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S
everely disabled people are largely excluded from the
benefits information and communication technolo-
gies have brought to our industries, economies,
appliances, and general quality of life. But what if
that technology would allow them to communicate
their wishes or control electronic devices directly

through their thoughts alone? This is the goal and promise of the
Adaptive Brain Interfaces (ABI) project, which aims to augment
natural human capabilities by enabling people
to interact with computers (after a brief train-
ing period) through the direct control of their
thoughts.

<< By José del R. Millán
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Researchers and designers of
human-computer interfaces are moti-
vated by a growing interest in the use of
physiological signals for communica-
tion among and operation of devices
by physically handicapped people, as
well as by their able-bodied counter-
parts. Combining neuroscience and
computer science, recent experimenta-
tion has demonstrated the possibility of
analyzing brainwaves online to derive
information about a subject’s mental
state that could then be mapped onto
some external action (such as selecting
a letter from a virtual keyboard or mov-

ing a robotic
device). A brain-
computer inter-
face (BCI) is an
alternative com-
munication and
control channel that does not depend
on the brain’s normal output pathway
of peripheral nerves and muscles [11].

Although BCI prototypes are recent
developments [2, 4–8, 12], the basic
ideas were laid out in the 1970s; early
successful experiments were based on
analyzing brain electrical activity gen-
erated in response to the direction of a

<< Brain vessels acquired in-vivo using Magnetic Resonance Angiography and
visualized using a modified Maximum Intensity Projection methodology; note
blockage lower left. (Georgios Sakas, Fraunhofer Institute for Computer
Graphics, Darmstadt, Germany)
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subject’s gaze [10]. A decade later saw the first exper-
iments involving the offline analysis of brain electrical
signals independent of muscle control and external
stimulation [3].

BCIs can monitor a variety of brainwave phenom-
ena, usually through electroencephalogram (EEG)
signals; the brain’s electrical activity is monitored
through electrodes placed on the scalp. The main
source of an EEG is the synchronous activity of thou-
sands of cortical neurons. Some scientists exploit
evoked potentials, or the automatic responses of the

brain to external stimuli [11]; evoked potentials are,
in principle, easily picked up but require subjects to
synchronize themselves to the external machinery. A
more natural and practical alternative is to rely on
components associated with spontaneous mental
activity. Thus, in one such experiment, the researchers
calculated a component of the EEG known as slow
cortical potential [2], measuring it over the top of the
scalp to indicate the overall preparatory excitation
level of a cortical network. Other experiments have
looked at local variations of EEG rhythms; their most
popular uses involve imagining physical movement,
as recorded from the central region of the scalp over-
lying the sensorimotor cortex [6, 12]. Other cognitive
mental tasks (besides motor-related rhythms) have
also been explored [1, 3, 5, 7]; for example, a number
of neurocognitive studies have found that different
mental tasks (such as imagining movement, arith-
metic operations, and language) activate local cortical
areas to various degrees. Rather than looking for pre-
defined EEG phenomena, as when using slow corti-
cal potentials or movement rhythms, these researchers
seek mental-specific EEG patterns embedded in the
continuous EEG signals.

Measuring the EEG is a simple noninvasive way to
monitor brain activity. However, it does not provide
detailed information on the activity of individual neu-
rons (or of small clusters of neurons) that could be
recorded through microelectrodes surgically
implanted in the cortex. Such direct measurement of
brain activity might, in principle, enable quicker
recognition of mental states, as well as more complex
interaction, as demonstrated by neuroscientists record-
ing neurons in the motor cortex [4, 8]. Between the

simple EEG and the extremely invasive direct record-
ing of neurons, a researcher might reasonably consider
using another established brain-imaging technique
(such as magnetoencephalography, functional mag-
netic resonance imaging, and positron emission
tomography). Nevertheless, all such techniques
require sophisticated devices that can be operated only
in specially designed medical facilities.

The most common BCI systems are based on the
analysis of spontaneous EEG signals. The ABI
approach involves a range of brain-actuated applica-

tions, from communication to control; key issues
include the design of direct interfaces via implanted
microelectrodes.

EEG-based Interfaces
Unlike ABI, most BCIs are based on synchronous
experimental protocols whereby the subject follows
a fixed repetitive scheme, switching from one men-
tal task to another [2, 6, 12]. A trial consists of two
parts: a cue telling the subject to get ready and, after
a fixed period of several seconds, a second cue telling
the subject to perform the desired mental task for
some predefined length of time. The EEG phenom-
ena to be recognized are time-locked to the second
cue; the BCI responds with the average decision
during the second period of time. In such synchro-
nous BCI systems, a trial lasts from 4 to 10 or more
seconds. This relatively long period is necessary
because the EEG phenomena of interest need time
to recover. Other BCIs employ more flexible asyn-
chronous protocols whereby the subject makes self-
paced decisions as to when to stop doing a mental
task and when to begin the next one [5, 7]. In the
case of asynchronous protocols, the BCI can
respond quickly; for example, the ABI system
responds every half second.

Some researchers have demonstrated that subjects
can learn to control their brain activity through inten-
sive training in order to generate fixed EEG patterns
the BCI then transforms into external actions. Others
employ machine-learning approaches to train the
classifier embedded in the BCI [1, 3]; most involve a
mutual learning process whereby the user and the
BCI are coupled together and adapt to each other

<<INDIVIDUAL SUBJECTS CHOOSE THE
MENTAL TASKS THEY FIND EASIEST, AS WELL AS

THE PREFERRED STRATEGIES THEY NEED
TO ACCOMPLISH THEM. 
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[5–7]. This mutual learning process should accelerate
training time. The ABI approach allows subjects to
achieve good performance in just a few hours of train-
ing in the presence of feedback [5]; analysis of learned
EEG patterns confirms that personal BCIs must fit
users’ individual features.

BCIs usually make binary decisions as they seek to
recognize two different mental states (such as positive
vs. negative slow cortical potentials and imagination
of left- vs. right-hand movements) [2, 3, 6, 7, 12]—
producing accuracies of about 90%. Other scientists
have tried to simultaneously recognize three or more

tasks, though most report recognition errors above
15% [1, 6]. The ABI approach achieves error rates
under 5% for three mental tasks and correct recogni-
tion of 70% [5]. These classification rates, together
with the number of recognizable tasks and the dura-
tion of the trials, yield transmission rates of approxi-
mately 0.15b/s to 2.0b/s, depending on the approach.

Core Neural Network Classifier
At the core of ABI is a neural network classifier that
recognizes which mental task the subject—wearing a
portable EEG system—is concentrating on by ana-
lyzing continuous variations of EEG rhythms over
several cortical areas of the brain. The subject might
concentrate on a range of mental states, from motor-
related (such as imagining a limb movement) to cog-
nitive (such as arithmetic).

In the ABI’s mutual learning process, the neural net-
work learns subject-specific EEG patterns describing
desired mental tasks, while subjects learn to think in
ways that enable the ABI interface to better under-
stand them. Individual subjects choose the mental
tasks they find easiest, as well as the preferred strategies
they need to accomplish them. Building individual
interfaces greatly increases the likelihood of success,

enabling people to quickly master their own personal-
ized brain interface, as demonstrated for all ABI sub-
jects (more than 10), despite limited training times.

The analyzed mental states (or tasks) are relatively
abstract and engage different local cortical areas at dif-
ferent amplitudes and frequencies. Subjects have been
asked to select three of the following tasks: relax,
imagine left- or right-hand (or arm) movement, cube
rotation, subtraction, and word association. They first
relax their minds, imagining repetitive self-paced
movements of a particular limb, visualizing a spinning
cube, performing successive elementary subtraction

by a fixed number (such as 64�3=61, 61�3=58, and
58�3=55), and concatenating related words, respec-
tively. Mental relaxation is done with eyes shut; the
other tasks are performed with eyes open.

Each unit of ABI’s built-in neural classifier repre-
sents a prototype of one of the mental states to be rec-
ognized. Once trained, the response of the network
toward an arriving EEG sample is the class with the
greatest posterior probability, provided it is above a
given confidence threshold, normally between 0.8 and
0.9. Otherwise, the response is “unknown” to avoid
risky decisions concerning uncertain samples. Incorpo-
rating rejection criteria to avoid such decisions is an
important concern in any BCI. For practical reasons,
low classification error is a critical BCI performance
criterion; otherwise, users would be frustrated and
reject the interface. Some researchers also apply
Bayesian techniques for rejection purposes, helping to
recognize and avoid uncertain responses [7].

Users of ABI-based systems are usually given a half
hour of training per day; feedback (see Figure 1) is
provided directly through the interface. The com-
puter screen includes three buttons, each identified by
a different color and associated with one of the men-
tal tasks to be recognized. A button lights when an

Figure 1. Portable EEG system.
Wearing a cap with integrated
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standard International
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reference (average potentials
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arriving EEG sample is classified as belonging to the
corresponding mental task. EEG potentials are
recorded at the eight fronto-central-parietal locations
on the scalp—F3, F4, C3, Cz, C4, P3, Pz, and P4—
as in Figure 1. The sampling rate is 128Hz. An EEG
sample corresponds to the power spectrum of each
channel (location) over the second of time just passed.

Experimental results show that, at the end of the
training period (normally five days), the recognition
rate (percentage of times the system correctly classi-
fied the subject’s mental task) is 70% (or higher)—a
figure more than twice the random classification,
which for three tasks is 33.3%. This modest recogni-
tion rate is largely compensated by two properties:
errors are less than 5%
(in many cases less
even than 2%), and
decisions are made
every half second.
Some subjects have
pursued consecutive
training sessions (up
to seven) in a single
day and, even if lack-
ing prior experience
with BCIs, achieved
the same performance
within just two hours. Worth noting is that one such
subject (a man in his 40s living in London) suffers
from spinal muscular atrophy, a physical disease of
the cells of the spinal cord affecting the muscles con-
trolling voluntary limb, head, and neck movement.
Since ABI makes decisions every half second, modest
classification accuracy (along with a low error rate)
does not preclude practical operation. 

ABI is thus characterized by the following key per-
formance factors:

Reliability. It rarely produces incorrect classifica-
tions (less than 5%) while producing 70% (or
more) correct classification and not responding to
the remaining EEG samples;

Fast response. It tries to recognize mental tasks every
half second;

Rapid training. As a consequence of the mutual
learning approach and the specific neural net-
work, users achieve satisfactory control in a few
hours;

Scalable. The number of recognizable mental tasks
(currently three) depends entirely on engaging the
cortical areas differently, as ABI does not look at
specific EEG phenomena in particular areas; and 

Natural interaction. The subject makes spontaneous
and self-paced decisions (when to switch between

mental tasks and how to perform them) without
having to wait for or respond to external cues.

Brain-Actuated Applications
ABI researchers have developed several interfaces
illustrating the range of possible brain-actuated
applications, including a virtual keyboard, new
forms of education and entertainment, and the
robotic operation of physical devices (such as a
wheelchair).

ABI can enable people to select letters from a vir-
tual keyboard on a computer screen and write mes-
sages (see Figure 2). Initially, as they decide what they
want to write, the keyboard is divided into three

parts, each associated
with one of the mental
tasks ABI has been
trained to classify.
Then, as ABI’s neural
network recognizes
which task the subject
is concentrating on,
the keyboard splits
successively into
smaller segments until
a single letter is
selected; this letter
goes into the message,
and the process begins
again. As an addi-
tional measure of reli-
ability, a segment of
the keyboard is
selected only when the
corresponding mental
task is recognized by
ABI three times in a
row. Users can undo a
wrong selection by
immediately concen-
trating on another
desired mental task.
Thus the system waits a
short time after each
selection (3.5 seconds)
before moving on to

the next decision. The mental task used to undo selec-
tions is the one for which the user exhibits the most
dependable performance. Trained subjects have taken
22.0 seconds on average to select a letter, including
recovery from errors; specially designed aids (such as
automatic word suggestions) will eventually accelerate
the writing process.

Other research groups [2, 6] have also developed
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Figure 2. Virtual keyboard during
the writing of a message. Beginning
in the top-left panel, the keyboard
is divided in three segments, each
associated with a different mental
task and using the same colors as
during the training sequence. The
neural classifier’s recognition of the
same mental task three times in a
row selects the corresponding 
segment of the keyboard (top 
center); the green area is shadowed
for 3.5 seconds to allow the user to
undo the selection. This segment is
divided again (top right). A selected
block is split in three again to offer
a choice among three letters (bot-
tom left). After the user selects the
letter in red (h), writing it into the
message, the whole process starts
over (bottom center). The final 
decision is the last letter in the
message (bottom right).



brain-actuated keyboards, allowing subjects to write a
letter every two minutes and every one minute, respec-
tively. In one, a patient user implanted with a special
electrode (described in [4]) achieved a spelling rate of
about three letters per minute using a combination of
neural and EMG signals.

A BCI can also be used to control external devices
(such as to open and close a hand orthosis) [6, 11].
One group of researchers [8] implanted microelec-
trodes in a monkey’s brain to record activity from its
motor cortex neurons, decoding
it into a signal the monkey uses
to drive a cursor to desired screen
targets. ABI continuously guides
a mobile robot, closely mimick-
ing the operation of a motorized
wheelchair with built-in sensory
capabilities. Users’ mental states
are associated with high-level
commands the robot executes
autonomously. Moreover, users
can issue high-level commands at
any moment, including move for-
ward (and, if in front of a door-
way, cross it), stop, turn right, and
turn left. Such options are possi-
ble because ABI’s operation is
asynchronous and does not need
to wait for external cues, unlike
synchronous approaches.

The robot relies on reactive controllers to imple-
ment the high-level commands and make it move in
a safe (avoiding collisions) and smooth way. Onboard
sensors are read constantly to determine which action
should come next. The mapping from the user’s men-
tal states to the robot’s high-level commands is not
simply one-to-one; in order to achieve flexible con-
trol, the mental states represent just one of the inputs
for a finite-state automaton involving six states, or
high-level commands. Transitions between com-
mands are determined by the three mental states, five
perceptual states of the environment (as described by
the robot’s sensory readings), and memory variables. 

Subjects have mentally driven the robot along non-
trivial trajectories in an office environment, visiting
up to four rooms in desired order. Having demon-
strated the control of a complex device (such as a
robot), operating smart house appliances (such as
lights, TV, and doors) is trivial.

Finally, computer games can also be controlled
through thought alone (see Figure 3). The example
here is Pacman, but other, perhaps more educational,
software can be used. Two mental tasks are enough to
direct the Pacman character to turn left or right,
changing direction whenever one of the tasks is rec-
ognized twice in a row. In the absence of commands,
it moves forward until reaching a wall where it stops
and waits for further instructions.

The three brain-operated ABI applications—vir-
tual keyboard, robot
control, and game
interfaces—have been
demonstrated publicly
at a number of work-
shops and IT exhibi-
tions, as well as on
European TV. During
one live demonstration
of the virtual keyboard,
a subject wrote words
and sentences sug-
gested by the public;
several have tried ABI
and achieved good per-
formances after only
two hours of training.
These experiences con-
firm ABI’s adaptivity
and demonstrate good
performance in non-
controlled conditions,
including electromag-
netic fields, ambient
noise, people moving

and talking nearby, and the user’s own significant
stress. 

Our subject volunteered to validate ABI at his
home in London in 2000. After two hours of training,
he was able to write with the virtual keyboard. “This
is the first technology I have tried, including voice
recognition,” he told the BBC, “that has made me feel
independent.” (Please note, as a researcher, I qualify
this statement, as extensive validation studies are nec-
essary before making any definitive claim.)

Prospects
BCIs enable people to communicate and control
appliances using their own brain activity; therefore,
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Figure 3. A user interacting with a
computer game (Pacman) using
only two commands: turn character
left and turn character right. 
Otherwise, the character moves 
forward until it reaches a wall
where it stops.

<<TRAINED SUBJECTS HAVE TAKEN
22.0 SECONDS ON AVERAGE TO SELECT A LETTER,

INCLUDING RECOVERY FROM ERRORS.



subjects have to be conscious of their thoughts and
concentrate on the mental expression of the com-
mands required to carry out desired tasks. The
immediate application today is helping physically
handicapped people increase their independence
and facilitate their participation in the information
society. The aforementioned volunteer said, “I have
been waiting for this for years. I could think of 40 to
50 people off the top of my head who would bene-
fit from it straight away.” The technology might also
make possible new kinds of interaction paradigms
for able-bodied people, at least in certain domains.
Beyond such real-world applications as controlling
machines when manual operation is problematic,
detecting material fatigue to prompt the system to
increase its level of automatic control, and detecting
mental states to augment the richness of virtual
interaction, these interfaces might help the human
brain develop new skills while making computer sys-
tems complement their users, instead of requiring
passive conformance to the technology.

BCI technology is in its infancy; its bit-rate is still
far slower than other interaction modalities (such as
speech) and body movement (such as eye tracking
and hand gestures). But recent experiments involving
monkeys with electrodes implanted in their brains
support the feasibility of the real-time control of com-
plex devices (such as computer cursors and prosthetic
limbs) directly through brain activity [8]; the mon-
keys quickly learned to use their own neural activity
to control the cursor. However, given the invasive
nature of the approach, the number of human users
might be limited to only the most severely disabled.
Thus, to reach a wider population, the research chal-
lenge is to achieve similar results with noninvasive
technologies.

Portable high-resolution EEG systems (possibly in
combination with optical devices) might help pro-
duce detailed information on the activity of specific
cortical areas. It would then be crucial for this nonin-
vasive approach to add real-time algorithms to trans-
form scalp potentials into brain activity maps and
select relevant areas of interest for recognition tasks.
The neural classifier embedded in the BCI would
work on these brain maps instead of on EEG features.

Another key concern for the deployment of BCIs
is how to adapt on-the-fly their embedded classifiers
while a user operates a brain-actuated application.
Gaining experience, subjects develop new abilities
and alter their brain activity patterns. Moreover,
spontaneous brain signals change naturally over time.
Such continuous adaptation should be allowed at any
time, even if the subject’s intention is not immedi-
ately known. To address this issue, we might employ

reinforcement learning techniques [9], especially if
the user controls a robotic device, a task for which this
machine-learning technique is particularly effective.

Independent of whether brain activity is used
exclusively or only as part of a multimodal interface
along with other body signals (such as speech, hand
gestures, and heart rate), determining the user’s inten-
tions from brain signals will hopefully lead to more
direct, natural, and personalized human-computer
interaction.
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