Optimal service pricing for a cloud cache
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Abstract—Cloud applications that offer data management
services are emerging. Such clouds support caching of data i Coordinator
order to provide quality query services. The users can query
the cloud data, paying the price for the infrastructure they
use. Cloud management necessitates an economy that manages
the service of multiple users in an efficient, but also, resaae-
economic way that allows for cloud profit. Naturally, the
maximization of cloud profit given some guarantees for user
satisfaction presumes an appropriate price-demand model
that enables optimal pricing of query services. The model
should be plausible in that it reflects the correlation of cabe _.
structures involved in the queries. Optimal pricing is acheved Fig. 1.
based on a dynamic pricing scheme that adapts to time manage the data of back-end databases in a transparent

changes. This paper proposes a novel price-demand modelmanner. Applications that collect and query massive data,

designed for a cloud cache and a dynamic pricing scheme jy o those supported by CERN [17], need a caching service,
for queries executed in the cloud cache. The pricing solutio hich b ided by the cloud [31
employs a novel method that estimates the correlations of th which can be provided by the cloud [31].

cache services in an time-efficient manner. The experimenta  The goal of such a cloud is to provide efficient querying
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study shows the efficiency of the solution. on the back-end data at a low cost, while being econom-
Index Terms—cloud data management, data services, cloud ically viable, and furthermore, profitable. Figure 1 depict
service pricing the architecture of a cloud cache. Users pose queries to

the cloud through a coordinator module, and are charged
on-the-go in order to be served. The cloud caches data and
) o ] builds data structures in order to accelerate query exa@tuti
The leading trend for service infrastructures in the IEeryice of queries is performed by executing them either
domain is calledcloud computinga style of computing i the cloud cache (if necessary data are already cached)
that allows users to access information services. Cloyd in a back-end database. Each cache structure (data or
providers trade their services on cloud resources for mongyia structures) has an operating (i.e. a building and a
The quality of services that the users receive depenggintenance) cost. A price over the operating cost for each
on the utilization of the resources. The operation cost @fr,cture can ensure profit for the cloud. In this work we

used resources is amortized through user payments. Clgjpose a novel scheme that achieves optimal pricing for
resources can be anything, from infrastructure (CPU, mez services of a cloud cache.

ory, bandwidth, network), to platforms and applications
deployed on the mfrastructurg A. Setting the price for cloud caching services
Cloud management necessitates an economy, and, there-
fore, incorporation of economic concepts in the provisibn o The cloud makes profit from selling its services at a price
cloud services. The goal of cloud economy is to optimizéhat is higher than the actual cost. Setting the right price
(i) user satisfaction and (ii) cloud profit. While the succedor a service is a non-trivial problem, because when there
of the cloud service depends on the optimization of both ols- competition the demand for services grows inversely but
jectives, businesses typically prioritize profit. To maikisn not proportionally to the price.
cloud profit we need a pricing scheme that guarantees useThere are two major challenges when trying to define an
satisfaction while adapting to demand changes. optimal pricing scheme for the cloud caching service. The
Recently, cloud computing has found its way into thérst is to define a simplified enough model of the price-
provision of web services [15], [18]. Information, as weldemand dependency, to achieve a feasible pricing solution,
as software is permanently stored in Internet servers angt not oversimplified model that is not representative. For
probably cached temporarily on the user side. Curreexample, a static pricing scheme cannot be optimal if the
businesses on cloud computing such as Amazon Wdbmand for services has deterministic seasonal fluctusation
Services [14] and Microsoft Azure [19] have begun to offéfhe second challenge is to define a pricing scheme that is
data management services: the cloud enables the useradaptable to (i) modeling errors, (ii) time-dependent nhode

I. INTRODUCTION



changes, and (iii) stochastic behavior of the applicaffte Cloud (EC2) [14], or the deployment of servers, such as
demand for services, for instance, may depend in a ndBeGrid [18]. Emerging clouds such as the Amazon Sim-
predictable way on factors that are external to the cloydeDB and Simple Storage Service offer data management
application, such as socioeconomic situations. services. Optimal pricing of cached structures is central t
A representative model for the cloud cache should takeaximizing profit for a cloud that offers data services.
into account that the cache structures (table columns orCloud businesses may offer their services for free, such
indexes) may compete or collaborate during query execas Google Apps [15] and Microsoft Azure [19] or based
tion. The demand for a structure depends not only on % a pricing scheme. Amazon Web Service (AWS) clouds
price, but also on the price of other structures. For exampirclude separate prices for infrastructure elementsgdisk
consider the queryel ect A from T where B=5 and space, CPU, I/O and bandwidth. Pricing schemes are static,
C = 10. Out of the set of candidate indexes to run the quegnd give the option for pay as-you-go. Static pricing cannot
efficiently, indexed, = T(B), Ic =T(C), andl,c= T(BC) guarantee cloud profit maximization. In fact, as we show
are most important, since they can satisfy the conditionsiim our experimental study (see Section V1), static pricing
the ‘where’ clause. If the cache uskg, then the indexes results in an unpredictable and, therefore, uncontralabl
lp and ¢, will never be used, sincé,. can satisfy both behavior of profit.
conditions. Therefore, the presence lgf has a negative  Closely related to cloud computing is research on ac-
impact on the demand fdg, and Ic. Alternatively, if the counting in wide-area networks that offer distributed ser-
cache uses, thenlc can also improve query performanceices. Mariposa [35] discusses an economy for querying in
via index intersections, hence increasing the profit for thfistributed databases. This economy is limited to offering
cloud. Therefore, indexek, andIc have positive impact budget options to the users, and does not propose any
on each other's demand. An appropriate estimation methgficing scheme. Other solutions for similar frameworks
is necessary to model price-demand correlations amoas], [8], [29], [21], [4], [22], [26] focus on job schedulin
cached structures. and bid negotiation, issues orthogonal to optimal pricing.
The peculiarity of the pricing problem for the application pricing schemes were proposed recently for the optimal
of the cloud DBMS, in comparison with other businessegjlocation of grid resources in order to increase revenue
is that the selling good is not a consumable product, buf6], or to achieve an equilibrium of grid and user satisfac-
persistent service. tion [25], assuming knowledge of the demand for resources
A consumable product diminishes with demand and has the possibility to vary the price of a resource for diffetre
to be ordered, whereas a cloud cache service can satigégers. These works are orthogonal to ours, as we do not
infinite demand as long as it is maintained. Moreovesissume that service demand is known a priori and all
the demand for a cache service pauses if this serviceuisers are charged the same for the consumption of the
not available. A consumable product may cost to maintagame service. Similarly, dynamic pricing for web services
depending on the stored amount, whereas the maintena[xd focuses on scheduling user requests. This work is
cost of a cache service depends only on time. Moreoverogthogonal to ours, as we require that users’ requests for
cache service may have a setup cost each time it is loadggvice are satisfied right away. Moreover, dynamic pricing
in the cloud. A big challenge for the cloud is to optimiz&or the provision of network services [27], [13], [3] aims
the set of offered services, i.e. decide which services & achieving a game-theoretic equilibrium through price
offer and when, depending on their demand while they agentrol among competitive Internet Service ProviderssThi
available. Roughly, the cloud has to schedule online amgbrk is orthogonal to ours, as we focus on the maximization
offline periods of the offered services, which affects thef cloud profit in the presence of competitive services
maintenance and the setup cost. Furthermore, the optimigathin the same cloud provider.
tion of the cloud profit has to be scheduled for a long period The problem of revenue management through dynamic
in time while it is flexible during this period to adjust to thepricing is well-studied [1]. Based on the rationale thateri
real evolution of the service consumption. The long-tergnd demand are dependent qualities, numerous variations
profit optimization is necessary in order for the cloud t@f the problem have been tackled, for instance businesses
schedule ahead associative actions for the maintenancqnzf sell products to retailers [10], seasonal product}, [40
the cloud infrastructure and the cloud data. Moreover, thgochastic demand [9]. Electronic businesses, and therefo
cloud can schedule the service availability according & thloud businesses can benefit from dynamic pricing policies
guarantees for the overall revenue estimated by the longe). Cache services are distinguished from consumable
term optimization. Nevertheless, it is important that thﬁroducts in two major ways: (i) they are not exhausted
long-term optimization process is flexible enough to reeeiyhile they are consumed and (i) the demand for a specific
corrections while it is still in progress. The correctionaym service pauses while this is not available. To the best of our
refer to the difference between the estimated and the actigbwledge, this is the first work that tackles the problem
price influence on the demand of services. of optimal pricing of competitive data services within the
same cloud cache provider.
B. Related work Research on the identification of non-correlated indexes
Existing clouds focus on the provision of web servicegsing the query structure [39] does not determine the
targeted to developers, such as Amazon Elastic Computegative and positive correlations. ldentification of xde



correlations by modeling physical design as a sub-modul@lobal: cache structureS, pricesP, availability A
and super-modular problem [5] is restricted to one-colunfyeryExecution()

indexes and one index per query. Identification of negativelf d can be satisfied in the cackieen

index correlation [2] does not consider the positive and els(eresultcost) « runQueryInCaché)

no correlation case. A recent index interaction model [33]  (resylt, cost) < runQueryinBacken)
attempts to find all index correlations. As we show in end if

Section IV, it does not satisfy three critical for the prigin S+ addNewStructurg$

scheme requirements: (i) sensitivity to the range of all "éturn result cost

possible correlations, (i) production of normalized \edu ©PtimalPricing (horizonT, intervalst[i], S)

and (iii) fast computation. (A, P) — determineAvailabilitg PriceqT,t,S)
return A,P

C. Our proposal rerlg(r:]l(}te in parallel tasks T1 and T2:
The cloud caching service can maximize its profit usingl:

an optimal pricing scheme. This work proposes a pricing for every newi do

scheme along the insight that it is sufficient to use a Slide the optimization window

simplified price-demand model which can be re-evaluatedenggg;nalP”C'ngT’t[']’S)

in order to adapt to model mismatches, external distu]t—2:

bance§ and errors, employlng_feedback from the rga_l sy;teru,hile new queryq do

behavior and performing refinement of the optimization  (yesult cost) — queryExecutioft)

procedure. Overall, optimal pricing necessitates an approend while

priately simplified price-demand model that incorporatesif g executed in cachthen

the correlations of structures in the cache services. The  chargecostto user

pricling scheme ShOUIq t?e aQaptabIe to time ghanges. calculate total price and charge price to user
Simple but not smplistic price-demand modeling. We end if

model the price-demand dependency employing secolglg "

order differential equations with constant parameterss Th i
modeling is flexible enough to represent a wide varie)?S€d on proposed measures that can estimate all three

of demands as a function of price. The simplificatioFVpeS of qorrelation. We propose a method for.the efficient
of using constant parameters allows their easy estimatipAMmPutation of structure correlation by extending a cache-
based on given price-demand data sets. The model taR8S€d query cost estimation module and a template-based
into account that structures can be available in the cache'drkload compression technique.

can be discarded if there is not enough respective demand.

Optional structure availability allows for optimal schéidg D- Contributions

of structure availability, such that the cloud profit is maxi This paper makes the following contributions:

mized. The model of price-demand dependency for a set of, o oyel demand-pricing model designed for cloud

structures incorporates their correlation in query exeout caching services and the problem formulation for the
~ Price adaptivity to time changes. Profit maximization dynamic pricing scheme that maximizes profit and
is pursued in a finite long-term horizon. The horizon  jycorporates the objective for user satisfaction.

includes sequential non-overlapping intervals that allow | aAp efficient solution to the pricing problem, based on
scheduling structure availability. At the beginning of leac non-linear programming, adaptable to time changes.

interval, the cloud redefines availability by taking offline | A correlation measure for cache structures that is
some of the currently available structures and taking enlin g jitable for the cloud cache pricing scheme and a

some of the unavailable ones. Pricing optimization proseed  ethod for its efficient computation.

in iterations on a sliding time-window that allows online | aAp experimental study which shows that the dynamic

corrections on the predicted demand, via re-injection of pricing scheme out-performs any static one by achiev-
the real demand values at each sliding instant. Also, the ing 2 orders of magnitude more profit per time unit.

iterative optimization allows for re-definition of the para
eters in the price-demand model, if the demand deviatﬁ
substantially from the predicted.

Query execution model for the cloud cache

The rest of the paper is structured as follows. Section
F’models the optimal pricing problem and Section IV
. : models the price-demand correlations for data structures
Modeling structure correlations. Our approach models . P . . .
. the cloud cache. Section V describes the solution of the
the correlation of cache structures as a dependency of e Co ;
tﬁerzlcmg optimization problem and Section VI presents the

demand for each structure on the price of every availal ; .
. : . experimental study. Section VII concludes the paper.
one. Pairs of structures are characterized as compeiitive,

they tend to exclude each other, or collaborating, if they
coexist in query plans. Competitive pairs induce negative,
whereas collaborating pairs induce positive correlation. The cloud cache is a full-fledged DBMS along with

Otherwise correlation is set to zero. The index-index,¥adea cache of data that reside permanently in back-end
column, and column-column correlations are estimatethtabases. The goal of the cloud cache is to offer cheap

Il. QUERY EXECUTION MODEL



efficient multi-user querying on the back-end data, while 1) Objective: The cloud cache offers to the users query
keeping the cloud provider profitable. Our motivation foservices on the cloud data. The user queries are answered by
the necessity of such a cloud data service provider derivigsery plans that use cache structures, i.e. cached columns
from the data management needs of huge analytical daaad indexes. We assume that the set of possible cache
such as scientific data [31], for example physics daructures iss ={S,...,Sn}.
from CERN [17] and astronomy data from SDSS [20]. Whenever a structur§ is built in the cache, it has a
Furthermore, a viable, and moreover, profitable data servigne-time building cosBs. While S is maintained in the
provider can achieve cost and time efficient managementgiche it has a maintenance cost which depends on time,
smaller scientific collections or any type of analyticalalat Ms(t). We assume that each structure is built from scratch
such as digital libraries, multimedia data and a variety @ the cloud cache, as the cloud may not have administration
archived data. rights on existing back-end structures. Neverthelessaghe
Users pose queries to the cloud, which are charged domputing and parallelism on cloud infrastructure may
order to be served. Following the business example pénefit the performance of structure creation. For a column,
Amazon and Google, we assume that data reside in #p building cost is the cost of transferring it from the back
same data center and that users pay on-the-go based orefi and combining it with the currently cached columns.
infrastructure they use, therefore, they pay by the querphis cost may contain the cost of integrating the column
Service of queries is performed by executing them eithgf the existing cache table. For indexes, the building cost
in the cloud cache or in the back-end database. Quefyolves fetching the data across the Internet and then
performance is measured in terms of execution time. Thgilding the index in the cache. Since sorting is the most
faster the execution, the more data structures it employ@portant step in building an index, the cost of building
and therefore, the more expensive the service. We assusfgindex is approximated to the cost of sorting the indexed
that the cloud infrastructure provides sufficient amount @blumns. In case of multiple cloud databases, the cost of
storage space for a large number of cache structures. Eggfa movement is incorporated in the building cost. The
cache structure has a building and a maintenance cost. maintenance cost of a column or an index is just the
Figure 2 presents at a high level the query executi@®st of using disk space in the cloud. Hence, building a
model of the cloud cache. The names of variables agglumn or an index in the cache has a one-time static
functions are self-explanatory. The user query is executegst, whereas their maintenance yields a storage cost that
in the cache iff all the columns it refers to are alread linear with timé. For more information on the building
cached. Otherwise it is executed in the backend databasgfd maintenance cost of cloud cache structures the reader
The result is returned to the user and theost is the s referred to [7]. In any case, the cost of a structBras

gquery execution cost (the cost of operating the cloud cackgon as it is built at timey; in the cache and until it is
or the cost of transferring the result via the network tgiscarded is:

the user). The cloud cache determines which structures
(cached columns, views, indexeS)to build in order to Cs(t) = Bs+ Ms(t — toilt ), 1)

accelerate query execution and reduce the query executio%ache services are offered through query execution that

cost. Initially S is empty and gradually it is filled with he struct The d df he struct .
structures that would have or have benefitted past querisgeS cache structures. The demand for cache structures 1s

How S is populated and how the costs of building an efined as follows:

maintaining cache structures as well as the query executiorDefinition 1: The demand for a cache structuse de-
cost are computed is an input to the presented optinmadted as\s(t), is the number of times tha& is employed
pricing scheme. More details on these issues can be foundjuery plans selected for execution at time

in [7]. Periodically (on predefined time intervat§]) the
cloud performs the pricing scheme proposed in this WOI’hJ
The pricing scheme schedules the availabiltyand sets
the pricesP of the structuresS for a time horizonT
as described in the rest of the paper. The goal is
maximize the provider’s profit and ensure that the user
not overcharged.

Naturally, in realistic situations the demand for a struc-
re is measured in time intervals. If a struct@s built in

the cache then query plans that involve it can be selected,
i.e. As(t) > 0, otherwise not, i.eAg(t) = 0. Intuitively,
Eﬂere is a trade-off between (i) keeping a structure in the
&che and paying the maintenance cost, and (ii) building
and discarding the structure occasionally. This tradesoff
reinforced towards the one or the other direction by the
] ] . . demand of the structure: if the demand is low, it is possible
~ This section describes the problem formulation of maxpa¢ it is cheaper to discard the structure from the cache
imizing the clo_ud profit. The_ presentatlon of the Pricinging pay the building cost multiple times, than pay the
scheme is guided bypropositions that state the main maintenance cost; if the demand is high, then the opposite
rationale of our approach. tactic may be more profitable for the cloud.

IIl. M ODELING OPTIMAL PRICING

A. Problem Formulation lindex updating is assumed to incur rebuilding the index fsmmatch.

. . . L . Data updates are external factors that cannot be contrbijethe opti-
This section defines the ObJeCtlve and the constraints fization procedure. In Section VI we study the effect of updao the

the problem, and gives the mathematical problem definitiogiynamic pricing solution.



The cloud makes profit by charging the usage of strucan be modeled as an ordinary differential equation, which
tures in selected query plans for a price. Let us assume thah be written in the general case in its implicit form:
the price of a structur8 at timet is ps(t). Then the profit n N1 m
of the cloud at a specific time is: (d—)\s, u’,...,%,)\s(t),d—m,...,d—ps, ps(t)) =0
dt dt dt dt dt @

wherem < n, to respect the causality principle, as> n

: . would imply that demand could change (due to a change
whered; represents the fact that the structGrés present of price) before the price has changed.

in the cloud cache. Specifically, a structure may be presenﬁn particular, since there is no inertia in setting a price

or not in the cache at any time point[iy T] and not present o ) . .
before the beginning of optimization time, i.e.: for a structurem = 0 and Equation 7 can be rewritten in
its explicit form:

6i(t):{ Oorl iftel0,T]

rit) = 'iéi -(Ag(t)-ps(t) —cg(1),5=0,1 (2)

dn)\s dnfl)\s dAs

0 otherwise ps(t)) = f( 5 at ""’W’)\S(t)) (8)
Based on this, the cost of a structure w.r.t. time becomes: L . .
Justification 1: Economies as well as societies tend to
cs(t) = (1—i(tg-))Bs+ Ms(t —to), (3) behave in a way that reflects past experience. More for-

i , , mally, an economic system, such as the cloud cache and
whereto is the start t|m-e of CO‘?‘t observation. . its users hasnertia, which means that the current system
Structures can be built and discarded at anytlm@,T] behavior depends on past and influences future behavior.
and the total profit of the cloud iR(T) = [, r(t)dt. The  concerning the cloud cache, this means that the demand for
goal is to maximize the total profit if0, T] by choosing gtryctures has a time-resistant effect. For example, assum
which structures to build or discard and which price 4,5t the demand for a structure built in the cloud cache does
assign to each built structure at any time: not drop as fast as expected in a memory-less system w.r.t.
T price increase. Two intuitive exemplifying reasons foisthi
'”g‘%XR(t) = /o r(t)dt (4)  are: (i) the structure is already built and remains avadiabl
o ) ) because the building cost is already amortized, while the
2) Problem constraintsit is necessary to constrain themajintenance cost is not very high; and (ii) the structure, fo
optimization of the objective 4, so that a reasonable agtample a cached column is requested for the execution of
correct solution can be found. numerous queries, because it involves information that is
Value constraints. It is straightforward that both the de-currently very popular to users.
mand and the price of a structure must be positive ”UmbersAssociating the price with the" derivative of demand
Furthermore, it is necessary to impose an upper bound @p 5 structure, guarantees degrees of freedom for the
the price. The reason is that the optimum solution is ighape of their relationship. Therefore, the bigger the orde
instantaneously raise the price of at least one structure s the more flexible the price-demand relationship is. Yet,
infinity, if this is allowed’. These bounds can be formulateds the orden increases, the number of parameters of the

as follows: _ price-demand relationship increase and more informasion i
O<A,i=1...m (5) needed in order to (see Section V) identify their values. We
0<pi < pmaxi =1,...,m (6) choose to consider &2 order differential equation as it is

versatile enough to represent a price-demand relationship

Dynamics of the demand. Naturally, the demand and thewhere the demand drops smoothly at the beginning of
price of a structure are connected variables: intuitivay, time 2, as depicted in Figure 3, while keeping the number
the price for a structure increases the demand decreases@ngarameters to identify low. Therefore, the constraint
vice versa. In order to to solve the optimization probleng: ps(t) = f(%)_ We constrainf to be an ordinary
4, a mathematical relationship, which models the interagifferential relation between price and demand:
tion between demand and price, is necessary. However, )
this mathematical relationship should have a structure as ps(t) :qd_)‘s'+[3d_)‘5'+y.)\s(t) (9)
flexible as possible, so that, upon a proper identification of dt dt
its parameters, it is able to represent as many as possible parametersy, B,y are constrained to be constants.
functions of demand and price. We make the followin@his means that the price model considers a static relation
assumption: between demand and price. In order to make the pricing

Proposition 1: The demand of a structuBhas memory: model realistic, we have to consider the influence of the
the demand at time depends on the demand befdre price of one structure to the demand of the rest. Therefore,

Consequently, the relationship between price and demdh§ Necessary to extend Eq. 9 so that it captures correftio
of demand and prices between pairs of structures. Let us

2Mathematically, the integral of Eq. 4 goes to infinity if thege for
one structure is infinite and the demand for this structureoiszero. If SNote that an abrupt drop is expressed by a first order diffedlen
the demand is zero, the profit,x O is undefined. Moreover, all numerical equation, which is encapsulated in the second order onbggsarameter
solvers need upper bounds in order to produce solutions. a can be set to 0.



Pmax—— = Pmax Pmax| P— Max f(r-u)dt

Demand A
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Fig. 4. While structures are available, the optimizatiorthef objective
function may lead to choices of price values that are: (aherbbundaries,
Fig. 3. The shape of the demand vs. time function based ontads (b) change linearly or (c) follow a trajectory.
and a second (b) order differential equation.

_ _ shall try to achieve this goal as soon as possible, resulting
assume thaV/ is a mx m matrix where the row and thein charging the highest possible prices as long as there
columni corresponds to the structugi=1,....m. Each s structure demand. Of course, the freedom of choosing
elementvij, i,j =1,...,m corresponds to the correlationthe availability of structures complicates the optimiaati
of the price ofSj to the demand of5. We call V the goal, but does not change the decision for maximum charge
correlation matrix of prices and demands. &f andP are whenever availability for a structure is decided.
them> 1 matrices of demands and prices for the respectivenaturally, one would expect that the user dissatisfaction
structures irs, andA, B, I" aremx 1 matrices of parameters, from high service charge, which is the actual reason for the
then the constraint in Eq. 9 becomes: demand drop, should be taken into consideration in a real
TN cdA cloud_busipgss. Simplyz the cloud risks to permanently lose

ot aJrr A (10) the dissatisfied users in an open-market world. The user
. . . satisfaction is an altruistic tend of the optimization tisat
Eqg.10is acztually a set of constraints of the forp{Zi"bi,j-  opposite to the egoistic tend of cloud profit.
Ps, (t) = qi$ +Bid§—t5' +Vi-As(t). . Pr_oposition 2:The gltruistic tend of pricing .op.timiza-
- . . . tion is expressed as: (i) a guarantee for a low limit on user
Problem definition. The previous discussion leads to the _.. : - I S L
. . . o Satisfaction, or (ii) an additional maximization objeetiv
following problem formulation for optimal pricing: e CL .
o o . Justification 2: There are two policies in order to in-
_ The maximization of the cloud DBMS profit is achievegbrporate an altruistic tend in pricing optimization. The
with the solution of the following optimization problem: first is to give a much lower priority to user satisfaction

than cloud profit, which results into a constraint (static or

V.P=

ngaxR(t) = fo SM[3i(t) - (As (1) - ps (t) — o5 (t))]dt time-dependent) that passively restricts the maximipatio
P of profit, i.e. expression (i). The second is to handle it
subject to the constraints: as a secondary goal of the pricing optimization, which
0<Aji=1...,m results into a new objective that actively restricts profixm
0<pi < Pmaxi =1,...,m, imization. ‘Passive’ restriction means that the altragiséind

turns down pricing solutions proposed by the optimization
procedure, while ‘active’ restriction means that the adtiia
tend is involved in the proposition of pricing solutions.
B. Generalization of Optimization Objective If the altruistic tend is expressed as low-limit guarantee

The problem of optimal pricing as formulated in SectioQ" User satisfaction, then it can be formulated as an
III-A consists of a sole objective: the maximization of th@dditional constraint of the optimization problem of Seuti
cloud profit, subject to some constraints. From a mathBl-A on the demand drop:
matical point of view, we expect a solution that is on the dA  dA
boundaries of thdeasible areameaning a solution along at =z gt min (11)
the constraints of the problem that satisfies the objective : , .

The constraints on the price-demand dependency in Eq.V_’( eréAmin is Fhe selected minimum \{alue of dema”‘?' drop
do not actually constrain the sought solution, but onl te. _AIternatwer, the user sat|s_fact|on can be defined as
the value of the optimal profit, if the solution is applied! e difference of the structure price and the actual cost:
thereforg, the sought solutipn is expected to be on the u(t) = ps(t) — cst) (12)
boundaries of the allowed price, Eg. 5, and demand values,

Eq 6, meaning maximum price selections as |0ng as '[Hbthls case, the prOblem can accommOdate, either a new
demand for structures is above zero, as shown in FigLﬁ@nstraint or a new optimization objective. In the first gase
4(a). This is called @ang-bangsolution and the mathe- the constraint can be:
matical reason for this expectation is that the objective of u(t) < romin (13)
the problem is linear w.r.t. the control variables: the eric -

p and the structure availability. Intuitively, the objective whererp;, is the selected minimum value of cloud profit.
of optimization is the purely egoistic and straightforwarddding one of the constraints 11 or 12 to the optimization
maximization of cloud profit. The optimization procedur@roblem does not change the objective of the optimization,

V-P=ATEA L BT 4 TTA



which attempts to maximize the prices while satisfying the Ry: The correlation coefficientg¢ determine the price of

new constraints, (see Figure 4(b)). all the structures in the cloud cache (see constraint 10). If
If the altruistic tend is expressed as a new maximizatidheir values are not normalized, the pricing scheme is Hiase

goal, the optimization objective is a combination of Eq. #owards specific structures with high coefficient values.

and Eq. 12: Rs: It is necessary to compute all correlation coefficients
T V before the structures are materialized or even selected
rrgaxR(t) :/ (r(t) —w-u(t))dt (14) Dby the cloud cache. Materialization and selection of cache
P 0

structures is an online procedure performed for each query
wherew is a weight that calibrates the influence of the akxecution. Therefore, the correlation coefficients must be
truistic tend to the optimization procedure. The augmentedmputed efficiently and scalably.

optimization objective 14 leads the optimization procedur \ith respect to these requirements, we discuss a recently
to seek a trajectory that balances the opposite egoistic gftfdposed correlation measure and its limitations. Then we
altruistic tends, (see Figure 4(c)). propose a new measure that satisfies all the requirements.

IV. MODELING PRICE-DEMAND CORRELATIONS B. Limitations of the Existing Approaches

_Thedprlcm% sche||”ne_ depfend.TI on the estlmﬁ_teﬁi v;l:tes Of?ecently Schnaitter et al. [33] proposed a technigue that
price-demand correfations for all structures, which assslo computes the correlation between indexes. This sectitm lis

n the _majme (see_ t_he const_ramt 10). The key to _thethe limitations of this approach, while the limitations of
maximization of profit is the maintenance of collaborationgi,er approaches is discussed in Section I-B

and the elimination of competitions between structures, . . )
. . Given a set of indexesC S and two indexes from the

by pricing the structures appropriately. The success of tggt {S.S}, their correlation coefficien given a quer

scheme depends greatly on the accuracy of the estimation’ =~/ ij 9 query

of the correlation degree for all candidate structures.

refer to the elements;j,i,j =1,...,mofV, ascorrelation
coefficients defined as follows: V= max C0y(X) — Coy(X) —Cou(Xj) | ; (15)
Definition 2: For any pair of structure§ and S; we XC1{S.SH\X COg(Xij)

define the symmetric correlation coefficienf = v; that
represents the combined usage $fand Sj in executed
query plans.

Where,coq is a function that gives the cost of given
a set of indexes. The s&t is a subset of that does not
contain the two indexe§ andsS;. MoreoverX; = XU{S},
Xj = XU{Sj}, andX; = XU{S,S;j}. The above measure
A. Correlation Requirements finds the maximum benefit that an index gives compared to

In order to construct a measure for correlation estimatioother index for a given query and any subset of the set,
we define the following requiremefits normalized by the total cost of the query using both indexes.

. ) : - Since the query cost is monotonic, it is necessary that
Proposition 3: The correlation coefficient; should sat- _ " _ 3
isfy the following requirements: CO?\;X) - Coq(lﬁ); CO“(X”t)’ C(:_q(:;) ; coq(XJ)_ - C(%(Ix'f’)'
. o _ easure oes not satisfy the requiremeat for
Ry Vi(i) S'%\?:%itr']\ée Iiillgzgrzglfrﬁj zaerr]g itfhtie()pgfj'aes'eindexes that can replace each other the correlation is not
ﬁ‘]de endent gf each other’ in quer Iansy Hega‘uve. Smc_ecoq(x)_ > CO(X)) ~ C.OQ(XJ) ~ COqO.Qi?'
R v P b lized f query p dé- the measure is positive when the indexes are similar. It
2 Vij can be hormalized for any pair & ands;. does not satisfyR, too: the produced values do not range
Rs Vij 1S _easy-to f:omput(_a. N in a bounded domain, therefore it is hard to perform
Justification 3: R: The sign of the coefficienti; de- normalization. Finally, it does not satisfgs: determining

notes the competitive or collaborative behaviour betweenyge coefficient requires exponentially large number of ex-
S andS;. If their presence does not affect each other, thgansive optimizer calls even for a small

coeficcient should be zero. We give an example.
Example 1:In a workload with only one query,
Q = select AfromT where B="'b" and C =
"¢’ , the columnsB and C should have positive We propose correlation measures that overcomes the
correlation, while the indexesa_p = T(A,B,C,D) and limitations of the above technique. For indexes, we propose
la—e = T(A,B,C,D,E) should have negative correlationthe measure:
and an |rreleyant to t_he query indaxE,F) should ha_v_e 0 cog({S}) +co({S}) —2-coq({S,S})
zero correlation. It is straightforward that the pricing Vij = coq({}) — Minap; c0g({a,b})
scheme requires these properties from the correlation % {ab} €13,
coefficientsV. Measure 16 identifies the individual benefits that the
4 ) ) indexes§ andS; provide, and normalizes their sum w.r.t.
Please note that the correlation requirements that we peopoe h . b fi hi ble b ir of ind
tailored to the problem in hand. These requirement may bestiget for the maximum benefit achievable by any pair of indexes
other use cases of management of data structures {a,b}.

C. Structure Correlation Measure

~1 (16)




Proposition 4: Measure 16 satisfies the requiremenisombinations are(|I|?) the set of possible plans is typi-
Ri —Rs. cally much smaller. The plans are typically tree structured
Justification 4: R: We show thaR; is satisfied by prov- with the leaves accessing the indexes or the tables, and the
ing its satisfaction for the extreme cases of structureabell internal nodes represent the aggregation or the joins. We
oration and competitiorCase 1:1f § andS; do not co-exist observe in our earlier work—INUM [32]- that, on many
in query plans, then let us assume tBais very beneficial occasions for different pair of indexes, the internal nodes
to a queryqg, hencecoy(X) — 0 andS; has no effect on it, remain exactly the same, and only the leaves change to
hencecoy(X;) — cog({}). Since the cost function is mono-reflect the change in the indexes. INUM uses a systematic
tonic [33], cog(Xij) = cog(Xi) = mingapy cog({a,b}) — 0. method to identify the conditions on which the internal
Hence,vij — 0. Case 2:If S and S; collaborate tightly nodes change in a plan, therefore accurately identify the
in the extreme casegoq(Xi) = cog(Xj) — coy({}), but plans to be reused. Even INUM issues hundreds of calls
coy(Xij) — 0. Then,vij — 1. Case 3:If the indexes are to the optimizer to find the internal nodes of the plans that
the same, thenog(Xj) = coq(Xi) = coq(Xj), implying that can be reused. Given access to the optimizer, the overhead
vij = —1. can be drastically reduced to just two calls per query by
Ro: Since the cases discussed above are extreme, all stusing the internal optimizer structures [6].
ture correlation cases fall between them and, therefoie the

value is bounded by-1,1]. V. SOLVING THE OPTIMAL PRICING PROBLEM
Rs: Section?? proposes a method that ensures an efficientThe problem of optimal pricing is an optimal control
computation of the correlation coefficients. problem [11] with a finite horizon, i.e. the maximum
For columns, we propose the following measure: time of optimizationT is a given finite value. The free
1 if §#S; and both used in g variables are t_he prices of the cache structupes, called
Vin ={ -1 if§=Sandusedin q (17) the control variables and the dependent variables, called

state variablesis the demand for the structur@ss and the
S _ availability of the structured;s. The problem is augmented
If two distinct columns appear in the same query, theRjth bounds on the values of both the control and the state

they collaborate, otherwise they do not. Self-correlaf@m yariables and by a constraint on the dependency type of the
a column is set to -1, as a column can replace itself.  state on the control variables.

For a pair of indexS; and columnS, we use the
following measure:

0 otherwise

A. Designing the solution

q 1 !f Sj ¢ S& both can be used Inq The objective function of the problem is the maxi-
vi=9q —1 if §€S&both can be useding (18) mization of an integral, i.emax/J (r(t) —w- u(t))dt. The
0 otherwise optimality scope of the sought solution depends on the

The index and the column correlate if the index does neenvexity of the objective function. The latter is bilinear
contain the column, and both are useful to the query. If tiyr.t. the demand and the price (this is the result of factor
index contains the column then the column is redundahs(t) - ps(t) in EQ. 2 andps(t) in Eg. 12). It is not possible
in presence of the index, therefore, they compete. Finalf, prove that the objective function is convex and, themfor
if the above conditions are not satisfied, then they do néere is no guarantee of global optimality of the solution.
collaborate, therefore the coefficient is O. Due to: (i) the nonlinearity of the objective function,

So far, we discussed correlation of structures w.r.t. (@ the presence of both integer inputs (tdgs control
specific query. We extend the correlation computation féfnary variables) and continuous inputs and states (the
a workload. Ifvil is the correlation of§ andS; for query Pis and theAis , respectively), and (iii) the potentially

g, then the coefficient for an entire workload is: large scale of the system (when is high), it is almost
q impossible to find an analytical solution to the optimizatio
i = zvijcoq({}) (19) problem. This calls for numerical optimization techniques
Y cog({}) such as mixed-integer non-linear programming (MINLP)

Measure 19 normalizes the coefficients by using tH&ll; which present the advantage of being implementable
maximum cost of the query. This allows the “heavy” querie%”“ne- A Way_to implement dynamic optimization tools on
to provide more weight to the coefficient, when compard§@l systems is to proceed as follows:
to the “lighter” queries. 1) solve the MINLP problem along a fixed prediction

Computing this measure requir€¥|1|?) optimizer calls horizon to compute a sequence of values for the
to determine the index correlation coefficients, compared  control variables
to the exponential number of calls proposed by the state-2) apply the first values to the system
of-the-art method, but it is still expensive to make so many 3) slide the prediction horizon and go back to 1)
optimizer calls on every query. We next describe techniqu®his approach, referred to a&ptimal Control with Re-
to reduce the computation overhead. ceding Horizonor as Model Prective Controlfor which

We speed up the correlation computation using thetrajectory is tracked) in the control literature, has been
observation that, even though the total number of indexiccessfully applied to a very large number of uncertain,



K" phase of T horizon— For simplification, we consider all the control variables
. 12" optimization phase of T horizon————9 in a time interval to be static, which means that prices
i 1" opfimization phase of T horizon and availability of structures are constant. Application-

|
|
= p_OF'? P3| \Tk\ } wise, we assume that the availability of structures and
z | pl | L } } | their prices are set at the beginning time of each repetition
I b of the optimization procedure. Of course, we could refine
v 6 ot t Jﬁ'k_Tk']_t' this simplification by considering prices to be functions of
=T time in each interval. Yet, this would augment the number

Fig. 5. The optimization procedure is divided into shorteimtervals of variables dramatically, reducing the efficiency of the
and iterates on a sliding time window. method. For example, even for linear dependency of price
complex and nonlinear systems, in simulation as well antime:p=a-t+bwith statica,b, the number of variables
lab or industrial scales. This methodology has shown ii8 the problem is doubled.

ability to improve the performances of a large class of

systems, despite the use of simplified models, the preseggcegstimating the parameters

of uncertainty on model parameters, model mismatch, and

process disturbances Concerning the constraints on the price-demand depen-

We propose the division of the prediction horizyT] dency in Eq. 10, it is necessary to estimate the parameters

into time intervals: let us assume that there are time poirﬁsB’r' For this, .the no_n-homoggneopsorder system of
t; €[0,T], j=0,....k such thato = 0 andt, =T on which second order differential equations in Eg. 10, has to be

r§é)lved. One way to do is to transform the system into a
problem is to maximize the total profit {0, T] by choosing 2-m ‘?rder system of first order di_ffergntial equations, by
which structures to built or discard on eathe [0,T], breaklr_wg each second_order equation m_to a set of two. The
j =1,..,k and which price to assign to each built struc:turéESUIt in both cases is a set. of_equapons that show the
dependency of demand on price involving the parameters:

j=k—1 dA

b+ & A=F(t,AB,I,A0), —}_o) - P(t 22
maRO = 5[ 13 Bt (s (1) ps(t) — es 1) LABTAO), Grp-o) PO (22)
’ =07 = (20) where F is a mx m matrix of functions on time and

Figure 5 depicts the proposed repeated optimization Ove?lg_mlentls of thfe r?arg\meterdma'glos:& r asf \(/jvell asdthe h
sliding time prediction horizon of length. For simplicity, |n|t|§1 values o the deman an the rate o eman a_tt €
we consider equal time intervals, s —t; =tj,»—tj 1, = beginning of time. The solution of the system is possible,

0,...,k—2. The optimization is performed repeatedly fo.ff_the m _constrain_ts in EQ. _10 are independent, i.e. if the

k prediction horizons beginning &t and ending at differential equations are independent.

teng, SUCh that:[tstart,tend, tstart = O,ta,...,T and teng = Proposm(_)n 5:1t is always possible to_man_age the cache
T,T +t.,2T, respectively. In this way we achieve, Oristructures in a Way_that the_ constraints in Eq. 10 are
one hand, to optimize by taking into account the inergi@dependent differential equations. o

of the cloud behavior in a long prediction horizon, and Justification 5:Independengy of the constraints in Eq:
on the other, to improve the optimization by tuning thd0 means that there are no pair of cache structures for wh|ch
initial values of both the control and the state variabld§® démand depends in the exact same way from the prices
at each time intervalt;,tj 1] to the values predicted by of all the cache structures. Intuitively, this is not a p&_)’_ol

the current optimization results. We can further improv@Ssume two structure§ and . If these are competitive,
the optimization procedure, bigjecting the real values of €ach one has a negative dependency on its own price and
the state variables, if these are available. Specificaly, @ POSitive dependency on the price of the other; therefore,
the actual time is close to the starting timg.: of an it is not possible that they create the same constrairg; If
optimization phase, then the real demand values of tpRUS; are collaborative, creating the same constraint means
structures are available; if the real values are differeant that they depend on the exact same way on each other's
the values predicted by the previous optimization phad¥Cc€ anq on the price of the rest of the structures; this
then the real values can substitute the predicted ones in fgt implies thatS, and S are always employed together
new optimization phase, calibrating the procedure towartisthe cloud; therefore, they can be represented as a set of
an improved overall result. structures with a single price.

We transform the problem into a MINLP one by substi- The parameter&,B,I" can be estimated by performing
tuting each control and state variable into &afrity set of curve fitting (e.g. the least square method), on Eq. 22.
variables, wheré is the number of time intervals of control The fitting is performed based on a sample dataset of
variable re-initialization in the optimization horizors well price-demand values. Ideally, we need a dataset with the
as the number of optimization repetitions. Formally: values forA for all combinations of a set of price values

_ o L R/ € [0,max,], wheremax, is a maximum value, for all
pi—R={p..pJi=1...m price variablesP. The fitting of Eq. 22 necessitates the
Ai—= A ={Nig,- A b i=1,.m (21) initial values of demand and demand rate at the beginning
& — A ={d,,...,%,},i=1...,m of time. Since time is an orthogonal issue to the curve fitting



problem, we can orddR, and assume that for the fitting of 4&
each pair of data that consists of price values of all struc, M2
tures and the respective demand vali@,, ..., Pv,),Av), T
i=1,...,m Ay is the initial value of demand w.r.t. time. %M— G
In order to get the initial value of demand ratetat 0, we 2 |
need another measurement of demand for each structure
)\(,i that is really close td\, i.e. Ay, —)\(,i < e, ~0. This

can be achieved by slightly changing the valuesRn
pl’OdUCIﬂgP’ - ([pvl_—i_el’ e p"m+em]’ &~ O’dl n L....m Fig. 6. The optimization procedure may give a higher profitefformed
We propose to estimate the demand rateﬂ)%x}go =€), inalong time period.

assuming that the smallest price change in two consequent

observation time points ig . mQl Q2 mQ3 #Q4 §Q5 0Q6 mQ7
100

N

Thig = AL p1+A2:p2-
BS-MS(Tbig)
Tsmall = rl +12

Iig t

C. Optimization horizon 80

An important issue is to estimate the appropriate length

of the time period, in which we seek to optimize the cloud 3

% Template Utilization

profit. Specifically, we have to determine the valueTof 20 X

which represents the optimization horizon of Eq. 4. Intu- \

itively, a long horizon allows the optimization procedure 20 ???Q
pAAAIAY,

to take into account the inertia of the system, whereas a
short horizon may preclude the procedure from taking into
account important long-term effects of current optimiaati

decisions.
. Fig. 7. The workload comprises phases of 10000 queries tfat a
Example 2:Assume a structurBwith demand\s(t) and produced based on 7 TPC-H templates.

an optimization procedure of two short phasésismal) highly increase the complexity of the problem, as there is no
and [Tsmail, Thig) of @ procedure with one long phaseyay withouta priori knowledge to determine time varying
[0,Thig). For simplicity, the demand is a step functionyarameters with more confidence than fixed parameters
as shown in Figure 6, i.8As(t) = A1,t € [0, Tsmail) CO™-  contrary to what can happen for physical systems where
responding to pricep; and )‘S(t) = Mgt 6_[Tsmallvaig) degradation, e.g., of physical parameters can be models.
corresponding to price, (for simplicity we ignore struc-  Hence the problem falls in the scope of optimization of
ture correlations). Assume that the building cost®fs ncertain systems (potentially subject to model mismatch
Bs and the maintenance cost Ms(t) = a-t and S'is 4 parametric uncertainty or disturbances), which is an
built once at timet = 0. The cloud profit in[0,Tsmal) active research domain [12], [34]. In this context it can
IS Tsmall = A1+ P1— Bs — Ms(Tsmai). If rsman < 0, the  pe shown that the use of measurements and of feedback is
cloud decides to discar§ and the second optimizationgpe 9 reject a part of the detrimental impact of parametric
phase starts witt§ not available. Since the demand igncertainty on the optimal performances. In our case, real
significant in(Tsmat, Toig), the cloud may decide to buil  gemand values are fed back as the optimization horizon
again, att > Tsma, resulting in profitrpigsman <A2-P2—  glides, which increases the robustness of the proposed
Bs — Ms(Tbig — Tsman). For the long-term optimization the 555r0ach. As mentionedylodel Predictive Controlhas
profit is: roig = A1 - pr+A2- P2 — Bs— Ms(Tbig). Obviously, peen widely used in Industry, where accurate dynamic
Fbig > Tsmall + Ibig-small- Therefore, the result of the two-j6qels are almost never available. In these situationgjusin
phase short-term optimization procedure is not as optimghgency models (i.e. models that capture the main trends
as that of the one-phase long-term procedure. of a process) and measurements is generally sufficient to
Naturally, the prediction of future behavior of a system ignprove the process performances up to such a level that the
subject to unpredictable perturbations. Hence, the lotiger costly efforts for identifying a more accurate process nhode
horizon is, the more error-prone the optimization procedu@re not justified by the loss of optimality [28]. Finally, &t
is, as the prediction accuracy of the behavior of demareptimization proceeds, new data is collected and this data

o F
1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Query ID

tends to decrease with time. can clearly be used to reidentify the price/demand model
periodically.
D. Discussion on the model simplicity VI. EXPERIMENTAL EVALUATION

tg\/e present the simulation study for a cloud cache system

We have assumed that the parameters of the constrai .-
jat uses the proposed pricing model.

in Egq. 10 are constant. Yet, it is possible that in a re
system the dependency of demand on the prices changes _

with time, because of any reasons. This means that the Experimental Setup and Methodology

parametersA B,[" should be time-varying. Even though Setup. The cloud cache is set up with one back-end
the dynamics of Eg. 10 would be more realistic, they wouldatabase. The cache is operated under a TPC-H-based
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Fig. 9. Cloud profit and user loss using dynamic pricing ondigé&ucture availability. ~ Fig. 10. Cloud profit using static pricing.

expensive structures are highly competitive to a third that
is cheap; se€ contains two structures that are necessary to
many queries and not correlated to others;Batontains
two collaborative structures of comparable cost. The pgici
optimization problem is implemented and run in Matlab
7.8.0 using the tool Tomlab [16].

Methodology. The initial demand for all structures is set
to a very low value in order (i) to avoid high cloud profit
by solely exploiting high demand valuass and (ii) force
Fig. 8. Representative seté, (B, C, D) of structures of the workload the prlcmg S(?heme.to fluctuales in order to maximize the
and their correlation w.rt. the price-demand relation profit. The price variable for each structure ranges from 0 to

100% of the respective building cost, i.e<(p < Bg *100.

workload, which consists of 7 TPC-H query templateThe expenmﬂents measure (i) the averamgml ud prqﬂt per
me point, (ii) the averageiser lossper time point and

and simulates the query evolution of 1 million SDSS [20]...

gueries against a 2.5TB back-end database. The SD %the execut!on time. Clouq pro_flt IS defln_ed n Eq. 2
: T nd user loss is the user satisfaction as defined in Eq. 12.
workload consists of phases that show locality in da

access that repeats. In each phase the query execution Coesg)resent experiments for versions of the dynamic pricing
P : P query model that vary the (i) weightv of the user satisfaction

may fall in 3 categories, low, medium and high. Que”esbjective in Eq. 14, s.t. & w < 40, (default isw = 0) (il

arrive at 10 second intervals. We copy the setup in [2 e length of the optimization horizoM in Eqs. 4 and

where the workload simulates the change-of-columns co- T .
occurrence over time for the SDSS workload. The autho%”.s'.t' 2O§T =50, (default isT = 50) (iii) the size of
rotlmlzauon intervals (here called phasgs)n Eq. 20 (by

. . o)
lfg(‘:';"ﬁ)logft?ﬁeCg;?ur&nn;?éo&zursegg% Tvztrrll)l(c;a?jnqﬂgzr:?ﬁé%efau“ set to 10 time points), and (iv) the price-demand
selecty7 ueries and change the auery com osi'tion over i unctions in Eq. 8 — fitted in second order (default and as

d 9 query P Qsfined in Eq. 10) and first order differential equations. The

to simulate similar column co-occurence and locality angenamic ficing scheme is compared with a static pricin
the query execution cost. Figure 7 shows the distributicry P 9 P P 9

. - heme that fixes the cloud profit to a specific percentage of
of the query templates in one phase consisting of 100 -
: . L e building cost. Also, we present results on the proposed
qgueries. We select this workload, as it is portable across : ; ) L
. . “correlation method concerning the quality of the estinretio
different DBMS, allows for the employment of techniques L
; . . o and the execution time.
to improve the runtime of correlation estimations, an
the queries are tunable by using the query generation _
mechanism of the TPC-H benchmark. The building and tf Experimental Results
maintenance costs are determined using Amazon’s pricingrhis section summarizes the experimental results.
model and are based on statistics for the cost of executingl) Pricing with fixed structure availabilityThis section
the SDSS queries. On average, the building cost is 7 orderesents results on the dynamic pricing scheme assum-
of magnitude bigger than the maintenance cost. The deg that all structures are constantly available (i.e. fixed
tailed parameters for the setup are given in [7]. The pricirgaching), and, therefore built once in the cache at the
model decides on the building, maintenance, or destructidreginning of pricing and maintained ever since, de=
and the pricing of 25 structures selected by a commercihi = 1,..,malways. The problem boils down to pricing the
physical designer. The correlation of the structures aed thtructures so that the cloud gains maximum profit while en-
sensitivity of their demand in price changes is variablsuring that the demand is not drastically reduced because of
As an indication, Figure 8 shows 4 sets of structurdle pricing. Figure 9 shows the profit generated by dynamic
(A,B,C,D); while varying the price from the building costpricing as a function of different optimization horizon
(cosh to pmax= 10-cost, the demand varies from O up tolengths for various weight values. As the optimization
8000 queries, with many values around 4000./5etntains horizon is extended the profit drops because structures
two structures that collaborate, one more expensive than tire maintained in the cache even though their demand
other, and one that is competitive; €&is similar, but two drops; the user loss drops too, but with a slower rate.

price p
cost




Naturally, the bigger the weighw, the smaller the profit 1647 2
and the user loss. Yet, for long horizons, the maintenance 1o -
non-profitable structures makes it impossible to satiséy t 2 e 2
combined optimization objective in Eq. 14 for big value:

1E+3 22
1E+2 21

Cloud Profit
User Loss

of weight, i.e.w = 30,40, resulting in zero profit and user © i 20

loss. Figure 8 shows also the profit and user loss fortheb ~ *®° . . . 1 o 6 o o o
X L . . . - i . ) SIS IR S I CCEC AN ST L
fixed pricing and fixed availability scheme: assuming thi 5 @o&é m‘?\o@é o o &b"m@o &g’b&\o &

we have complete knowledge of the workload, we sele ¥
the beststructures to build at the beginning of time. The
beststructures are selected after Obs_ervatlon of the matn”—?é 16. Profit and loss for various optimization scheduld® labelxh,
V (we spotted groups of collaborative and competitiv@ of zrepresents horizons, withy intervals ofz time units each.
structures and we experimented in order to find the subset .

. - S . zons, rather than performed for one long horizon. Naturally
that increases profit; the combinations to examine were

few). Experimentation with various fixed prices of thesa oW = O, the user loss increases and drops if the profit

, . ) : ncreases or drops while the optimization horizon remains
structures resulted in maximum possible profit equal tﬂe same. As the number of horizons increases, the profit
about $400 and user loss equal to about $30. ) ' P

. . . . _decreases (and therefore their length decreases) bebause t
We compare the profit made using dynamic pricing wit

. . - Brocedure cannot predict adequately the demand change.
that made using static pricing that charges each structurq) Performance comparisonWe compare the perfor-

10— 1000% more than the actual building cost, and does b nce of the optimization procedure employing first and

consider the correlation between the structures; Figure 19.ond order differential equations for the pricing model.

shows the profit as a function of the fixed profit percentaggy,yels using first order equations are faster to solve,

As the preset profit percentage increases, the cloud prgfit,ce preferred over second-order differential equations
increases up to about $4700 which occurs at about 120oyhe real-world constraint can be modeled using them.

Wh"_e th_e maximum profit for dynamic pricing With_ fixed Figure 12 shows using a first-order differential equation
availability is about $8000. Beyond 120%, the profit drops,5kes the procedure slightly faster than using a second-

gradually. The reason for this drop is the inverse cormiati e, differential equation. The second-order formutatio
of price and demand: a very high price reduces the dem ever, is more generic and we use it as default.

to zero and the high price does not compensate for thegjgyre 12 also shows that relaxing thevariable makes

reduced demand. At almost 500% preset for profit the USgk solver an order of magnitude faster than the problem
loss drops sharply to close to zero values. The user I3gh 5 variables on average. Therefore, the solver spends
remains low and comparable to that of dynamic pricingyost of the time in the branch and bound method that
when the profit does not grow for high preset values, th&eks the optimal integer values [16]. The reason is that the

user loss grows because the user pays high prices for }gpjem is not convex—the solver cannot easily determine
small number of structures which are still in demand. T e lower bounds for pruning search branches

results of this experiment are in accordance with the result 5) Correlation of structures:This section presents the

Optimization Schedule Optimization Schedule

of the works in [37]. index correlations achieved using Eq. 16 and compares
2) Pricing with choice on structure availabilityThis the proposed measure for correlation coefficients Eq. 19
section presents results on the dynamic pricing schefgh the state-of-the-art measure Eq 15 [33]. We name
assuming that structures are initially built in the cachéhe measure Eq. 15 “SPG-measure”. We show the trade-
but during optimization they can be discarded and re-builiff of performance against the accuracy of the cost es-
Figure 11 shows that the choice on structure availabilibmation procedure. Figure 13 shows the distributions
increases the average profit by two orders of magnituge about 500 index correlations sampled randomly from
and decreases the user loss by one order of magnitudeg# candidate indexes. The correlations computed using
average w.r.t. the horizon length. Contrary to pricing witgq. 16 is distributed both in the positive and negative
fixed availability, the profit increases as the horizon is eXalues, showing that the measure detects both positive and
tended. The reason is that the optimization procedure takRyative correlations. Furthermore, it is also bounded by
advantage of long-term predictions in order to schedule thge range[—1,1]. In comparison, most of the correlations
structure availability in a more optimal way. computed using Eq. 15 are positive and have value close
3) Sensitivity to the optimization schedul@he opti- to zero. SPG-measure is useful if only top interacting
mization procedure is sensitive to the horizon length, thedexes are interesting; if the problem requires correfati
number of optimization intervals; in Eq. 20 and their estimation between all pairs of structures, SPG-measure
length, as shown in Figure 16. Keeping the total time déils to distribute the correlations in the target range.
optimization fixed, the profit increases as the number of 6) Optimization in presence of update$he optimiza-
intervals increases (and, therefore their length decsdasdion procedure works under the assumption that data struc-
because the procedure is allowed to change the structturees do not have to be evicted and rebuilt due to data
availability more often, in order to achieve optimality.\Ne updates. Even though updates cannot be controlled by the
ertheless, the effect of increasing the number of interigalsoptimization procedure, if they can be predicted, they can
faded out if the optimization is repeated in multiple horibe used as new constraints on the optimization problem.



1E+6 1E+4 -

w=0 Ow=10 Ow=20 ®w=30

w=40 W 2nd Order, 0
O 2nd Order, No @
1st Order, @

M 1st Order, No 0

1E+5
1E+3
1E+4

1€+3 1642 1

User Loss

1E+2

Cloud Profit

1E+1
1E+1

1E+0 0 1E+0

Solver's Execution Time (seconds)

w=30 w=40
50

w=0 Ow=10 Ow=20
30 40

10

20 30 40

Horizon Length

50

20 30 40

Horizon Length

50 20

Horizon Length
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Fig. 13. Comparison of the estimated corfédg. 14.
lations using two measures.

Prediction of demand change
and real demand change in time.

Fig. 15. Optimization using or not predictions for
updates for 1-5 updates on average per structure.

Specifically, an update of structui® at timet incurs a qualitative aspects of the solution and a variation of the
reset of the respectiv®parameter from 1 to O at that time.problem that allows the consideration of user satisfaction
Figure 15 shows the results of optimization in case updategether with profit maximization. The viability of the
times for structures are predicted or not. The results are faricing solution is ensured with the proposal of a method
1 up to 5 updates on average per each structure. The clabat estimates the correlations of the cache services in an

profit is bigger if updates are predicted. Yet, as the numbime-efficient manner.

of updates increases, the profit drops and is closer to profit
in the case of no update prediction. User loss is bigger
(w= 0 for these experiments) in case of update predictiorh]
since the optimization sets higher prices for the strusture
7) Predicting the demand for structuresFigure 14

shows the comparison of the real demand fluctuations aftdd
price change with the predictions of the differential equass]
tions that model the price-demand relation (the parameter
estimation of the model precedes this procedure). The figu
shows the comparison for three structures for which the
price was changed from the building cost to 10 times the
latter. The demand for these structures shows qualitati\;g]
differences: the demand foh reacts smoothly to price [g]
change after some weak inertia to the workload; the demand
for B shows similar inertia but after that it drops abruptly;[7
the demand foC shows great inertia to the workload (this [g)
is an indication of a necessary structure to query execution
All three demand fluctuations are predicted very accuratel
by the respective differential equation, which exhibite th

flexibility of the proposed price-demand model. [10]

(11]
VIl. CONCLUSIONS

This work proposes a novel pricing scheme designed %rz]

a cloud cache that offers querying services and aims at the
maximization of the cloud profit. We define an appropriat[é3]
price-demand model and we formulate the optimal pricingy
problem. The proposed solution allows: on one hangp]
long-term profit maximization, and, on the other, dynami%?l
calibration to the actual behavior of the cloud applicatio 8]
while the optimization process is in progress. We discugs]

1 D Dash, V. Kantere, and A. Ailamaki.

] Guillermo Gallego and Garrett van Ryzin.
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