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Abstract—Cloud applications that offer data management
services are emerging. Such clouds support caching of data in
order to provide quality query services. The users can query
the cloud data, paying the price for the infrastructure they
use. Cloud management necessitates an economy that manages
the service of multiple users in an efficient, but also, resource-
economic way that allows for cloud profit. Naturally, the
maximization of cloud profit given some guarantees for user
satisfaction presumes an appropriate price-demand model
that enables optimal pricing of query services. The model
should be plausible in that it reflects the correlation of cache
structures involved in the queries. Optimal pricing is achieved
based on a dynamic pricing scheme that adapts to time
changes. This paper proposes a novel price-demand model
designed for a cloud cache and a dynamic pricing scheme
for queries executed in the cloud cache. The pricing solution
employs a novel method that estimates the correlations of the
cache services in an time-efficient manner. The experimental
study shows the efficiency of the solution.

Index Terms—cloud data management, data services, cloud
service pricing

I. I NTRODUCTION

The leading trend for service infrastructures in the IT
domain is calledcloud computing, a style of computing
that allows users to access information services. Cloud
providers trade their services on cloud resources for money.
The quality of services that the users receive depends
on the utilization of the resources. The operation cost of
used resources is amortized through user payments. Cloud
resources can be anything, from infrastructure (CPU, mem-
ory, bandwidth, network), to platforms and applications
deployed on the infrastructure.

Cloud management necessitates an economy, and, there-
fore, incorporation of economic concepts in the provision of
cloud services. The goal of cloud economy is to optimize:
(i) user satisfaction and (ii) cloud profit. While the success
of the cloud service depends on the optimization of both ob-
jectives, businesses typically prioritize profit. To maximize
cloud profit we need a pricing scheme that guarantees user
satisfaction while adapting to demand changes.

Recently, cloud computing has found its way into the
provision of web services [15], [18]. Information, as well
as software is permanently stored in Internet servers and
probably cached temporarily on the user side. Current
businesses on cloud computing such as Amazon Web
Services [14] and Microsoft Azure [19] have begun to offer
data management services: the cloud enables the users to
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manage the data of back-end databases in a transparent
manner. Applications that collect and query massive data,
like those supported by CERN [17], need a caching service,
which can be provided by the cloud [31].

The goal of such a cloud is to provide efficient querying
on the back-end data at a low cost, while being econom-
ically viable, and furthermore, profitable. Figure 1 depicts
the architecture of a cloud cache. Users pose queries to
the cloud through a coordinator module, and are charged
on-the-go in order to be served. The cloud caches data and
builds data structures in order to accelerate query execution.
Service of queries is performed by executing them either
in the cloud cache (if necessary data are already cached)
or in a back-end database. Each cache structure (data or
data structures) has an operating (i.e. a building and a
maintenance) cost. A price over the operating cost for each
structure can ensure profit for the cloud. In this work we
propose a novel scheme that achieves optimal pricing for
the services of a cloud cache.

A. Setting the price for cloud caching services

The cloud makes profit from selling its services at a price
that is higher than the actual cost. Setting the right price
for a service is a non-trivial problem, because when there
is competition the demand for services grows inversely but
not proportionally to the price.

There are two major challenges when trying to define an
optimal pricing scheme for the cloud caching service. The
first is to define a simplified enough model of the price-
demand dependency, to achieve a feasible pricing solution,
but not oversimplified model that is not representative. For
example, a static pricing scheme cannot be optimal if the
demand for services has deterministic seasonal fluctuations.
The second challenge is to define a pricing scheme that is
adaptable to (i) modeling errors, (ii) time-dependent model



changes, and (iii) stochastic behavior of the application.The
demand for services, for instance, may depend in a non-
predictable way on factors that are external to the cloud
application, such as socioeconomic situations.

A representative model for the cloud cache should take
into account that the cache structures (table columns or
indexes) may compete or collaborate during query execu-
tion. The demand for a structure depends not only on its
price, but also on the price of other structures. For example,
consider the queryselect A from T where B= 5 and

C = 10. Out of the set of candidate indexes to run the query
efficiently, indexesIb = T(B), Ic = T(C), and Ibc = T(BC)
are most important, since they can satisfy the conditions in
the ‘where’ clause. If the cache usesIbc, then the indexes
Ib and Ic, will never be used, sinceIbc can satisfy both
conditions. Therefore, the presence ofIbc has a negative
impact on the demand forIb and Ic. Alternatively, if the
cache usesIb, thenIc can also improve query performance
via index intersections, hence increasing the profit for the
cloud. Therefore, indexesIb and Ic have positive impact
on each other’s demand. An appropriate estimation method
is necessary to model price-demand correlations among
cached structures.

The peculiarity of the pricing problem for the application
of the cloud DBMS, in comparison with other businesses,
is that the selling good is not a consumable product, but a
persistent service.

A consumable product diminishes with demand and has
to be ordered, whereas a cloud cache service can satisfy
infinite demand as long as it is maintained. Moreover,
the demand for a cache service pauses if this service is
not available. A consumable product may cost to maintain
depending on the stored amount, whereas the maintenance
cost of a cache service depends only on time. Moreover, a
cache service may have a setup cost each time it is loaded
in the cloud. A big challenge for the cloud is to optimize
the set of offered services, i.e. decide which services to
offer and when, depending on their demand while they are
available. Roughly, the cloud has to schedule online and
offline periods of the offered services, which affects the
maintenance and the setup cost. Furthermore, the optimiza-
tion of the cloud profit has to be scheduled for a long period
in time while it is flexible during this period to adjust to the
real evolution of the service consumption. The long-term
profit optimization is necessary in order for the cloud to
schedule ahead associative actions for the maintenance of
the cloud infrastructure and the cloud data. Moreover, the
cloud can schedule the service availability according to the
guarantees for the overall revenue estimated by the long-
term optimization. Nevertheless, it is important that the
long-term optimization process is flexible enough to receive
corrections while it is still in progress. The corrections may
refer to the difference between the estimated and the actual
price influence on the demand of services.

B. Related work

Existing clouds focus on the provision of web services
targeted to developers, such as Amazon Elastic Compute

Cloud (EC2) [14], or the deployment of servers, such as
GoGrid [18]. Emerging clouds such as the Amazon Sim-
pleDB and Simple Storage Service offer data management
services. Optimal pricing of cached structures is central to
maximizing profit for a cloud that offers data services.

Cloud businesses may offer their services for free, such
as Google Apps [15] and Microsoft Azure [19] or based
on a pricing scheme. Amazon Web Service (AWS) clouds
include separate prices for infrastructure elements, i.e.disk
space, CPU, I/O and bandwidth. Pricing schemes are static,
and give the option for pay as-you-go. Static pricing cannot
guarantee cloud profit maximization. In fact, as we show
in our experimental study (see Section VI), static pricing
results in an unpredictable and, therefore, uncontrollable
behavior of profit.

Closely related to cloud computing is research on ac-
counting in wide-area networks that offer distributed ser-
vices. Mariposa [35] discusses an economy for querying in
distributed databases. This economy is limited to offering
budget options to the users, and does not propose any
pricing scheme. Other solutions for similar frameworks
[38], [8], [29], [21], [4], [22], [26] focus on job scheduling
and bid negotiation, issues orthogonal to optimal pricing.

Pricing schemes were proposed recently for the optimal
allocation of grid resources in order to increase revenue
[36], or to achieve an equilibrium of grid and user satisfac-
tion [25], assuming knowledge of the demand for resources
or the possibility to vary the price of a resource for different
users. These works are orthogonal to ours, as we do not
assume that service demand is known a priori and all
users are charged the same for the consumption of the
same service. Similarly, dynamic pricing for web services
[23] focuses on scheduling user requests. This work is
orthogonal to ours, as we require that users’ requests for
service are satisfied right away. Moreover, dynamic pricing
for the provision of network services [27], [13], [3] aims
at achieving a game-theoretic equilibrium through price
control among competitive Internet Service Providers. This
work is orthogonal to ours, as we focus on the maximization
of cloud profit in the presence of competitive services
within the same cloud provider.

The problem of revenue management through dynamic
pricing is well-studied [1]. Based on the rationale that price
and demand are dependent qualities, numerous variations
of the problem have been tackled, for instance businesses
that sell products to retailers [10], seasonal products [40],
stochastic demand [9]. Electronic businesses, and therefore
cloud businesses can benefit from dynamic pricing policies
[30]. Cache services are distinguished from consumable
products in two major ways: (i) they are not exhausted
while they are consumed and (ii) the demand for a specific
service pauses while this is not available. To the best of our
knowledge, this is the first work that tackles the problem
of optimal pricing of competitive data services within the
same cloud cache provider.

Research on the identification of non-correlated indexes
using the query structure [39] does not determine the
negative and positive correlations. Identification of index



correlations by modeling physical design as a sub-modular
and super-modular problem [5] is restricted to one-column
indexes and one index per query. Identification of negative
index correlation [2] does not consider the positive and
no correlation case. A recent index interaction model [33]
attempts to find all index correlations. As we show in
Section IV, it does not satisfy three critical for the pricing
scheme requirements: (i) sensitivity to the range of all
possible correlations, (ii) production of normalized values
and (iii) fast computation.

C. Our proposal

The cloud caching service can maximize its profit using
an optimal pricing scheme. This work proposes a pricing
scheme along the insight that it is sufficient to use a
simplified price-demand model which can be re-evaluated
in order to adapt to model mismatches, external distur-
bances and errors, employing feedback from the real system
behavior and performing refinement of the optimization
procedure. Overall, optimal pricing necessitates an appro-
priately simplified price-demand model that incorporates
the correlations of structures in the cache services. The
pricing scheme should be adaptable to time changes.

Simple but not simplistic price-demand modeling. We
model the price-demand dependency employing second
order differential equations with constant parameters. This
modeling is flexible enough to represent a wide variety
of demands as a function of price. The simplification
of using constant parameters allows their easy estimation
based on given price-demand data sets. The model takes
into account that structures can be available in the cache or
can be discarded if there is not enough respective demand.
Optional structure availability allows for optimal scheduling
of structure availability, such that the cloud profit is maxi-
mized. The model of price-demand dependency for a set of
structures incorporates their correlation in query execution.

Price adaptivity to time changes. Profit maximization
is pursued in a finite long-term horizon. The horizon
includes sequential non-overlapping intervals that allowfor
scheduling structure availability. At the beginning of each
interval, the cloud redefines availability by taking offline
some of the currently available structures and taking online
some of the unavailable ones. Pricing optimization proceeds
in iterations on a sliding time-window that allows online
corrections on the predicted demand, via re-injection of
the real demand values at each sliding instant. Also, the
iterative optimization allows for re-definition of the param-
eters in the price-demand model, if the demand deviates
substantially from the predicted.

Modeling structure correlations. Our approach models
the correlation of cache structures as a dependency of the
demand for each structure on the price of every available
one. Pairs of structures are characterized as competitive,if
they tend to exclude each other, or collaborating, if they
coexist in query plans. Competitive pairs induce negative,
whereas collaborating pairs induce positive correlation.
Otherwise correlation is set to zero. The index-index, index-
column, and column-column correlations are estimated

Global: cache structuresS, pricesP, availability ∆
queryExecution( )

if q can be satisfied in the cachethen
(result,cost)← runQueryInCache(q)

else
(result,cost)← runQueryInBackend(q)

end if
S← addNewStructures()
return result,cost

optimalPricing (horizonT, intervalst[i], S)
(∆,P)← determineAvailability&Prices(T,t,S)
return ∆,P

main()
execute in parallel tasks T1 and T2:
T1:

for every newi do
slide the optimization window
optimalPricing(T,t[i],S)

end for
T2:

while new queryq do
(result,cost)← queryExecution(q)

end while
if q executed in cachethen

chargecost to user
else

calculate total price and charge price to user
end if

Fig. 2. Query execution model for the cloud cache

based on proposed measures that can estimate all three
types of correlation. We propose a method for the efficient
computation of structure correlation by extending a cache-
based query cost estimation module and a template-based
workload compression technique.

D. Contributions

This paper makes the following contributions:

• A novel demand-pricing model designed for cloud
caching services and the problem formulation for the
dynamic pricing scheme that maximizes profit and
incorporates the objective for user satisfaction.

• An efficient solution to the pricing problem, based on
non-linear programming, adaptable to time changes.

• A correlation measure for cache structures that is
suitable for the cloud cache pricing scheme and a
method for its efficient computation.

• An experimental study which shows that the dynamic
pricing scheme out-performs any static one by achiev-
ing 2 orders of magnitude more profit per time unit.

The rest of the paper is structured as follows. Section
III models the optimal pricing problem and Section IV
models the price-demand correlations for data structures
in the cloud cache. Section V describes the solution of the
pricing optimization problem and Section VI presents the
experimental study. Section VII concludes the paper.

II. QUERY EXECUTION MODEL

The cloud cache is a full-fledged DBMS along with
a cache of data that reside permanently in back-end
databases. The goal of the cloud cache is to offer cheap



efficient multi-user querying on the back-end data, while
keeping the cloud provider profitable. Our motivation for
the necessity of such a cloud data service provider derives
from the data management needs of huge analytical data,
such as scientific data [31], for example physics data
from CERN [17] and astronomy data from SDSS [20].
Furthermore, a viable, and moreover, profitable data service
provider can achieve cost and time efficient management of
smaller scientific collections or any type of analytical data,
such as digital libraries, multimedia data and a variety of
archived data.

Users pose queries to the cloud, which are charged in
order to be served. Following the business example of
Amazon and Google, we assume that data reside in the
same data center and that users pay on-the-go based on the
infrastructure they use, therefore, they pay by the query.
Service of queries is performed by executing them either
in the cloud cache or in the back-end database. Query
performance is measured in terms of execution time. The
faster the execution, the more data structures it employs,
and therefore, the more expensive the service. We assume
that the cloud infrastructure provides sufficient amount of
storage space for a large number of cache structures. Each
cache structure has a building and a maintenance cost.

Figure 2 presents at a high level the query execution
model of the cloud cache. The names of variables and
functions are self-explanatory. The user query is executed
in the cache iff all the columns it refers to are already
cached. Otherwise it is executed in the backend databases.
The result is returned to the user and thecost is the
query execution cost (the cost of operating the cloud cache
or the cost of transferring the result via the network to
the user). The cloud cache determines which structures
(cached columns, views, indexes)S to build in order to
accelerate query execution and reduce the query execution
cost. Initially S is empty and gradually it is filled with
structures that would have or have benefitted past queries.
How S is populated and how the costs of building and
maintaining cache structures as well as the query execution
cost are computed is an input to the presented optimal
pricing scheme. More details on these issues can be found
in [7]. Periodically (on predefined time intervalst[i]) the
cloud performs the pricing scheme proposed in this work.
The pricing scheme schedules the availability∆ and sets
the pricesP of the structuresS for a time horizonT
as described in the rest of the paper. The goal is to
maximize the provider’s profit and ensure that the user is
not overcharged.

III. M ODELING OPTIMAL PRICING

This section describes the problem formulation of max-
imizing the cloud profit. The presentation of the pricing
scheme is guided bypropositions that state the main
rationale of our approach.

A. Problem Formulation

This section defines the objective and the constraints of
the problem, and gives the mathematical problem definition.

1) Objective: The cloud cache offers to the users query
services on the cloud data. The user queries are answered by
query plans that use cache structures, i.e. cached columns
and indexes. We assume that the set of possible cache
structures isS = {S1, . . . ,Sm}.

Whenever a structureS is built in the cache, it has a
one-time building costBS. While S is maintained in the
cache it has a maintenance cost which depends on time,
MS(t). We assume that each structure is built from scratch
in the cloud cache, as the cloud may not have administration
rights on existing back-end structures. Nevertheless, cheap
computing and parallelism on cloud infrastructure may
benefit the performance of structure creation. For a column,
the building cost is the cost of transferring it from the back-
end and combining it with the currently cached columns.
This cost may contain the cost of integrating the column
in the existing cache table. For indexes, the building cost
involves fetching the data across the Internet and then
building the index in the cache. Since sorting is the most
important step in building an index, the cost of building
an index is approximated to the cost of sorting the indexed
columns. In case of multiple cloud databases, the cost of
data movement is incorporated in the building cost. The
maintenance cost of a column or an index is just the
cost of using disk space in the cloud. Hence, building a
column or an index in the cache has a one-time static
cost, whereas their maintenance yields a storage cost that
is linear with time1. For more information on the building
and maintenance cost of cloud cache structures the reader
is referred to [7]. In any case, the cost of a structureS as
soon as it is built at timetbuilt in the cache and until it is
discarded is:

cS(t) = BS+MS(t− tbuilt), (1)

Cache services are offered through query execution that
uses cache structures. The demand for cache structures is
defined as follows:

Definition 1: The demand for a cache structureS, de-
noted asλS(t), is the number of times thatS is employed
in query plans selected for execution at timet.

Naturally, in realistic situations the demand for a struc-
ture is measured in time intervals. If a structureS is built in
the cache then query plans that involve it can be selected,
i.e. λS(t) ≥ 0, otherwise not, i.e.λS(t) = 0. Intuitively,
there is a trade-off between (i) keeping a structure in the
cache and paying the maintenance cost, and (ii) building
and discarding the structure occasionally. This trade-offis
reinforced towards the one or the other direction by the
demand of the structure: if the demand is low, it is possible
that it is cheaper to discard the structure from the cache
and pay the building cost multiple times, than pay the
maintenance cost; if the demand is high, then the opposite
tactic may be more profitable for the cloud.

1Index updating is assumed to incur rebuilding the index fromscratch.
Data updates are external factors that cannot be controlledby the opti-
mization procedure. In Section VI we study the effect of updates to the
dynamic pricing solution.



The cloud makes profit by charging the usage of struc-
tures in selected query plans for a price. Let us assume that
the price of a structureS at timet is pS(t). Then the profit
of the cloud at a specific time is:

r(t) =
m

∑
i=1

δi · (λSi (t) · pSi (t)−cSi(t)),δi = 0,1 (2)

whereδi represents the fact that the structureSi is present
in the cloud cache. Specifically, a structure may be present
or not in the cache at any time point in[0,T] and not present
before the beginning of optimization time, i.e.:

δi(t) =

{

0 or 1 if t ∈ [0,T]
0 otherwise

Based on this, the cost of a structure w.r.t. time becomes:

cS(t) = (1− δi(t0−))BS+MS(t− t0), (3)

wheret0 is the start time of cost observation.
Structures can be built and discarded at any timet ∈ [0,T]

and the total profit of the cloud isR(T) =
R T

0 r(t)dt. The
goal is to maximize the total profit in[0,T] by choosing
which structures to build or discard and which price to
assign to each built structure at any time:

max
δ,p

R(t) =
Z T

0
r(t)dt (4)

2) Problem constraints:It is necessary to constrain the
optimization of the objective 4, so that a reasonable and
correct solution can be found.

Value constraints. It is straightforward that both the de-
mand and the price of a structure must be positive numbers.
Furthermore, it is necessary to impose an upper bound on
the price. The reason is that the optimum solution is to
instantaneously raise the price of at least one structure to
infinity, if this is allowed2. These bounds can be formulated
as follows:

0≤ λi, i = 1, . . . ,m (5)

0≤ pi ≤ pmax, i = 1, . . . ,m (6)

Dynamics of the demand. Naturally, the demand and the
price of a structure are connected variables: intuitively,as
the price for a structure increases the demand decreases and
vice versa. In order to to solve the optimization problem
4, a mathematical relationship, which models the interac-
tion between demand and price, is necessary. However,
this mathematical relationship should have a structure as
flexible as possible, so that, upon a proper identification of
its parameters, it is able to represent as many as possible
functions of demand and price. We make the following
assumption:

Proposition 1: The demand of a structureShas memory:
the demand at timet depends on the demand beforet.
Consequently, the relationship between price and demand

2Mathematically, the integral of Eq. 4 goes to infinity if the price for
one structure is infinite and the demand for this structure isnot zero. If
the demand is zero, the profit,∞×0 is undefined. Moreover, all numerical
solvers need upper bounds in order to produce solutions.

can be modeled as an ordinary differential equation, which
can be written in the general case in its implicit form:

f (
dnλS

dt
,
dn−1λS

dt
, . . . ,

dλS

dt
,λS(t),

dmpS

dt
, . . . ,

dpS

dt
, pS(t)) = 0

(7)

wherem≤ n, to respect the causality principle, asm > n
would imply that demand could change (due to a change
of price) before the price has changed.

In particular, since there is no inertia in setting a price
for a structure,m= 0 and Equation 7 can be rewritten in
its explicit form:

pS(t)) = f (
dnλS

dt
,
dn−1λS

dt
, . . . ,

dλS

dt
,λS(t)) (8)

Justification 1: Economies as well as societies tend to
behave in a way that reflects past experience. More for-
mally, an economic system, such as the cloud cache and
its users hasinertia, which means that the current system
behavior depends on past and influences future behavior.
Concerning the cloud cache, this means that the demand for
structures has a time-resistant effect. For example, assume
that the demand for a structure built in the cloud cache does
not drop as fast as expected in a memory-less system w.r.t.
price increase. Two intuitive exemplifying reasons for this
are: (i) the structure is already built and remains available
because the building cost is already amortized, while the
maintenance cost is not very high; and (ii) the structure, for
example a cached column is requested for the execution of
numerous queries, because it involves information that is
currently very popular to users.

Associating the price with thenth derivative of demand
for a structure, guaranteesn degrees of freedom for the
shape of their relationship. Therefore, the bigger the order
n is, the more flexible the price-demand relationship is. Yet,
as the ordern increases, the number of parameters of the
price-demand relationship increase and more information is
needed in order to (see Section V) identify their values. We
choose to consider a 2nd order differential equation as it is
versatile enough to represent a price-demand relationship,
where the demand drops smoothly at the beginning of
time 3, as depicted in Figure 3, while keeping the number
of parameters to identify low. Therefore, the constraint
is: pS(t) = f (d3λS

dt ). We constrain f to be an ordinary
differential relation between price and demand:

pS(t) = α
d2λS

dt
+ β

dλS

dt
+ γ ·λS(t) (9)

The parametersα,β,γ are constrained to be constants.
This means that the price model considers a static relation
between demand and price. In order to make the pricing
model realistic, we have to consider the influence of the
price of one structure to the demand of the rest. Therefore,
it is necessary to extend Eq. 9 so that it captures correlations
of demand and prices between pairs of structures. Let us

3Note that an abrupt drop is expressed by a first order differential
equation, which is encapsulated in the second order one, as the parameter
a can be set to 0.
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Fig. 3. The shape of the demand vs. time function based on a first (a)
and a second (b) order differential equation.

assume thatV is a m×m matrix where the row and the
column i corresponds to the structureSi i = 1, . . . ,m. Each
elementvi j , i, j = 1, . . . ,m corresponds to the correlation
of the price of Sj to the demand ofSi . We call V the
correlation matrix of prices and demands. IfΛ and P are
them×1 matrices of demands and prices for the respective
structures inS , andA,B,Γ arem×1 matrices of parameters,
then the constraint in Eq. 9 becomes:

V ·P = AT d2Λ
dt

+BT dΛ
dt

+ ΓTΛ (10)

Eq. 10 is actually a set of constraints of the form:∑ j=m
j=1 bi, j ·

pSj (t) = αi
d2λSi

dt + βi
dλSi
dt + γi ·λSi (t).

Problem definition. The previous discussion leads to the
following problem formulation for optimal pricing:

The maximization of the cloud DBMS profit is achieved
with the solution of the following optimization problem:

max
δ,p

R(t) =
R T

0 ∑m
i=1[δi(t j) · (λSi (t) · pSi (t)−cSi(t))]dt

subject to the constraints:
0≤ λi , i = 1, . . . ,m,

0≤ pi ≤ pmax, i = 1, . . . ,m,

V ·P= AT d2Λ
dt2

+BT dΛ
dt + ΓTΛ

B. Generalization of Optimization Objective

The problem of optimal pricing as formulated in Section
III-A consists of a sole objective: the maximization of the
cloud profit, subject to some constraints. From a mathe-
matical point of view, we expect a solution that is on the
boundaries of thefeasible area, meaning a solution along
the constraints of the problem that satisfies the objective.
The constraints on the price-demand dependency in Eq. 10
do not actually constrain the sought solution, but only
the value of the optimal profit, if the solution is applied;
therefore, the sought solution is expected to be on the
boundaries of the allowed price, Eq. 5, and demand values,
Eq. 6, meaning maximum price selections as long as the
demand for structures is above zero, as shown in Figure
4(a). This is called abang-bangsolution and the mathe-
matical reason for this expectation is that the objective of
the problem is linear w.r.t. the control variables: the price
p and the structure availabilityδ. Intuitively, the objective
of optimization is the purely egoistic and straightforward
maximization of cloud profit. The optimization procedure

Fig. 4. While structures are available, the optimization ofthe objective
function may lead to choices of price values that are: (a) on the boundaries,
(b) change linearly or (c) follow a trajectory.

shall try to achieve this goal as soon as possible, resulting
in charging the highest possible prices as long as there
is structure demand. Of course, the freedom of choosing
the availability of structures complicates the optimization
goal, but does not change the decision for maximum charge
whenever availability for a structure is decided.

Naturally, one would expect that the user dissatisfaction
from high service charge, which is the actual reason for the
demand drop, should be taken into consideration in a real
cloud business. Simply, the cloud risks to permanently lose
the dissatisfied users in an open-market world. The user
satisfaction is an altruistic tend of the optimization thatis
opposite to the egoistic tend of cloud profit.

Proposition 2: The altruistic tend of pricing optimiza-
tion is expressed as: (i) a guarantee for a low limit on user
satisfaction, or (ii) an additional maximization objective.

Justification 2: There are two policies in order to in-
corporate an altruistic tend in pricing optimization. The
first is to give a much lower priority to user satisfaction
than cloud profit, which results into a constraint (static or
time-dependent) that passively restricts the maximization
of profit, i.e. expression (i). The second is to handle it
as a secondary goal of the pricing optimization, which
results into a new objective that actively restricts profit max-
imization. ‘Passive’ restriction means that the altruistic tend
turns down pricing solutions proposed by the optimization
procedure, while ‘active’ restriction means that the altruistic
tend is involved in the proposition of pricing solutions.

If the altruistic tend is expressed as low-limit guarantee
on user satisfaction, then it can be formulated as an
additional constraint of the optimization problem of Section
III-A on the demand drop:

dΛ
dt
≥

dλ
dt min (11)

whereλ̇min is the selected minimum value of demand drop
rate. Alternatively, the user satisfaction can be defined as
the difference of the structure price and the actual cost:

u(t)≡ pS(t)−cS(t) (12)

In this case, the problem can accommodate, either a new
constraint or a new optimization objective. In the first case,
the constraint can be:

u(t)≤ rmin (13)

wherermin is the selected minimum value of cloud profit.
Adding one of the constraints 11 or 12 to the optimization
problem does not change the objective of the optimization,



which attempts to maximize the prices while satisfying the
new constraints, (see Figure 4(b)).

If the altruistic tend is expressed as a new maximization
goal, the optimization objective is a combination of Eq. 4
and Eq. 12:

max
δ,p

R(t) =
Z T

0
(r(t)−w ·u(t))dt (14)

wherew is a weight that calibrates the influence of the al-
truistic tend to the optimization procedure. The augmented
optimization objective 14 leads the optimization procedure
to seek a trajectory that balances the opposite egoistic and
altruistic tends, (see Figure 4(c)).

IV. M ODELING PRICE-DEMAND CORRELATIONS

The pricing scheme depends on the estimated values of
price-demand correlations for all structures, which as stored
in the matrix V (see the constraint 10). The key to the
maximization of profit is the maintenance of collaborations
and the elimination of competitions between structures,
by pricing the structures appropriately. The success of the
scheme depends greatly on the accuracy of the estimation
of the correlation degree for all candidate structures. We
refer to the elements,vi j , i, j = 1, . . . ,m of V, ascorrelation
coefficients, defined as follows:

Definition 2: For any pair of structuresSi and Sj we
define the symmetric correlation coefficientvi j ≡ v ji that
represents the combined usage ofSi and Sj in executed
query plans.

A. Correlation Requirements

In order to construct a measure for correlation estimation,
we define the following requirements4.

Proposition 3: The correlation coefficientvi j should sat-
isfy the following requirements:

R1 vi j is negative ifSi can replaceSj and the opposite,
positive if they collaborate, and zero if they are used
independent of each other in query plans.

R2 vi j can be normalized for any pair ofSi andSj .
R3 vi j is easy to compute.

Justification 3: R1: The sign of the coefficientvi j de-
notes the competitive or collaborative behaviour between a
Si andSj . If their presence does not affect each other, the
coeficcient should be zero. We give an example.

Example 1: In a workload with only one query,
Q = select A from T where B = ’b’ and C =

’c’ , the columns B and C should have positive
correlation, while the indexesIA−D = T(A,B,C,D) and
IA−E = T(A,B,C,D,E) should have negative correlation,
and an irrelevant to the query indexT(E,F) should have
zero correlation. It is straightforward that the pricing
scheme requires these properties from the correlation
coefficientsV.

4Please note that the correlation requirements that we propose are
tailored to the problem in hand. These requirement may be toostrict for
other use cases of management of data structures

R2: The correlation coefficientsV determine the price of
all the structures in the cloud cache (see constraint 10). If
their values are not normalized, the pricing scheme is biased
towards specific structures with high coefficient values.

R3: It is necessary to compute all correlation coefficients
V before the structures are materialized or even selected
by the cloud cache. Materialization and selection of cache
structures is an online procedure performed for each query
execution. Therefore, the correlation coefficients must be
computed efficiently and scalably.

With respect to these requirements, we discuss a recently
proposed correlation measure and its limitations. Then we
propose a new measure that satisfies all the requirements.

B. Limitations of the Existing Approaches

Recently Schnaitter et al. [33] proposed a technique that
computes the correlation between indexes. This section lists
the limitations of this approach, while the limitations of
other approaches is discussed in Section I-B.

Given a set of indexesI ⊆ S and two indexes from the
set,{Si,Sj}, their correlation coefficientvq

i j given a query
q, is:

vq
i j = max

X⊆I ,{Si ,Sj}\X

coq(X)−coq(Xi)−coq(Xj)

coq(Xi j )
+1 (15)

Where,coq is a function that gives the cost ofq given
a set of indexes. The setX is a subset ofI that does not
contain the two indexesSi andSj . Moreover,Xi ≡X∪{Si},
Xj ≡ X∪{Sj}, andXi j ≡ X∪{Si ,Sj}. The above measure
finds the maximum benefit that an index gives compared to
another index for a given query and any subset of the set,
normalized by the total cost of the query using both indexes.
Since the query cost is monotonic, it is necessary that
coq(X) > coq(Xi) > coq(Xi j ), coq(X) > coq(Xj) > coq(Xi j ).

Measure 15 does not satisfy the requirementR1: for
indexes that can replace each other the correlation is not
negative. Sincecoq(X) > coq(Xi) ≈ coq(Xj) ≈ coq(Xi j ),
the measure is positive when the indexes are similar. It
does not satisfyR2 too: the produced values do not range
in a bounded domain, therefore it is hard to perform
normalization. Finally, it does not satisfyR3: determining
the coefficient requires exponentially large number of ex-
pensive optimizer calls even for a smallI .

C. Structure Correlation Measure

We propose correlation measures that overcomes the
limitations of the above technique. For indexes, we propose
the measure:

vq
i j =

coq({Si})+coq({Sj})−2 ·coq({Si ,Sj})

coq({})−min{a,b}coq({a,b})
−1 (16)

Measure 16 identifies the individual benefits that the
indexesSi andSj provide, and normalizes their sum w.r.t.
the maximum benefit achievable by any pair of indexes
{a,b}.



Proposition 4: Measure 16 satisfies the requirements
R1−R3.

Justification 4: R1: We show thatR1 is satisfied by prov-
ing its satisfaction for the extreme cases of structure collab-
oration and competition.Case 1:If Si andSj do not co-exist
in query plans, then let us assume thatSi is very beneficial
to a queryq, hencecoq(Xi)→ 0 andSj has no effect on it,
hencecoq(Xj)→ coq({}). Since the cost function is mono-
tonic [33], coq(Xi j ) = coq(Xi) = min{a,b}coq({a,b})→ 0.
Hence,vi j → 0. Case 2: If Si and Sj collaborate tightly
in the extreme case,coq(Xi) = coq(Xj) → coq({}), but
coq(Xi j )→ 0. Then,vi j → 1. Case 3: If the indexes are
the same, thencoq(Xj) = coq(Xi) = coq(Xi j ), implying that
vi j =−1.
R2: Since the cases discussed above are extreme, all struc-
ture correlation cases fall between them and, therefore their
value is bounded by[−1,1].
R3: Section?? proposes a method that ensures an efficient
computation of the correlation coefficients.

For columns, we propose the following measure:

vq
i j =







1 if Si 6= Sj and both used in q
−1 if Si = Sj and used in q
0 otherwise

(17)

If two distinct columns appear in the same query, then
they collaborate, otherwise they do not. Self-correlationfor
a column is set to -1, as a column can replace itself.

For a pair of indexSj and columnSi , we use the
following measure:

vq
i j =







1 if Sj /∈ Si& both can be used in q
−1 if Sj ∈ Si& both can be used in q
0 otherwise

(18)

The index and the column correlate if the index does not
contain the column, and both are useful to the query. If the
index contains the column then the column is redundant
in presence of the index, therefore, they compete. Finally,
if the above conditions are not satisfied, then they do not
collaborate, therefore the coefficient is 0.

So far, we discussed correlation of structures w.r.t. a
specific query. We extend the correlation computation for
a workload. Ifvq

i j is the correlation ofSi andSj for query
q, then the coefficient for an entire workload is:

vi j =
∑vq

i j coq({})

∑coq({})
(19)

Measure 19 normalizes the coefficients by using the
maximum cost of the query. This allows the “heavy” queries
to provide more weight to the coefficient, when compared
to the “lighter” queries.

Computing this measure requiresO(|I |2) optimizer calls
to determine the index correlation coefficients, compared
to the exponential number of calls proposed by the state-
of-the-art method, but it is still expensive to make so many
optimizer calls on every query. We next describe techniques
to reduce the computation overhead.

We speed up the correlation computation using the
observation that, even though the total number of index

combinations areO(|I |2) the set of possible plans is typi-
cally much smaller. The plans are typically tree structured,
with the leaves accessing the indexes or the tables, and the
internal nodes represent the aggregation or the joins. We
observe in our earlier work–INUM [32]– that, on many
occasions for different pair of indexes, the internal nodes
remain exactly the same, and only the leaves change to
reflect the change in the indexes. INUM uses a systematic
method to identify the conditions on which the internal
nodes change in a plan, therefore accurately identify the
plans to be reused. Even INUM issues hundreds of calls
to the optimizer to find the internal nodes of the plans that
can be reused. Given access to the optimizer, the overhead
can be drastically reduced to just two calls per query by
using the internal optimizer structures [6].

V. SOLVING THE OPTIMAL PRICING PROBLEM

The problem of optimal pricing is an optimal control
problem [11] with a finite horizon, i.e. the maximum
time of optimizationT is a given finite value. The free
variables are the prices of the cache structures,pis, called
the control variables, and the dependent variables, called
state variables, is the demand for the structures,λis and the
availability of the structuresδis. The problem is augmented
with bounds on the values of both the control and the state
variables and by a constraint on the dependency type of the
state on the control variables.

A. Designing the solution

The objective function of the problem is the maxi-
mization of an integral, i.e.max

R T
0 (r(t)−w ·u(t))dt. The

optimality scope of the sought solution depends on the
convexity of the objective function. The latter is bilinear
w.r.t. the demand and the price (this is the result of factor
λS(t) · pS(t) in Eq. 2 andpS(t) in Eq. 12). It is not possible
to prove that the objective function is convex and, therefore,
there is no guarantee of global optimality of the solution.

Due to: (i) the nonlinearity of the objective function,
(ii) the presence of both integer inputs (theδis control
binary variables) and continuous inputs and states (the
pis and theλis , respectively), and (iii) the potentially
large scale of the system (whenm is high), it is almost
impossible to find an analytical solution to the optimization
problem. This calls for numerical optimization techniques,
such as mixed-integer non-linear programming (MINLP)
[11], which present the advantage of being implementable
online. A way to implement dynamic optimization tools on
real systems is to proceed as follows:

1) solve the MINLP problem along a fixed prediction
horizon to compute a sequence of values for the
control variables

2) apply the first values to the system
3) slide the prediction horizon and go back to 1)

This approach, referred to asOptimal Control with Re-
ceding Horizonor as Model Prective Control(for which
a trajectory is tracked) in the control literature, has been
successfully applied to a very large number of uncertain,



Fig. 5. The optimization procedure is divided into short time intervals
and iterates on a sliding time window.

complex and nonlinear systems, in simulation as well at
lab or industrial scales. This methodology has shown its
ability to improve the performances of a large class of
systems, despite the use of simplified models, the presence
of uncertainty on model parameters, model mismatch, and
process disturbances.

We propose the division of the prediction horizon[0,T]
into time intervals: let us assume that there are time points
t j ∈ [0,T], j = 0, . . . ,k, such thatt0 = 0 andtk = T on which
built structures can be built or discarded. Therefore the
problem is to maximize the total profit in[0,T] by choosing
which structures to built or discard on eacht j ∈ [0,T],
j = 1, ..,k and which price to assign to each built structure:

max
δ,p

R(t) =
j=k−1

∑
j=0

Z t j+1

t j

m

∑
i=1

[δi(t j) · (λSi (t) · pSi(t)−cSi (t))]dt

(20)
Figure 5 depicts the proposed repeated optimization over a
sliding time prediction horizon of lengthT. For simplicity,
we consider equal time intervals,t j+1− t j = t j+2− t j+1, j =
0, . . . ,k−2. The optimization is performed repeatedly for
k prediction horizons beginning attstart and ending at
tend, such that:[tstart,tend], tstart = 0, t1, . . . ,T and tend =
T,T + t1,2T, respectively. In this way we achieve, on
one hand, to optimize by taking into account the inertia
of the cloud behavior in a long prediction horizon, and
on the other, to improve the optimization by tuning the
initial values of both the control and the state variables
at each time interval[t j , t j+1] to the values predicted by
the current optimization results. We can further improve
the optimization procedure, byinjecting the real values of
the state variables, if these are available. Specifically, if
the actual time is close to the starting timetstart of an
optimization phase, then the real demand values of the
structures are available; if the real values are different than
the values predicted by the previous optimization phase,
then the real values can substitute the predicted ones in the
new optimization phase, calibrating the procedure towards
an improved overall result.

We transform the problem into a MINLP one by substi-
tuting each control and state variable into a ofk-arity set of
variables, wherek is the number of time intervals of control
variable re-initialization in the optimization horizon, as well
as the number of optimization repetitions. Formally:

pi → Pi = {pi1, . . . , pik}, i = 1, . . . ,m

λi → Λi = {λi1, . . . ,λik}, i = 1, . . . ,m

δi → ∆i = {δi1, . . . ,δik}, i = 1, . . . ,m

(21)

For simplification, we consider all the control variables
in a time interval to be static, which means that prices
and availability of structures are constant. Application-
wise, we assume that the availability of structures and
their prices are set at the beginning time of each repetition
of the optimization procedure. Of course, we could refine
this simplification by considering prices to be functions of
time in each interval. Yet, this would augment the number
of variables dramatically, reducing the efficiency of the
method. For example, even for linear dependency of price
on time:p= a·t +b with statica,b, the number of variables
in the problem is doubled.

B. Estimating the parameters

Concerning the constraints on the price-demand depen-
dency in Eq. 10, it is necessary to estimate the parameters
A,B,Γ. For this, the non-homogeneousm order system of
second order differential equations in Eq. 10, has to be
solved. One way to do is to transform the system into a
2 ·m order system of first order differential equations, by
breaking each second order equation into a set of two. The
result in both cases is a set of equations that show the
dependency of demand on price involving the parameters:

Λ = F(t,A,B,Γ,Λ(0),
dΛ
dt t=0) ·P(t) (22)

where F is a m×m matrix of functions on time and
elements of the parameter matricesA,B,Γ, as well as the
initial values of the demand and the rate of demand at the
beginning of time. The solution of the system is possible,
if the m constraints in Eq. 10 are independent, i.e. if them
differential equations are independent.

Proposition 5: It is always possible to manage the cache
structures in a way that the constraints in Eq. 10 are
independent differential equations.

Justification 5: Independency of the constraints in Eq.
10 means that there are no pair of cache structures for which
the demand depends in the exact same way from the prices
of all the cache structures. Intuitively, this is not a problem:
assume two structuresS1 andS2. If these are competitive,
each one has a negative dependency on its own price and
a positive dependency on the price of the other; therefore,
it is not possible that they create the same constraint. IfS1

andS2 are collaborative, creating the same constraint means
that they depend on the exact same way on each other’s
price and on the price of the rest of the structures; this
fact implies thatS1 and S2 are always employed together
in the cloud; therefore, they can be represented as a set of
structures with a single price.

The parametersA,B,Γ can be estimated by performing
curve fitting (e.g. the least square method), on Eq. 22.
The fitting is performed based on a sample dataset of
price-demand values. Ideally, we need a dataset with the
values forΛ for all combinations of a set of price values
PV ∈ [0,maxp], wheremaxp is a maximum value, for all
price variablesP. The fitting of Eq. 22 necessitates the
initial values of demand and demand rate at the beginning
of time. Since time is an orthogonal issue to the curve fitting



problem, we can orderPV and assume that for the fitting of
each pair of data that consists of price values of all struc-
tures and the respective demand value([pv1, . . . , pvm],λvi ),
i = 1, . . . ,m, λvi is the initial value of demand w.r.t. time.
In order to get the initial value of demand rate att = 0, we
need another measurement of demand for each structure
λ′vi

that is really close toλvi , i.e. λvi −λ′vi
< eλi

≈ 0. This
can be achieved by slightly changing the values inPV ,
producingP′V = ([pv1 +e1, . . . , pvm +em], ei ≈ 0, i = 1, . . . ,m.
We propose to estimate the demand rate asdλi

dt t=0 = eλi ,
assuming that the smallest price change in two consequent
observation time points isei .

C. Optimization horizon

An important issue is to estimate the appropriate length
of the time period, in which we seek to optimize the cloud
profit. Specifically, we have to determine the value ofT
which represents the optimization horizon of Eq. 4. Intu-
itively, a long horizon allows the optimization procedure
to take into account the inertia of the system, whereas a
short horizon may preclude the procedure from taking into
account important long-term effects of current optimization
decisions.

Example 2:Assume a structureSwith demandλS(t) and
an optimization procedure of two short phases[0,Tsmall)
and [Tsmall,Tbig) or a procedure with one long phase
[0,Tbig). For simplicity, the demand is a step function
as shown in Figure 6, i.e.λS(t) = λ1, t ∈ [0,Tsmall) cor-
responding to pricep1 and λS(t) = λ2, t ∈ [Tsmall,Tbig)
corresponding to pricep2 (for simplicity we ignore struc-
ture correlations). Assume that the building cost ofS is
BS and the maintenance cost isMS(t) = a · t and S is
built once at timet = 0. The cloud profit in[0,Tsmall)
is rsmall = λ1 · p1 − BS−MS(Tsmall). If rsmall < 0, the
cloud decides to discardS and the second optimization
phase starts withS not available. Since the demand is
significant in(Tsmall,Tbig), the cloud may decide to buildS
again, att ≥ Tsmall, resulting in profitrbig−small≤ λ2 · p2−
BS−MS(Tbig−Tsmall). For the long-term optimization the
profit is: rbig = λ1 · p1 +λ2 · p2−BS−MS(Tbig). Obviously,
rbig > rsmall + rbig−small. Therefore, the result of the two-
phase short-term optimization procedure is not as optimal
as that of the one-phase long-term procedure.

Naturally, the prediction of future behavior of a system is
subject to unpredictable perturbations. Hence, the longerthe
horizon is, the more error-prone the optimization procedure
is, as the prediction accuracy of the behavior of demand,
tends to decrease with time.

D. Discussion on the model simplicity

We have assumed that the parameters of the constraints
in Eq. 10 are constant. Yet, it is possible that in a real
system the dependency of demand on the prices changes
with time, because of any reasons. This means that the
parameters,A,B,Γ should be time-varying. Even though
the dynamics of Eq. 10 would be more realistic, they would
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Fig. 6. The optimization procedure may give a higher profit ifperformed
in a long time period.
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Fig. 7. The workload comprises phases of 10000 queries that are
produced based on 7 TPC-H templates.

highly increase the complexity of the problem, as there is no
way, withouta priori knowledge to determine time varying
parameters with more confidence than fixed parameters
contrary to what can happen for physical systems where
degradation, e.g., of physical parameters can be models.

Hence the problem falls in the scope of optimization of
uncertain systems (potentially subject to model mismatch
or parametric uncertainty or disturbances), which is an
active research domain [12], [34]. In this context it can
be shown that the use of measurements and of feedback is
able to reject a part of the detrimental impact of parametric
uncertainty on the optimal performances. In our case, real
demand values are fed back as the optimization horizon
slides, which increases the robustness of the proposed
approach. As mentioned,Model Predictive Controlhas
been widely used in Industry, where accurate dynamic
models are almost never available. In these situations using
tendency models (i.e. models that capture the main trends
of a process) and measurements is generally sufficient to
improve the process performances up to such a level that the
costly efforts for identifying a more accurate process model
are not justified by the loss of optimality [28]. Finally, as the
optimization proceeds, new data is collected and this data
can clearly be used to reidentify the price/demand model
periodically.

VI. EXPERIMENTAL EVALUATION

We present the simulation study for a cloud cache system
that uses the proposed pricing model.

A. Experimental Setup and Methodology

Setup. The cloud cache is set up with one back-end
database. The cache is operated under a TPC-H-based



Fig. 9. Cloud profit and user loss using dynamic pricing on fixed structure availability.
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Fig. 8. Representative sets (A, B, C, D) of structures of the workload
and their correlation w.r.t. the price-demand relation

workload, which consists of 7 TPC-H query templates
and simulates the query evolution of 1 million SDSS [20]
queries against a 2.5TB back-end database. The SDSS
workload consists of phases that show locality in data
access that repeats. In each phase the query execution cost
may fall in 3 categories, low, medium and high. Queries
arrive at 10 second intervals. We copy the setup in [24],
where the workload simulates the change-of-columns co-
occurrence over time for the SDSS workload. The authors
first plot the column co-occurence matrix, and temporal
locality of the columns in the SDSS workload. Then they
select 7 queries and change the query composition over time
to simulate similar column co-occurence and locality and
the query execution cost. Figure 7 shows the distribution
of the query templates in one phase consisting of 10000
queries. We select this workload, as it is portable across
different DBMS, allows for the employment of techniques
to improve the runtime of correlation estimations, and
the queries are tunable by using the query generation
mechanism of the TPC-H benchmark. The building and the
maintenance costs are determined using Amazon’s pricing
model and are based on statistics for the cost of executing
the SDSS queries. On average, the building cost is 7 orders
of magnitude bigger than the maintenance cost. The de-
tailed parameters for the setup are given in [7]. The pricing
model decides on the building, maintenance, or destruction,
and the pricing of 25 structures selected by a commercial
physical designer. The correlation of the structures and the
sensitivity of their demand in price changes is variable.
As an indication, Figure 8 shows 4 sets of structures
(A,B,C,D); while varying the price from the building cost
(cost) to pmax= 10·cost, the demand varies from 0 up to
8000 queries, with many values around 4000. SetA contains
two structures that collaborate, one more expensive than the
other, and one that is competitive; setB is similar, but two

expensive structures are highly competitive to a third that
is cheap; setC contains two structures that are necessary to
many queries and not correlated to others; setD contains
two collaborative structures of comparable cost. The pricing
optimization problem is implemented and run in Matlab
7.8.0 using the tool Tomlab [16].

Methodology. The initial demand for all structures is set
to a very low value in order (i) to avoid high cloud profit
by solely exploiting high demand valuesλis and (ii) force
the pricing scheme to fluctuateλis in order to maximize the
profit. The price variable for each structure ranges from 0 to
100% of the respective building cost, i.e. 0≤ pi ≤BSi ∗100.
The experiments measure (i) the averagecloud profit per
time point, (ii) the averageuser lossper time point and
(iii) the execution time. Cloud profit is defined in Eq. 2
and user loss is the user satisfaction as defined in Eq. 12.
We present experiments for versions of the dynamic pricing
model that vary the (i) weightw of the user satisfaction
objective in Eq. 14, s.t. 0≤ w≤ 40, (default isw = 0) (ii)
the length of the optimization horizonT in Eqs. 4 and
14, s.t. 20≤ T ≤ 50 , (default isT = 50) (iii) the size of
optimization intervals (here called phases)t j in Eq. 20 (by
default set to 10 time points), and (iv) the price-demand
functions in Eq. 8 – fitted in second order (default and as
defined in Eq. 10) and first order differential equations. The
dynamic pricing scheme is compared with a static pricing
scheme that fixes the cloud profit to a specific percentage of
the building cost. Also, we present results on the proposed
correlation method concerning the quality of the estimations
and the execution time.

B. Experimental Results

This section summarizes the experimental results.
1) Pricing with fixed structure availability:This section

presents results on the dynamic pricing scheme assum-
ing that all structures are constantly available (i.e. fixed
caching), and, therefore built once in the cache at the
beginning of pricing and maintained ever since, i.e.δi =
1, i = 1, ..,m always. The problem boils down to pricing the
structures so that the cloud gains maximum profit while en-
suring that the demand is not drastically reduced because of
the pricing. Figure 9 shows the profit generated by dynamic
pricing as a function of different optimization horizon
lengths for various weight valuesw. As the optimization
horizon is extended the profit drops because structures
are maintained in the cache even though their demand
drops; the user loss drops too, but with a slower rate.



Naturally, the bigger the weightw, the smaller the profit
and the user loss. Yet, for long horizons, the maintenance of
non-profitable structures makes it impossible to satisfy the
combined optimization objective in Eq. 14 for big values
of weight, i.e.w = 30,40, resulting in zero profit and user
loss. Figure 8 shows also the profit and user loss for the best
fixed pricing and fixed availability scheme: assuming that
we have complete knowledge of the workload, we select
the best structures to build at the beginning of time. The
beststructures are selected after observation of the matrix
V (we spotted groups of collaborative and competitive
structures and we experimented in order to find the subset
that increases profit; the combinations to examine were
few). Experimentation with various fixed prices of these
structures resulted in maximum possible profit equal to
about $400 and user loss equal to about $30.

We compare the profit made using dynamic pricing with
that made using static pricing that charges each structure
10−1000% more than the actual building cost, and does not
consider the correlation between the structures; Figure 10
shows the profit as a function of the fixed profit percentage.
As the preset profit percentage increases, the cloud profit
increases up to about $4700 which occurs at about 120%,
while the maximum profit for dynamic pricing with fixed
availability is about $8000. Beyond 120%, the profit drops
gradually. The reason for this drop is the inverse correlation
of price and demand: a very high price reduces the demand
to zero and the high price does not compensate for the
reduced demand. At almost 500% preset for profit the user
loss drops sharply to close to zero values. The user loss
remains low and comparable to that of dynamic pricing;
when the profit does not grow for high preset values, the
user loss grows because the user pays high prices for the
small number of structures which are still in demand. The
results of this experiment are in accordance with the results
of the works in [37].

2) Pricing with choice on structure availability:This
section presents results on the dynamic pricing scheme
assuming that structures are initially built in the cache,
but during optimization they can be discarded and re-built.
Figure 11 shows that the choice on structure availability
increases the average profit by two orders of magnitude
and decreases the user loss by one order of magnitude, on
average w.r.t. the horizon length. Contrary to pricing with
fixed availability, the profit increases as the horizon is ex-
tended. The reason is that the optimization procedure takes
advantage of long-term predictions in order to schedule the
structure availability in a more optimal way.

3) Sensitivity to the optimization schedule:The opti-
mization procedure is sensitive to the horizon length, the
number of optimization intervalst j in Eq. 20 and their
length, as shown in Figure 16. Keeping the total time of
optimization fixed, the profit increases as the number of
intervals increases (and, therefore their length decreases),
because the procedure is allowed to change the structure
availability more often, in order to achieve optimality. Nev-
ertheless, the effect of increasing the number of intervalsis
faded out if the optimization is repeated in multiple hori-
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Fig. 16. Profit and loss for various optimization schedules.The label-xh,
yi of z-representsx horizons, withy intervals ofz time units each.

zons, rather than performed for one long horizon. Naturally,
sincew = 0, the user loss increases and drops if the profit
increases or drops while the optimization horizon remains
the same. As the number of horizons increases, the profit
decreases (and therefore their length decreases) because the
procedure cannot predict adequately the demand change.

4) Performance comparison:We compare the perfor-
mance of the optimization procedure employing first and
second order differential equations for the pricing model.
Models using first order equations are faster to solve,
hence preferred over second-order differential equations
if the real-world constraint can be modeled using them.
Figure 12 shows using a first-order differential equation
makes the procedure slightly faster than using a second-
order differential equation. The second-order formulation,
however, is more generic and we use it as default.

Figure 12 also shows that relaxing theδ variable makes
the solver an order of magnitude faster than the problem
with δ variables on average. Therefore, the solver spends
most of the time in the branch and bound method that
seeks the optimal integer values [16]. The reason is that the
problem is not convex–the solver cannot easily determine
the lower bounds for pruning search branches.

5) Correlation of structures:This section presents the
index correlations achieved using Eq. 16 and compares
the proposed measure for correlation coefficients Eq. 19
with the state-of-the-art measure Eq 15 [33]. We name
the measure Eq. 15 “SPG-measure”. We show the trade-
off of performance against the accuracy of the cost es-
timation procedure. Figure 13 shows the distributions
of about 500 index correlations sampled randomly from
the candidate indexes. The correlations computed using
Eq. 16 is distributed both in the positive and negative
values, showing that the measure detects both positive and
negative correlations. Furthermore, it is also bounded by
the range[−1,1]. In comparison, most of the correlations
computed using Eq. 15 are positive and have value close
to zero. SPG-measure is useful if only top interacting
indexes are interesting; if the problem requires correlation
estimation between all pairs of structures, SPG-measure
fails to distribute the correlations in the target range.

6) Optimization in presence of updates:The optimiza-
tion procedure works under the assumption that data struc-
tures do not have to be evicted and rebuilt due to data
updates. Even though updates cannot be controlled by the
optimization procedure, if they can be predicted, they can
be used as new constraints on the optimization problem.
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Specifically, an update of structureS at time t incurs a
reset of the respectiveδ parameter from 1 to 0 at that time.
Figure 15 shows the results of optimization in case update
times for structures are predicted or not. The results are for
1 up to 5 updates on average per each structure. The cloud
profit is bigger if updates are predicted. Yet, as the number
of updates increases, the profit drops and is closer to profit
in the case of no update prediction. User loss is bigger
(w= 0 for these experiments) in case of update prediction,
since the optimization sets higher prices for the structures.

7) Predicting the demand for structures:Figure 14
shows the comparison of the real demand fluctuations after
price change with the predictions of the differential equa-
tions that model the price-demand relation (the parameter
estimation of the model precedes this procedure). The figure
shows the comparison for three structures for which the
price was changed from the building cost to 10 times the
latter. The demand for these structures shows qualitative
differences: the demand forA reacts smoothly to price
change after some weak inertia to the workload; the demand
for B shows similar inertia but after that it drops abruptly;
the demand forC shows great inertia to the workload (this
is an indication of a necessary structure to query execution).
All three demand fluctuations are predicted very accurately
by the respective differential equation, which exhibits the
flexibility of the proposed price-demand model.

VII. C ONCLUSIONS

This work proposes a novel pricing scheme designed for
a cloud cache that offers querying services and aims at the
maximization of the cloud profit. We define an appropriate
price-demand model and we formulate the optimal pricing
problem. The proposed solution allows: on one hand,
long-term profit maximization, and, on the other, dynamic
calibration to the actual behavior of the cloud application,
while the optimization process is in progress. We discuss

qualitative aspects of the solution and a variation of the
problem that allows the consideration of user satisfaction
together with profit maximization. The viability of the
pricing solution is ensured with the proposal of a method
that estimates the correlations of the cache services in an
time-efficient manner.
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