000150331 001__ 150331
000150331 005__ 20190416220651.0
000150331 0247_ $$2doi$$a10.1364/OE.18.018041
000150331 022__ $$a1094-4087
000150331 02470 $$2ISI$$a000281054400047
000150331 037__ $$aARTICLE
000150331 245__ $$aEstimation of displacement derivatives in digital holographic interferometry using a two-dimensional space-frequency distribution
000150331 260__ $$bOptical Society of America$$c2010
000150331 269__ $$a2010
000150331 336__ $$aJournal Articles
000150331 520__ $$aThe paper introduces a two-dimensional space-frequency distribution based method to directly obtain the unwrapped estimate of the phase derivative which corresponds to strain in digital holographic interferometry. In the proposed method, a two-dimensional pseudo Wigner-Ville distribution of the reconstructed interference field is evaluated and the peak of the distribution provides information about the phase derivative. The presence of a two-dimensional window provides high robustness against noise and enables simultaneous measurement of phase derivatives along both spatial directions. Simulation and experimental results are presented to demonstrate the method’s applicability for phase derivative estimation.
000150331 6531_ $$aPhase Derivatives
000150331 6531_ $$aReconstruction
000150331 6531_ $$aStrain
000150331 700__ $$0242300$$aRajshekhar, G.$$g190589
000150331 700__ $$0242293$$aGorthi, Sai Siva$$g176281
000150331 700__ $$0241647$$aRastogi, Pramod$$g106189
000150331 773__ $$j18$$k17$$q18041-18046$$tOptics Express
000150331 8564_ $$uhttp://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-17-18041$$zURL
000150331 8564_ $$s799611$$uhttps://infoscience.epfl.ch/record/150331/files/optics_express_2d_pswvd.pdf$$yPublisher's version$$zPublisher's version
000150331 909C0 $$0252031$$pIMAC$$xU10237
000150331 909CO $$ooai:infoscience.tind.io:150331$$particle$$pENAC$$qGLOBAL_SET
000150331 917Z8 $$x190589
000150331 917Z8 $$x190589
000150331 917Z8 $$x190589
000150331 917Z8 $$x190589
000150331 917Z8 $$x190589
000150331 917Z8 $$x190589
000150331 937__ $$aEPFL-ARTICLE-150331
000150331 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000150331 980__ $$aARTICLE