Generalizing State Machine Replication
(Preliminary Version)

E. Gafni (UCLA) and R. Guerraoui (EPFL)

August 6, 2010

Abstract

We show that, with k-set consensus, any number of processes can emulate k state machines
of which at least one progresses. This generalizes the celebrated universality of consensus which
enables to build a state machine that always progresses. Besides some interesting extensions
and even potential “practical” applications, theoretically, a fundamental ramification of our
main result, derived by considering the state machines to be interacting read-write threads, is
a flagpole to the thesis that distributed computing is all about wait-freedom. We indeed show
that the set of tasks that are read-write solvable “k-concurrently” , i.e., when concurrency goes
below k, is the same set of tasks that are read-write solvable with k-set consensus.

Keywords: State machine replication, k-set agreement, universality, k-concurrency.

1 Introduction

The state machine replication approach is a general technique to make shared services highly
available [12]. A service is modeled as a deterministic state machine. Processes hold each a copy
of this state machine, to which they issue commands. To provide the illusion of sharing a single
state machine, the processes use a consensus abstraction [6]. Consensus enables the processes to
propose each a value and ensures that all agree on the same value. In the context of state machine
replication, each instance of consensus is used to decide which command to execute next and hence
make sure all commands are executed on the state machine in the same order: the very fact that
the state machine is deterministic means that all its copies keep the same state. Consensus is said
to be universal [10] in the sense its availability implies the availability of any shared service.

Yet, despite its universality, consensus is just the specific case of a more general abstraction:
k-set consensus [5], where processes need decide on at most k different values. It is natural to ask
what form of state machine replication we get if we generalize consensus to k-set consensus. Or, in
other words, if a system does not dispose of consensus but only k-set consensus (k > 1), what form
of state machine replication do we obtain? It is actually surprising that the distributed computing
community has not yet tackled this question.

We show in this paper that k-set consensus is, in a precise sense, k-universal. Namely, we show
that, with k-set-agreement, we can implement k state machines with the guarantee that at least
one makes progress. We prove our result assuming a general shared memory model where processes
can fail by crashing. In fact, we show an even more general result: processes can implement any
number m > k of state machines of which at least m — k£ 4+ 1 progress. In fact, our generalization
does not require to know k a priori: If we take k state machines and achieve j-set consensus, j < k,
k — j + 1 machines will progress. When m = k = n (the total number of processes), we obtain a
new execution scheme of a read-write wait-free protocol - an “iterated” scheme [7] that provides a
tie between iterated models and non-iterated ones. To get an idea of the technicality behind our
generalized state machine replication protocol, recall that the basic idea underlying the classical
construction is that each consensus instance is used to decide on the next command to execute. If
k-set consensus is available instead of consensus, k£ > 1, the processes might get k different ordering
of the commands. The challenges here are (a) to ensure that each ordering corresponds to exactly
one state machine, (b) processes do not drop commands when switching from one machine to the
other, and (c) at least one machine progresses at all processes.

Potential “practical” applications might be foreseen. Multiple state machines, implementing
different services, one of which is guaranteed to progress, is better than one state machine that
does not progress, say if consensus cannot be reached but k-set consensus can. In fact, multiple
state machines, even implementing the same service, may provide for an interesting alternative
behavior to a classical state machine replication scheme at the time when the system is not stable.
Instead of blocking like a single machine will do, in our case at least one machine will progress.
There is of course the danger that the state machines diverge from each other but many applications
can tolerate divergence of view for a while. When the system stabilizes, these divergent views may
be reconciled to continue with what is effectively a single view of the system. But there is actually
much more: our result promotes the thesis that distributed computing is all about wait-freedom.
A fundamental ramification of our generalization is indeed that the set of tasks that are read-write
solvable “k-concurrently” , i.e., when concurrency goes below k, is the same set of tasks that are
read-write solvable wait-free with k-set consensus, Hence, results about specific models of restricted
concurrency can be deduced from (typically known) results about wait-free environments.

We first recall below the basic idea underlying state machine replication, then we present our
general result, followed by its ramifications, and finally conclusions.

2 State machine replication: the classics

We assume here a standard read-write memory. Processes can be correct, in which case they execute
an infinite number of steps of the protocol assigned to them, or they crash and stop any activity.
The state machine replication approach works basically as follows (Figure 1). Every process has a
copy of the state machine, denoted sm in Figure 1, as well as an ordered list of commands, denoted
commands in that figure. A process picks one command at a time from this list; we also say that
the process issues the command. The processes execute all commands on all copies of the state
machines, in the same order, while preserving the original local order of the commands at each
process. They do so by going round-based and, in each round, executing the command stipulated
by the consensus object corresponding to that round. These consensuses form a list, denoted by
ConsList, and exactly one object of the list is used in each round of the protocol. Basically, every
process p first picks the next command it wants executed and proposes it to the next consensus
instance. This, in turn, returns a command, not necessarily that proposed by p, but one proposed
by at least one process. The command returned to a process p is then executed by p on its state
machine: we simply say that p executes the command. To ensure that every process executes the
commands in their original order, no process picks its next command unless it has not performed
its previous one.

local data structures:

1 sm (* a copy of the state machine %)
2 comList (* a list of commands)
3 passed = true (* determines if the process executed its previous command)
shared data structure:

4 ConsList (* a list of shared consensus objects *)
forever do:

5 if passed then coml = comList.next() (* pick the next command x)
6 cons = ConsList.next() (* pick the next consensus object *)
7 com2 = cons.propose(coml) (* agree on the next command)
s sm.perform(com?2) (x execute the agreed upon command)
9 if com2 = coml then passed = true else passed = false (* test if own command passed)

Figure 1: State machine replication

The correctness of the protocol of Figure 1 lies on three facts. (1) If a process p executes
command ¢, then ¢ was issued by some process, and if p has issued ¢, then p has executed every
command issued by p and preceding ¢. This follows from the fact that a process does not issue a new
command unless it has executed its previous one. (2) If a process p executes command ¢ without
having executed command ¢/, then no process ¢ executed ¢’ without c. This follows from the fact
that the processes execute the commands output by the consensuses and these are invoked by the
processes in the same order. (3) Every correct process executes an infinite number of commands
on the state machine. This follows from the liveness of consensus: every invocation to consensus
by a correct process returns a command to that object.!

LQur simple protocol does not guarantee fairness. Consensuses could always return the commands proposed by
the same process. To ensure fairness, processes need to help each other: namely, when a process issues a command,
it writes it in shared memory; processes would now propose sets of commands (their own and those of others) to
consensuses; accordingly, a consensus would return a set; the set would be the same at all processes which would
execute the commands in the same deterministic order. For presentation simplicity, we omit helping and fairness.

3 Generalized state machine replication

What if, in classical state machine replication (Figure 1), some consensuses are faulty and, instead
of returning a single value to all, return k different values? This question is typically viewed as
an issue of safely implementing consensus rather then an issue of the state machine replication
protocol. The key idea behind our generalization is to view this as an issue of the replication
protocol.

In the following, we generalize state machine replication to show that, with k-set consensus,
i.e., if k distinct values can be returned by the agreement abstraction, the n processes can execute
k state machines one of which at least progresses.

3.1 Vectors of commands and consensuses

In our generalized setting, the processes have at their disposal a k-vector of commands that they
are supposed to execute on their local copies of the k state machines: entry j in the vector to
be executed on machine smfj]. We assume k-set consensus in its vector form [1]: basically a
vector of consensuses, denoted ConsVector(1,..,k), that takes as input commands in the form of
k-vectors, and returns, to each process, a k-vector composed of nil values and commands among
those proposed (we assume here that commands cannot be nil). Any two commands returned at
the same position (i.e., by the same consensus object) to any two processes are the same. Yet, one
process might get a command returned at position ¢ and nil at position j, whereas another process
might get some command at position j and nil at position <.

To get a sense of the technical difficulty behind our generalization, consider first a naive protocol
resulting from replacing, in Figure 1, consensus with k-vector consensus, and assume that, in round
r, a process p executes on state machine sm/i] the command obtained at position ¢ from the k-vector
consensus. If p obtains nil at position ¢ in r, then p does not execute anything on state machine
sm[i| in round 7. Clearly, such a protocol would guarantee that at least one state machine will
progress since the consensus vector will return at least one non-nil value and at least one command
will be executed in every round. Yet, consider the following scenario. Assume p gets a command ¢
at position 1 in round 1 (after proposing its command vector): p will then accordingly execute ¢ on
sm[1]. In the meantime, assume process ¢ has obtained a command ¢ at position 2 and executed
¢ on sm[2]. Assume now that, in round 2, p obtains a command at position 2: according to our
(naive) protocol, process p executes it on its state machine sm[2]: yet this will violate safety for p
ignores that ¢ already executed ¢’ on sm[2] in round 1.

Intuitively, the issue should be sorted out by having every process announces what command
it has executed before proceeding to the next round: say g would need to inform p that it has
executed ¢ on sm[2] in round 1. This is not entirely trivial and needs to be synchronized with the
action where p needs itself to execute a command on sm[1]. (This is reminiscent of our question
above about faulty consensuses.)

3.2 Filtering with adopt-commit

To sort out the synchronization issue among state machines, adopt-commit objects [7] come in
handy. The specification of such an object is as follows. Every process proposes a command, and
obtains a command, either in a committed or adopted status. If an adopt-commit object returns
a committed command to a process, it returns the same command (committed or adopted) to
every other process. Furthermore, if all proposals to the same adopt-commit object are the same
command, then this command is committed. Such objects can be implemented with a standard
read-write memory.

We use a vector of adopt-commit objects at each round, and this acts as a synchronization filter
through which processes go before executing commands on their state machines. Each process,
after obtaining an output from the consensus vector, goes through adopt-commits to validate what
needs to be executed on its state machines: in short, a process only executes commands that are
committted and keep those adopted for the next round. The order according to which adopt-
commits are accessed and how adopted command are handled are crucial aspects of our protocol.

1. Ezxploit successes first. To ensure liveness, a process p, at round r, accesses first the adopt-
commit objects corresponding to the positions of the commands returned by the consensus
vector at r. Process p can access them in any order or simultaneously. Subsequently, p
proceeds to the rest of the positions at which is was returned nil and proposes the original
entry values to the consensus vector.

This ensures that at least one process will commit a command in every round. Indeed, for
an adopt-commit object not to commit, it has to be concurrently invoked with at east two
distinct values. The first process p to return from any of the adopt-commit, by virtue of
being first, must commit the command. No processes g can prevent it by inserting a distinct
command concurrent with p, as then, ¢’s command was not returned there, and ¢ already
finished the commit-adopts of its returned command, contradicting the fact that p was the
first to return from any adopt-commit..

2. Remember commitments. To ensure safety, a process p might need to execute two commands
on the same machine in the same round. A process p might indeed adopt a command ¢ in
round r for position ¢, then commit another command ¢ in round r + 1 for that same position
7. This might happen if another process ¢ committed ¢ at » and then moved to propose and
commit ¢ at r + 1. Should p execute ¢’ without having executed ¢, p would violate safety.

In our scheme, when ¢ commits a command ¢ in round r, then moves to round r + 1, ¢
encodes in ¢ the fact that ¢ was committed before ¢: hence, in round r + 1, p will decode
that information from ¢, then execute ¢ before ¢’. In fact, p executes ¢ even if it only adopts
¢ in round r + 1. Recall the ¢ cannot “get lost” as any process that did not commit ¢ in
round r must have adopted ¢ at round r. Hence, all proposed values to the commit-adopt at
position ¢ at round r + 1, which are not ¢, are values which encode the very fact ¢ has been
committed at round r.

Our generalized state machine replication protocol is depicted in Figure 2 where we denote the
vector of adopt-commit objects by ACVector(1,..k). Also, we denote the k-vector of commands
available to a process by comVectList: For presentation simplicity, we assume the following:

e We can test whether the returned value is committed (resp. adopted) simply using a function
committed(c) (resp. adopted(c)).

e We assume that a process can pick the next command using function next() but also recall
the last command picked using function current().

e We assume that a process can encode in a command ¢’ the fact that the process has committed
¢, simply by writing ¢’.add(c), and a process can check that by simply testing if ¢ < (.

local data structures:

1 smVect]] (* a vector of state machines
2 comVectList (* a list of command vectors
3 for j =1 to k do: comVect[j] = comVectList[j].next() (* pick the first command vector

shared data structures:

4

5

ConsVectList (* a list of vector consensus objects
AConsVectList (* a list of vector adopt-commit objects

forever do:

6

consVect = ConsVectList.next() (* pick the next consensus vector

7 comVect]l = consVect.propose(comVect); (* select a new vector

8

9

10

11

aconsVect = AConsVectList.next()
for i =1 to k do:

(* pick the next adopt-commit vector

if comVectl[i] # nil then:
comVect2[i] = aconsVect[i].propose(comVect1[i]) (* try to commit commands

12 fori=1 to k do:

19

20

21

22

if comVectl[i] = nil then:
comVect2[i] = aconsVect[i].propose(comVect|[i]) (* try to commit commands

fori=1 to k do:

if comVect2[i] > comVect[i] then sm[i].execute(comVect]:]) (* catch-up
if adopted(comVect2][i]) then comVect[i] = comVect2]i] (* keep the command for next round
else

sm|i].execute(comVect2[i])

if comVect2[i] = comVectList[i].current() then comVect[i] = comVectList[:].next()

else comVect[i] = comVectList[i].current()

comVect[i].add(com Vect2[]) (* remember the committed value

*)
*)
*)

*)
*)

*)
*
*

~— —

*)

*)

*)
*)

*)

Figure 2: Generalized state machine replication

3.3 Correctness

Theorem 1. If a process p executes command ¢ on its state machine sml[i|, then ¢ was issued by
some process, and if p has issued c, then p has executed every command ¢’ issued by p before c.

Proof. (Sketch) A process executes a command ¢ only if ¢ has been returned to the process by
an adopt-commit object. By the protocol of Figure 2, ¢ must have been proposed to some adop-
commit object, and hence returned by a vector consensus. In turn, this can only return commands
that have been proposed, and hence issued by a process. Furthermore, no process issues a new
command c unless the process has executed all commands preceding c. O

Theorem 2. If a process p performs, on its state machine smli], command c without having
performed command ¢, then no process q performs ¢ without ¢ on its state machine smii|.

Proof. (Sketch) Assume a process p executes, on its state machine sm[i], command ¢ at some round
r. By the protocol of Figure 2, this means adopt-commit object aconsVect[i] has committed ¢ at
round r or r — 1. Assume furthermore that process p did not execute ¢’ before c. This means that
not adopt-commit object aconsVect[i| has committed ¢ at round 7" < r — 1 Hence, no process q
can execute ¢’ without having executed ¢ on state machine sm]i]. O

Lemma 1. If a process p commits command ¢ in round r for state machine smli], then every
process which finishes round r + 1 executes ¢ on state machine smli].

Proof. (Sketch) Assume process p commits command ¢ in round r for state machine sm[i], i.e.,
adopt-commit object aconsVect[i] returns command ¢ in a committed status in that round. By the
specification of adopt-commit, aconsVect[i] returns command ¢ (either in a committed or aborted
status) to all processes that invoked it in round r. Hence, all processes which start round r + 1
either (a) executed ¢ on sm[i] in round r and start round r + 1 with a command ¢ such that ¢
precedes ¢, or (b) start round r + 1 with proposal c itself. In any case, any process that did not
execute ¢ in round r will, in round r + 1, knows about ¢ having been committed and execute it.

Theorem 3. An infinite number of commands are executed on at least one state machine at all
correct processes.

Proof. (Sketch) Assume at least one process is correct. Assume by contradiction that there is a
round at which no process executes a command on a state machine. This means that no adopt-
commit object returns a committed command. Given that the protocol of Figure 2 has no wait
statement, every adopt-commit object must have had two different concurrently proposed values.
This means that all processes obtained different values from the consensus vector. Consequently,
all processes started at different adopt-commit objects. This is in contradiction with the fact that
every adopt-commit object has two different concurrent proposals. Hence, at least one process
commits a command on at least one machine in every round. This follows from the order according
to which processes access adopt-commit objects. By Lemma 1, all correct processes execute a
command on at least one machine in every two rounds. Hence, there is at least one state machine
on which all correct processes execute an infinite sequence of commands.]

3.4 Extension to any number of machines

Our generalized state machine replication protocol uses k-set consensus to reduce the a priori dis-
agreement among the processes in every round, i.e., restrict the set of different proposed command
vectors in each round. With m processes, the worst disagreement we can get is m. In fact, the
a priori disagreement among the processes can be viewed as a dynamic notion, that eventually
stabilizes to some value j. We will later show how to make good usage of that notion.
Interestingly, the protocol of Figure 2 can be used, almost as such, to build m machines such
that, when the disagreement among the processes stabilizes to be bounded by j, at least m —j + 1
machines progress. The only abstraction that needs to be extended is the vector consensus. In
its original form [1], with a disagreement of j and m, m > j, independent consensuses, only one
command is guaranteed to be returned. What we need is to guarantee m — j + 1 non-nil returns.
We explain now how to obtain this extension of [1] which, we believe, is interesting in its own
right. Assume at most j different vectors are proposed, i.e., disagreement is j. (Two vectors are
distinct if they differ on at least one of their entries and a consistent ranking among proposed m-
vectors is assumed.) Every process p proceeds through m phases. In phase 1, p posts its m-vector
input to shared memory. In phase i, p posts the m-vector proposal it obtained at phase ¢ — 1,
as we explain now. Process p then looks how many distinct m-vectors were posted at phase i. If
the number is greater than 1, p proceeds to phase ¢ + 1 with the lowest rank vector it observed at
phase i. Else, if p sees only a single m-vector, the one it posted, p posts the pair (i,v;) in shared
memory, where v; is the value of the ith entry in its m-vector. Process p then proceeds with this
vector to phase ¢ + 1. After finishing phase m, p considers all the pairs (index,value) it observed
and, for every index, it returns the value in (index,value). Clearly, the condition to post (i,v;) is

to observe a single m-vector in phase i, and thus only one vector may be observed if at all. Now,
if no value is posted for phase i, then the highest ranked vector posted in phase ¢ will not appear
in any subsequent phases, and thus at most & — 1 phases might have no posted value by the time
any process terminated phase m.? Using our extended vector consensus abstraction, we obtain the
following extension of Theorem 3:

Theorem 4. Assuming any number of processes of which disagreement stabilizes to j, the protocol
of Figure 2 emulates any number of state machines m with a guaranteed progress of at least max{m—
j+ 1,0} machines.

4 Ramifications

4.1 Read-write threads as state machines

Commands applied to a state machine can be thought of as operations applied to some shared
object. Multiple state machines bring a new dimension: we can think of the machines interacting
with each other, namely threads of alternating writes and reads to shared memory. Since each write
following a read is the function of what the read returned, and all processes hold copies of the state
machines locally, then a thread can be viewed as an initial write, followed by an infinite sequence
of reads. The value of the first write of a thread, which will be its first linearized command, will be
the input to the thread. From there on, the read commands return the state of all the machines.
Thus in each round, the entry i of the m-vector proposal p submits is either an adopted value, if in
the previous round p adopted a value for machine i, or the the state of the replicated machines as
viewed locally by p, if a value was committed for machine ¢ in the previous round. As local copies
may differ, nevertheless, each is a valid read value, only taken at different time. Any value that
succeeds to commit is a valid value for the simulated asynchronous threads executed by the state
machines.

Let T be a task on a set of processes P, |P| = n, and let II be a read-write wait-free protocol
solving T'. Protocol II consists of threads Il = 7y, ..., m, where, 7; is to be executed by p;, exclu-
sively. Yet, a thread can also be viewed as a sequence of commands and we can think of m; as a
state machine to be executed by all, the commands happened to be reads and writes. This view
encounters two difficulties.

1. How can we “start” m;?7 i.e., how do we know the input of p; to use as a value of its first
write.

2. m; is finite, state machine accepts unbounded number of commands, what do we do after it
terminates?

We can dispose of the two difficulties by applying “null” commands to threads for which there
is no input, and similarly apply “null” commands to m; after it terminated.

In executing II, we are interested in the advancement of threads that have not terminated and
for which we have inputs. A state machine advancing by “null” commands is not progressing the
execution. But a progress in the execution is a function of the participating processes. They are

Interestingly, we could also build the same extended vector consensus abstraction using our own generalized state
machine replication approach and [1] as black-box. The technique in [1] guarantees that, with j disagreement, the
vector consensus will return a value at an index not above j. Thus we can implement with our state machines as
explained in the next section dynamically j threads with at most j — 1 faulty. These threads can then use safe
agreement [4] to return m — j + 1 values for m independent consensuses.

the ones that arrive and need an output. When each process either did not arrive or arrived and
obtained an output, no progress is required. As long as p; has not invoked T, all m-vectors propose
“null” for machine i. When p; arrives, it will participate trying to commit its input to m; on
machine ¢ until p; succeeds. Only then can the execution of m; progress. Lest this input command
will be forever pre-empted by “null”, and p; proposal vector interfere with the execution of the
machines that can be moved by all, we amend the round structure. As long as p;’s input is not
committed at m;, at the beginning of each round it starts by posting its input, before it proceeds
as usual. Every process at an end of any round looks for posted inputs, and put the input next
on its list of command to 7; if it has not done it before. If p;’s proposal vector affects what the
vector consensus returned then all will observe p;’s input and put it on their list. As the number of
distinct proposal values is bounded by the number of executing processes, Theorem 4 guarantees
that as long as a processes arrived and has not terminated, at least one of the threads of II will
advance by committing value commands rather than “null” commands.

We thus have obtained a new method of executing threads. Rather than by a standard execution
model in which a process executes a unique thread of Il in exclusion, now the only association
between p; and m; is that p; supplies the input to m;, and p; departs once m; has terminated. Below
we will apply our state machine replication scheme of executing a protocol to obtain numerous
applications.

4.2 Iterated vs non-iterated computations

We note first that, as our state machines execution proceeds in an iterated fashion [7], the above
is an alternative argument that the standard wait-free shared memory model, where variables are
not restricted to be used in a single round, and the iterated one, where variables are private to a
round and in each round a process executes a number of steps which is independent of the protocol
it executes, are equivalent in their power to solve tasks.

Furthermore, if the system is t-resilient, the processes wait at the beginning of each round until
they see at least n — t processes providing proposal vectors: it is also easy to see inductively that
these can be made into at most | P|— (n—t)+1 distinct proposal vectors. Consequently, by Theorem
4 at least n — t threads will advance producing a t-resilient execution of the threads. This extends
the equivalence of the iterated model and the read-write shared memory model [3] to t- resiliency.

4.3 k-set consensus = k-concurrency

Let T be a task on n processes solvable by read-write and k-set consensus. We show that T is
solvable without k-set consensus if at all times the number of pending task invocations is bounded
by k. An invocation of T is pending for p; if p; provided its input but the task execution did not
provide an output to p; yet. The number of pending 7" invocations is the number of processes that
have pending invocations of T'. Let II be a protocol to solve T" within which processes can invoke
any of many copies as required, of k-set consensus objects. An invocation to a consensus object
COK; is pending if the invocation occurred but a corresponding response with an output value
did not arrive yet. As long as it does not arrive the invoking process is blocked from progressing.
Consequently, if the number of pending invocations of T is at all times bounded by k, then we
are guaranteed that at most k£ invocations to any k-set consensus object might be pending at any
time. We call an execution of T" with at most k concurrent pending task invocations a k-concurrent
execution.

We produce the read-write code, with no access to k-set consensus, that k-concurrently will
solve T'. For this we replace each invocation of a k-set consensus object COK; in II with a read-

write code section. A MWMR variable ki in shared memory, initially L, is dedicated to replacing
COK;. A process that executes II and gets to a command to invoke COK; with value v, first reads
ki. If it reads a value val that is not L it returns val in the simulated invocation of COK;. If it
reads L it writes v into k¢ and returns v.

The correctness of the modified code to solve T k-concurrently follows from the observation
that at most k processes that invoke COK; can observe ki as 1. This follows from the fact that
any process that observes ki as | will not terminate before writing its value into ki. Since the
concurrency is k at most k such pending writes can occur and consequently all processes that invoke
COK; will return one of these k values submitted by the processes that read ki as L.

The harder direction is to show that if II is a read-write protocol to solve 1" k-concurrently then
there exists a read-write code with k-set consensus to solve T" wait-free. For this we use the state
machines. We take the k-concurrent protocol II. Using k-set consensus, the protocol II will be
executed k-concurrently. We consider a fixed set of k state machines as an intermediary between
the processes and the thread of II. Call these k intermediaries - servers. Instead of processes
executing the threads of Il as state machines, they will execute the servers as state machines. The
servers, in turn, will execute threads of II as state machines in a special way. They will execute a
BG agreement for each command in the threads of II. The reason for the difference in the method
of executing state machines, is that we expect the number of processes to be larger than the number
of servers, but the number of faulty servers to be always smaller than the number of active threads
of II.

We make a slight change to the BG agreement protocol [4] to accommodate such a setting.
Normally, once a process gets to the end of the agreement it forks [4]. Now on the other hand if
it got to the “wait” statement and the agreement value is available, it does not fork but rather
continues to the next command of the same thread. If it executed the last read of a thread, it goes
to another thread in a round robin until it finds a thread on which the agreement has a value, and
stick with the thread again. It will continue on the thread until termination or until it waits on an
agreement protocol with no value, in which case it forks.

If the number of BG servers is k it is easy to see that at most k treads can be in the middle of
execution at a time. The last BG server to terminate agreement will not fork and stick with the
thread. Thus, a thread, once started will until termination have some server associated with it.
By Pigeon-Hole at most k threads might have started but not terminated. But we do not have k
servers, we have m servers. We notice that, with k-set consensus by Theorem 4 at least m — k + 1
servers will progress. It is easy to see how to implement,by the standard method of [4], & BG
processes with at most & — 1 faulty, out of m BG processes with at most k — 1 faulty, as we are
guaranteed that at least m — k + 1 of the m will progress.

When the number of processes j executing the servers is less than k, enough servers are non-
faulty so that at least one of the j threads advances. This follows from Theorem 4 as, with j < k
processes, the bound of the disagreement is j rather than k. We do not have to worry now about
simulating just j < k machines as the number of a available threads to advance on is less than k,
and progress will happen nevertheless as at most j — 1 BG servers at most might be faulty.

As with t-resilience, another ramification of this subsection is that the iterated model with k-set
consensus is equivalent to the standard one with k-set consensus.

4.4 k-set consensus = k-obstruction-free = k-1-active resiliency

A task T is solvable k-obstruction-free if progress is required only when contention is reduced to
k or less [9], i.e., when at most k read-write threads try to progress. This is like k-concurrency
only that program-counters of the read-write code II to solve T obstruction-free may be all over

the place, at the time that the condition is invoked. This in contrast with k concurrency, where at
least n — k program-counters are at the beginning or end of a thread.

To see that T is solvable with k-set consensus, notice that a k-concurrent execution is by
definition k-obstruction-free. On the other hand, with k-obstruction-freedom, k-set consensus is
solvable.

The condition k — 1-active resiliency requires progress only when at most £ — 1 of the processes
that invoke the task and have not terminated may fail. If a task 7" is solvable with k-set consensus
then T is solvable k — 1-active resiliently since, with at most k£ — 1 processes failing, k-set consensus
is solvable. Obviously if a task is solvable with k — 1-active resiliently, it is solvable with k-
set consensus, as this can implement a k-concurrent execution, a special instance of k — 1-active
resiliency.

4.5 The multiplicative-power of (z,y)-set consensus

A (z,y)-set consensus object allows x processes to solve y-set consensus, y < x. Recently [11],
it was observed that in the BG simulation, if n BG simulators are given (z,1) consensus, then
essentially BG simulators can be considered to be a single simulator. This relies on the fact
that test-and-set is solvable when x > 2, which in turn allows for the acquisition of a “port” in the
(z,1) object. What if we have (z,2) objects? Can we essentially equate z BG simulators with just
2simulators?

Interestingly, our generalized state machine replication scheme means that, with (z,2)-set con-
sensus, any n BG simulators can solve 2(n div x)-set consensus. This can be accomplished by
streaming processes through each of the (Z) objects, each hard wired to a fixed distinct set of z
processes, in which each has a port. The BG simulators are now our n processes and they can
drive m = 2(n div y) “BG-servers” with at least one progress.

4.6 Renaming with k-set consensus

Proving that that any number of processes with k-set consensus available, can rename with k — 1
overhead positions was so far challenging [8]. Now it is trivial to see that the overhead is k —
1 because, at each point in time we have at most k processes going wait-free while the others
announced their output.

5 Concluding remark

We just outlined few of the ramifications of our generalized state machine replication approach.
While many papers devise specific constructions to get results when k-set consensus is available, our
generalized state machine replication approach gives one tool to potentially get all. Rarely is one so
lucky. Yet, this should not be surprising as this is obviously known to be the case with consensus.
There seems indeed not to be any property of consensus which does not have a counterpart with
k-set consensus.

10

References

1]

2]

[11]

[12]

Afek Y., Gafni E., Rajsbaum S., Raynal M. and Travers C., Simultaneous Consensus Tasks:
A Tighter Characterization of Set-Consensus. ICDCN 2006: pp. 331-34.

Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R. Renaming in an Asynchronous
Environment Journal of the ACM 37(3): 524-548, 1990.

Borowsky E. and Gafni E., A Simple Algorithmically Reasoned Characterization of Wait-Free
Computations. PODC 1997: pp. 189-198.

Borowsky E., Gafni E., Lynch N. and Rajsbaum S. The BG Distributed Simulation Algorithm.
Distributed Computing, 14(3):127-146, 2001.

Chaudhuri S. More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105:132-158, 1993.

Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, 32(2): 374-382, 1985.

Gafni E. Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony. PODC 1998:
143-152.

Gafni E.,; Renaming with k-Set-Consensus: An Optimal Algorithm into n 4+ k - 1 Slots.
OPODIS 2006: pp. 36-44.

Herlihy, M., Luchangco, V., and Moir, M., Obstruction-Free Synchronization: Double-Ended
Queues as an Example. ICDCS 2003.

Herlihy M.P. Wait-Free Synchronization. ACM Transactions on programming Languages and
Systems, 11(1):124-149, 1991.

Imbs D. and Raynal M. The Multiplicative Power of Consensus Numbers. PODC 2010.

Lamport L: Time, Clocks, and the Ordering of Events in a Distributed System. Communica-
tions of the ACM, 21(7): 558-565, 1987.

11

