code phase and carrier frequency in
the frequency domain”. 16th International Technical Meeting of
the Satellite Division of the Institute of Navigation, pp. 628–637.
Portland, OR, USA, September 9-12 2003.

[Zog09] J.-M. Zogg. GPS Essentials of Satellite Navigation. U-blox AG.
ISBN 978-3033021396, 2009.

174

Acknowledgments

This PhD thesis could not have been successfully completed without the
help and support of many people, who are all kindly acknowledged.

First, I wish to express my sincere gratitude to Prof. Fausto Pellandini,
for offering me the opportunity to join his research team at IMT. I am
also very grateful to his successor, Prof. Pierre-André Farine, for being
my thesis supervisor and letting me work in the most favorable conditions.

My warm thanks go to my project leader and thesis co-supervisor, Cyril
Botteron, for its availability during this work, and for his very constructive
remarks. In particular, I thank him for the time he spent for reviewing
my papers and this document.

My thanks go to all the team of u-blox in Thalwil for the enriching collab-
oration we had during this project. In particular, I would like to warmly
thank Clemens Buergi for his continuous support.

Directly connected to this thesis, I am very much obliged to Marcel Barac-
chi, whom I collaborated with in the course of several projects in the field
of GNSS. It was a real pleasure to work with you.

Working at IMT is a real privilege. I would like to thank all my friends,
colleagues and ex-colleagues from ESPLAB, for the very fruitful collabo-
rations in the framework of several projects, and all the great times we
had during the ski week-ends and the countless parties.

I am very thankful to my family and friends for being very supportive and
understanding during the finalization of this thesis. I am deeply grateful
to my parents and my brother, for their trust and indefectible support.

175

Acknowledgments

Finally you, my one and only, I just want to say I love you.

176

Curriculum Vitae

Name: Grégoire Waelchli
Birthdate: September 15, 1977
Address: Stand 26, 2502 Bienne, Switzerland
Nationality: Swiss citizenship

Career description
Ecole polytechnique fédérale de Lausanne - Neuchâtel since 2009
Research and development, PhD student

• I developed a real-time GPS software receiver (industrial project with
u-blox AG, Thalwil). This project lead to an international patent.

Institute of microtechnolgy (IMT) - Neuchâtel 2002-2008
Research and development

• I developed a Galileo hardware receiver for distress beacon applica-
tion (industrial project with Kannad, Guidel, France);

• I developed a FPGA-based image acquisition/processing system for
a CMOS sensor (industrial project with Siemens BT, Zurich).

Professional skills
Main research and development activities:

• Global Navigation Satellites System (GPS, Galileo);

• images acquisition and processing systems;

• voice recognition.

177

Curriculum Vitae

Main expertise domains:

• Digital design conception, simulation, and synthesis;

• FPGA design implementation;

• signal processing algorithms development, simulation, and imple-
mentation.

Professional education
Professional training:

• VHDL course for low-power consumption design 2006

• C++ introduction course 2004

• R&D projects management course 2004

• CMOS image sensors course 2003

• Omega price for best diploma work in electronics & physics 2002

Diploma in electronics & physics with distinction 1997-2002
University of Neuchâtel

Scientific baccalaureate - Gymnase français de Biel/Bienne 1994-1997

Language skills
French: first mother tongue;
English: fluent (I speak, read and write English every day);
German: high school level (I speak German regularly).

IT skills
Programming languages: Matlab, VHDL, C/C++, assembler;
Design conception softwares: Matlab (Mathworks), HDL Designer,

Modelsim (Mentor Graphics), Quartus (Altera),
Design Compiler (Synopsys);

Others: Windows based OS (Microsoft), Latex, Office (Microsoft).

Hobbies
Music, saxophone (big-band Yellownote Bevilard), hi-fi, photograohy, Taebo,
jogging, wines of Bordeaux.

178

	Title
	Résumé
	Abstract
	Acronyms
	Nomenclature
	Contents
	Introduction
	Principle of a software receiver
	Benefits of a software receiver
	Compromises of a software receiver
	History of software receivers
	Presentation of the thesis
	Context of the thesis and partnership
	Organization of the report

	Contributions of the thesis
	Summary

	GPS signals & receiver operations
	GPS signals
	GPS signals components
	GPS L1 CA signal modulation
	Galileo E1 signals

	Receiver RF front-end
	Direct sampling
	Bandpass sampling

	Receiver base-band processing
	Carrier and code generation
	Base-band demodulation

	Receiver base-band algorithms
	Acquisition algorithms
	Tracking algorithms

	Receiver PVT solution computation
	Principle of the satellite positioning
	Pseudoranges measurement

	Summary

	Challenges of a software receiver
	Data rate
	Computational load
	Oscillator drift
	Summary

	Existing architectures of a software receiver
	Alternate data processing
	Single Instruction Multiple Data
	Instruction pipelining
	Digital Signal Processor
	Bitwise processing
	Distributed arithmetic

	Carrier generation
	Off-line carrier generation
	Single frequency carrier generation

	Code generation
	Off-line code generation

	Summary

	New architecture of a software receiver
	General concept
	Base-band pre-processing
	Base-band processing
	Batch processing applied to carrier removal
	Batch processing applied to code removal
	Proposed base-band architecture

	Base-band algorithms
	Acquisition algorithms
	Tracking algorithms

	Pseudoranges measurement
	Summary

	Performance of the new architecture
	Performance of the batch-processing
	Accumulation
	Real-time code generation
	Code mixing
	Real-time carrier generation
	Carrier mixing

	Architecture trade-offs
	Effects of the constant chip sums size
	Effects of the carrier boundaries approximation
	Code replica time delay

	Extension to Galileo E1 OS
	Summary

	Implementation of the new architecture
	Demonstrator description
	RF front-end
	Host computer

	Base-band pre-processing implementation
	Base-band processing implementation
	Base-band algorithms implementation
	Acquisition algorithms implementation
	Tracking algorithms implementation

	Performance of the implementation
	Static position (simulated signal)
	Static position (real signal)
	Dynamic trajectory (simulated signal)
	High dynamic (simulated signal)
	Post-processing time
	Processor load and memory requirements

	Summary

	Conclusion
	Achievements of the thesis
	Future steps

	Bibliography
	Acknowledgments
	Curriculum Vitae

