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Abstract—We consider sensor networks that measure spatio-temporal
correlated processes. An important task in such settings is the reconstruc-
tion at a certain node, called the sink, of the data at all points of the
field. We consider scenarios where data is time critical, so delay results in
distortion, or suboptimal estimation and control. For the reconstruction,
the only data available to the sink are the values measured at the
nodes of the sensor network, and knowledge of the correlation structure:
this results in spatial distortion of reconstruction. Also, for the sake of
power efficiency, sensor nodes need to transmit their data by relaying
through the other network nodes: this results in delay, and thus temporal
distortion of reconstruction if time critical data is concerned. We study
data gathering for the case of Gaussian processes in one- and two-
dimensional grid scenarios, where we are able to write explicit expressions
for the spatial and time distortion, and combine them into a single
total distortion measure. We prove that, for various standard correlation
structures, there is an optimal finite density of the sensor network for
which the total distortion is minimized. Thus, when power efficiency
and delay are both considered in data gathering, it is useless from the
point of view of accuracy of the reconstruction to increase the number
of sensors above a certain threshold that depends on the correlation
structure characteristics.

I. INTRODUCTION

A. Motivation

Consider a sensor network measuring a data field. The measured
process is a spatio-temporal correlated process. Namely, the value
corresponding to a certain coordinate x in the measured area depends
both on the values measured at the other nodes, and on the previous
values measured at point x. Typical examples of correlated processes
include various environment quantities (e.g. temperature, pressure,
humidity, particle concentrations). In most practical settings, the
correlation of the process decreases with both time and the distance
between nodes.
One important task in such a scenario is data gathering and esti-

mation, where a central node S, called the sink, needs to estimate the
data in the whole field, with a certain minimum distortion. For this,
a fixed number N of nodes are placed in the field (see Fig. 1). These
nodes form an interconnection structure which is usually an undi-
rected connected graph. Nodes transmit their measurements to the
sink, at given time instants, by using a subset of the links of the
graph. The sink needs to reconstruct the whole field with a minimal
total distortion. We consider settings where data is time critical, and
thus delay results in distortion. Such settings include scenarios for
fire prevention, or seismic awareness; extremal settings include sensor
networks measuring phenomena where abrupt transitions are critical
(e.g. cracks in a massive structure, or mudslides over a large terrain
area). Another class of relevant scenarios is when sink feedback or
control is needed at nodes, and where the effect of delay in reporting
the data induces suboptimal estimation and control.
If the network is dense (large N ), the data has a good spatial

approximation. However, for power efficiency reasons, nodes in
sensor networks cannot transmit their data directly to the sink, but

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

S

Y
N

Y
k

Fig. 1. In this example, spatio-temporally correlated data from nodes
1, . . . ,N need to arrive at sink S. The sink needs to reconstruct the whole
data field using only the measured values Y1, . . . , YN . Arbitrary points in the
two-dimensional space are approximated by the measurements of the sensor
node corresponding to the Voronoi cell to which they belong. The dashed zone
corresponding to node k represents the area of the field approximated by the
value Yk in node k. In thick solid lines, a chosen transmission structure is
shown (here, the shortest path tree SPT). Data from node k reaches the sink
after being relayed by one other sensor node.

rather communication is usually done via multihopping. This implies
long delays until the data sent from nodes far from the sink reach
the sink, which thus results in weak temporal approximation.
On the contrary, opposite effects take place when N is

small. Namely, the spatial approximation of the data is poor, but on
the other hand data has to travel over only a limited number of hops,
which results in a good temporal approximation. Thus, as we will
show in this paper, for a given spatio- temporal correlation structure,
there usually exists a finite optimal N that minimizes the overall
distortion of the field reconstruction at the sink.

B. Problem Setup

We study the influence of node density on the total distortion
of estimation, when several aspects specific to sensor nodes are
considered, namely delay and energy efficiency. Our setting takes into
account two important issues typical in sensor networks scenarios: the
precision of estimation, given by the density of the sensor network
deployed to measure the field [8], and the energy efficiency, which
results in the necessity of multihopping the data [10].
First, since the measured data is correlated and the number of

available nodes is limited, the sink can reconstruct the values of the
field at each point by approximating them with the values at the
points where the actual sensor nodes are placed. In those points, full
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measurements are available. Also, no other information except the
values measured at sensor nodes is available at the sink about that
region of the field. The precision of the approximation depends both
on the level of spatial correlation in the data and on the number
of sensors available. This approximation introduces a first factor of
distortion, which we call ’spatial distortion’.
Second, since the nodes have limited battery power, a good strategy

is to send data via relaying nodes rather than directly to the sink
(multihopping). However, multihopping results in data delay, since
data from the extremities of the network need to be transmitted
via multiple relays until they reach the sink. In various practical
sensor network scenarios, data is needed at the sink in real-time. For
instance, for the tasks of control or active monitoring, data may
become useless if it arrives at the sink with a too large delay. For
a spatio-temporal correlated process, the data that arrive at the sink
are distorted from the original measured values, however they can
be reconstructed with a certain precision given by the intensity of
temporal correlation of the process. Thus, delay introduces a second
factor of distortion, which we call ’time distortion’.
In our study, the two types of distortion are modelled as a single

distortion per field point quantity. Their combined effect results in
the total distortion of the field at the sink, and the goal of this paper
is to study how this quantity is influenced by the density of nodes
of the sensor network. Namely, we argue that for various typical
spatio- temporal correlation models of the data field, there is a unique
optimal value for the number of placed nodes N that minimizes the
total spatio-temporal distortion.
To the best of our knowledge, this is the first research work that

consider both spatial estimation and delay in data gathering sensor
networks, in terms of a single meaningful quantity to be optimized,
namely total distortion.
For the sake of simplicity, in this work we analyze one-dimensional

and two-dimensional regular grid settings. In our study, we consider
Gaussian random processes which exhibit spatio-temporal correla-
tion. The general setting is a subject of our current research, and we
believe the insights provided in this paper are valid for more general
network scenarios and structures in the correlation of the data.

C. Related Work
Efficient data gathering of spatially correlated data has been studied

in [4], [3], [6]. An analysis of the impact of data irregularity on
the spatio-temporal sampling is done in [5]. Our novel take on the
problem of data gathering of spatio-temporal processes is that we
are able to formulate the problem in terms of a unique performance
measure, namely the total distortion.

D. Main Contributions and Organization of the Paper
The main contribution of this paper is an analysis of real-time

data gathering of spatio-temporally correlated processes in multihop
sensor networks, in terms of a single performance measure, namely
the distortion of reconstruction. We are able to show both theoretically
and experimentally that for the class of widely used Gaussian
correlated processes, in many cases there exists an optimal finite
density of the network for real-time data gathering. Namely, when
both delay and power efficiency are considered, the optimal network
size to sample a given fixed size area is finite1 and increasing the
number of nodes above this threshold deteriorates the distortion of

1Note that the Gaussian processes studied in this paper are not ban-
dlimited. Similar results will hold for bandlimited processes sampled above
Nyquist frequency, since their correlations are fastly decreasing with time and
distance.
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Fig. 2. A one-dimensional example of a data gathering network, where each
sensor node covers an area of the whole network. An instantaneous point of
reconstruction is denoted by x. In this example, x belongs to the Voronoi
cell of node N − 2, thus its value at time t is approximated, with a certain
distance dependent distortion, by Y (xN−2, t).

reconstruction. The analysis in this paper is restricted to one- and
two-dimensional grid networks, but we expect our results to hold for
more general distributed networks.
Section II introduces the transmission model and signal model

we use in this paper. Further, a performance measure of interest is
defined, namely the total distortion, and an analysis of this measure
for the one-dimensional grid is performed. Section III generalizes
the model in Section II for a two-dimensional grid. In Section IV we
present our numerical simulations, and we conclude with Section V.

II. ONE-DIMENSIONAL NETWORK

A. Transmission Model
For simplicity of the analysis, in this paper we consider networks

with nodes uniformly placed on one- and two-dimensional grids, for
which the distortion optimization is done only with respect to the
size of the network. In the case of arbitrary networks with position-
dependent correlation structure, the optimization becomes a function
of the node placement as well.
Consider N nodes placed on a line of fixed length L (see

Fig. 2). The inter-node distance is d = L/N . An additional node
S at the extreme right of the line represents the sink to which all
data should arrive. The task of the sink is to reconstruct the whole
field on the line.
We assume that the quantization done at nodes is very fine, namely

we assume the reconstruction error at the sink is only an estimation
error. For that, points on the line that belong to the space intervals
among the N nodes are assigned to Voronoi cells of the sensor nodes;
these cells are delimited by mid-interval points. Therefore, each
sensor node covers an interval of length d around its position. The
values of the intermediate points are estimated at the sink by the
value of the corresponding sensor node in the middle of the Voronoi
cell2 (see Fig. 2). In this work, we assume that the measurements
at nodes have the same variance, and that the rates allocated at
nodes are equal. This implies that nodes use equal transmission
power, and that the spatial distortion per cell does not depend on
the node identity. The study of networks with different rates at nodes
is a straightforward generalization, and is a subject of our current
research.
For the sake of power efficiency, as mentioned in Section I-B,

nodes need to relay their data. Namely, they need to send their data
to the sink by multihopping via nodes on the corresponding path on
the transmission structure that links them to the sink. This inherently
introduces delay, since data that travels through the network reaches
the sink at a later time than the time at which it was measured. The
delay has two causes. On the one hand, if relaying nodes have finite

2More complex estimation strategies in which the field value at an arbitrary
position is based on the measurements of more than a single sensor node are
a subject of our current investigations [9], [7].
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buffers then packet forwarding results in a certain processing time
due to buffering, and thus the delay is proportional to the number of
hops that data needs to travel. On the other hand, if communication
edges are lossy channels then this requires retransmissions of data,
and thus the delay is proportional to the number of edges that data
needs to travel. For the sake of simplicity, we assume that the delay
is proportional to the number of hops. Therefore, since the measured
process is correlated both in time and in space, the reconstruction
is further distorted from the real-time value due to delay caused by
relaying.
B. Signal Model
We assume a spatio-temporal correlated process Y (x, t), where x

denotes the space dimension, and t denotes the time dimension. We
further assume that the process measured by the field is Gaussian dis-
tributed Namely, each node measures a zero-mean and unit variance
normal random variable Y (x, t) ≈ N (0, 1), which is correlated both
in space and in time with the rest of the network nodes. We consider
correlation structures of the form

E [Y (x1, t1)Y (x2, t2)] = σY (x1,t1),Y (x2,t2)

= σ(|x1 − x2|, |t1 − t2|) (1)

= e−α((x1−x2)
2+β2(t1−t2)2)κ ,

with β the scaling constant for the time axis, and κ = 1
2
corre-

sponding to a Gauss-Markov field or κ = 1 corresponding to a
squared distance correlation model, and α a constant that measures
the intensity of correlation [2]. Note that this is a generalization of
the space correlation models used in [4], with one of the spatial
dimensions replaced by a scaled time dimension.
For instance, consider the value Y (x, t0) of an arbitrary point x

on the line at an arbitrary time t0 (see Fig. 3). Assume that the sink
approximates the value at point x by considering the value Y (x0, t0),
at point x0, placed k hops away from the sink. For any data packet,
we assume that the relation between the time delay tk of that packet
and the number of hops k it has to travel is k = βtk. Assume the
delay per hop is a constant T , thus tk = kT . Then, the mean-square
error (MSE) of Y (x, t0) at the sink, when Y (x0, t0) is known, is
expressed by:

Dx,t0,x0,k = E (Y (x, t0)− Y (x0, t0 + kT ))2 −
= E Y (x, t0)

2 + E Y (x0, t0 + kT )2

−2E [Y (x, t0)Y (x0, t0 + kT )]

= 2− 2σY (x,t0)Y (x0,t0+kT )
= 2− 2σ(|x− x0|, kT )
= 2− 2e−α((x−x0)2+(βkT )2)κ . (2)

In other words, for any point in time and space, the generalized
distance between the approximated and the real value as seen by the
sink is (x− x0)2 + (βkT )2, and the corresponding distortion per
field point of point x as seen by the sink is given by 2(1 − σ(|x−
x0|, kT )).
In general, the statistics of the correlated data field might not be

known, but they can be measured on-line, during the network deploy-
ment period (for instance, if the correlation is distance dependent,
then nodes can make use of the distance information acquired from
the neighbors for constructing routing tables, for the additional tasks
of estimating the correlation structure and fitting the measurement
parameters to a valid correlation model [2]). Also, note that the MSE
error only perfectly characterizes the distortion for Gaussian signals

00
Y(x ,t −kT )

Y(x ,t  )
0

Y(x,t  )
00

0
x

node k

x

Fig. 3. The value at point x is approximated by the value of the kth
sensor node placed at x0, resulting in spatial distortion. Moreover, due to
transmission over k hops, the version that reaches the sink is delayed with
kT , which results in time distortion. The combined result of the two distortion
effects is the total distortion Dx(N).

[1], thus a similar analysis for arbitrary spatio-temporal correlated
fields should make use of alternative adequate distortion measures.

C. Total Distortion
We compute now the total distortion of the data estimated by

the sink at a snapshot in time, in MSE sense. Consider node k,
which is placed k hops away from the sink. Denote the position
of node k as xk , and the data that node k measures at time t
as Y (xk, t). The data sent at time t to the sink about the region
[xk−d/2, xk+d/2] is Y (xk, t), but since it is delayed with k clock
ticks, this packet actually reaches the sink at time t + kT (see Fig.
3). In fact, at time t, the actual available data at the sink about node k
is Y (xk, t−kT ). Thus, the corresponding distortion of reconstruction
of the region covered by node k is:

Dk(N) = 4
xk+

L
2N

x=xk

(1− σ(x− xk, kT ))dx. (3)

For simplification, we can consider xk = 0 as axis origin for each
node k, and then (3) becomes:

Dk(N) = 4

L
2N

x=0

(1− σ(x, kT ))dx. (4)

The total distortion D(N) is simply obtained by summing (4) over
all nodes k = 0 . . . N − 1:

D(N) =

N−1

k=0

4

L
2N

x=0

(1− σ(x, kT ))dx. (5)

Further, if we insert the correlation model for a Gaussian spatio-
temporal process (1), we can finally write the total distortion of
reconstruction of the whole field by the sink, as a function of N :

D(N) =
N−1

k=0

4

L
2N

x=0

(1− exp(−α(x2 + β2(kT )2)κ))dx. (6)

where k counts the number of hops from a node to the sink, T is
the time delay per hop, β is the time scaling constant, and α is a
constant quantifying the intensity of correlation of the field. The term
which is integrated is the distortion incurred by approximating the
field between [− L

2N , L
2N ], around the node which is at k hops away

from the sink, with the value of that node delayed k time steps.
The expression in (6) cannot be expressed in a closed form. How-

ever, an experimental analysis shows that (6) has always a minimum
as a function of N . Moreover, in Section II-E, we will use a strong
correlation approximation to derive in a closed-form the optimal value
N for which (6) is minimized. In general, the optimal value of N is
obtained by setting δD(N)

N = 0 and numerically solving for N , by
rounding the solution to the closest integer.
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Note that (2) completely expresses the distortion in MSE sense
only for Gaussian random variables. Moreover, since spatially cor-
related Gaussian processes can only have certain structures for the
correlation dependence on the distance [2], we will restrict our
analysis to the models introduced in Section II-B.

D. Optimum N is Finite
In this section we show that for the Gaussian correlation models

introduced in Section II-B, there is indeed a finite optimum N0 that
minimizes (6). Denote:

an =
n−1

k=0

L
2n

x=0

σ(x, kT )dx (7)

Note that by definition an is lower bounded by 0. Thus, from (5)
we can see that a sufficient condition for the existence of a finite
optimum N is that there exists N0 such that for all n > N0, an is
a decreasing sequence.
Correlation model: exp(−α(x2 + β2(kT )2))
In this case, we can rewrite an as

an =

L
2N

x=0

eαx
2

dx ·
n−1

k=0

1

eβ(kT )2
. (8)

But limn→∞ an & 0, since the first term in the product converges
to zero (the error function) and the second one can be easily shown
to be upper bounded by a finite positive constant. Thus, for κ = 1,
the optimum N that minimizes (6) is finite.
Correlation model: exp(−α x2 + β2(kT )2)

This case is difficult to analyze analytically, due to the function
that is integrated. However, our simulations in Section IV show that
in this case too there is a finite optimal N0.

E. Strong Correlation Approximation
In this section, we study the case when both L/N and the time

scale β are small. In other words, data is strongly correlated both
spatially and temporally. In this case, we can make the approximation:

1− e−α(x
2+β2(βkT )2)κ ≈ 1− (1− α(x2 + β2(kT )2)κ)

= α(x2 + β2(kT )2)κ,

which simplifies our analysis further.
Correlation model: exp(−α(x2 + β2(kT )2))
First, we can write:

L
2N

x=0

α(x2 + (βkT )2)dx = α(
L3

24N3
+

L(βkT )2

2N
). (9)

Further, from rewriting (6), it results:

D(N) = α(
L3

2
· 1
N2

+

+
2L(βT )2

3
·N2 − L(βT )2 ·N +

1

3
L(βT )2)

Now we take the partial derivative of D(N) with respect to N
and make it equal to zero. We obtain that N0 is a solution of the
equation:

4N4 − 3N3 − c = 0 (10)

where c = L2

β2T2
. For c > 0, (10) has a single positive solution N0,

which we plot in Fig. 4. This gives a good indication of the optimal
value of N0 as a function of L2

β2T2
; intuitively, N0 increases with the

decrease of the importance of delay in the distortion function, given
by the time scale β.

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

L2/(βT)2  (log scale)

O
p
ti
m

a
l 
N

Fig. 4. Optimal value of N as a function of L2

β2T2
, for κ = 1, in the strong

correlation approximation.

Note that, as expected, in the approximation of very strong
correlation, the optimal N does not depend on the value of α (which
models the strength of correlation). The optimal value of N only
depends on the ratio between the length of the field L and the time
scaling parameter βT , that models the relative importance of delay
in the distortion function as compared to spatial distortion.
Correlation model: exp(−α x2 + β2(kT )2)
In this case, we compute:

L
2N

x=0

α(x2 + (βkT )2)
1
2 dx = (11)

= − α

8N
(−L L2 + 4(βTk)2N2

N2
+

+2(βTk)2 ln(βTk)2N + 4(βTk)2N ln 2−

−4(βTk)2N ln
L+ L2+4(βTk)2N2

N2 N

N
).

When N is large, the second, third and fourth terms in the
summation in the paranthesis cancel each other out, and it can be
easily shown that (11) simplifies to

L
2N

x=0

α(x2 + (βkT )2)
1
2 dx ≈ αLβTk

4N
(12)

By summing (12) over k, we can see that the resulting sum is
a strictly increasing sequence in N . This only happens for N large
enough to guarantee the strong correlation approximation, however
this is enough to show that the optimum N0 has to be finite.

III. TWO-DIMENSIONAL MODEL
A. Total Distortion
The case of a two-dimensional grid network (see Fig. 5) is studied

similarly to the one-dimensional model. Consider a square area
L × L, on which N2 nodes are uniformly placed on a square
grid. The network is divided into Voronoi cells centered in the
sensor nodes. We count the number of hops from each node to the
sink on the most energy-efficient transmission structure for gathering
uncorrelated data, which is the shortest path tree (SPT). Note that,
in general, since data at nodes are spatially correlated, the shortest
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L
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Fig. 5. A two-dimensional square grid. The Voronoi cell partition is drawn
is dashed lines, and the shortest path tree (SPT) is drawn in bold solid lines.

path tree is not the most energy-efficient transmission structure if
in-network fusion by coding with side information is performed
at nodes; moreover, finding the optimal transmission structure for
such scenarios is NP-hard [3], [4]. Thus, in our analysis, we make
the assumption that, due to limited resources, relay sensor nodes
do not perform in-network fusion, namely they do not use as side
information data from other nodes that use them as relay, to reduce
the amount of data themselves need to transmit about their own
measurements. In short, data is relayed without being processed.
In order to simplify the analysis, we consider a slightly modified

setting for the two-dimensional square grid as compared to the one-
dimensional model (see Fig. 5). Namely, the modification from the
one-dimensional study is that for the two-dimensional model we
assume the sink gathers with no delay data in its corresponding
Voronoi cell (in other words, the sink itself is considered as a regular
sensor).
We plot in Fig. 5 the energy efficient paths from the nodes to

the sink. Note that for every k = 0 . . . N − 1 there are 8k cells
situated at k hops away from the sink. Therefore, analogously to
the one-dimensional case, we can write the total distortion for the
two-dimensional case as:

D(N) =

N−1

k=0

4 · 8k
L
2N

x=0

L
2N

y=0

(1− exp(−α(x2 + y2 +

+β2(kT )2)κ))dydx (13)

where N is now the number of hops from the sink to the extremity
of the square network.

B. Strong Correlation Approximation

In this section we use an approximation similar to the one in
Section II-E, namely

1−exp(−α(x2+y2+β2(kT )2)κ) ≈ α(x2+y2+β2(kT )2)κ. (14)

80604020
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Fig. 6. Total estimation distortion of the field at the sinkD(N) as a function
of the number of nodes N , for a one-dimensional network; κ = 1.

For the sake of simplicity, we analyze only the case κ = 1,
since the resulting optimization is easier. Namely, after some straight-
forward manipulations including taking the partial derivative of the
resulting D(N) with respect to N , we obtain that the optimal N0 is
a solution of the equation:

N5 −N4 − c

3
N +

c

2
= 0. (15)

where c = L2

β2T2
. A full analysis of the behavior of this polynomial is

outside the scope of this paper. However, by numerical experiments,
we are able to provide a set of insights:
• For 0 < c < 83.9, this equation has no real positive solution
(namely, it is strictly increasing and thus its optimum is attained
at N0 = 1, which means that in such a case the distortion caused
by delay becomes so important that the optimal solution is to
not place any sensor and let the sink estimate the whole field!)

• For c ≥ 83.9, the equation has two positive real solutions, one
(N1 ∈ (1, 2)) corresponding to a maximum of the function
D(N), and the other N2 > 2 to a minimum. For N > N2,
D(N) is strictly increasing. Thus, the optimum solution is either
in N0 = 1, or in N2, both being finite integers.

IV. NUMERICAL SIMULATIONS
In this section we do not use the approximation of strong correla-

tion, but rather use the rough total distortion formulae given by (6)
and (13).
We use Maple to plot in Fig. 6 the distortion D(N) for the one-

dimensional case, as expressed in equation (6), as a function of N ,
for typical values of the constants involved: α = 0.5 (reasonable
correlation decay), βT = 0.1 (the constant scaling the time axis),
L = 100, and κ = 1. In Fig. 7 we illustrate with a similar plot the
case when κ = 0.5, with α = 0.05, βT = 0.05, L = 100. We
observe that, in general, there is an optimal N , that depends on the
few constants involved in our model: α, β, κ, L.
Fig. 8 shows the optimum values ofN that minimize (6) for various

values of the correlation coefficients α and βT (κ = 1, the length
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Fig. 7. Total estimation distortion of the field at the sinkD(N) as a function
of the number of nodes N , for a one-dimensional network; κ = 0.5.
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Fig. 8. One-dimensional grid: behavior of optimal number of sensors N as a
function of the correlation structure, for Gaussian processes with correlation
exp(−α(x2 + β(kT )2)).

is L = 100). We observe that for a given scaling β for the time
axis, the optimal value of N decreases when the field becomes more
correlated. Also, when the spatial correlation α is kept fixed, the
optimal number of nodes N depends on the time scaling constant β.

Finally, in Fig. 9, we plot the distortion D(N) for the two-
dimensional case, as expressed in equation (13), as a function of
N , for typical values of the constants involved: α = 0.05, β = 0.05,
L = 10, and κ = 1. We observe that again there is an optimal N
minimizing the total distortion. The ripples in the plots are due to
Maple’s graphical interpolation.

120

160

80

40

N

10080604020

Fig. 9. Total estimation distortion of the field at the sinkD(N) as a function
of the number of nodes N for a two-dimensional network.

V. CONCLUSIONS
We considered real-time data gathering of spatio-temporally cor-

related processes by multihop sensor networks, where data is time
critical and so delay results in suboptimal estimation at the sink. We
considered two important issues in such a setting, namely power
efficiency and delay. We showed that for Gaussian processes sampled
by grid networks, there exists an optimal density of the network
that minimizes the total distortion of reconstruction at the sink when
real time reconstruction is required. We believe similar results hold
for other spatio-temporally correlated processes, depending on their
defining parameters. Our future work is focused on generalizing our
results to networks with arbitrary network distributions. Also, we are
investigating closed-loop system scenarios for distributed prediction
and control with side information from the base station, where delay
in transmitting the data through the network is a critical issue.
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