
Composition vs Concurrency

Vincent Gramoli Rachid Guerraoui Mihai Let,ia

Abstract
Composing software is notoriously difficult, especially
when it is concurrent. Two fine-grained locked operations
may for instance easily deadlock upon composition. One
of the most appealing features of transactions is, on the
other hand, that they compose. Indeed they do so, but only
in their original, orthodox, form. As we discuss in the pa-
per, as soon as we slightly relax the model to enable more
concurrency, we incur the risk of breaking encapsulation.

1 Composition
In the sequential world, composition is well understood,
at least to some extend. Given an abstract data type with
two operations, π1 and π2, say written in some imperative
extensible language, one can add to the type a third op-
eration, π3, that encapsulates the two previous operations
and executes them sequentially; namely: π3 = π1 ◦ π2.
Assuming the sequential specifications of π1 and π2, one
can derive that of π3. For instance, given a set abstrac-
tion, π1 = remove(x) and π2 = insertIfNotPresent(y, x),
which aims at inserting y if x is not in the set, it is clear
that y gets inserted when π3 executes.

Consider now the fact that multiple instances of oper-
ation π3, can run concurrently. It is natural to ask what
composition semantics is obtained. Clearly, this depends
on (a) the properties that the individual operations π1 and
π2 satisfy, and (b) the actual semantics of the composition.

In our context, we assume that the operations ensure
atomicity and deadlock-freedom and we ask which form
of composition preserves these properties.1

We say that two operations π1 and π2, ensuring each
atomicity and deadlock-freedom compose, if atomicity and
deadlock-freedom are preserved by the resulting composi-
tion π3 = π1 ◦ π2.

To illustrate this, recall that a fine-grained locking trans-
formation does not compose: π1 = remove and π2 =
insert cannot be encapsulated into π3 = move as explained
in [4]. The reason is that a concurrent execution with π′

3

moving x to y and π′′
3 moving y to x would be deadlock-

1An operation is atomic if all histories produced by a concurrent ex-
ecution involving this operation and any other existing operation results
in a linearizable history. An operation is deadlock free if it progresses
despite the concurrent execution of any exiting operation.

prone. Note also that any execution where π3 runs concur-
rently with π1 or π2 must also be linearizable for π1 and
π2 to compose.

2 Transactions

A memory transaction is an appealing concurrent pro-
gramming abstraction as it makes programs easily extensi-
ble. The transactional transformation consists of encap-
sulating all operations in a transaction. For instance, a
programmer simply has to encapsulate two transactional
operations π1 and π2 into another transaction to obtain the
composition π3 that is atomic and deadlock-free if the in-
vidiual operations are. With the same technique another
programmer can compose the compositions themselves,
and so on.

Transactions, in their original form, limit however con-
currency as they detect conflicts at the read/write level and
may over-conservatively abort even though the execution
would be correct at the application level [3]. Several alter-
native transactional models have been proposed to execute
transactions depending on their application-level seman-
tics [1, 2, 5–7] and improve concurrency. As we discuss
below however, these models usually annihilate one of the
most appealing aspects of the transactional model, i.e., its
composition. We discuss below the non-composability of
various transactional models.

Inversion-based transactions. According to this model,
transactions execute a series of operations, each being in-
verted upon abort. This model encompasses Transactional
Boosting [6] and Open-Nesting [7] models. The goal is
to reduce false-conflicts by considering conflicts only be-
tween high level sub-operations rather than between reads
and writes.

To illustrate the idea, consider that such a transaction
executes up to a certain point where a conflict between its
operations and a concurrent transaction forces it to abort.
This transaction has then to undo all the operations that
it has executed by running inverse operations. For exam-
ple, some set operations remove and insert are naturally
the inverse of each other and can be appended in a com-
mon transaction to obtain a collection operation, move. If
a move successfully executes a remove(x) and then aborts,

1



it will simply roll-back its changes by executing insert(x),
the appropriate inverse operation.

The drawback is that operations cannot always be in-
verted without breaking original abstraction. A simple ex-
ample is the impossibility to compose a π1 = removeAll
and a π2 = insertAll into a π3 = moveAll as the inverse
operation of π1 cannot be defined with the existing oper-
ations. Hence, the only way for a programmer to obtain
a moveAll by composing existing code would be to break
the existing abstraction and to reimplement insertAll and
removeAll, as well as implement their respective inverse.

Escaped transactions. According to this model, trans-
actions use explicit escape mechanisms instead of inverse
operations to enhance concurrency. In addition to iden-
tifying transactional reads/writes by delimiting transac-
tions, the programmer must place these escape mecha-
nisms within transactions to indicate when and which ac-
cessed locations can be safely unprotected. Early Re-
lease [5] and View Transaction [1] belong to this model as
they expose release and light-read primitives, respectively,
to the programmer. The release consists of discarding, a
posteriori from the transaction read-set, some logged read
while the light-read primitive executes a read operation
that is not logged. As non-logged reads are not visible
from the transaction, the unnecessary read-write conflicts
involving them are simply ignored.

As we discuss below, this model does not allow for
composition either. To illustrate this, assume that a trans-
action t protects a memory location x in the time in-
terval [τ, τ ′], even though t is still pending at τ ′. Al-
though this suffices to implement a π1 = insert opera-
tion in a sorted linked list (because parsed elements do
not need to remain protected), this is inadequate to im-
plement π3 = insertIfNotPresent(x, y) by composing
some π2 = contains and this π1. Typically, a transac-
tion executing such insertIfNotPresent(x, y) would un-
protect element x before completing, and a concurrent
insertIfNotPresent(y, x) transaction would lead to an in-
consistent state where both operations succeed in inserting
x and y. This execution is clearly not atomic.

Mixed-granularity transactions. Another model of in-
terest is the one where we use differing granularities to
protect sets of locations that are accessed transactionally.
This mixed-granularity class of transactions include Trans-
actional Predication [2]. The advantage is to let the user
genuinely tune the number of locations protected by a sin-
gle metadata to reach the ideal tradeoff between metadata
accesses and false-sharing: The more locations for a given
metada, the less accesses to metadata. Conversely, the less
locations per metadata the less false-sharing we encounter.

This approach fails in composing operations as it might
use differing granularities for distinct operations. Consider

the presence of two Map operations—π1 = get operation
returning the value associated with a given key and π2 =
put operation inserting a new key-value pair. Composing
multiple of these put operations into a π3 = putAll is not
possible because the get and put consult boolean metadata
to detect conflicts whereas operation putAll has to update
the counter metadata of the element stripe it updates to
indicate that new pairs have been added. As they access
disjoint metadata to insert key-value pairs, the get cannot
detect that a new putAll have inserted.

3 Concurrency and Composition

As opposed to other models, the elastic transactional
model [3] combines elastic transactions for concurrency
and normal transactions for composition. Unlike escaped
transactions, which use explicit primitives that cannot be
disabled upon composition without breaking abstractions,
elastic transactions use the same begin-read-write-commit
interface as normal transactions, yet their read/write be-
have differently depending on the type of the transaction
that is either given by its parent transaction (if some ex-
ists), or given as an argument to its begin (otherwise):
when encapsulated in a normal transactional operation, the
elastic operation behave as normal. The drawback is when
all elastic transactions are encapsulated in normal transac-
tions, performance becomes as bad as in the normal model.
We are currently introducing multiversioning in this model
to obtain high concurrency and composition even in this
particular scenario.

References
[1] Y. Afek, A. Morrison, and M. Tzafrir. View transactions:

Transactional model with relaxed consistency checks. In
PODC, page 65, 2010.

[2] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Trans-
actional predication: High performance concurrent sets and
maps for STM. In PODC, pages 6–15, 2010.

[3] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions.
In DISC, pages 93–107, 2009.

[4] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. In PPoPP, pages 48–60, 2005.

[5] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III. Software transactional memory for dynamic-sized data
structures. In PODC, pages 92–101, 2003.

[6] E. Koskinen and M. Herlihy. Concurrent non-commutative
boosted transactions. In PODC, pages 272–273, 2009.

[7] J. E. B. Moss. Open nested transactions: Semantics and sup-
port. In Workshop on Memory Performance Issues, 2006.

2


