
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M.-O. Hongler, président du jury
Dr D. Kiritsis, directeur de thèse
Dr G. Hackenbroich, rapporteur
Prof. K.-D. Thoben, rapporteur

Dr M.-J. Yoo, rapporteur

An Ontology-Based Approach for Closed-Loop Product
Lifecycle Management

THÈSE NO 4823 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 15 OCTOBRE 2010

À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE DES OUTILS INFORMATIQUES POUR LA CONCEPTION ET LA PRODUCTION

PROGRAMME DOCTORAL EN SYSTÈMES DE PRODUCTION ET ROBOTIQUE

Suisse
2010

PAR

Aristeidis MATSOKIS

 ii

 iii

Abstract

The main goal of the Product Lifecycle Management (PLM) is the management of all the

data associated to a product during its lifecycle. Lifecycle data is being generated by events

and actions (of various lifecycle agents which are humans and/or software systems) and it

is distributed along the product’s lifecycle phases: Beginning of Life (BOL) including

design and manufacturing, Middle of Life (MOL) including usage and maintenance and

End of Life (EOL) including recycling, disposal or other options. Closed-Loop PLM

extends the meaning of PLM in order to close the loop of the information among the

different lifecycle phases. The idea is that information of MOL could be used at the EOL

stage to support deciding the most appropriate EOL option (especially to make decision for

re-manufacturing and re-use) and combined with the EOL information it could be used as

feedback in the BOL for improving the new generations of the product. Several PLM

models have been developed utilising various technologies and methods towards providing

aspects of the Closed-Loop PLM concept.

Ontologies are rapidly becoming popular in various research fields. There is a tendency

both in converting existing models into ontology-based models, and in creating new

ontology-based models from scratch. The aim of this dissertation is to include the

advantages and features provided by the ontologies into PLM models towards achieving

Closed-Loop PLM. Hence, an ontology model of a Product Data and Knowledge

Management Semantic Object Model for PLM has been developed. The transformation

process of the model into an ontology-based one, using Web Ontology Language-

Description Logic (OWL-DL), is described in detail. The background and the motives for

converting existing PLM models to ontologies are also provided. The new model facilitates

several of the OWL-DL capabilities, while maintaining previously achieved characteristics.

Furthermore, case studies based on various application scenarios, are presented. These case

studies deal with data integration and interoperability problems, in which a significant

number of reasoning capabilities is implemented, and highlight the utilisation of the

developed model.

Abstract

 iv

Moreover, in this work, a generic concept has been developed, tackling the time treatment

in PLM models. Time is the only fundamental dimension which exists along the entire life

of an artefact and it affects all artefacts and their qualities. Most commonly in PLM models,

time is an attribute in parts such as “activities” and “events” or is a separate part of the

model (“four dimensional models”). In this work the concept is that time should not be one

part of the model, but it should be the basis of the model, and all other elements should be

parts of it. Thus, we introduce the “Duration of Time concept”. According to this concept

all aspects and elements of a model are parts of time. Case studies demonstrate the

applicability and the advantages of the concept in comparison to existing methodologies.

Keywords: Product Lifecycle Management (PLM), Semantic web, Web Ontology

Language (OWL), Interoperability, Reasoning, Mapping, Time Management

 v

Résumé

L’objectif principal des méthodes de Gestion du Cycle de Vie d’un Produit (GCVP) est de

traiter l'ensemble des processus et informations associés à un produit donné pendant son

cycle de vie. Ces données sont générées par des événements et actions (eux même causés

par différents agents pouvant être soit des êtres humains ou des logiciels) et leur apparition

est distribuée le long des phases du cycle de vie du produit: début de la vie (conception,

fabrication); milieu de vie (utilisation, entretien); fin de vie (recyclage, élimination ou

autres options). La gestion d’un cycle de vie peut en outre être faite en boucle fermée. Dans

ce cas, les informations disponibles sur la fabrication peuvent par exemple être prises en

compte pour élaborer les processus de recyclage, de même qu’inversement les informations

concernant le recyclage peuvent conduire à des choix de fabrication pour les générations

futures d’un produit. Plusieurs systèmes de GCVP ont été développés, basées sur

différentes technologies et méthodologies, avec pour but de d’intégrer le principe de la

boucle fermée.

Le concept d’ontologie acquiert progressivement une certaine notoriété dans divers

domaines de recherche. La tendance est à la conversion de modèles existants en modèles

ontologiques d’une part, et la création de tels modèles à partir de zéro, d’autre part. Le

travail présenté ici consiste à inclure les avantages et les possibilités offertes par les

modèles ontologiques dans la gestion de modèle de GCVP en boucle fermée. Un modèle

ontologique permettant de représenter un modèle de système de gestion de données et de

connaissances de produit a ainsi été développé. Par ailleurs, le processus de transformation

du modèle de représentation existant en modèle ontologique utilisant le langage de

description Web Ontology Language-Description Logic (OWL-DL), est également détaillé.

Les connaissances de fond nécessaires, ainsi que les motivations poussant à entreprendre

une telle transformation, sont aussi fournies au lecteur dans ce travail. Le nouveau modèle

obtenu utilise plusieurs des capacités du langage OWL-DL, tout en conservant les

caractéristiques précédemment réalisées. Des études de cas se basant sur différent scenarios

d’application et traitant de problème d’intégration de données et de problèmes

Resumé

 vi

interopérabilité, dans lesquels un nombre importants de capacités de raisonnement sont

mises en œuvre, sont présentées, afin de démontrer l’utilité du méta-modèle développé.

En outre, dans ce travail, un concept générique de traitement du temps dans les modèles

GCVP a été mis au point. Le temps est la seule dimension fondamentale qui existe tout au

long du cycle de vie d'un produit, et il affecte tous les produits et leurs qualités. De manière

générale, dans les modèles de GCVP, le temps est un attribut lié à des«activités» et «

événements » ou une partie distincte du modèle (modèles « quadridimensionnels »). Le

nouveau concept mis au point consiste à considérer le temps non comme une simple partie

du modèle, mais comme la base de celui-ci, tous les autres éléments devant faire partie de

ce dernier. Ainsi, nous introduisons le concept de « Durée du Temps ». Selon ce concept,

tous les aspects et les éléments d'un modèle sont des parties du temps. Deux études de cas,

dont l’une mentionnée précédemment, montrent l'applicabilité et les avantages de ce

concept par rapport aux méthodes existantes.

Mots-clés: Product Lifecycle Management (PLM), le Web sémantique, Web Ontology

Language (OWL), l'interopérabilité, de raisonnement, de cartographie, Durée du Temps

 vii

Acknowledgments

I would like to express my greatest appreciation for Dr. Dimitris Kiritsis for accepting me

as his PhD student and for guiding me during my four year thesis. It has been a pleasure

working together and achieving a very good level of collaboration and mutual

understanding. My special thanks go also to Prof. Paul Xirouchakis for accepting me as a

PhD student in his lab.

I would also like to express my special thanks to the two British of our lab: Dr. Ian Stroud

for all the time he devoted in advising me in various matters and for accepting me being his

assistant in E-gpr course; our marvellous secretary Carol for her valuable administrative

support and humour, as well as for her great support for our lab’s special social events.

Furthermore, I would like to thank my colleagues: Nenad for the long discussions we had

on scientific and social matters; Ali for the long discussions and activities we had in my

early years in the lab; Sandeep and Saurabh who shared with me their company and

friendship during my stay in EPFL; and all the other newer and older colleagues for all the

time we spent together.

My Friends Nirav, Ben, Torsten, Leonidas, Carla, Gabi, Giannis and so many others for

organising a number of dinners, trips, hikings, ski weekends and cycling tours together,

while trying to make our life in Lausanne more pleasant.

My Parents Nikos and Roni who struggled to provide me with the best education, who are

missing me so much, and they are supporting me from home for this very long period.

Moreover, I would like to thank my Parents for their patience with me, for listening to my

complaints about my life abroad and for always doing their best to help me whenever

required…

My Brother Petros who has visited me several times and who has missed me so much from

his life. Also, I would like to thank my Brother for the long, interesting and useful

discussions we always have when we meet about the least and the most important things of

life…

Acknowledgements

 viii

Finally, I would like to thank Yadira for having very big patience with my ups and downs

during the writing of this dissertation and despite all this, still accepted to continue her life

with me…

 ix

Table of Contents

Abstract... iii

Résumé..v

Acknowledgments ... vii

Table of Contents.. ix

List of Figures... xiii

List of Tables ..xv

List of Abbreviations ... xvii

1 Introduction...1
1.1 Motivation...4
1.2 Objectives and Research Questions..9
1.3 Methodology...10
1.4 Contributions ..12
1.5 Thesis Structure Outline ...13

2 Background in Ontology Development Technologies..15
2.1 Semantic Web Languages for Representing Ontologies-Data-Knowledge..........15
2.2 OWL Characteristics...18

2.2.1 Description Logics..20
2.2.2 Inference Engines-Reasoners..20
2.2.3 Open World Assumption ..21
2.2.4 Rule Language for the Semantic Web ..22
2.2.5 Evolution of OWL: The OWL 2...23
2.2.6 Merging Ontologies ..24
2.2.7 Ontology Editors...26

2.3 Conclusion ..27

3 State of the art ...29
3.1 State of the art in PLM..29

3.1.1 PLM Models ...31
3.1.2 Closed-Loop PLM-Semantic Object Model of PROMISE37

3.2 State of the art in Current Ontology Models...41
3.2.1 Ontology Models ..42

3.3 State of the art in Time Management..44
3.3.1 Time Concepts ..45
3.3.2 Time Management Approaches ..46

3.4 Conclusion ..48

4 Ontology Development for Closed-Loop PLM ..49
4.1 System Architecture Description and Functionality...50

Table of Contents

 x

4.1.1 System Description .. 50
4.1.2 System Functionality.. 52

4.2 Ontology-Based Model for Closed-Loop Product Lifecycle Management 55
4.2.1 General Alternations of the SOM of PROMISE.. 56
4.2.2 Transformation of Attribute Properties .. 57
4.2.3 Transformation of Associations ... 59
4.2.4 Alternations for Supporting Additional Functionalities............................... 60

4.3 Towards an Ontology Merging friendly system .. 65
4.3.1 Merging One or More Ontologies.. 66
4.3.2 Achieving Ontology Merging .. 69

4.4 Extending the Ontology Model to provide Semantic Maintenance 70
4.4.1 Expansion in Classes.. 74
4.4.2 Expansion in Relationships .. 77
4.4.3 Extension in Datatype Attributes ... 78

4.5 The Duration of Time Concept .. 79
4.5.1 Time implementation for Ontology based PLM .. 80
4.5.2 Basis for The “Duration of Time” Concept ... 81

4.6 Implementation Methodology of our Ontology-Based approach 85
4.7 Conclusion.. 87

5 Case Studies ... 89
5.1 Case Study 1... 90

5.1.1 Ontology Development Description... 91
5.1.2 Populating the Ontology Model ... 92
5.1.2.1 Populating Process ... 92
5.1.3 Inferring Instances.. 96
5.1.3.1 Physical Product Instances ... 97
5.1.3.2 Field Data Instances ... 100
5.1.4 Supporting Decision on Model Extension ... 104
5.1.5 Merging Ontologies.. 109
5.1.6 Discussion of the Case Study 1 .. 117

5.2 Case Study 2... 118
5.2.1 System Analysis and Functionality .. 121
5.2.2 Discussion of the Case Study 2 .. 126

5.3 Case Study 3... 128
5.3.1 Functionality... 129
5.3.2 Facilitating Machine Data .. 130
5.3.3 Extending the model using DL rules to support reasoning 131
5.3.4 Time implementation ... 135
5.3.5 System Analysis ... 136
5.3.6 Discussion of the Case Study 3 .. 142

5.4 Conclusion.. 143

6 Model Evaluation ... 145
6.1 Evaluation Methods.. 146
6.2 Evaluation Aim .. 147
6.3 Evaluation Process and Results.. 148
6.4 Conclusion.. 152

Table of Contents

 xi

7 Conclusions and Future Perspectives ...153
7.1 Conclusions...153
7.2 Future Perspectives ...156

References...159

Appendix A: OWL Model full list of relationships and attributes per class169

Appendix B: Merging of two or more OWL ontologies in OWL 1 and in OWL 2175

Appendix C: SWRL rules for Case Study 2 ...179

Appendix D: SWRL rules for Case Study 3 ...181

Curriculum Vitae ..191

 xii

 xiii

List of Figures

Figure 1: Main players of the dissertation. ...3

Figure 2: Levels of Abstraction. ...6

Figure 3: Methodology Process Overview. ..11

Figure 4: The Semantic Web Stack as it is described by W3C. ...16

Figure 5: MIMOSA OSA-EAI v3.2 Architecture Diagram. ..33

Figure 6: Complete schema of the PROMISE SOM. ...40

Figure 7: An object (possible individual) and it temporal part (state) according to
ISO-15926. ..45

Figure 8: A pump and its temporal parts 1234 and 9876, according to ISO-15926.45

Figure 9: Schematic representation of a four dimensional model.47

Figure 10: Schematic representation of a model with time/date attributes distributed in
various classes. ..47

Figure 11: System Architecture ..53

Figure 12: Structure of the class-hierarchy of the PROMISE PDKM SOM.59

Figure 13: Physical Product and Part Of before changes. ..61

Figure 14: Physical Product after changes..61

Figure 15: Relationship view for Physical Product class before alternations.......................63

Figure 16: Relationship view for Physical Product class after alternations.63

Figure 17: Relationship view for classes Field Data Source and Field Data
after alternations. ...63

Figure 18: Complete UML schema of the ontology model. ...64

Figure 19: Complete UML schema of the SMAC ontology model......................................72

Figure 20: Schematic Duration of Time representation example. ..82

Figure 21: Multi-system architecture using the Duration of Time concept..........................83

Figure 22: Physical Product class data of the initial model. ...92

Figure 23: Instance editor of Passenger_Vehicle_1 instance. ..95

Figure 24: Physical Product class data after distribution..98

Figure 25: Instances of Physical Product class sorted according to their complexity........100

Figure 26: Instances related to Engine_1 instance have been sorted under
Field_Data_of_Physical_Product_Engine_1...101

List of Figures

 xiv

Figure 27: The reasoner re-classified the equivalent classes ... 106

Figure 28: Instances related to Passenger_Vehicle_1 instance with the properties hasParent
and isParentOf... 107

Figure 29: Instances related to Engine_1 instance with the properties hasParent and
isParentOf. .. 107

Figure 30: Instances related to Piston_1 instance with the properties hasParent and
isParentOf. .. 108

Figure 31: Instances related to Passenger_Vehicle_1 instance directly and through
inheritance due to the transitive properties hasParent and isParentOf.............. 108

Figure 32: The DL-reasoner has re-classified the Parts classes. .. 109

Figure 33: The result of the reasoner after merging... 114

Figure 34: The reasoner shows that the model is inconsistent. .. 116

Figure 35: The reasoner provides an explanation of the inconsistency. 116

Figure 36: PDKM SOM as it is in the Time Centric PLM .. 119

Figure 37: Ontology model extended with necessary classes .. 121

Figure 38: MOL Locomotives as seen from the “duration of time” Point of view with
Queries .. 122

Figure 39: The example of MOL Locomotives along time. .. 123

Figure 40: An example of Which Queries. .. 124

Figure 41: An example of Availability on certain time Queries. 124

Figure 42: An example of Document 3 Availability; (when and for how long) Queries. . 125

Figure 43: An example of MOL phase-Availability (when and for how long) Queries. ... 125

Figure 44: The result of MOL phase-Availability (when and for how long) Query of Figure
42 exported to excel.. 126

Figure 45: Classes are re-classified under six levels of abstraction. 132

Figure 46: The instances have been inferred under the sub-classes according to the object
property hasParent. ... 133

Figure 47: Inferring instances according to Function and to Physical Product Group. 134

Figure 48: Equivalencies and re-classification... 134

Figure 49: Ontology model extended with necessary classes .. 138

Figure 50: Field data as it is understood by the system. .. 140

Figure 51: Field data plotted along time. ... 140

Figure 52: Field data with Event and Alarm Management example.................................. 141

 xv

List of Tables

Table 1: The mapping of the basic parts of the different systems.73

Table 2: List of instances for two selected classes ...93

Table 3: Sorting of Data overview..102

Table 4: The possible cases after merging..111

Table 5: A list of the conditions followed creating events and alarms...............................139

Table 6: Functionality Comparison of initial and developed model148

Table 7: Comparison of the developed model with the capabilities of the used IT
methods and tools ...149

Table 8: List of Object Properties...169

Table 9: List of Datatype Properties ...172

 xvi

 xvii

List of Abbreviations

ALM Asset Lifecycle Management

BOL Beginning Of Life

BOM Bill Of Material

DL(s) Description Logic(s)

EOL End Of Life

GCI General Concept Inclusion

IT Information Technology

MOL Middle Of Life

OEM Original Equipment Manufacturer

OWA Open World Assumption

OWL Web Ontology Language

PDKM Product Data and Knowledge Management

PLM Product Lifecycle Management

RDF Resource Description Framework

SOM Semantic Object Model

SQWRL Semantic Query-enhanced Web Rule Language

SWRL Semantic Web Rule Language

UML Unified Modeling Language

URI Uniform Resource Identifier

XML Extensible Markup Language

 1

1
Introduction

The main players of this dissertation are the Product Lifecycle Management (PLM), its

extension the Closed-Loop PLM, the Semantic Web methods and tools, as well as original

ideas. This work describes an attempt of implementing semantic web methods and tools on

PLM models. The definition of PLM is quite vague. Let’s first define one by one the words

of this phrase. Product could be something tangible (i.e. car, food, etc.) or intangible (i.e.

software, algorithm, etc.) [1]. It could be defined as something which could be consumed

and used by a customer, which could be sold and bought, which provides entertainment,

which provides functionality or service, which could be maintained or a combination of the

above, etc. Product in our case is something tangible or intangible and we focus on the

functions that it provides. Lifecycle is the cycle of the life of the product. This starts when

the idea to create a product appears, then, it passes from several phases (design, realisation,

possible multiple usage phases, etc.) and it ends up on the disposal field as it is described

by Stark “from cradle to grave” [2]. The exact definition of lifecycle varies depending if

one is the manufacturer, who sees the big picture of the lifecycle, or the user, who sees the

product mainly at its usage phase. In this dissertation with the term lifecycle we mainly

mean the full picture from cradle to grave. Management is the method, theory or pattern to

be followed during the lifecycle of the product in order to arrange important elements in a

certain order (i.e. locate data in specific place of the information model) with the aim of

achieving the desired performance and results. PLM is the combination of all the above

meaning a system which manages the data and information generated from the product,

during the product’s lifecycle.

The main goal of the PLM is the management of all the business processes and of all the

associated lifecycle data. Lifecycle data is being generated by events and actions (of

Chapter 1: Introduction

 2

various lifecycle agents which are humans and/or software systems) and it is distributed

along the product’s lifecycle phases: Beginning of Life (BOL) including design and

manufacturing, Middle of Life (MOL) including usage and maintenance and End of Life

(EOL) including recycling, disposal or other options [3].

Closed-Loop PLM extends the meaning of PLM in order to close the loop of the

information among the different lifecycle phases. The idea is that information of MOL

could be used at the EOL stage to support deciding the most appropriate EOL option

(especially to make decision for re-manufacturing and re-use) and together with the EOL

information it could be used as feedback in the BOL for improving the new generations of

the product. The interest of the different actors for Closed-Loop PLM arises from the need

for measuring and controlling the total cost of the product as well as from the growing

interest for sustainable development and production, for providing better service and for

managing the EOL treatment of the products.

The concept of the Closed-Loop-PLM, in practice, has several requirements in order to be

realised, a very important of which is the development of an information system which

supports the continuity and retrieval of the lifecycle data and information. This requires a

system or systems which achieve and maintain information integration and system

interoperability across the entire lifecycle of a product. Interoperability gaps among main

commercial PLM systems exist and are causing problems for the products overall. Typical

example of such problems in the BOL is the delay on the production of Airbus A-380.

Interoperability gaps exist even when the PLM systems are made by the same vendor, but

the systems are focusing on different phases of the lifecycle. Data is the lowest level of

abstraction and carries no useful meaning (i.e. in a passenger vehicle a sensor measures the

engine temperature and sends measurements to the system). Then, on this data a pattern

(with criteria) is imposed by a human or a machine in order to transform data into

information which is the next level of abstraction (i.e. make the graph of temperature along

time containing thresholds for temperature). Thus, data is interpreted and takes a meaning.

Finally, information is processed more and it is transformed into the highest level of

abstraction, into knowledge (i.e. how to deal with high temperature of the engine: stop

engine to cool down, check the cooling system etc.).

Chapter 1: Introduction

 3

An important element originating from Information Technology (IT) and might provide

major or minor solutions is the use of ontologies combined with the use of the related IT

methods and tools. Ontologies are rapidly becoming popular in academia. There is a

tendency for both converting existing models into ontologies and creating new ontology

models. Ontology models support several useful features, main of which are: to share

common understanding of the structure of information among human or/and software

agents; to enable re-use of domain knowledge; to make domain assumptions explicit; to

separate domain knowledge from the operational knowledge; to provide formal analysis of

terms; and based on them, analyse the domain knowledge [4]. Formal analysis of terms is

extremely valuable when attempting both to re-use and to extend ontologies [5].

In this work we have developed both an ontology information model, to represent data and

information, and a concept for utilising time as the universal reference-basis of the

information systems. The developed time concept claims to be a lean method for providing

the systems with a first level of data integration through synchronisation. The concept by-

passes the burden of using different semantics in different models and therefore, models

implementing the concept are able to be synchronised, although they might be having

different semantics.

Figure 1: Main players of the dissertation.

Chapter 1: Introduction

 4

This work aims in providing new functionalities and solutions to PLM systems towards

data integration and system interoperability. The combination of the different players of

this dissertation towards this aim is illustrated in Figure 1. The two arrows pointing to PLM

models demonstrate the implementation of the advantages of the IT methods and tools, and

of the time concept in PLM models in an efficient and simple manner. The double arrow

between the IT methods and tools and the time management concept demonstrates the

technology exchanged between them in order to show the physibility of the concept.

Furthermore, this work aims at presenting a number of benefits and opportunities created

for the future PLM systems through a number of case studies.

1.1 Motivation
The motivation of this work lies on three main pillars: the prior works on the PLM, the

works on new IT methods and tools as well as original ideas on managing time in PLM

data and information systems. Advancements of IT methods and tools are combined with

the concepts developed in this work in an attempt to deal with the gaps in the PLM

coverage arising from previous literature. Ontology-based semantics prove to be efficient

for developing machine-understandable models which are able to understand the meaning

of the data and information they contain. Thus, PLM systems developed using semantic

web methods and tools would support system interoperability and data integration as well

as lead a way towards using the information contained in the systems for extracting useful

knowledge. This knowledge would provide feedback for the different PLM phases i.e. for

improving the design of future generations of the product.

PLM Perspective

In today’s systems the Closed-Loop PLM is not yet supported in an efficient and practical

manner. Although information flow is well tracked during the BOL, this is not the case for

the MOL and the EOL phases. In general, the information reaching EOL (from MOL) and

BOL (from MOL and EOL) is incomplete and often inappropriate and/or insufficient to

support decision. This, results in preventing the feedback of the product related information,

generated during the MOL, to the EOL and to the BOL. Furthermore, the EOL information,

i.e. high costs to disassemble the product, is prevented from reaching the BOL i.e. for

improving design of the new generation in order to aid disassembly. One reason for this

Chapter 1: Introduction

 5

situation is the limited view of the current systems on PLM. Each one of the existing

models or standards, which deal with PLM to some extent, is focusing on a different level

of abstraction of the PLM. This makes them not being able to see the entire lifecycle and

therefore there is the need for interoperability between the different systems of the different

levels of abstraction. However, this interoperability is missing even in cases that the PLM

systems are made by the same vendor, which leads to information integration and system

interoperability gaps. The different levels of abstraction which may be managed by

different information systems isolated to each other are shown in Figure 2. It should be

noted that one may arrange the structure of the levels or add new levels of abstraction

according to his requirements and expertise. In Figure 2 the different levels of abstraction

are illustrated in a pyramid, meaning that each system of a level controls or manages one or

more systems of the level below. Therefore, in Figure 2 we have that: each PLM system

may be controlling or managing one or more Original Equipment Manufacturer (OEM);

each OEM may be controlling or managing one or more Decision Making System, for

example its own structure and/or that of subcontracting or sister entities, that correspond to

the Organisation (or Execution) level of the system (which includes humans or equipment

utilised for taking decisions and/or for executing activities, processes, etc.); each Decision

Making System’s action may be controlling more than one Component, and it considers all

the artefacts involved in decision making. This Decision Making System level links the

Organisation level with the Component/Part level; each (type of) Component is utilised in

more than one products. A typical example of this structure would be the PLM system of

VW Group, which manages several OEMs (VW, SEAT, Skoda, etc.) and each OEM has

several suppliers, decision groups, etc. Then, on product level, one or more types of

vehicles share common components like i.e. VW Polo, Skoda Fabia and Seat Ibiza.

Several of the current systems focus on managing the maintenance activities and processes,

other focus on the design or the manufacturing process, other on disassembly, reverse

logistics, etc. and very few are trying to cover the whole lifecycle. In these cases there is a

lack of vertical information visibility [6] of the systems, from the highest to the lowest level

of abstraction and vice versa. Even for systems which are on the same level of abstraction,

problems appear when attempting to share the data and information of each other (i.e.

manual mapping). In this case there is a lack of horizontal visibility [6] of the information

Chapter 1: Introduction

 6

of the systems of the same level of abstraction. In fact, current approaches have left

uncovered areas in the area of PLM. This problem appears to be more crucial while

engineers attempt to make the systems to interoperate with other systems in the same or

other levels of abstraction of the PLM or even with systems of the same level, but are

developed to cover different requirements. Solutions for improving the PLM systems

towards Closed-Loop by suggesting and testing alternations on the existing PLM systems

are necessary.

Figure 2: Levels of Abstraction.

Technological Perspective

There are several IT advancements which are not yet sufficiently implemented in the

systems of the domain and could support the Closed-Loop PLM. On the product or product

component level this is translated as the use of new generation of product embedded

information devices [3], [7] which also have process power i.e. sensors which provide

filtered data instead of raw data for the monitoring system. On the PLM system level the

idea is to develop the model of the system using semantic web methods and tools.

Nowadays interoperation and collaboration is an essential requirement for an increasing

number of actors of extended enterprises, manufacturers and suppliers. Collaborative

engineering even within the same enterprise has many barriers to overcome. Although a lot

of data is being collected by various systems, there is no efficient and productive method to

Chapter 1: Introduction

 7

map, to process and to make the data useful. Consequently, there is poor data management

and several barriers for the Closed-Loop PLM appear i.e. the input data for improving

future products, activities and actions is incomplete. The development of systems capable

of understanding the data they contain and capable of generating knowledge out of their

data is required. Ontology-based semantics ensure flexibility and a common understanding

of terms for both human beings and computer systems. In this case the basis of the data and

information systems is “concept composition and knowledge generation”. The initial

concepts are always simple (i.e. humans are mammals, mammals are animals, etc.). The

composition of many simple concepts leads to complex concepts and thus, the system may

compose new concepts.

According to Noy et al. [4] ontology is “a formal explicit description of concepts in a

domain of discourse (classes (sometimes called concepts)), properties of each concept

describing various features and attributes of the concept (slots (sometimes called roles or

properties)), and restrictions on slots (facets (sometimes called role restrictions))” and “An

ontology together with a set of individual instances of classes constitutes a knowledge

base”. Therefore, the systems using ontology-based semantics claim to be concept-based

and to be able to combine existing simple and complex concepts with data, in order to

generate “new” concepts and hence new knowledge. All concepts of the system will be

semantically defined. This could be performed using description logics and other types of

rules in order to provide machine-understandable meaning to the concepts. Each Data

loaded into the system has a meaning and hence, belongs to a concept. Relevant inference

engines could be used to support reasoning on the concepts and data of the model. The

importance and the usefulness of the “new” concepts would be evaluated according to the

data loaded into the system. Moreover, the data will be used to validate the “new” concepts

against any logical inconsistencies. Thus, the data will be fully exploited and new concepts

would be validated. The validated “new” concepts are the new knowledge generated.

Finally, semantic web methods and tools also allow ontology merging which is supported

by the combination of the rules with the inference-engine. It should be noted that in case of

ontology merging, several complementary restrictions might be necessary in the model in

order to maintain consistency.

Chapter 1: Introduction

 8

Although there are several works taking advantage of such methods and tools in other

research domains, in PLM still, very little work has been performed. Implementing such

advances could be beneficial towards developing systems supporting the concept of the

Closed-Loop PLM.

Time Management perspective

Time has some qualities which make it special among all the attributes of the information

systems: it is a universal and an objective element. Time is the only fundamental dimension

which exists along the entire life of an individual (including materials and physical

products) and it affects all individuals and their qualities. Individuals existed in the past and

will exist in the future no matter if they only currently exist in our model. Furthermore,

time is simple and comprehensive and therefore, application independent. In this way time

may be used as the connecting element of various systems and models.

At the same time Closed-Loop PLM is naturally a system describing the timeline of the

lifecycle of the products. Of course on this timeline many events, activities, processes, etc.

of the various lifecycle phases take place. However, time is one of the very few elements

that all the different parts of the systems have in common, time is objective and the parts of

the systems can be described through it. In today’s systems although time attributes exist in

various parts of the systems, there are no systems which are based on time. Time is always

considered in Asset Lifecycle Management (ALM) and PLM models either as a part of the

model or as an attribute in parts of the model. It should be noted that “Asset” in our context

has the meaning provided by the International Society of Engineering Asset Management

(ISEAM). According to ISEAM the Engineering Asset Management focuses on “life-cycle

management of the physical assets required by a private or public firm, for the purpose of

making products, and/or for providing services in a manner that satisfies various business

performance rationales” [8]. Thus, assets are types of physical products utilised to produce

products or services and therefore, require different lifecycle management procedure than

in PLM.

Chapter 1: Introduction

 9

1.2 Objectives and Research Questions
In PLM systems as it is shown in paragraph 1.1 there are still several open issues which

seek solutions and improvements. Firstly, our aim is to study currently used systems in

PLM or in parts/phases of PLM in order to figure out gaps in the coverage of the PLM.

Then, our aim is to select the most important and promising gaps according to our criteria,

to figure out the requirements to address them and to develop ideas of ways of covering

these requirements. Furthermore, we study the status and the capabilities of IT

advancements, and develop a methodology for implementing them in PLM systems. The

combination of all the above is used to develop alternations of the models of the systems,

which could make the systems provide novel or extended services and solutions. Then, the

solutions are validated through case studies and the ontology model is validated through

ontology evaluation patterns considering how much generic and applicable it is. The

research questions to be answered in this work are:

1. How to develop ontology-based models in order to improve aspects of the Closed-

Loop PLM systems?

2. How to use the IT methods and tools efficiently?

3. Which are the benefits and opportunities created for the PLM systems?

4. Can “time” be the sticking (glue) element of the various PLM systems?

5. Can “time” aid in providing vertical and horizontal integration of the systems?

6. Can “time” aid in providing interoperability among different systems?

7. How can the combination of “time” with IT methods and tools aid business

applications towards Closed-Loop PLM?

In order to address questions 1, 2 and 3 this work provides the background knowledge, the

system architecture and an implementation methodology for developing an Ontology-Based

approach. Furthermore, it provides solutions described in case studies, for improving the

PLM systems towards Closed-Loop. It also introduces an implementation methodology of

IT methods and tools, as well as of semantic web advantages in the existing PLM systems.

It should be noted that in order to follow the suggested implementation method,

alternations might be necessary to be performed on the existing systems. The result after

Chapter 1: Introduction

 10

implementing the method is that the developed ontology systems have both the

functionalities they had before the implementation and the new functionalities provided by

the used technology.

Moreover, research questions stem from the gaps which were spotted during the study of

the current systems regarding the possible capabilities which appear through the time

implementation. These are questions 4, 5 and 6, and they are addressed by a developed

original concept on managing time in PLM systems. The qualities of time characteristics

(time is objective and exists naturally in the whole model) were the initiative to select time

as the basis of our methodology for model development. Therefore, we introduce a concept,

the “Duration of Time” concept, which utilises these unique advantages of time. Moreover,

we provide a step by step method for implementing the concept in current systems and

models. Time in this context is used with its generic meaning. The concept introduces the

idea of seeing all aspects and elements of a model as parts of time and it provides flexibility,

application independence and simplicity. In this way time exists naturally in every part of

the system as it does in real life. Thus, time could be used to achieve a first level of

integration among different systems.

Finally, to address question 7 a case study has been developed to test and validate the

suggested concept. The key element in this case is to show how time could be used as the

basis for securing the continuity of the multi-level system information along time.

1.3 Methodology
The methodology followed in this dissertation is shown in Figure 3. It consists of five

logical steps describing the study of the background works and technologies, the

development of new concepts and methods, the implementation and testing of the

developed concepts and methods in case studies, the overall evaluation of the results, and

the possible future extensions of this work.

In step 1 firstly, we studied the background works in current PLM models. The aims were:

to acquire a good background and knowledge of the domain; to define which are the

requirements of the domain from new methods and tools; to identify possible gaps of the

current models in the domain coverage; and to define possible improvements we could

Chapter 1: Introduction

 11

suggest towards Closed-Loop PLM. In the latter we realised that time is an under-

developed and under-exploited element in current models, and it could be beneficial to

introduce a method for developing models having an architecture for exploiting and using

the characteristics of time (time is both an objective dimension and universal dimension).

Moreover, we studied the theory, methods and tools of the IT which we considered as

useful for ontology development. Thus, we obtained good knowledge of the capabilities

and the functionalities of this technology. Furthermore, we studied applications of the

ontology-based IT methods and tools in other research fields which have implemented

them excessively. In this way we obtained a good overview of how they work; how they

are implemented; and what possible opportunities they might provide for Closed-Loop

PLM. Finally, we studied background works dealing with time management in various

different sectors to obtain ideas for developing a method for exploiting better time in PLM

models. The proposed method has to be feasible and easily implemented in current models,

by using the IT advancements.

Figure 3: Methodology Process Overview.

In the second step, we used the knowledge of the first step in order: to transform current

models into executable ontology models implementing a number of the IT methods and

tools; to develop a system architecture for demonstrating how to exploit and apply the IT

capabilities on the ontology PLM models; and to develop a concept for exploiting the time

characteristics in favour of providing new capabilities for PLM systems. Then, we

combined our knowledge and experience acquired in this step in order to propose a step by

step implementation method of the IT advancements and of the time concept in current and

future PLM models.

Chapter 1: Introduction

 12

In the third step, we applied all the models developed, the proposed advancements and the

implementation method in a number of applications, in case studies. The applications

illustrate in detail the logic and the method used in practice for exploiting the potential of

the proposed tools, methods and concepts. This part of the dissertation demonstrates the

capabilities of the models implementing the proposed tools, methods and concepts; and the

opportunities appearing towards realising the Closed-Loop PLM.

In the fourth step, we evaluate the functionality and the added value of the proposed

concepts, methods and tools. Firstly, results are compared with the capabilities of the initial

model with the aim of checking that all the initial functionalities and capabilities are also

valid in the ontology models. Secondly, the capabilities of the ontology models are

compared with the theoretical capabilities of the IT methods and tools as they are described

in the background literature by the experts and the developers of these technologies.

Finally, we evaluate to which extent the “Duration of Time” concept could be used as the

basis of the PLM systems for providing advantages such as data integration.

In the fifth and final step, we define possible future extensions of this work as well as

requirements for the capabilities of the next generation IT methods and tools which we

believe would be useful to be provided for the PLM systems. All these are towards

developing models supporting the full potential of the Closed-Loop PLM.

1.4 Contributions
The contributions of this dissertation are divided into two main parts: the development of

an ontology approach for PLM with the use of the relevant methods and tools; and the

introduction of the original “Duration of Time” concept. These parts are very well

connected and related to each other, but they are presented as two parts in order to aid

understanding of the benefits, functionalities and capabilities added to PLM models by each

part.

Development of an ontology approach for PLM and the use of the relevant
methods and tools in PLM models

This contribution provides in detail the process of how to use an ontology-based approach

on PLM models in a lean manner which makes the models inherit new functionalities and

Chapter 1: Introduction

 13

capabilities deriving from the utilised IT methods and tools. Firstly, this dissertation

demonstrates how one may transform efficiently UML models into executable OWL-DL

models. Also, it demonstrates a number of possible alternations which might be necessary

to be performed on the models in order to make them capable of using the capabilities

deriving from IT methods and tools. Moreover, through the description of the system

architecture it demonstrates how to use the combined capabilities of the available tools on

the developed OWL-DL models. Then, it provides a generic implementation method of the

architecture which may be applied on a big number of today’s models to broaden their

capabilities and functionalities. Finally, in the first case study it is demonstrated how to use

rules in order to obtain the benefits of the utilised IT methods and tools.

The “Duration of Time” concept

The second contribution of this work is an original concept on how to manage and use time

efficiently in PLM models, the “Duration of Time” concept. The aim of the concept is to

exploit the objectivity and universal status of time by using time as a reference-basis to

integrate different models through synchronisation. It should be noted that time in this

context is used with its generic meaning and it could be date, time, duration, etc. depending

on the application. Moreover, it has been demonstrated how to implement the concept in

existing models and how to use it. Furthermore, the second case study of this dissertation

demonstrates a part of the benefits provided by the use of the concept in PLM models.

Finally, in the third case study we have a demonstration of the combination of the

capabilities of the “Duration of Time” concept and the IT methods and tools.

1.5 Thesis Structure Outline
In Chapter 2 background knowledge on semantic modelling methods, tools and ontology

technologies is presented. This is a chapter which provides the reader with the basic

knowledge of the technologies utilised. Its aim is to support the reader understanding the

other parts of this dissertation.

In Chapter 3 the state of the art is presented. This chapter is divided in three parts: PLM,

ontology applications and the time management. The aim is to demonstrate: the current

status of the models used; and the possibilities appearing with the use of new ontology-

Chapter 1: Introduction

 14

based IT methods and tools, and concepts. Moreover, it provides the basic overview of how

time is managed in the current models and systems.

In Chapter 4 the developed models and methodologies are presented. This includes a

detailed description of the system architecture and its functionality. Furthermore, the

translation of the initial UML model into OWL-DL is described in detail as well as its

extension to provide a better coverage of maintenance. Moreover, the time management

concept is introduced. Finally, a methodology for implementing efficiently the utilised

architecture and technologies is proposed.

In Chapter 5 the methodology, the architecture, the “Duration of Time” concept and the

models developed in chapter 4 are implemented in three case studies. The case studies

demonstrate in detail the results of the proposed implementation and the opportunities

created in the domain for improving aspects of the current systems.

In Chapter 6 the evaluation of this work is presented. The evaluation is performed firstly, in

checking whether the developed ontology models maintain the functionalities of the initial

models; secondly, in checking to which extent the developed ontology models implement

the functionalities of the IT tools and methods; and thirdly, in evaluating the results of the

implementation of the “Duration of Time” concept.

Chapter 7 contains the conclusions of this work and the future perspectives for extending

this work. The future perspectives mainly focus in the use of future IT technologies as well

as in the applying the proposed tools, methods and concepts in complex and multi-system

industrial environments.

 15

2
Background in Ontology
Development Technologies

In this chapter we present a brief description of the existing technologies, methods and

tools for developing ontologies. The aim is to demonstrate the capabilities of the existing

technology and the opportunities they would provide in PLM systems, when implemented,

as well as to provide a basic knowledge for the reader to aid comprehension of the rest of

this dissertation.

The aim of using IT methods and tools for developing ontologies is to represent data in

both a machine-understandable and a human understandable manner. Moreover, the use of

the methods and tools may also be used in order to transform data into information and then

into knowledge.

Ontology models support several useful features, main of which are: to share common

understanding of the structure of information among human or/and software agents, to

enable re-use of domain knowledge, to make domain assumptions explicit, to separate

domain knowledge from the operational knowledge, to provide formal analysis of terms

and based on them, analyse the domain knowledge [4]. Formal analysis of terms is

extremely valuable when attempting both to re-use and to extend ontologies [5].

2.1 Semantic Web Languages for Representing Ontologies­Data­
Knowledge

Several languages have been created to represent data. The standardised and mostly used

are the eXtensible Markup Language (XML) with the XML-Schema, the Resource

Description Framework (RDF) with the RDF-Schema and the Web Ontology Language

(OWL). The logical structure of these languages was first presented by Tim Berners Lee [9]

Chapter 2: Background in Ontology Development Technologies

 16

and since then this structure has been extended. Figure 4 shows a later version of the

structure developed by Signore [10]. In this figure, the ontology layer includes OWL, the

Rules include the Semantic Web Rule Language (SWRL) [11] and the Query layer includes

SPARQL [12].

Figure 4: The Semantic Web Stack as it is described by W3C.

XML provides a basic syntax for structuring the content of documents [13] and in this way

it structures the data contained in XML documents. XML as a language supports the feature

that each user is capable of defining his own syntax formats (extensible), which is an

advantage in comparison to older descriptions where this was not possible i.e. HTML.

However, XML doesn’t associate semantics with the meaning of the contained text of the

documents and hence, incompatibility of syntax and, more importantly, of semantics is

being created (i.e. in one format $50 might be labelled as “price” and at another format as

“cost”) [14]. This results into burdens while integrating data. There are several previous

works which have used the XML for representing information in various applications in

PLM. For example, Zeid and Gupta [15] addressed an XML-based knowledge

representation model for disassembly planning. To solve this drawback of XML, XML

Schema was created which provides the structure for characterising the content of the

elements of the XML documents and in this way restricts them [16].

RDF is a language for expressing data models. Many previous works [17], [18], [19], [20],

[21] introduced the basic concept, definition, and syntax of the RDF. It should be noted that

models developed in RDF can be represented in XML syntax. RDF provides a mechanism

Chapter 2: Background in Ontology Development Technologies

 17

for allowing any developer to make a basic statement about anything and then, to layer

these statements into a single model. It has a formalism of a triple-syntax consisting of a)

resource: subject, b) resource's properties: predicate and c) property values: object, which

makes it be similar to a human language’s syntax. This can also be assumed as an object O

which has an attribute A with the value V [18]. RDF allows objects and values to be flexible

and interchanged, and thus, any object can play the role of a value of a triple which is used

for nesting and chaining graphs. Furthermore, RDF provides the tools to indicate that a

given object is of a certain type [18]. Based on RDF several application works have been

done. For example, Klyne [22] described some experimental works for modelling complex

systems with RDF. He built higher-level constructs in RDF that allow complex systems to

be modelled incrementally, without necessarily having full knowledge of the detailed

ontological structure of a system. Although RDF provides several advantages, it does not

provide any mechanisms for declaring property names that are to be used for further data

modelling. To provide a solution to this, RDF Schema was developed which supports basic

elements for the description of an ontology such as Class, subPropertyOf, and subClassOf.

It provides a basic type system for RDF models which lets developers define a particular

vocabulary for RDF data and specify the kinds of object to which these attributes can be

applied [23]. This mechanism allows defining a common vocabulary for researchers and

engineers, who are collaborating and need to share information on a domain. Nevertheless,

still human effort is involved and the human is required to understand the way of thinking

of the machine which costs and is time consuming.

A new tool to be used is the web ontology language (OWL). OWL introduces the

expressivity of logic into Semantic Web and it allows developers to express detailed

constraints among classes, instances and properties. OWL was designed to provide a

common way to process the semantic content of web information. It was developed to

augment the tools for expressing semantics provided by XML and RDF. OWL-based

models can as well be represented in XML syntax. OWL provides more vocabulary for

describing properties and classes (including relations between classes, enumerated classes,

cardinality, equality and characteristics of properties). Thus, it supports greater machine

interpretability of Web content than supported by the previous languages by providing

Chapter 2: Background in Ontology Development Technologies

 18

additional vocabulary along with formal semantics. It supports machine semantic

interpretation which makes the machine to think more like the human brain.

2.2 OWL Characteristics
OWL (in the version OWL 1) exists in three sublanguages or species: OWL Lite, OWL-DL

and OWL Full. All species have the status of “recommendation” of W3C and they have

different level of expressiveness [24]. Each sublanguage was created in a way to cover

different needs of applications and requirements of developers. In brief the description of

the sublanguages is:

 OWL Lite was developed to support those users primarily needing a classification

hierarchy and simple constraints. For example, it supports cardinality constraints

but it only permits cardinality values of 0 or 1, it also does not include owl: oneOf

and owl: hasValue constructs. OWL Lite provides a quick migration path for

taxonomies and it has a lower formal complexity than OWL-DL. It was developed

with the aim of being simpler to provide tool support for OWL Lite than the more

expressive OWL-DL. However, later it was criticised as being complex to compute.

This is because this language requires reasoning with equality, which significantly

increases computational complexity. Moreover, cardinality restrictions introduce

quality in a non-intuitive manner and there is no notion of constraints. All these

combined with undecidability issues described in [25] made it difficult to extend

OWL Lite with a rule language.

 OWL-DL was developed to provide the maximum expressiveness in tandem with

guaranteeing both computational completeness (all conclusions are guaranteed to be

computable) and decidability (all computations will finish in finite time). OWL-DL

includes all OWL language constructs (such as transitive properties, which allow

more of the semantics of sequences to be represented explicitly than in RDF or

OWL Lite) and it allows modelling at multiple levels of abstraction (and thus,

sequences of classes can be characterized by their general or more specific

properties). However, the usage of the constructs is limited under certain restrictions.

For example, a class may of an OWL-DL ontology not be both a class and an

instance. The term “DL” in the name OWL-DL derives from the fact that it uses

Chapter 2: Background in Ontology Development Technologies

 19

description logics, a field of research that has studied the logics that form the formal

foundation of OWL and they are described below.

 OWL Full which is meant for users who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees. For example, in OWL

Full some resource can be both a class and a member of a class (individual). OWL

Full allows an ontology to augment the meaning of the pre-defined (RDF or OWL)

vocabulary. According to its developers, it is unlikely that any reasoning software

will be able to support complete reasoning for every feature of OWL Full.

Each one of these sublanguages is a syntactic extension of its simpler predecessor. It should

be noted that the inverses of these relations do not hold.

 Every legal OWL Lite ontology is a legal OWL-DL ontology.

 Every legal OWL-DL ontology is a legal OWL Full ontology.

 Every valid OWL Lite conclusion is a valid OWL-DL conclusion.

 Every valid OWL-DL conclusion is a valid OWL Full conclusion.

Furthermore, OWL provides the capability of creating classes, properties, defining

instances and its operations.

 Classes are sub-classes of the root class which is owl:Thing. A class may contain

individuals, which are instances of the class, and other sub-classes. For example,

Resource could be the sub-class of class owl:Thing while Personnel Resource,

Document Resource, and Equipment Resource are sub-classes of Resource.

 Properties are binary relations that specify class characteristics. There are two types

of simple properties: datatype and object properties. Datatype properties of the

classes are attributes of instances which have as input (and may contain) data values

(i.e. string, integer, etc.). Object properties are relations between classes and they

are used to link instances of the classes to each other.

 Instances are individuals that belong to the classes of the OWL ontology and they

are the elements that make real use of the properties defined for the classes. A class

may have any number of instances. Instances are used to define the relationship

Chapter 2: Background in Ontology Development Technologies

 20

among different classes (object properties) and contain the actual values for the

datatype properties.

 OWL supports various operations on classes such as union, intersection,

complement, class enumeration, cardinality, and disjointness.

2.2.1 Description Logics

The logic on which OWL is developed, is a model theory based on Description Logic (DL)

[26]. Logic provides a framework for defining all the inferences that a modelling language

needs. On a specific OWL-DL ontology model DLs provide the developer with the ability

to describe concepts formally and to use the description of the concepts in order to query

the model about its concepts and instances. DL knowledge bases consist of two parts: the

T-box and A-box. T-box contains the terminology defined for each concept (class) i.e.

definition of what a product is, and A-Box contains the actual data i.e. the instance Car_1 is

a product since it fulfils the criteria defined in the T-box of what a product is [26]. A brief

introduction to DLs is provided by Horrocks et al. [27].

2.2.2 Inference Engines­Reasoners

Based on DLs, DL-reasoners have been developed to extract valuable information from the

OWL-DL models. DL-reasoners (which are also called inference engines) can be used to

check consistency of the model, figure out equivalencies among concepts and infer

subsumption of concepts. Furthermore, DL-reasoners can categorise instances under the

concepts they belong. This provides reasoning power supporting decision and can answer

database-like queries. For instance, typical questions which are answered with such

reasoning are: is a particular instance (member of an A-box) a member of a given concept?

which is a query to perform instance categorisation; does a relation/role hold between two

instances, in other words does A have property B? which is a query to perform relation

checking; is a class a logical sub-class of another class? which queries about subsumption

and re-classifies the class-hierarchy; and is there contradiction among definitions? check

the consistency of the concepts in the model.

A very interesting survey on several semantic web technologies including DL-reasoners

was carried out by Cardoso [28] in the period from Dec 2006 to Jan 2007. In the survey

Chapter 2: Background in Ontology Development Technologies

 21

participated 627 ontology developers from various sectors of academic and industrial

research. According to this survey, actual DL-reasoners ordered according to the number of

users are: Jena [29], Racer [30], Pellet [31], Fact++ [32]. The full list and the results of the

survey can be found at [28]. Although Jena is the most popular and the mostly used

reasoner (it has a very powerful RDF-Schema reasoner), it has several limitations on its

OWL reasoner which lead us not to select it [33]. Even in the manual of the Jena inference

engine it is recommended to use an external DL-reasoner in order to have a complete

OWL-DL reasoning. Racer is a very powerful inference engine which implements the W3C

standards of RDF and OWL. However, still (in version 1.8.1) it does not support reasoning

on SWRL rules and in its latest release it provides limited support. Fact++ is also very

powerful, but it does not provide any support for SWRL rules. The basic architecture and

characteristics of Pellet are described by Sirin et al. [34]. Its advantages and its

disadvantages in comparison to Racer and Fact++ are described by Sirin et al. [35] (at least

for the period that the paper was written 2004). Pellet at that period was not as powerful as

the other two reasoners for very big ontologies, but it implemented a more complete

reasoning for OWL-DL and supported semantic web capabilities [35]. Pellet in our use

cases proved to be as efficient as Racer and Fact++ and it also has the advantage (version

1.5.2) of being able to reason on SWRL rules.

2.2.3 Open World Assumption

Another OWL characteristic is that it uses Open World Assumption (OWA), in contrast to

databases (i.e. SQL databases), which adopt the Closed World Assumption. According to

OWA, if a statement cannot be proved to be true using current knowledge, the system

cannot conclude that the statement is false [36]. Systems using OWA assume that there

may always be more information (classes, DLs, etc.) to be added to the ontology model at

later stages and thus, developers are able to extend other developers’ models. Under OWA

the DL-reasoner cannot determine that something is true or false unless it is explicitly

stated in the model. This practically means that if we query a database to retrieve some data

which it cannot find, it will return a negative answer whereas the DL-reasoner applied on

an OWL model makes no conclusion. A good practical example for this is provided by

Drummond et al. [36] on slide 18. We assume that the system is a doctor and wants to treat

Chapter 2: Background in Ontology Development Technologies

 22

a patient with a painkiller that is not an anticoagulant. The given information to the system

is that a) “Aspirin” has the effect “Painkiller”, b) “Wharfarin” has the effect

“Anticoagulant” and c) “Paracetemol” has the effect “Painkiller”. When we query the

system to tell us which drugs we can use (in other words to tell us which drugs are

painkillers but are not anticoagulants), a database would return “Aspirin” and

“Paracetemol”, where as OWL (due to OWA) cannot say this and will not return anything

(i.e. in this case the fact that “Paracetemol” and “Aspirin” have the effect “Painkiller”, does

not imply that they are not anticoagulant). If we add the constraint that “Paracetemol is not

an anticoagulant” and “Aspirin is not an anticoagulant” then it will return “Aspirin” and

“Paracetemol”. OWA should be understood well by the developers before they start

modelling.

2.2.4 Rule Language for the Semantic Web

Semantic Web Rule Language (SWRL) is a proposal submitted to W3C in order to add

rules to the Semantic Web that go beyond OWL [11]. This language combines OWL (the

sublanguages of OWL-DL and Lite) with the Rule Markup Language (with the

sublanguages Unary/Binary Datalog) [37]. One of the most interesting objectives of SWRL

is to be a language for sharing rules and therefore, to support interoperability of the rule

systems on the Semantic Web [38].

On the other hand, another proposed language for introducing rules in the Semantic Web is

the Description Logic Programs (DLP) [39]. The basis of the logic of the DLP is the

intersection of Horn logic and OWL. Since the logic on the background of these languages

is different, research has been carried out (Horrocks et al. [40]) on which is the most

appropriate and the long-term dangers of using both.

Protégé-OWL [41] comes with a built-in tab for a SWRL Editor [42] which is interactive

and fully-featured. Protégé also supports a plug-in mechanism for integrating third party

rule engines such as the Jess rule engine [43]. SWRL combined with Jess can provide a rich

rule-based reasoning facility for the Semantic Web. After integrating Jess into Protégé-

OWL, SWRL Factory mechanism is used to integrate the Jess rule engine with the SWRL

Editor. The utilisation of Jess into the SWRL is performed by the SWRL Jess tab [44]. By

using Jess, users are able to run SWRL rules interactively in order to create new OWL

Chapter 2: Background in Ontology Development Technologies

 23

concepts and then insert them into the OWL model. The interaction of SWRL with Jess is a

starting point for further rule integration efforts [43]. Based on SWRL, engineers have also

developed a query language, the SQWRL (Semantic Query-Enhanced Web Rule Language)

[45] which also supports queries with complex closure requirements [46].

In SWRL, rules are consisting of two parts: the first part which is an antecedent and the

second part which is a consequent. The logic performed during execution is: if the

conditions defined in the antecedent are true (hold), then (consequently), the conditions

specified in the consequent must also be true (hold). For instance, we have instances of a

class called Field_Data and each instance has a datatype property called Date which takes

values of the type xsd:dateTime. We want to query this class and see which of these

instances have a value Date which is in June of 2008. Then, we create a class called

Field_Data_in_200806 under which we want to categorise the instances that fulfil our

query. (It should be noted that in OWL there is no a direct way to make this type of query).

The SWRL rule to perform this query is:

  


Field_Data(?fdx) Date(?fdx, ?zx) temporal:after(?zx, "2008-05-31T23:59:999")
temporal:before(?zx, "2008-06-30T23:59:999") Field_Data_in_200806(?fdx)

This practically means if there is an instance (?fdx) of the class Field_Data AND if this

instance has a Date datatype property (?zx) AND if this date has the quality of being after

2008-05-31T(=time)23:59:999 and before 2008-06-30T(=time)23:59:999 (which actually

means that 2008-05-31T(=time)23:59:999<(?zx)< 2008-06-30T(=time)23:59:999), then the

instance (?fdx) must also be an instance of the class Field_Data_in_200806. Still, this

“knowledge” (that (?fdx) must also be an instance of the class Field_Data_in_200806) is

not transferred in the OWL model. To achieve this the Jess rule engine is used, and the

(?fdx) is made an instance of the class Field_Data_in_200806. For more details about the

utilisation of these tools in this work see also Figure 11 and the description of the system

architecture in section 4.1.

2.2.5 Evolution of OWL: The OWL 2

OWL has become a W3C recommendation since 2004 and since then, several users have

sent their feedback which has provided the ground for improvements [47]. This was

understood by the language developers and they continued developing a new version of

Chapter 2: Background in Ontology Development Technologies

 24

OWL which was initially called OWL 1.1 and finally, renamed to OWL 2 [48] and became

a W3C recommendation in October of 2009. OWL 2 introduced several new features in

OWL [64]. In OWL 2, there are three sublanguages (profiles) [65]: OWL 2 EL which

supports polynomial time reasoning but does not support so much expressiveness and

generates reasoning with priority in speed (performance). It is more suitable for very large

ontologies; OWL 2 QL which is designed to enable easier access and query to data stored

on a database using standard relational database technology. It is more suitable for light

ontologies which contain a very large number of instances; and OWL 2 RL which enables

the implementation of polynomial time reasoning algorithms using rule-extended database

technologies operating directly on RDF triples; it is more suitable for cases that require

high expressiveness and scalable reasoning.

It should be noted that OWL 2 supports backwards compatibility with OWL 1 and hence,

all OWL 1 ontologies remain valid OWL 2 ontologies [48]. However, to date the available

editors, reasoners and tools for OWL 2 are not as much developed as for OWL 1.

2.2.6 Merging Ontologies

A very useful achievement is to collect the distributed knowledge and easily merge it

together for future use. This requirement arises since a lot of data and information is stored

in stand-alone PLM systems which cannot work together without great efforts of manual

mapping. This burden may be solved by efficient ontology merging. In our case it is very

important to be able to merge ontologies. The outcome of the merging should be checked

for its consistency and tools should be capable to reason on a group of ontologies.

Merging two ontology models is an equivalent process with being able to merge two or

more PLM models together. In the case of having machine-understandable models, users

are able to apply inference engines in order to figure out automatically the logical

similarities and differences between the models. Furthermore, the DL-reasoner is able to

reason on the new ontology model which derived from the merged ontologies and this

could create new knowledge since the DL-reasoner logically puts all the parts together.

This finds practical application for example in collaborative environment during the MOL

when the maintenance teams are working remotely and at the end the OEM brings their

works together to process the data and to extract knowledge about its products.

Chapter 2: Background in Ontology Development Technologies

 25

Up to date a number of methods and tools have been developed towards ontology merging

and alignment. Stumme et al. [49] developed the FCA-Merge method for merging

ontologies. This method follows a bottom-up approach. The generated result of the method

always requires human interaction to be explored and transformed into the merged

ontology. Noy et al. [50] developed the Prompt suite for merging ontologies. However,

after merging there were a number of difficulties and problems on inconsistencies and other

problems (naming conflicts on classes, dangling relationships and attributes limits or types,

etc.). Kotis et al. [51] developed the HCONE-merge approach which is aiming towards

automating the merging process. The approach makes use of the intended informal meaning

of concepts by mapping them to WordNet senses using the Latent Semantic Indexing (LSI)

method. Firstly, HCONE-merge automatically aligns and then merges ontologies based on

these mappings and using the reasoning of DLs. Moreover, HCONE-merge method is

tested for ontology mapping with varying degrees of human involvement and it is evaluated

experimentally. The authors conclude that by using this method they reach a point where

ontology merging can be carried out efficiently with minimum human involvement.

From the computer science point of view there is also another similar issue which is

defined as modular use of ontologies and it has the aim to allow ontology re-use. One may

find which part of an already developed ontology is useful for his own project and re-use it.

In this way the developer avoids reinventing the wheel. Relevant work has been carried out

by Grau et al. [52]. The authors have developed a theory to provide methods and tools for

extracting the right parts of already developed ontologies in order to re-use it. The method

is implemented and applied on a number of very well known ontologies. Based on previous

works, Jiménez-Ruiz et al. [53] proposed a methodology for safe and economic re-use of

ontologies. Also, another work deals with the safety of actually doing in practice re-use

because after using parts the new model should maintain consistency [54]. Finally, Grau et

al. [55] provides the background for making the modular re-use practically possible. The

main issue which remains open is that the import or re-use of parts in a model might create

logical conflicts with the already existing concepts in the model.

The conclusion is that more research still should be performed in this field in order to

provide methodologies for ontology and rule development in order support automated

Chapter 2: Background in Ontology Development Technologies

 26

ontology merging [56]. The research could also be towards providing model-developing

rules for safe extension and consistency after merging.

2.2.7 Ontology Editors

Several ontology building editors have been developed since the emergence of the idea of

ontologies and the semantic web. The history about them is similar to all newly introduced

products: in the beginning there are many producers and eventually only few survive and

nominate the market i.e. in the beginning of personal computers there were many

companies developing computer processors for PCs and today only 2-3 producers nominate

the market. A big list of 94 editors which were available for use in 2004 is found in [57].

Only a handful of those tools is still supported and updated to facilitate new languages such

as OWL. The most well known are the Protégé editor [41] which was developed by the

University of Standford, the SWOOP editor [58] developed by the University of

Manchester and the OntoStudio editor [59] which is marketed by Ontoprise. The ancestor

of OntoStudio was called OntoEdit and was developed by the University of Karlsruhe.

According to the survey carried out by Cardoso [28] involving 627 ontology developers

from various sectors in the period from Dec 2006 to Jan 2007 the usage of ontology editors

was: Protégé (68,2%), OntoStudio (17,7%), SWOOP (13,6%). It should be noted that a

number of developers is using more than one editor. More details about the most popular

editors can be found in [60].

OntoStudio is marketed by the company Ontoprise and it uses the OntoBroker as a reasoner.

It supports among other languages: RDF-Schema, OWL and F-Logic [62]. There are

several limitations on its OWL editor (i.e. it cannot represent enumeration of classes). Most

commonly this editor is used to build ontologies using F-Logic. It also provides a method

for extending the tool with plug-ins. It should be noted that the fact that it is not open

source is the major drawback for not selecting to use this editor.

SWOOP is a very interesting lightweight OWL editor [61]. It contains its own reasoner; it

is developed as a separate Java application; it provides a browser-like environment and it is

extensible via a plug-in architecture. The latest version available was developed in 2006.

Protégé has more than 100 000 registered users and a significant number of ontology

projects have been developed using this tool. It has the Protégé-OWL editor for building

Chapter 2: Background in Ontology Development Technologies

 27

ontologies in all three species of OWL and has frequent updates and good support. The

significant number of users provides feedback for the Protégé developers which have lead

to very frequent software updates to deal with issues, plug-ins and efforts to implement the

latest versions of OWL. Projects developed in Protégé may also be processed in Eclipse

software editor [63] which provides a familiar software development environment. Protégé

is easily accessible (open source), it allows software developers to develop their own plug-

ins, it provides UML- and Database- back-ends with which a project developed in Protégé

may be saved as UML and database respectively, etc. Protégé goes beyond OWL with the

use of SWRL and the Jess rule engine. It also contains a number of useful plug-ins to

import, export and present data: DataMaster, Queries Tab and Jambalaya respectively.

Finally, the Protégé-OWL (in version 3.4) comes with an integrated Pellet DL-reasoner.

2.3 Conclusion
The aim of this chapter is to present the basic knowledge of the IT methods and tools used

in this dissertation. The content of this chapter does not claim to be exhaustive and the

reader should always refer to the sources in case more details are required. The presented

methods and tools theoretically are very powerful and could provide many benefits if

implemented in PLM systems.

Description Logics combined with a DL-reasoner may be used for:

 Checking the class-hierarchy for its consistency.

 Defining/figuring out if there are equivalent classes in the class-hierarchy.

 Re-classifying classes in the class-hierarchy according to the concept that they describe.

 Inferring/categorising instances under the classes that they logically belong.

Moreover, the sublanguage of OWL, the OWL-DL, provides a good level of expressivity

(i.e. transitive properties), it allows modelling at multiple levels of abstraction, and at the

same time the models developed in this language are decidable.

Our challenge is to find ways of implementing these methods and tools in PLM systems to

provide new opportunities and functionalities towards Closed-Loop PLM such as data

integration, system interoperability and data continuity along time. In chapter 4 of this

Chapter 2: Background in Ontology Development Technologies

 28

dissertation is provided an implementation method to implement these advantages in a

PLM model in an efficient and simple manner, and in chapter 5 applications are presented.

 29

3
State of the art

This chapter contains the related works and literature to this dissertation. It is divided in

three parts presenting related works and literature in: PLM systems, ontology applications

in various domains as well as in PLM, and works which deal with the time management.

The aim of the PLM systems review is to show the strong points of the currently used

systems, to show the parts of these systems which we are using, and to emphasise in the

existing gaps of the systems regarding Closed-Loop PLM. Furthermore, we present a brief

description of existing applications using them in various domains. The aim is to

demonstrate the capabilities of the existing technology and the opportunities they would

provide in PLM systems when implemented. Finally, we present literature dealing with

time management. It is divided in two parts: one describing time concepts and the other one

describing time management approaches. The aim is to demonstrate the different

approaches dealing with time elements in the different models of various domains. We

study how time is treated in order to demonstrate how we concluded in proposing the

methodology presented in chapter 4. Although time is naturally a common element of the

different PLM systems and it has the characteristic of being objective, in our opinion, it is

one underexploited element in the current models. Therefore, we have selected time in

order to propose improvements in the current models.

3.1 State of the art in PLM
The main goal of Product Lifecycle Management (PLM) is the management of all the

business processes and associated data. Data is generated by events and actions of various

lifecycle agents (both human and software systems) and it is distributed along the product’s

lifecycle phases: Beginning of Life (BOL) including design and manufacturing, Middle of

Life (MOL) including usage and maintenance and End of Life (EOL) including recycling,

Chapter 3: State of the Art

 30

disposal or other options [3]. A major requirement for efficient PLM is the traceability of

the product which means to acquire information along the product’s lifecycle about the

product. Furthermore, making this information “smart” instead of “dump” is a key aspect of

future systems aiming to boost performance in data management and in the transformation

of the data into information and into knowledge. A big amount of this information-

knowledge is being lost, due to lack of reasoning capabilities as well as lack of

interoperability and integration of elements of today’s PLM systems and models. Therefore,

a new generation of intelligent models is required. Extracting knowledge in order to

improve features of products and of future products is a very promising target field of using

this information.

Most of the current ontology information models in PLM are developed using class

diagrams in the Unified Modelling Language (UML) [66]. This language is human

understandable and class diagrams are used to represent the domain. However, the language

provides a loose interpretation of the meaning of the diagrams which creates problems for

the machines. UML has many limitations when coming to object oriented modelling which

include lack of precise semantics and of practical analysis techniques [67]. Since the

development of the language, several efforts dealing with these limitations have been

performed [68], [69].

A first step towards achieving interoperability and therefore, into allowing data exchange

between different platforms used by various lifecycle agents’ platforms, is the definition of

a common-hierarchy data structure. Towards this direction are aiming models developed

within standards covering parts of this domain. The thorough control and distribution of

information between different lifecycle agents and phases is the underlying goal for the

PLM approach. Moreover, using new tools with additional reasoning capabilities prove to

be very promising for facilitating future PLM systems.

In this section a brief description of several models and standards is presented,

demonstrating the important elements of the different standards and models which lead us

to use them. Also a number of previous works is presented, in which these standards are

implemented, extended or interrelated.

Chapter 3: State of the Art

 31

3.1.1 PLM Models

Emphasis is given on MIMOSA and on ISO-15926 standards. They are models used on

their sector and on the specific phases of the PLM. Currently, there are various lifecycle

information management systems developed by different vendors and they are covering a

limited part of the lifecycle (i.e. design, maintenance activities). Many of these systems

have their own unique data exchange interfaces which is a big burden to integrate the data

contained in them. In the extended enterprise a number of suppliers might be using

different information systems from each other. This creates problems of data integration at

the Original Equipment Manufacturer (OEM) level where data from all these systems must

be combined and utilised. The solution to this situation is not an easy task since different

integration techniques bring their own advantages and disadvantages. One solution is to use

systems from a single vendor, however the vendor may not provide a total information

management solution, suppliers might have obligations to use other systems due to their

cooperation with other OEMs and the dependence on one vendor can prove dangerous in

various ways. Another solution is to purchase a commercial custom bridge that integrates

different systems or build one internally. The first might be more cost effective and does

not require own resources but the latter can be customised better to the specific task needed.

The wider use of standardised information systems could lead to a solution to this

important burden of data integration.

MIMOSA

Machinery Information Management Open Systems Alliance (MIMOSA) is an alliance

focused on developing consensus-driven open data standards to enable interoperability of

“operations and maintenance” (O&M) processes, systems and actors [70]. Standards

developed in the framework of MIMOSA are aiming to be widely accepted and to be used

in facilitating seamless asset management data exchange through integration. For the

enterprises adopting such standards the result will be to eliminate the information gaps

which exist among the different systems such as real-time control systems and business

information systems. The aim of MIMOSA is to encourage the adoption of open

information standards by introducing the MIMOSA OSA-EAI (Open System Architecture

for Enterprise Application Integration). This is a standard for data exchange of engineering

Chapter 3: State of the Art

 32

asset management data about all aspects of equipment, including the physical configuration

of platforms, the reliability, condition, and maintenance of platforms, systems, and

subsystems. To this end MIMOSA provides a series of interrelated information standards:

 The Common Conceptual Object Model (CCOM) which provides the basic

conceptual model basis for OSA-EAI.

 The Common Relational Information Schema (CRIS) which provides a common

implementation schema and allows information from many systems to be

communicated and integrated (vertical and horizontal integration)

 Metadata reference libraries and a series of information exchange standards which

use XML and SQL.

The structure of the standards is briefly described in the Technical Architecture Summary

document [71] of MIMOSA OSA-EAI and it is shown in Figure 5 (adapted from [71]). As

shown in Figure 5, on top of the CRIS there is a reference data library which contains

reference data compiled by MIMOSA. This library facilitates the communication between

MIMOSA-compliant systems. Thus, OSA-EAI provides open data exchange standards in

several asset management areas including work management, diagnostic and prognostic

assessment, vibration and sound data, oil, fluid and gas data, and reliability information.

Advantages of using OSA-EAI as a basis to build databases for asset management data

include software re-use and data interoperability [72].

Another MIMOSA standard is the OSA-CBM (Open System Architecture for Condition

Based Maintenance) which provides the architecture for moving information in a condition-

based maintenance system and also provides the tools for implementing the architecture. Its

architecture is based on ISO-13374 and comprises of six blocks: data acquisition, data

manipulation, state detection, health assessment, prognostic assessment, and advisory

generation [73]. The first three involve only devices which collect and process data to

detect abnormalities. The rest combine devices and human agents to define the health status

of the equipment, to predict future faults and to support decision. OSA-CBM uses many of

the data elements that are defined by the OSA-EAI and in the future the aim is OSA-CBM

to be mapped into OSA-EAI.

Chapter 3: State of the Art

 33

Figure 5: MIMOSA OSA-EAI v3.2 Architecture Diagram.

There have been several implementations of the OSA-CBM which have highlighted both

advantages and weaknesses of the system. Firstly, we present the works which demonstrate

the functionalities and advantages of the OSA-CBM, and then the works which propose

changes and extensions to fulfil various requirements. Keller et al. [74] developed a vehicle

health management system which is based on the OSA-CBM. The developed architecture is

flexible and extensible towards supporting prognostics and decision support for

maintenance. Byington et al. [75] developed an OSA-CBM-based system which was used

for the diagnostics and the prognostics of the health management of avionics. The authors

support the use of open data architectures and it has been demonstrated through a paradigm

that such architectures enable information continuity and knowledge transportability

between on-board and off-board systems or maintenance aids. Chidambaram et al. [76]

used the OSA-CBM to monitor an electro-hydraulic test rig. The OSA-CBM architecture

proved to be effective into collecting, processing and displaying sensor data as well as

displaying the process results. Furthermore, the flexibility and extensibility that the OSA-

Chapter 3: State of the Art

 34

CBM brings to the maintenance system was demonstrated by using a variety of commercial

and proprietary software tools (Fast Fourier Transforms, Neural Networks, Regression

Analysis, etc.). Lebold et al. [77] have developed skeleton code to implement a functional

communication system for the different layers of the OSA-CBM system.

Moreover, there are some works which propose changes and extensions of the model to

make it more generic and to cover a wider area of the domain. Voisin et al. [78] in the

framework of FP6 project DYNAMITE: Dynamic Decisions in Maintenance developed an

e-maintenance platform to include prognosis in their model. The authors suggested

extensions in several parts of the OSA-CBM model in order to formalize the prognosis

objects and data. Mathew et al. [72] in their work developed a condition monitoring system

called BUDS which claims to support advanced diagnosis and prognosis models not

available in commercial systems. BUDS database is based on OSA-EAI and the authors

describe several issues of the OSA-EAI which they defined during the development of

BUDS including the lack of documentation and excessive normalisation.

ISO 15926

Another significant standard is the ISO 15926 which is called “Industrial automation

systems and integration -- Integration of life-cycle data for process plants including oil and

gas production facilities”. Initially the coverage of ISO 15926 was focused on the process

industry. However, its coverage has increased and hence, has become more generic and less

specific to a particular industry domain.

ISO 15926 consists of 7 parts. Each part has a unique function:

 ISO 15926-1 provides an overview of ISO 15926.

 ISO 15926-2 specifies a generic, conceptual data model that supports representation of

all lifecycle aspects of a process plant. In this part an interesting method for managing

time is presented which is discussed in section 3.3.

 ISO 15926-4 defines a reference data library that can be periodically updated by a

competent body, designated by ISO as a registration authority, which has the requisite

infrastructure to ensure the effective use of the reference data library.

 ISO 15926-5 specifies the procedures to be followed by a registration authority for

reference data.

Chapter 3: State of the Art

 35

 ISO 15926-6 specifies the information required when defining additions to the

reference data specified in ISO 15926-4.

 ISO 15926-7 (old) provides implementation methods for the integration of distributed

systems (currently not available at the ISO website)

ISO 15926-7 (old) has been revised and will be split into 4 parts [79]:

 ISO 15926-7 Template Methodology

 ISO 15926-8 OWL

 ISO 15926-9 Façade Implementation

 ISO 15926-10 Abstract Test Methods

It should be noted that the developers of the standard have developed an ontology model

which is discussed in section 3.2.1.

There are several significant applications implementing this standard. Teijgeler [80] points

out the importance of a uniformly structured information chain for data across all lifecycle

of the parts of a system. ISO 15926 combined with semantic web technologies may provide

a solution towards this goal. However, Semantic Web technologies have weaknesses which

are burdens for implementing them and therefore, they have affected the work of ISO

15926 community. According to the author these are: scarcity of semantically annotated

information sources, performance and scalability and the lack of a standard rule language.

The latter makes it impossible to write sets of rules that can be used in different

implementations. Batres et al. [81] present a method for the identification of hazard

scenarios. The proposed method is based on the concept of “hazard scenario graphs” or

HSG. HSGs are visual representations of the sequences or networks of events and activities

in a hazard scenario. HSGs are based on concepts defined in the ISO 15926. This standard

includes the definition of kinds and structures of objects, properties, events, processes and

relations which can be used in the integration of material property data, equipment

information, maintenance activities, etc. and provides the background for recording how the

plant changes as a result of normal or abnormal activities. The latter is critical during the

analysis of contributing causes. Elements of the ISO 15926 used are: activities, events,

physical objects, participating entities, causal relations, temporal relations and participation

relations.

Chapter 3: State of the Art

 36

Furthermore, an Integrated Information Platform was developed using this standard and it

was implemented in several applications. Sandsmark et al. [82] describe the framework of

the project “Integrated Information Platform for reservoir and subsea production systems”

(IIP) that is supported by the Norwegian Research council. In this project the concept is to

develop an information platform combined with the use of ontologies to overcome

proprietary and system dependent data definition that prohibits effective exchange, sharing

and integration of information. As a basis ISO 15926 is used, since its generic concept

model makes it ideal as an integration platform for other standards. Gulla et al. [83]

describes the work done within the IPP towards transforming and extending existing

standards into OWL ontology for reservoir and subsea production systems. This ontology

used for analysing data and interpreting user needs, may allow data to be related across

phases and disciplines, helping people collaborate and reducing costs and risks. Tomassen

et al. [84] based on the work done in IIP project propose a method to improve information

retrieval quality by using ontologies. The ontology used is the one developed in IIP, which

is based on ISO 13628 and it will be modelled in ISO 15926. Strasunskas [85] presents

research in IIP on development of rule-based notification in subsea production systems to

monitor and analyse production data. The author concludes that the full expressive power of

OWL (OWL Full) is needed in order to represent ISO 15926-2/4 which is a burden for

reasoning (reasoning is incomplete) and inference (undecidability). Moreover, a certain

future work will be the alignment of the method developed in IIP with MIMOSA’s open

systems architecture for condition based maintenance.

There are also works describing other applications of the standard. Klüwer et al. [86]

describe how OWL can be used with ISO 15926 to represent common industry classes and

relations. The authors note the need to provide an interface to the modelling patterns that is

familiar to professionals. For this reason they combine the ISO with rules and provide

simple templates for user interface. Price et al. [87] describes the implementation of OWL

into OASIS Product Life Cycle Support (PLCS) [88]. First step is the use of Semantic Web

technology for developing Reference Data which includes the re-use of Reference Data of

ISO 15926. Stell et al. [89] use aspects of ISO 15926 in their work for developing a four-

dimensional ontology to show the spatio-temporal dimension of entities. Mun et al. [79]

demonstrate an application of ISO 15926 using part 7. The tools used are mainly RDF and

Chapter 3: State of the Art

 37

SPARQL (see section 2.1). The implementation is about a nuclear power plant in Korea

and the goal is to support sharing of data among interested parties in a semantic web

environment.

Through this brief description one may realise the significance of standards and the way

that researchers are trying to interrelate them in order to obtain models containing the

combination of their benefits. Still, work should be performed in order to develop common

terminology, define the generic needs for the standards and develop the standards using

tools which will make them flexible, transferable and extensible.

3.1.2 Closed­Loop PLM­Semantic Object Model of PROMISE

In this section the Semantic Object Model (SOM), developed in the PROMISE FP6 project

[90], is briefly presented. One of the aims of PROMISE was to develop a Closed-Loop

PLM system which uses smart embedded IT systems and allows the seamless flow of data

and information in order to close the product lifecycle information loops. The developed

SOM was applied, tested and validated in eleven application scenarios developed in

cooperation with industrial partners. The SOM was developed using UML. It is a product

item oriented model achieving both an efficient description of the product as it is designed

from the manufacturer and a functional structure for storing data of the product’s lifecycle.

The schema presenting classes, attributes and relationships of the SOM is shown in Figure

6. The SOM schema as well as more details about the SOM can be found at [91] and [92].

The SOM has been used and tested in a number of application scenarios covering all phases

of PLM and a wide range of different industrial sectors. For each application scenario only

a small part of the SOM was used, necessary for the scenario and was extended with more

detailed classes. The SOM provided a commonly accepted schema to support

interoperability when adopted by different industrial partners. Although generic and

extensible, the model inherited several limitations due to UML. These include the fact that

models developed with this language are not well defined in lean and high extend in order

to be machine understandable and therefore, in case of model extension the final models

lose interoperability and data integration.

In the rest of this work, the following naming conventions are used: names of classes are

written in boldface and capitalized/lower case Arial (i.e. Product_EOL, etc). Names of

Chapter 3: State of the Art

 38

attributes and associations (also called relationships) are capitalised /lower case Courier

New (i.e. isDesigned) while names of instances are in italics Arial (i.e.

Passenger_Vehicle_1).

The SOM consists of 26 classes and has two main parts focusing in different fields of

information about the product. The first part of the model contains the information needed

to describe the product instance and its characteristics. Architecture for categorising

information about the product’s type, conditions, properties, the product’s serial number,

data from BOL of the product, etc. is included here. The most important class is the

Physical_Product class. This part is shown in Figure 6, bounded by the continuous line.

The second part of the model is focusing on the life cycle phases of the product. The

necessary architecture for managing and categorising valuable information about the main

events such as breakdowns, and activities such as maintenance of the product is included

here. This information is in a later phase used to support decision of life cycle agents of all

PLM phases such as maintenance crew, the designer, the production manager, etc.

Moreover, the architecture for storing field data (i.e. repetitive field data from sensors) for

further analysis is included here. The most important classes are the Field_Data, Event

and Activity class. This part is shown in Figure 6, bounded by the dotted line.

The functionality of the SOM is quite simple. Firstly, the list of the physical products is

stored in the Physical_Product class. The physical products may be complex products

which consist of many parts such as vehicles or simple which consist of only one part such

as a screw. This is described through the Part_Of class which also contains the duration of

the time that a specific part is part of a more complex product. In this way the model

preserves continuity of the information about the physical product. (The complexity of the

product and its parts in the OWL ontology model developed in section 4.2 is described

through a “physical product to physical product” object property hasParent and its

inverse isParentOf.) Depending on the requirements of the application the level of

detail which is considered as “simple” may vary. Even for the same product, in different

cases, one might have different levels of detail: i.e. the level of detail is different for

products of a fleet management company and different for a single user who might be

interested to have more detailed model for the one product he is using. The properties of the

Chapter 3: State of the Art

 39

products are stored in the Property class, the URI class, Information_Provider class

and ID_Info class. Furthermore, each physical product is related to the

Life_Cycle_Phase class which enables each product to be related to one or more

instances of a lifecycle phase i.e. to multiple instances of the MOL. (In the model

developed in section 4.2 this relationship combined with the object properties

hasParent/isParentOf allows the information system to track information about the

product through its different phases as well as types of usage and therefore, preserve

continuity of information about the physical product). Thus, the model stores information

about which data is related to the product for each of its use. During its lifecycle the

product is monitored with sensors which collect valuable data of different types such as

temperature, pressure, velocity, viscosity, etc. in various measurement units such as Celsius,

bar, m/sec and Pascal-second respectively. The different sensors related to the product are

stored in the Field_Data_Source class and the types of the data collected are stored in

the Valid_Field_Data_Type class. The collected data from the sensors is stored in the

Field_Data class and in documents if necessary. In the Condition class it is stored a list

of the required or recommended conditions for the well-functioning of the products. These

conditions may vary depending on the product and are adjusted according to various

criteria. Then, the data of the Field_Data class is compared with the conditions. If one or

more conditions are not met, one or more events are created and stored in the Event class.

Events depending on their severity may trigger activities such as maintenance, part

replacement, etc. which are stored in the Activity class. To perform activities several

resources are used. The available resources are in the Resource class. Finally, activities

may cause events (i.e. start, finish, etc.). This part of the model combining activities, events

and resources is the part which supports the actual maintenance. Many more details may be

found in the PROMISE Research Deliverable 9.2 [91].

Chapter 3: State of the Art

 40

Figure 6: Complete schema of the PROMISE SOM.

Chapter 3: State of the Art

 41

3.2 State of the art in Current Ontology Models
In the ontology development process, the starting point is the definition of the terminology

to be used. Then, domain ontologies describing these definitions are developed. Domain

ontologies will take advantage of the shared common terms and definitions, and therefore,

they will support data interoperability among software and database applications. The

concept is that such ontologies will be re-used and used as the basis for developing

application specific ontologies which will facilitate semantic interoperation between

applications. Still, research on ontology re-use is limited and there are no widely accepted

techniques to follow during the ontology development in order to support it.

In this section ontologies developed in various scientific domains are presented. Firstly, the

main ontologies developed in the section of bio-informatics are presented. This is done

because in this sector the most significant applications of ontologies have been performed.

The requirements and the tests of these applications provided the most important initiatives

for later improvements of the ontology tools. It should be noted that Semantic Web experts

have chosen this domain to perform the widest applications of these tools due to its

credibility and objectivity of terms. Medical terminology is well-defined and widely

accepted by the related scientific society. For example, the term poliomyelitis is understood

the same by all physicians in the world. This is an element missing in the engineering

sector. For example, the term product one may define it as a thing which can be traded and

another may define it as a thing which can be maintained. Moreover, the main works in the

engineering and the PLM sectors are presented. The main characteristic of these works is

that the notion of ontology varies. Usually it is used to express a UML model which is only

human understandable, but in practice they are limited to represent the structure of a

database. In very few works advantages of DLs are actually used and they are focused on

inferring instances, without exploiting the full potential of DLs. Furthermore, applications

of ontologies in the PLM are mainly focusing in the BOL, there are very few in the MOL

and even fewer considering the whole lifecycle. Finally, there are no major works in the

field of the whole PLM achieving the full implementation of ontology based IT methods

and tools which leaves a significant open field for research and innovation.

Chapter 3: State of the Art

 42

3.2.1 Ontology Models

Already, ontologies have been implemented in various scientific fields. In medicine efforts

for categorising all the terminology and development of structured vocabularies for health

care into an ontology are in process in the SNOMED project [93] and the semantic network

of the Unified Medical Language System [94]. The 2008 release of SNOMED [95]

contained over 311 000 active concepts (classes) portrayed by almost 800 000

active descriptions and associated to each other by more than 1 360 000 relationships.

SNOMED has provided the field for several tests and suggestions for improvements of

OWL ontology capabilities as well as the related tools. Bodenreider et al. [96] have

developed methods making subsumptions for the over 200 000 classes (at the time) of

SNOMED. Horrocks et al. [97] in the “Instance Store” have developed a method dealing

with problems arising when ontologies have large number of individuals. Brandt [98] in his

work shows that using general concept inclusion (GCI) axioms and role hierarchies in EL

terminologies preserves the polynomial time upper bound for subsumption and therefore,

he claims that reasoning over SNOMED is possible in polynomial time. Even in the official

W3C document describing the specifications and the details of the sublanguage OWL-EL,

SNOMED is used as an example for applying this language [65]. Other significant

ontologies in this field include the National Cancer Institute (NCI) Ontology [99], the Gene

Ontology (GO) [100] and the GALEN ontology [101].

In the field of engineering there are several works developing general purpose upper

ontologies. The two most referenced ontologies are the Suggested Upper Merged Ontology

(SUMO) [102] and the Descriptive Ontology for Linguistic and Cognitive Engineering

(DOLCE) [103]. The SUMO is developed by the IEEE Standard Upper Ontology Working

Group and it consists of approximately 4 000 assertions and 1 000 concepts. Its aim is to

“provide a structure and a set of general concepts upon which domain ontologies (i.e.

medical, financial, engineering, etc.) could be constructed”. Domain ontologies based on

SUMO will take advantage of the shared common terms and definitions and therefore, they

will support data interoperability among software and database applications as well as

interpreting natural language. SUMO will also support automated reasoning and

inferencing. Another significant ontology is the DOLCE ontology developed in the

framework of FP5 WonderWeb project in order to support understanding of the

Chapter 3: State of the Art

 43

information contributed by the different project partners. One of the main difference

between DOLCE and SUMO is that DOLCE is a more complex ontology since it uses

many OWL-DL constructors. The aim of DOLCE is to capture the ontological categories of

the natural language and the human common-sense [104].

Ontology models developed in PLM are focusing in both translating existing models and

developing new models into ontologies. Batres et al. [105] describe their effort to develop

an ontology based on ISO 15926. They are based upon the concept of supporting the

development of domain ontologies. These are upper ontologies which define top-level

concepts such as physical objects, activities, mereological and topological relations from

which more specific classes and relations can be defined. Smith [106] criticises the effort

concerning its ontological applicability from the philosophical point of view. The author

supports the idea that the way of developing the model should change in order to be

developed into an ontology. Leal [107] explains the reasons why ISO 15926 has been

developed, its relationship to the STEP (ISO 10303) standard and provides an overview of

its functionalities including the “4D approach”. The author also explains how this ISO is

described through first order logic and its ability to be converted to an ontology.

Hakkarainen [108] carried out a study on mapping ISO 15926-2 with OWL-DL. Three

alternative semantic transformation approaches were developed and two were tested and

analysed in their ability to preserve semantics. Transformation Method one results in a

seemingly direct representation of ISO 15926 in OWL, and enables full specifications.

Transformation Method two takes more advantage of the language constructs in OWL and

is most appropriate if the transformation is performed in order to take advantage of the

reasoning provided by OWL and therefore, providing functionality not natively present in

ISO 15926.

Furthermore, Fiorentini et al. [109] translated the NIST’s core product model and proposed

an ontology for the Open Assembly Model (OAM) implementing several OWL capabilities.

Also, Fiorentini et al. [110] based on the work developed for the OAM demonstrated how

to implement ontologies into existing product models. Tektonidis et al. [111] with project

ONAR developed Semantic Web technologies for application integration. Lee et al. [112]

developed a model for sharing product knowledge of the Beginning Of Life (BOL) on the

web. Brandt et al. [113] apply ontologies on to knowledge management in design processes

Chapter 3: State of the Art

 44

with the aim of making knowledge of the design processes understandable and accessible to

all engineers. Zhang and Yin [114] make an attempt of applying ontologies in a multi-agent

distributed design environment. Suh et al. [115] use ontologies for interoperability and

present a model for using data of the entire life of the products as an input for the design

and production of new products. Chang et al. [116] are focusing in design and therefore, in

the BOL. Their model is developed in order to guide designers in the design process of

metal parts. Its aim is to make recommendations to the designer towards making parts

which will be developed using friction stir welding, a solid-state joining technique. Still, in

this work the implementation of ontology advantages remains a future perspective. Jun et al.

[117] have developed an ontology model for product lifecycle metadata to Closed-Loop

PLM. Aziz et al. [118] (Open standard, open source and peer-to-peer tools and methods for

collaborative product development) have developed an ontological management

methodology to overcome limitations of current PLM implementations.

The main characteristic of these works is that the notion of ontology varies. Usually it is

used to express a UML model which is only human understandable, but in practice the

models are limited to represent the structure of a database. In very few works ([109], [110])

DLs are used, which make the computer understand the meaning of each class, attribute and

relationship. However, still there is limited use of the advantages they provide in favour of

improving current PLM systems. The vast majority of the ontology applications and models

mainly focus on product models in BOL and from the ontology perspective they are limited

on inferring instances, without exploiting the full potential of the DLs.

3.3 State of the art in Time Management
Time is the only fundamental dimension which exists along the entire life of an individual

(including materials and physical products) and it affects all individuals and their qualities.

Individuals existed in the past and will exist in the future no matter if they only currently

exist in our model. Time is considered as the fourth dimension in several sciences and Sider

in his work “Four Dimensionalism” [119] provides a good description of the 4D paradigm.

Individuals exist in a manifold of 4 dimensions, three space and one time and therefore,

they have both temporal parts and spatial parts. Time in this context is used with its generic

meaning as a dimension.

Chapter 3: State of the Art

 45

Figure 7: An object (possible individual) and it temporal part (state) according to ISO-15926.

Figure 8: A pump and its temporal parts 1234 and 9876, according to ISO-15926.

3.3.1 Time Concepts

The importance of time in the field of engineering has been noted in several works. In part

2 of the ISO 15926 [120] there is a use of time as the fourth dimension. It is used to

describe: actual individuals (including physical objects) which actually exist, or have

actually existed in the past; possible individuals which possibly have existed in the past,

and may possibly exist in the future; and individuals which are hypothetical having no

existence in the past or future. West [121] describes the need for tracking the state and

status of an individual along time (including to which physical product the individual

Chapter 3: State of the Art

 46

belongs or is part of). The author also describes how this need inspired the development of

ISO 15926-2. As a solution the author recommends the use of International Standards

combined with ontologies. Batres et al. [105] describe their effort to develop an ontology

based on ISO 15926, analyse part 2 and briefly show how time is used to demonstrate the

continuity of functionality of the parts. This is shown in detail in Figure 7 and in Figure 8.

Roddick et al. [122] discuss the significance of time in spatio-temporal data mining systems

and describe the need for future research that has to be carried out. Zhang et al. [123]

suggest a model for the lifecycle of the infrastructure system facilitating the spatio-temporal

data. Roddick et al. [124] on their bibliography research point out the value of investigating

temporal, spatial and spatio-temporal data for future knowledge generation. In PROMISE

[91] semantic object model the continuity of the history of each part over time is also

considered important and it is stored in the “part of” class. Jun et al. [117] developed a

time-centric ontology model for product lifecycle meta-data for supporting the concept of

Closed-Loop PLM. Finally, very important work towards describing how to deal with time

handling and synchronisation issues in computer distributed systems has been performed by

Tanenbaum et al. [125] in the book “Distibuted Systems: Principles and Paradigms”. The

authors among other issues provide detailed approaches on achieving system

synchronisation on distributed object-based systems, distributed file systems, distributed

web-based systems and distributed coordination-based systems.

3.3.2 Time Management Approaches

In the “four dimensional models”, time attributes are included in a separate part of the

model (Date_Time class) to which other parts (not necessarily all parts) are associated

through relationships as shown in Figure 9. Such systems become complex due to the large

number of relationships between Date_Time class and the other parts of the model.

Furthermore, time data is not being collected about the whole system for the whole life

cycle. The latter occurs either in cases where not all parts are connected to the Date_Time

class or in cases where the architecture of the system changes along the life cycle and the

relationships to the Date_Time class are changed.

In a significant number of models which do not claim to be four dimensional time attributes

exist in the parts of the model where time was considered necessary by the model designer.

Chapter 3: State of the Art

 47

Most commonly time attributes are in the parts of the model describing the “process”, the

“activity” (having starting time, finishing time and duration) and the “event” (having points

in time or time stamps). An example is shown in Figure 10. These types of models face

data integration and interoperability issues and are mostly developed to describe specific

applications. Moreover, time data do not cover the whole system which has consequences

in later stages, when time elements are required (i.e. feedback from maintenance to design)

but they were not collected and therefore, are not available.

Figure 9: Schematic representation of a four dimensional model.

Figure 10: Schematic representation of a model with time/date attributes distributed in various

classes.

In today’s systems although time attributes exist in various parts of the systems, there are

no systems which are based on time. Time has some qualities which make it special among

all the attributes. It is the sole fundamental element which exists along the entire life cycle

of all individuals. Furthermore, time is simple, comprehensive and objective and therefore,

application independent. In this way, time may be used to be the connecting element of

various systems and models. These qualities of time characteristics were the initiative to

select time as the basis for developing a methodology for managing time in PLM/ALM

Chapter 3: State of the Art

 48

systems (the “Duration of Time” concept, see section 4.5). This methodology introduces the

idea of seeing all aspects and elements of a model as parts of time and it provides flexibility,

application independence and simplicity. In this way time exists naturally in everything.

This holds also in our everyday life but sometimes we do not really realise it since our view

is too “narrow” to see the big picture and we focus only on the small part which affects us

directly considering time with its generic meaning as stable.

3.4 Conclusion
In this chapter, firstly, are presented the MIMOSA and ISO-15926 standards as well as the

Semantic Object Model of PROMISE. In this way the reader may acquire an overview of

the current models which are used in various sectors of PLM. Secondly, we have presented

the utilisation of ontology based IT methods and tools in bio-informatics and other research

fields. We also have presented the scope of these implementations towards improving or

adding new solutions and fulfilling requirements of these scientific fields. Furthermore, we

have presented implementations of IT methods and tools in models focusing in parts of

PLM. Our conclusion is that the implementation level of the new methods and tools in

PLM, still, is less than in other research fields. One of the possible causes for this situation

is the lack of a methodology of using these technologies in the field PLM efficiently.

The importance of time in PLM has been pointed out by several developers and in this

section we have presented a number of ways that time is treated in today’s models. There

exist two types of model architectures regarding time: the four-dimensional models in

which all parts that need time properties are related with a class that contains the time

properties; and the models in which there are time properties in each class that is required.

Our claim is that time in its generic meaning is under-exploited in both types of models.

This claim is based on the fact that time is a fundamental element which exists naturally in

all the parts of the PLM systems and that the notion of time is objective and is easily

understandable since it exists in our everyday life. Therefore, innovative ideas of time

treatment are necessary in order to change the philosophy of the model architecture and to

provide new services for the Closed-Loop PLM. To this end it would be of significant

value to develop a method for system modelling which is lean and utilises the advantages

of time.

 49

4
Ontology Development for
Closed­Loop PLM

This chapter describes a number of developments performed in this work. Firstly, the

architecture of the system is presented in order to describe in detail how we combined and

utilised a number of IT methods and tools. For representing data we have chosen to use

OWL-DL and as an editor for developing the ontology we selected Protégé [41], which

provides the Protégé-OWL plug-in. Secondly, the step-by-step development of the

ontology model is presented. The model that is our basis is the SOM developed in

PROMISE which is described in section 3.1.2 (Figure 6). The SOM was developed using

the UML class diagrams which was static and it did not facilitate functionalities such as

loading data on to the model and performing reasoning on the model. Therefore, in this part

is presented the transition from the initial UML model to an OWL-DL model and the new

opportunities created due to this transition. In order to make the model capable of

exploiting these opportunities, several changes were performed on the classes as well as on

the object and datatype properties of the model. The third part describes what actually

happens in the model during ontology merging and provides a methodology for making the

ontology model ready to be merged with variations of the initial ontology model. The

fourth part, describes the extension of the model to support semantic maintenance. To

achieve this, the model developed in the second part (ontology model derived from the

SOM) was extended with several classes representing concepts and properties. The fifth

part describes the new developed “Duration of Time” concept. Our research aim is to

provide a concept based on time which may be implemented and function efficiently using

current technologies in the current PLM/ALM systems. Finally, we provide a generic

Chapter 4: Ontology Development for Closed-Loop PLM

 50

implementation methodology for implementing the system architecture and the “Duration

of Time” concept in existing PLM systems.

4.1 System Architecture Description and Functionality
In accordance with the ontology tools analysis in chapter 2 and the modelling requirements

described in chapter 3 we have selected to work with OWL-DL. The decision of using

OWL-DL was inspired by the reasoning capabilities of the DL which provide consistency

checking, subsumption, realisation and retrieval [26]. According to Ian Horrocks [126],

“DLs are a family of logic-based knowledge representation formalisms creating an object

oriented model”. Instances, classes (representing human concepts) and relationships among

classes (representing roles of the concepts in real life) are the building blocks used by the

ontology to describe the domain. An ontology consisting of these terms and being

developed in DL is extensible since DL allows class descriptions to be composed from

classes and relationships, expressing that a class is a sub-class of or equivalent to another

class. In addition, DL supports reasoning by supporting the designer of the model with

information about inconsistencies, synonyms and classification relationships implied from

the rules. The latter are used by the DL-reasoner to update the class-hierarchy.

The selected editor to build the ontologies is Protégé-OWL. It fully supports the OWL-DL

and it contains a number of useful plug-ins to treat data as well as a built-in version of the

Pellet DL-reasoner. Moreover, it is well supported and open source and therefore, our

partners may easily process and use our work.

The DL-reasoner is very important part of the system architecture since it provides the

reasoning on the model. In our work we selected to use Pellet for mainly two reasons:

Pellet in our use cases proved to be as efficient as Racer and Fact++; and it also has the

advantage (version 1.5.2) of being able to reason on SWRL rules. Therefore, we selected

Pellet as our DL-reasoner.

4.1.1 System Description

The different IT methods and tools utilised in this work are shown in Figure 11. The big

rectangle represents the Protégé-OWL editor software. The circles in this rectangle

represent the different tools which are implemented in the software and are used in this

Chapter 4: Ontology Development for Closed-Loop PLM

 51

work. The other two smaller rectangles show the data stored in spreadsheets (excel 2003)

and CSV (Comma Separated Values) files (data collected from sensors and industrial

partners was provided in these formats). The thin continuous line arrows inside the

rectangle of the Protégé-OWL show the information flow inside the software. The thick

dashed arrows connecting the Protégé-OWL with the spreadsheet and the CSV file show

the information flow (export/import) between the plug-ins and external files. Also, data is

imported from CSV files to spreadsheets. The arrow head (for all the arrows) shows the

direction of the information flow: i.e. the class-hierarchy, properties and instances existing

in the OWL-DL are input (and are read by) for the Queries Tab. It should be noted that the

description of the elements contained in this figure represents how we used these tools and

does not claim to be exhaustive about the capabilities of the tools. The tools contained in

the circles are:

OWL-DL: in this part the model is built using OWL-DL. It contains all the classes,

instances, properties and restrictions (DL- rules) of the model.

DataMaster tab: this part is used to read instances and their data from spreadsheets. Then,

it is used to load the instances with their data to the OWL-DL model.

DL-Reasoner (Pellet): Pellet is included in the Protégé-OWL and reads/understands the

DL rules (semantics) of the model. It is used to perform logical queries on the OWL-DL

model such as: is the class-hierarchy consistent?; which is the right logical position of each

class in the model?; or to which class(-es) each instance belongs?. It checks the class-

hierarchy for its consistency; it re-classifies the classes according to their meaning; and

finds equivalencies between them. Moreover, instances are inferred in their logical position

under the classes.

Queries Tab: it is used to perform database-like queries. It may be used to make queries on

the OWL but it cannot read the DL rules and therefore, the queries are limited i.e. it cannot

understand that a property is transitive and hence, it cannot understand the representation of

the sequence (also called “inheritance”) of semantics. Its advantage is that it produces

results very fast even for large ontologies (it returns results much faster than the SQWRL

for the same query). It provides the possibility of exporting the results to excel spreadsheets.

Chapter 4: Ontology Development for Closed-Loop PLM

 52

SWRL: (which contains the SQWRL and the bridge with the Jess rule engine). The rules

written in this language are used to extract knowledge about the OWL- model. For more

details on SWRL see section 2.2.4. Still, it cannot infer all the knowledge as compared with

the DL-reasoner.

SQWRL: (stands for Semantic Query-Enhanced Web Rule Language [45] and is contained

in the SWRL tab [42]) it is used to perform database-like queries and has the limitation that

it cannot read the DL rules and therefore, the queries are limited i.e. it also cannot

understand inheritance. This tool is used when non-logical queries need to be performed i.e.

check if values are within thresholds, calculate duration, sort the events according to when

they occurred (before or after a certain date), etc. It also provides the possibility of

exporting the results as CSV (comma separated values) file.

Jess Rule Engine: it runs in the SWRL tab through the SWRL Jess Bridge [42] and reads a

number of the basic OWL axioms. Its main use in our case is to read the SWRL rules and

the OWL model, infer knowledge according to the SWRL rules and return the knowledge

back to the OWL model. This might create consistency problems. According to the protégé

documentation (in the SWRLJess tab:) “A significant limitation of the current bridge is that

it does not represent all OWL axioms when transferring knowledge from an OWL ontology

to Jess. The exceptions are the basic class, property and individual axioms. As a result, the

Jess inferencing mechanisms do not know about the remaining OWL axioms. To ensure

consistency, a reasoner should be run on an OWL knowledge base before SWRL rules and

OWL knowledge are transferred to Jess. Also, if inferred knowledge from Jess is inserted

back into an OWL ontology, a reasoner should again be executed to ensure that the new

knowledge does not conflict with OWL axioms in that knowledge base”.

4.1.2 System Functionality

The functionality of the system is as follows. Firstly, the model is developed in the Protégé-

OWL editor as an OWL-DL ontology containing the classes, object properties

(relationships between classes) and datatype properties (attributes). Then, DL rules are

added to the classes as restrictions to define them according to requirements. These

definitions of each class are machine understandable. In the next step instances are loaded

into the model either manually or from spreadsheets through the DataMaster.

Chapter 4: Ontology Development for Closed-Loop PLM

 53

Figure 11: System Architecture

Furthermore, in the Figure 11 there is a triangle shaped loop of information flow from

OWL-DL, to SWRL, from SWRL and OWL-DL to Jess Rule Engine, and finally back to

OWL-DL. This loop describes a process which consists of the following steps: in the first

step the SWRL rules are created; in the second step the SWRL rules and the OWL

knowledge are transferred to Jess (two input arrows to Jess in Figure 11 one from SWRL

and one OWL-DL); in the third step the Jess rule engine is executed to infer knowledge

(according to SWRL rules and the OWL knowledge it has read); and finally the inferred

knowledge from Jess is transferred into the OWL ontology. Since Jess does not read all

OWL axioms, Pellet DL-reasoner should be executed at this point to ensure that the OWL

model is still consistent.

This step by step process was used to infer instances of selected parts of the OWL model

under the right classes and then return this knowledge back to OWL. This part specific

return of instances is not possible to be performed by the DL-reasoner, since the DL-

reasoner firstly, needs to read the whole model and check it for its consistency and then, to

continue to perform the inference. The loop was also used when instances and data were

Chapter 4: Ontology Development for Closed-Loop PLM

 54

introduced using spreadsheets. In this case, the problem was that each row of the

spreadsheet is translated into OWL as an instance; each column is translated as datatype

property; and the values of all datatype properties per instance are contained in each cell

corresponding to the instance row and datatype property column. The values are in a format

of an xml schema datatype i.e. string, date, etc.

In many cases the form of data imported from spreadsheets needed to be treated in order to

be in a certain required form i.e. some elements imported as datatype properties are

required to be in the model as object properties. For example, the desired situation that a

product (instance) “car1” is related with the physical product group “car”, just after

importing the instances from the spreadsheet was declared as: instance (of product class)

“car1” has a datatype property physical product group with the value “car” as a string.

Therefore, appropriate SWRL rules were created and applied to treat the imported data.

Example of such rules can be found in Appendix D.

Different ways for querying the model apart from the above mentioned loop are: the DL-

reasoner, the Queries tab and the SQWRL. Each one of these tools is used under different

circumstances and it depends on the type and the nature of the query. This is briefly

described in this section.

The DL-reasoner has the advantage that it can read all the OWL-DL axioms and rules. It is

the only tool which checks the ontology model for its consistency. However, its drawback

is that it is applied on the whole model which for large ontologies makes the answer

process slow. The results of the queries regarding the classification of classes (including

equivalencies) and the inference of instances may be saved as a separate OWL model. The

possibility of selectively asserting/returning the knowledge one by one back to the OWL-

DL model may be performed only for the classification results (class by class). In the case

that we need to return instances selectively to the model we have to use the previously

described loop with the SWRL and Jess.

The Queries tab is used to apply database-like queries which are applied on selected parts

of the model. These queries are strictly non-numeric i.e. impossible to ask for finding

instances that for a datatype property (i.e. salary) they have a value greater than or smaller

than a certain value (i.e. 1 000 Euros); they are applied on classes and properties, and they

Chapter 4: Ontology Development for Closed-Loop PLM

 55

return the list of the instances which fulfil the queries. The results cannot be returned back

to the OWL model but they are easily exported to excel spreadsheets. Then, if necessary the

data from the spreadsheets may be imported to the OWL model through DataMaster.

The SQWRL is also used to apply database-like queries which are applied on selected parts

of the model. These queries have the extra advantage of being also numeric (i.e. it is

possible to ask for greater than or smaller than queries); they are applied on classes and

properties, and they return the list of the instances as well as their datatype and object

properties which fulfil the queries. The results cannot be returned back to the OWL model

but are easily exported as CSV files. Then, if necessary the CSV files are imported to excel

spreadsheets and they may be imported to the OWL model through DataMaster.

The OWL-model in the framework of this architecture is very flexible and changes may be

performed whenever required: on the class-hierachy, on the classes, on the instances, on the

properties and on the DL rules. In chapter 4 only a small part of the architecture was used

since the ontology models are being developed in OWL-DL and they are loaded on the

Protégé-OWL editor. Excessive use of the whole system architecture has been performed in

the case studies in chapter 5.

4.2 Ontology­Based Model for Closed­Loop Product Lifecycle
Management

This work describes the process and various details of developing the SOM described in

section 3.1.2 into an ontology using OWL-DL. The model was slightly modified to

facilitate several of the OWL-DL capabilities, always maintaining previously achieved

characteristics. The tool we selected for developing the ontology is that of Protégé, which

provides the protégé-OWL plug-in. In the rest of this work, the naming conventions used

are the same as in section 3.1.2: names of classes are written in boldface and

capitalized/lower case Arial (i.e. Product_BOL_Supply, Product_MOL,

Product_EOL, etc). Names of attributes and associations (also called relationships) are

capitalised /lower case Courier New (i.e. isDesigned) while names of instances are in

italics Arial (i.e. Passenger_Vehicle_1).

The primary aim was to give to the ontology model the functionalities implemented in the

SOM and at the same time to keep it lean. The initial model was slightly modified in order

Chapter 4: Ontology Development for Closed-Loop PLM

 56

to be transformed into an ontology. The ontology developing process is described in the

following paragraphs.

4.2.1 General Alternations of the SOM of PROMISE

At the beginning we created an ontology containing all the classes of the SOM shown in

Figure 1, with some alternations in the class-hierarchy. The alternations were:

 All classes were first added to the ontology as sub-class of owl:Thing.

 The structure of generalisations (class, sub-class) of the UML model was kept

unchanged with only one exception which is the generalisation of

As_Designed_Product to Physical_Product. This generalisation is transformed

into an association and it is expressed through the functional object property

isDesigned with domain Physical_Product and range

As_Designed_Product and its inverse, which is inverse functional, hasDefined.

 The compositions between the Physical_Product class and the classes

Product_BOL_Supply, Product_MOL and Product_EOL, do no longer exist.

A new object property has been created associating Life_Cycle_Phase class with

the class Physical_Product and it is the object property

Life_Cycle_Phase2Physical_Product. Furthermore, the three classes of

the composition are sub-classes of Life_Cycle_Phase class. Thus, the three classes

are associated with the Physical_Product class indirectly through

Life_Cycle_Phase class.

 The composition between the Physical_Product class and the class of

ID_Information (ID_Info in the UML model) does no longer exist. They are

associated through the object property ID_Information2Physical_Product

and its inverse Physical_Product2ID_Information. Each instance of

Physical_Product can be related only to one instance of ID_Information and vice

versa. Thus, for example a Physical_Product instance A is related exactly to

ID_Information instance B and ID_Information instance B is related exactly to

Physical_Product instance A.

Chapter 4: Ontology Development for Closed-Loop PLM

 57

The compositions between the ID_Information class and the classes

Information_Provider and URI, do no longer exist. They are associated through the

functional object properties ID_Information2Information_Provider and

ID_Information2URI respectively. Their inverse properties are

Information_Provider2ID_Information and URI2ID_Information

respectively and they are inverse functional.

At this stage all the structure of the classes has been loaded on the Protégé-OWL editor.

This is the class-hierarchy of the ontology model.

4.2.2 Transformation of Attribute Properties

The next step is the definition of the attributes of the classes. When an instance of a class is

created, it may have values for each attribute of the class. In OWL there are two types of

properties; the object properties expressing relationships and the datatype properties

expressing attributes. Datatype properties are equivalent to UML attribute properties. Most

of the datatype properties of the new model are the same as described in SOM. However,

several changes were performed due to mainly the use and the expressivity of the OWL-

DL:

 Primitive datatype properties *_Name or Name have been eliminated wherever

possible. Their functionality is being fulfilled by Protégé-OWL internal names

(hidden property ‘:NAME’) of the individuals. This has been preferred to rdfs:label

since the individuals are named always in English and this property can be easier

inserted to the restrictions widget. Moreover, rdfs:labels are let free to be used

exclusively by the user for the requirements of each application. In OWL-DL each

individual when created has to have a name which is stored in the property ‘:NAME’

and it is unique for the entire ontology.

 Primitive datatype Parent of the class Physical_Product has been omitted. This

functionality is acquired through the object property hasParent with domain

Physical_Product class and range Physical_Product class and its inverse

isParentOf.

Chapter 4: Ontology Development for Closed-Loop PLM

 58

 Primitive datatype Parent of the class As_Designed_Product has been omitted.

This functionality is acquired through the object property isDesigned and

hasDefined described in paragraph 4.2.1.

 Alternations have been conducted at the primitive datatype property pairs of

Product_State_Set and of Product_State_Set_Definition,

Resource_State_Set and Resource_State_Set_Definition

expressing the allowed values for the state (state set) and the chosen value out of the

set (state set definition) of the Product and Resource classes respectively. They

have been translated into one datatype property per pair with defined allowed values

(Product_State and Resource_State). The allowed values should be defined

in advance, before populating the model, according to the requirements of each

application.

 A datatype Product_Complexity with allowed values “simple” and “complex”

has been added in Physical_Product class. A physical product is “complex” when

it is composed of more than one part or sub-systems i.e. a passenger vehicle consists

of an engine, wheels, gearbox, battery etc., and it is “simple” when the product is for

the current model the highest level of detail and it is composed of one part. Hence, it

does not have any sub-systems or sub-products.

 In Life_Cycle_Phase class we added the attributes Starting_Date_Time and

Finishing_Date_Time. A product instance of the Product class is always

related to one or more instances of the Life_Cycle_Phase class. This is done in

order to define the value of “when” the product has entered or exited a lifecycle phase.

The use of this is to show the duration that a product was a part of another product

and was used in a certain way.

At this level all properties describing the properties of SOM have been added to the classes

of the ontology developed in paragraph 4.2.1.

Chapter 4: Ontology Development for Closed-Loop PLM

 59

4.2.3 Transformation of Associations

In OWL there are no associations like in UML. Object properties of OWL are used in order

to represent them. These properties are used to relate the different classes of the model. The

process followed is:

 Un-named binary associations have been expressed through OWL object properties

and they are named according to domain-range policy, domain2range i.e.

Field_Data2Document.

 Named binary associations have been kept unchanged.

 A new object property has been created associating Life_Cycle_Phase class with

the class Physical_Product and is the object property

Life_Cycle_Phase2Physical_Product and its inverse.

In this manner, all the relationships between the classes of the ontology model have been

created. The ontology model developed up to this stage is complete and it facilitates all the

functionalities of the SOM (Figure 12).

Figure 12: Structure of the class-hierarchy of the PROMISE PDKM SOM.

Chapter 4: Ontology Development for Closed-Loop PLM

 60

4.2.4 Alternations for Supporting Additional Functionalities

The SOM was designed to be a framework for meta-data and to be used for one product

and its components. After using and testing the model we concluded that some more

changes could be done in the OWL version to improve the model. The use of an ontology

makes the model dynamic and allows to record, store and process data-information about a

number of systems in a single source. Moreover, there are alternations based on the higher

description ability of the new tools.

Alternations in classes and properties:

 In the UML model the class Part_Of describes the several parts (single physical

products) a complex physical product may consist of and “for how long” each of these

parts is part of the complex physical product. In order to express in OWL the Part_Of

class and eliminate it, we studied the W3C recommendation “Simple part-whole

relations in OWL ontologies” [127]. The suggested structure is not suitable for our

model for mainly two reasons:

o It is not possible to have a Physical Product, which is normally partOf a Physical

Product, without being partOf_directly of a Physical Product. This means, for

example, that this representation does not allow the model to contain a motor which

does not belong to a car. Therefore, simple statements like “a motor is in stock

waiting to be installed” cannot be described.

o While adding existential restrictions, incorrect statements for our generic point of

view such as all motors are car parts are inferred. However, “not all motors are for

cars, some are for trains, boats, etc.”

Finally, the UML class Part_Of (Figure 13) is expressed through the object property

hasParent and its inverse isParentOf as shown in Figure 14. The concept “for

how long” is expressed through the multiple instances of Product_MOL class a

physical product may be related to. For this reason the datatype properties

Starting_Date_Time and Finishing_Date_Time were added to the

Life_Cycle_Phase class. The hasParent, isParentOf object properties are

transitive to cover the cases where we have more than one level of inheritance and

Chapter 4: Ontology Development for Closed-Loop PLM

 61

therefore complexity. Thus, they will function like a chain and relate all the related

instances if necessary. For example if A isParentOf B and B isParentOf C,

then A isParentOf C will be assumed.

Figure 13: Physical Product and Part Of before changes.

Figure 14: Physical Product after changes.

 The ontology model allows the recording of information about a number of systems in a

single source. Thus, while populating the model with individuals representing several

different products, a problem occurred with the non-existence of a relationship between

Physical_Product and Field_Data:

 With the existing structure we have a bottleneck effect when we have multiple

physical products of the same type. The two classes will be related to the same

Valid_Field_Data_Type instance. For instance Motor_1 and Motor_2 will

be connected to Valid_Field_Data_Type instance Motor_Temperature with

Measuring_Unit “Celsius” which is connected to several Field_Data

instances representing different measurements at different times and different

physical products such as Motor_Temperature_1, Motor_Temperature_2,

Motor_Temperature_3, etc.

 This causes loss of information because we cannot relate the Field_Data

instances to a Physical_Product instance. Hence, in the previous example we

Chapter 4: Ontology Development for Closed-Loop PLM

 62

cannot know whether Motor_Temperature_3 is referring to Motor_1 or

Motor_2.

For solving this problem we associated Field_Data class directly with the

Physical_Product class with the object property

Field_Data2Physical_Product and its inverse

Physical_Product2Field_Data (Figure 15 and Figure 16).

 The same problem like the one mentioned above occurred between

Field_Data_Source and Physical_Product. In this case, with the given structure it

was not possible to identify which instance of Physical_Product was associated with

each instance of Field_Data_Source.

Solution chosen: We associated Field_Data_Source class directly with the

Physical_Product class with the object property

Field_Data_Source2Physical_Product and its inverse

Physical_Product2Field_Data_Source (Figure 15 and Figure 16).

 Similar problem appeared between Field_Data_Source and Field_Data. In this case,

with the given structure it was not possible to identify which instance of Field_Data

was associated with each instance of Field_Data_Source. This problem is partly

solved through the four new object properties created in the two previous paragraphs.

The added properties provide solution only in the case that each Physical_Product

instance is related to only one Field_Data_Source instance. However, this is a very

rare case since it means that the product has only one sensor. Therefore, we were

obliged to provide a solution.

Solution chosen: We associated Field_Data_Source class directly with the

Field_Data class with the functional object property

Field_Data_Source2Field_Data and its inverse (inverse functional)

Field_Data2Field_Data_Source (Figure 17).

Chapter 4: Ontology Development for Closed-Loop PLM

 63

Figure 15: Relationship view for Physical Product class before alternations.

Figure 16: Relationship view for Physical Product class after alternations.

Figure 17: Relationship view for classes Field Data Source and Field Data after alternations.

The developed ontology model is dynamic (changes can be made on the fly), it can store

data about multiple products on a single source (it allows to record, store and process data-

information about a number of systems in a single ontology source) and it has higher

description ability (allows the user to see the multiple levels of inheritance). The developed

model is shown in Figure 18. See Appendix A for a full list of object and datatype

properties.

Field_Data2Valid_Field_Data_Type

Valid_Field_Data_Type2Field_Data

Physical_Product 2Valid_Field_Data_Type

Field_Data_Source2Valid_Field_Data_Type

Valid_Field_Data_Type2Field_Data_Source

Valid_Field_Data_Type2Physical_Product

Physical_Product 2Field_Data_Source

Field_Data_Source2Physical_Product

Physical_Product 2Field_Data

Field_Data2Physical_Product

Field_Data2Valid_Field_Data_Type

Valid_Field_Data_Type2Field_Data

Field_Data_Source2Valid_Field_Data_Type

Valid_Field_Data_Type2Field_Data_Source

Valid_Field_Data_Type2Physical_Product

Field_Data_Source2Physical_Product

Chapter 4: Ontology Development for Closed-Loop PLM

 64

Figure 18: Complete UML schema of the ontology model.

Chapter 4: Ontology Development for Closed-Loop PLM

 65

4.3 Towards an Ontology Merging friendly system
Ontology models theoretically are developed to formally describe domains of knowledge.

Their aim is to be re-used and to provide a common understanding among different partners.

In practice, several ontologies are developed to describe the same domain using different

semantics and therefore, there is a lack of interoperability and the creation of burdens for

performing ontology re-use. The concept developed and described in this work is that such

interoperability issues could be tackled with the appropriate utilisation of OWL, description

logics and inference engines.

An ontology model consists of a hierarchy of classes which are related to each other with

object properties. The classes also contain datatype properties. Then the classes are

populated with instances which contain data loaded on the properties fields.

In OWL every developed ontology is related to one unique Uniform Resource Identifier

(URI). Therefore, we have the axiom:

ontology there is a unique URI O U

In practice this means that if for example one ontology has a URI U where:

U = http://www.owl-ontologies.com/Ontology1202459344.owl

A class of this ontology named “Product” will have as a full name:

http://www.owl-ontologies.com/Ontology1202459344.owl#Product

If there is another ontology with a different URI U’ where:

U’ = http://www.owl-ontologies.com/Ontology1202459355.owl

And if this ontology has also a class named “Product” the full name of this class is:

http://www.owl-ontologies.com/Ontology1202459355.owl#Product

This full name policy is respected for all different elements of each ontology. In this

example the two classes named “Product” have different full names and this is machine-

understandable. Therefore, when we merge two or more ontologies together, this

characteristic allows OWL (including the Ontology Editor and the inference engine) to

assume these two elements are different and are parts of different ontologies. In this way

Chapter 4: Ontology Development for Closed-Loop PLM

 66

the ontology editor verifies which elements (classes, properties, instances, etc.) belong to a

specific ontology.

4.3.1 Merging One or More Ontologies

The concept is that experts of the OEM develop one ontology model to facilitate the

information model for the data generated during the lifecycle of a product or asset. This

model is generic and is required to be flexible and extensible according to the user’s needs.

Moreover, the OEM develops a method for extending the model by using DL rules. Then,

copies of the model together with the method for using DL rules are provided to the

partners. The method of using DL rules allows the OEM not to lose interoperability and

data integration among the different copies of the model. The partners are able to extend

the model according to their needs (following the method provided) and populate it with

data. In the next step the OEM collects the different copies and merges them under one

single ontology model. Thus, the final single model contains all the different elements of

the copies without duplicates. This includes classes, object and datatype properties,

instances and DL rules.

Initially the OEM has an ontology O (defined by the URI U) with a set A of classes, DL

rules, object properties, datatype properties and instances with data, hence A = {class_A1,

class_A2, etc., DL rule_A1, DL rule_A2, etc., object property_A1, object property_A2, etc.,

datatype property_A1, datatype property_A2, etc., instance_A1, instance_A2, etc.}. All

these elements of set A have the same URI U of the ontology O which define their full

names.

Then, the OEM makes copies of this ontology and distributes them to its partners for use

together with simple user’s instructions (method) of how to extend the model using DL

rules. The partners extend their copies according to their needs in all types of aspects:

classes, DL rules, object properties, datatype properties. They also create instances to load

the data generated during the lifecycle of the products. At some point the OEM collects all

the distributed copies of the ontology. Each copy has the initial set of elements A plus the

extra elements which were loaded to it. The total of the extra elements of all the copies are

a set B where B = {class_B1, class_B2, etc., DL rule_B1, DL rule_B2, etc., object

property_B1, object property_B2, etc., datatype property_B1, datatype property_B2, etc.,

Chapter 4: Ontology Development for Closed-Loop PLM

 67

instance_B1, instance_B2, etc.}. All these elements of the different copies of the set B have

the same URI U. When the OEM merges all the distributed copies of the ontology the total

set of elements is described by the equation:

  A A B  (1)

Where for sets A and B we have:

ontology there is a set of elements

 there may exist sets of:

Classes ,

Individuals ,

Datatype Properties ,

Object Properties ,

Description Logic Rules ,

Where

i

i

i

i

i

O A O

A

Cl A

In A

Dp A

Op A

DL A

i

 













ontology there is a set of elements

 there may exist sets of:

Classes ,

Individuals ,

Datatype Properties ,

Object Properties ,

Description Logic Rules ,

Where

j

j

j

j

j

O B O

B

Cl B

In B

Dp B

Op B

DL B

j

 











But, from the set theory we have the axiom:

  A A B A B    (2)

The total number of elements in the final ontology is described by the set C which is:

 C A B  (3)

Where for set C we have:

ontology there is a set of elements

 we have:

Classes , where

Individuals , where

Datatype Properties , where

Object Properties ,where

j k k

j k k

j k k

j k

i

i

i

i

O C O

C

Cl Cl Cl Cl C

In In In In C

Dp Dp Dp Dp C

Op Op Op

 


  

  

  

 

Description Logic Rules ,where

Where , ,

k

j k ki

Op C

DL DL DL DL C

i j k



  



Thus, the OEM has a final ontology (set C) which contains all the classes, DL rules, object

properties, datatype properties and instances with data from all the copies of the initial

ontology model.

Chapter 4: Ontology Development for Closed-Loop PLM

 68

The important and challenging task is to define a method for developing a model which

will exploit the capabilities of DL rules and the DL-reasoner for passing automatically from

equation (1) to equation (3). At the final ontology (set C) the model may contain duplicates

of the classes, since different partners might have created classes with different names for

facilitating the same concept. This might be due to different vocabulary or different

language used by each partner. For example, one partner might have named a class “car”

and another one might have used the word “vehicle”, but actually these two classes might

have been created to represent the same concept. A solution to this problem is provided by

the use of DL rules and the DL-reasoner. It should be noted that it is assumed that all new

classes have been created using DL rules as it is described at the method of the OEM. Thus,

the DL-reasoner may be used to support the OEM to figure out the logical duplicates of

concepts described in the final ontology. The DL-reasoner is applied on all the DL rules of

the final ontology. When the DL-reasoner is executed all the benefits of OWL-DL hold and

therefore, the result is:

 The class-hierarchy of the final model is checked for its consistency

 The classes are re-classified on the class-hierarchy according to the concept they

represent

 Equivalencies among the classes are found and reported to the OEM

 All instances are categorised under the classes following the DL rules

The reasoner understands the DL rules, relationships etc. such as inheritance of the final

ontology and apply them on the total number of the instances and classes. This is very

important since the OEM is able to understand the content of all the copies of the initial

ontology without the need to do any type of ontology mapping. With the use of DL rules

the system is able to know the data that it has. A valuable usage of re-categorisation is that

even if only one partner has “created” an important new and beneficial element, the whole

system will benefit from it (see case study 1 in section 5.1.5). It should be noted that the

above are valid in the general case where copies of multiple different ontologies are

imported into one model.

Chapter 4: Ontology Development for Closed-Loop PLM

 69

4.3.2 Achieving Ontology Merging
While attempting to achieve ontology merging with OWL we faced several difficulties

which are well documented in Appendix B. The solution selected to overcome these

difficulties in order to achieve merging is described in the following simple steps:

Step 1

The OEM develops an ontology O which has URI U.

Step 2
The OEM makes copies of the initial ontology O which will be distributed to the partners,

in a later stage.

Step 3
The OEM changes the URI of each copy to a unique URI combined with an ascending

three digit number xxx in the end i.e. U’=http://www.owl-

ontologies.com/Ontology1202459344_ Copy_001.owl, where xxx=001. Thus, all initial

elements of each copy (classes, object and datatype properties, instances) keep their

original URI U of the initial ontology O.

Step 4
The OEM sets as the default namespace of each copy the URI U of the initial ontology

model O. Therefore, all the new elements added to each copy after this point, have the

namespace of the initial ontology O.

Step 5

The OEM distributes the copies to its partners. All the new elements which are added by

the partners to each copy have the namespace of the initial ontology O.

Following these steps the result is that we import ontology O’ into O and then all the

elements of both O’ and O have the same URI U of ontology O. It should be noted that

when the OEM will collect all the copies from its partners, the OEM can import all of them

under one single source no matter which ontology is loaded first or the loading order in the

ontology editor. In all cases all elements will be loaded and read by the editor. For more

Chapter 4: Ontology Development for Closed-Loop PLM

 70

details on how to deal with the technical difficulties and why we concluded to this solution

please see Appendix B.

4.4 Extending the Ontology Model to provide Semantic Maintenance
 In the framework of SMAC project (Semantic-maintenance and life cycle), supported by

Interreg IV programme between France and Switzerland we have developed an ontology

model for Semantic Maintenance (Rasovska et al. [128]) focusing on the collection and the

analysis of the maintenance data. The developed model is extending the functionalities of

the model developed in section 4.2 and its aim is to provide advanced maintenance methods

which are beneficial in many ways such as to provide new services, to improve customer

satisfaction, to acquire compliance with environmental friendly legislation, and to achieve

higher product quality, higher performance and reliability. In order to develop our model,

we combined the advantages of two previous developed models. In this project the model is

applied on a lathe machine of the manufacturer TORNOS [129].

The first model we are based on is the model developed in section 4.2 (Figure 18) which is

based on the PROMISE SOM. This model was made for supporting Closed-Loop Product

Lifecycle Management. In this way the data and the information produced from the asset

during its Middle Of Life (MOL) is collected and processed to be used as input for

improvement of Beginning Of Life (BOL) activities (design, production), and End Of Life

(EOL) activities (recycling, re-manufacturing, re-use, etc.). Thus, this model allows closing

the information loop between the different phases of the lifecycle.

The second model used is a modified version of the semantic model of PROTEUS project

(Bangemann et al. [130] and Rasovska et al. [131]), developed by Karray et al. [132]. The

modifications where judged necessary in order to cover a wider field of maintenance. The

PROTEUS platform supports vertical integration of applications in providing maintenance

to remote industrial installations (Bangemann et al. [130]). Moreover, it provides

description of the equipment through an ontology description, a generic architecture based

on the Web services and models of heterogeneous components. The main aim of this

platform is to provide an environment for integrating the execution of distributed processes

which run on heterogeneous hardware/software platforms. As a communication tool the

technology of Web services is used. The final UML ontological model of maintenance

Chapter 4: Ontology Development for Closed-Loop PLM

 71

consists of twelve parts [132] corresponding to both the structure of the enterprise

information system and the maintenance process. These are: the monitoring management

model; the site management model; the equipment expertise management model; the

resource management model; the intervention management model which focuses on the

maintenance intervention to remedy the equipment failure and is described by an

intervention report. It is composed by maintenance activities performed by maintenance

actors which create reports for future use; the maintenance strategy management model

which depends on technical and financial indicators of the maintenance contract for each

equipment; the maintenance management model which manages the different types of

maintenance (corrective, preventive, predictive); the equipment states model which has as

possible states: Normal state, Degraded state, Failure state, Programmed stop state; the

historic management model which contains the main data related to the equipment

maintenance; the document management model; the functional management model which

describes the function of the equipment or of the component; the dysfunctional

management model which stores the characteristics of different failure states of the

equipment.

The two models are combined to develop a model with the aim of providing semantic

maintenance. The mapping of the major parts of the models is shown in Table 1 (N/A=Not

Available). The next step after the mapping was to develop the SMAC-Model which is

shown in Figure 19. The details about the alternations made in the model are presented in

the following sections. It should be noted that the alternations described were made on the

basis of the model developed in section 4.2. A brief description of this section has already

been published by Matsokis et al. [133].

Chapter 4: Ontology Development for Closed-Loop PLM

 72

-ID
-ID_Type
-Alt_Pres
-Type

INFORMATION_PROVIDER

-ID
-ID_Type
-Alt_Pres

ID_INFO

1

*

-URI
-Type

URI
1

*

ACCESS_RIGHTS-Group_Code
-Group_Type

PHYSICAL_PRODUCT_GROUP

-Object_Lot_ID
-Birth_Date : Date
-End_Date : Date
-Product_Complexity

PHYSICAL_PRODUCT

*

*

1

1*

*

-Category
-Property_Name
-Property_Value

PROPERTY

*

*

-Condition_ID
-Condition_Type_ID
-Condition_Description
-Action_When_Met
-Action_When_Not_Met

CONDITION

*

* *

*

-BoM
-CAD_Model
-Condition_State
-Costs_Information
-Materials_Information
-Product_State
-Product_Type_ID
-Property_State
-Tests_n_Specifications
-Variants_Information

AS_DESIGNED_PRODUCT

*
*

*

*

*

*

*

*

*

*

PRODUCT_BOL_SUPPLY PRODUCT_MOL PRODUCT_EOL

-Product_State_Its_Own
-Residual_Life
-Starting_Date_Time
-Finishing_Date_Time

LIFE_CYCLE_PHASE

*

*

-Valid_FD_Type_ID
-Valid_FD_Type_Category
-Value_Type
-Measuring_Unit
-Definition_Domain

VALID_FD_TYPE

**

*

*

*

*

-Source_ID
-Source_Type

FD_SOURCE

*

*

*
*

*

*

1

1

-Field_Data_ID
-Field_Date_Type
-Value
-Accuracy
-WHAT
-WHEN
-WHERE
-WHO
-Group_ID
-Reference_Group_ID

FIELD_DATA

*

*
*

*

*

*

*

*

*

*

-Event_Name
-Triggering_Condition
-Time_Stamp : Date
-Leaving_Product_State
-Entering_Product_State
-Event_Flag: Planned
-Event_Flag: Predicted
-Event_Flag: Happened
-Event_Flag: Cancelled

EVENT

*

*

*

*

*

*

-Activity_ID
-Activity_Description
-Activity_Duration

ACTIVITY

-Resource_ID
-Resource_Description
-Resource_Location
-Resource_State

RESOURCE

*

*

-M
A

N
A

G
E

S *

*

-CAUSES

*

-TRIGGERS

1..*

*

-INVOLVES *

*

*

DOCUMENT_RESOURCE-Document_ID
-Document_Type

DOCUMENT

-File_ID
-File_Type

FILE

*
*

*

*

*

*
-Material_Lot
-Material_Type
-QA_Test_and_Specification

MATERIAL_RESOURCE

-Equipment_Type
-QA_Test_and_Specification

EQUIPMENT_RESOURCE
-Personnel_Type
-Qualification_Test_and_Specification
-E-mail
-Telephone

PERSONNEL_RESOURCE

*

*

*

*

*

*

-User_ID
-User_Type

USER

-User_Group_ID
-User_Group_Type

USER_GROUP

*

*

*

*

-Alarm_Flag

ALARM

-Process_ID
-Process_Description

PROCESS

1..*

*

-Function_ID
-Function_Name
-Function_Description

FUNCTION

*
*

*

*

*

*

-Event_Input_Flag

EVENT_INPUT_OF_USER

-Ess_Resource_Type

ESSENTIAL_RESOURCE

-Function_Group_ID
-Function_Group_Name

FUNCTION_GROUP

* *

*

*

-Location_ID
-Location_Type

LOCATION_SITE

**

*

* *

*

*

*

*

*

Figure 19: Complete UML schema of the SMAC ontology model.

Chapter 4: Ontology Development for Closed-Loop PLM

 73

The concept is to combine the Closed Loop-PLM SOM with the Proteus e-maintenance

platform in order to provide more complete maintenance model applicable in the entire

lifecycle. The SMAC-Model contains classes and relationships from both previous models.

It should be noted that in this work the meanings of the main concepts of each model are

translated into OWL-DL and they are described as such using the expressive power of the

OWL-DL. For example, the dysfunctional management model of the PROTEUS model is

described through the events, activities and processes and then documents are created.

Similarly, during the future mapping with OSA-CBM, classes and parts of the OSA-CBM

which deal with algorithms (calculations) would not be included in the new model since

they do not describe concepts. Moreover, the SMAC-Model includes new classes,

relationships (object properties) and attributes (datatype properties) in order to increase the

capabilities of the model. These new elements derive from the fact that after combining the

two models new opportunities were created, and hence, the model was extended to support

them. The SMAC-Model developed is shown in Figure 19. The most important extensions

in the model are described in the following paragraphs. The model is developed using

OWL-DL which provides a number of functionalities. It should be noted that relationships

have been expressed through OWL object properties and they are named according to

domain-range policy, domain2range i.e. Field_Data2Document. Named associations

of the initial model are unchanged.

Table 1: The mapping of the basic parts of the different systems.

Proteus Promise SOM SMAC Model

Equipment Expertise Model

Physical Equipment Physical Product Physical Product

Equipment Model Group Physical Product Group Physical Product Group

Functional Component Physical Product (Part of)-or-
MOL

Function

N/A N/A Function Group

Additional Component Field Data (FD) Source Field Data Source

Monitoring System

Sensor Field Data Source Field Data Source

Measure Field Data Field Data

Data Acquisition System

Measure Field Data Field Data

Triggering Event Event (after threshold filter) Event

Chapter 4: Ontology Development for Closed-Loop PLM

 74

Sites Model Resource (attr: Location) Location Site,
Resource (attr: Location)

Functional Model Document Resource Document Resource

Dysfunctional Model Document Resource Document Resource

Equipment States Model Document Resource Document Resource

Maintenance Types Model Document Resource Document Resource

Intervention Management System

Intervention Event Event Input Of User

Activity Activity Activity

Actor Resource Resource

N/A N/A Process

Resource Management System

Resource Resource Resource

Human Resource Personnel Resource Personnel Resource

Role Personnel Resource
(attr: Personnel Type)

Personnel Resource
(attr: Personnel Type)

Material Resource Material Resource Material Resource

Material Resource Equipment Resource Equipment Resource

Maintenance Strategy Document Resource Document Resource

Documentation Management
System

Document Document Resource Document Resource

Historic Management System

Life History MOL_Phase MOL_Phase

N/A EOL EOL

N/A BOL BOL

Need N/A Essential Resource

N/A N/A User

N/A N/A User Group

Alarm Event Alarm

ObservedEventByUser Event Event Input Of User

Intervention Order Group of Activities Process

4.4.1 Expansion in Classes

Each class in the model describes a concept of the real life. Therefore, the model was

extended in classes in order to increase the described concepts. The classes added to the

model were Location_Site, Essential_Need, User, User_Group, Function,

Function_Group, Alarm (as critical event), Event_Input_of_User, Process. The

classes added and the concept described by each class in detail, are:

 The Location_Site class was added which is related to Physical_Product via

Location_Site2Physical_Product (and its inverse). Its datatype attributes are

Chapter 4: Ontology Development for Closed-Loop PLM

 75

Location_ID and Location_Type. The information stored in this class is for

instance the geographical location of a manufacturing plant. This is important for the

better management of resources while maintenance, since we know the location of the

product and we can use the closest maintenance facilities possible. Furthermore, any

maintenance activities will have to be compliant with local regulations.

 The Essential_Resource class as a sub-class of Resource class was added. Its

datatype attribute is Ess_Resource_Type. This class describes the requirements of

the physical product regarding infrastructure and its environment in order to be ready to

perform its functions. Such needs could be power supply, water supply, gas supply, oil

supply, sunlight, etc.

 User and User_Group were added. They are related User2User_Group (and its

inverse), and to Physical_Product via User2Physical_Product,

User_Group2Physical_Product (and their inverse relationships).

o The concept described by the User class is that the user will be the "client" or

"customer" who is buying the service of using the physical product/machine on

contract: i.e. when one rents a car from a car rental provider, he is the user for a

certain time period or/and a limit in km. Similarly, a company may “rent” a

product for certain working hours with leasing and perhaps adjust it to the needs

of the user.

o The User_Group describes elements such as the type of maintenance

performed by the user. Thus, we can have groups according to their

maintenance contract type or the type of industry the machine is used in (for the

use of the machine) i.e. form steel or aluminium parts. In the previous model

this was only referred as a Document_Resource class and it was declared

through a datatype attribute.

 Function and Function_Group were added. They are related to each other through

the relationships Function2Function_Group (and its inverse), and to

Physical_Product via Function2Physical_Product,

Function_Group2Physical_Product (and their inverse relationships).

Chapter 4: Ontology Development for Closed-Loop PLM

 76

o The idea behind the Function class is that each physical product may have one

or more functions (i.e. rotation, linear movement, store coolant liquid, etc.).

Therefore, whenever a physical product is degraded one or more of its functions

are affected. Through the connection of this class with the Physical_Product

we are able to know which functions are related to each individual physical

product and they are or may be affected during its degradation.

o The Function_Group is used to describe functions at a generic level i.e. group

all material of heat isolation of the product, group all rotating parts of the

product, etc.

 The Alarm class as a sub-class of Event class was added. This class contains only the

critical events. The system issues events, some of which are evaluated as alarms. These

events may cause the breakdown of a function of the physical product.

 The Event_Input_of_User class as a sub-class of Event class was added. This class

contains only Events which are input by a user. These events may have been caused by:

o The fact that there is place for improvement in the monitoring system i.e we

don't have a sensor at a place where we should have it. In that case it gives us

feedback for possible weaknesses of the system.

o The slow response of the system in an abnormal situation.

o An external factor i.e. in case of flood or fire in the building.

 The Process class was added. It is related to Activity via Process2Activity

(and its inverse). The meaning of a process in this context is that a process consists of

one or more activities and its task is to group together the maintenance activities. This

was required in order to accumulate knowledge about which activities are performed

per process and make the system capable of automatically listing the activities needed

depending on the events.

All these classes were added to provide a wider support for the maintenance of the product,

than the one provided by each one of the two initial models.

Chapter 4: Ontology Development for Closed-Loop PLM

 77

4.4.2 Expansion in Relationships

After extending the domain coverage of the model with the new classes, some more

relationships were added to describe the links between the classes. These relationships

compose the active network of communication of the model since they are used like verbs

of the sentences in a structure “noun-verb-noun” which in the model is “class-relationship-

class”. During the usage of the model they may be used as the basis for introducing DL

rules in the model. These were:

 The Condition class is related to Event via the relationships Condition2Event

and its inverse Event2Condition. Thus, the model can describe the condition(s)

that trigger an event and relate them directly.

 The User class is related to Event and to Field_Data_Source via User2Event,

User2FD_Source (and their inverse relationships) respectively.

o The relationship User2Event describes the case where a user notices some

malfunction and makes an action. In this case an event instance is created and it

is related to a user instance. This may provide feedback and may be a source for

reporting bugs of the monitoring system.

o The relationship User2FD_Source describes the case where a user notices

some malfunction and acts as a field data source. In this case the user inputs

data at the Field_Data class. Then this data will be evaluated by the system and

an event instance may be created depending on the conditions.

 The Function class is related to Field_Data_Source via Function2FD_Source

and its inverse relationship. Moreover, the Function class is related to itself with the

relationship FunctionIsComposedBy and its inverse FunctionComposes.

o The relationship Function2FD_Source is used to relate the function with

the sensor of field data source. Thus, when an alarm is created from field data of

a specific sensor, we know which function is affected.

o The relationship FunctionIsComposedBy describes the case where a

function is composed by a number of sub-functions. Similarly its inverse

describes which sub-functions are composing more complicated functions.

Chapter 4: Ontology Development for Closed-Loop PLM

 78

These relationships create a more complete network of communication between the

existing and the new classes.

4.4.3 Extension in Datatype Attributes

After making the changes in the classes and the relationships, some more datatype

attributes were added to describe various requirements. These were:

 Attributes Group_Code to facilitate the No of Component and Group_Type to

facilitate the description “designation objet” of the component were added to the

Physical_Product_Group class.

 Attribute Condition_Description was added to the Condition class. This

attribute contains a short description of the condition.

 In the Alarm class, for the better management of alarms, Alarm_Flag was added.

There are two levels of alarm described through the datatype attribute Alarm_Flag:

o Yellow alarm (the function is likely to fail ~50-75%).

o Red alarm (the function is likely to fail >75%).

Comment: These likelihoods are estimated on real time and could be coordinated with

time. For example the likelihood of ~50% for the Axis X1 drive to fail in the next 5

working hours might be a red alarm, whereas a likelihood of ~50% for the Axis X1

drive to fail in the next 500 working hours might be a yellow alarm.

 In the Event_Input_of_User class the attribute Event_Input_Flag was added

and it may have the following values:

o Weakness Factor which describes the fact that there is place for improvement in

the monitoring system i.e. we don't have a sensor at a place where we should

have it. In that case the system doesn’t “feel” the problem or has slow (less than

satisfactory) response in an abnormal situation.

The user is not an expert and therefore the exact weakness factor has to be

verified by the cause/fault/data analysis.

Chapter 4: Ontology Development for Closed-Loop PLM

 79

o External Factor which describes an external factor which is coming from the

environment of the product i.e. in case of flood or fire in the building, black-out

etc. This is recorded since it may trigger activities.

This case is out of the scope of the model since it cannot be predicted from the

monitoring system.

 Attributes Function_Group_ID and Function_Group_Name were added to

the Function_Group class in order to describe the elements of this class.

 The attributes of the Function class are Function_ID, Function_Name and

Function_Description.

 Attributes User_Group_ID and User_Group_Type were added to the

User_Group class in order to describe the elements of this class.

 The attributes added to the User class are User_ID and User_Type.

 The attributes added to the Process class are Process_ID and

Process_Description.

The goal of all these new attributes is to describe better the various aspects of the

maintenance of the product and like the relationships they may be used for introducing DL

rules in the model.

The overall functionality of the developed system as well as the use of DLs is demonstrated

in the next chapter in section 5.3. The model is used to facilitate the data about the MOL of

a lathe machine. On the ontology model the data describing the complex machine which

consists of ~1 770 parts has been loaded. This creates a complex environment of more than

240 classes, 3 000 instances and 20 000 triplets. Furthermore, in the case study also the

time management concept described in the following section is implemented.

4.5 The Duration of Time Concept
The next step of this work is the development of a concept for better management and

exploitation of time in PLM systems. In today’s systems although time attributes exist is

various parts of the systems, there are no systems which are based on time, although time is

Chapter 4: Ontology Development for Closed-Loop PLM

 80

objective and it naturally exists in all applications and parts of the models. The qualities of

time characteristics were the initiative to select time as the basis for our methodology for

model development, the “Duration of Time” concept. This concept introduces the idea of

seeing all aspects and elements of a model as parts of time and it provides flexibility,

application independence and simplicity. In this way time exists naturally in every part of

the system like it actually exists in real life. Thus, time may be used to support a first level

of data integration and system interoperability through system synchronisation (section

4.5.2).

4.5.1 Time implementation for Ontology based PLM

The aim of this work is to introduce a new methodology for improving today’s Asset

Lifecycle Management (ALM) and PLM systems in the aspects of data handling (visibility

and integration) as well as system interoperability. Visibility of information between the

different levels of abstraction in different information and data management systems is not

always available and if achieved it requires a lot of effort due to the complexity of the

systems (for the sake of simplicity in this document when we use the term “systems” we

mean “Information and Data systems”). All these systems either are different to each other

or are under the same commercial “ALM” system. In both cases it is very difficult to

retrieve and synchronise the data of all phases (Beginning of Life (BOL), Middle of Life

(MOL) and End of Life (EOL)) after the product exits its (BOL) phase (design and

production). Furthermore, data is collected only for some pre-defined products-components.

However, experience has shown that the requirements for the types of collected data change

depending on the use of each part of the model and hence, essential parts of data are

missing and are impossible to recover when needed in later stages. This leads into having

stored data, for use as input in decision making, which is incomplete and therefore decision

support is unsatisfactory.

The objective of the proposed methodology is to improve today’s ALM and PLM systems

by changing the use of time in the systems. The importance of time in ALM and PLM has

been noted in section 3.3. Time has some qualities which make it special among all the

attributes and in our opinion remain unexploited. Time is the only fundamental dimension

which objectively exists along the entire life cycle of all individuals (including materials

Chapter 4: Ontology Development for Closed-Loop PLM

 81

and physical products) and it is an objective element. Time exists in our everyday life on

different levels: duration of accomplishing a task, duration of coffee break, duration of a

phone call, duration of studies, age of a human, roman era, duration of a trip, duration of a

maintenance activity, working hours of a machine, etc. Time also has granularity in order to

be easier comprehensible by humans depending on the application i.e. it is easier

understandable to say that I signed a five year contract than to say that I signed a 43800

hours contract. In this way time is affecting all aspects of individuals and their qualities;

people are getting older (changes in character due to experience, in health, etc.) and objects

wear out. All have the need for some type of maintenance. Furthermore, time is simple,

comprehensive and objective and therefore, application independent. For instance duration

of 5 years is understood by all systems and humans. Of course it might have different

meaning and importance when it is referring to the age of a human or of a machine. For

instance if one is employed by company A for a duration of 5 years, it is not really

important for him to know that the company has a history of 150 years. From the company

point of view the individual exists only for a small fraction of its life, where as for the

individual 5 years is an important part of his 35 years of work. Regarding assets, time has a

meaning of useful life, working hours, maintenance intervals, etc. Similarly, a used

component of a machine has its time in the previous machine and now it has a life in a

current machine. In this way the component has more than one “middle of lives”. Its

lifetime history would be the following: duration MOLa of MOL A in machine A (during

which it performs task A1, task A2, etc. with durations a1, a2, etc.), duration r1 of re-

manufacture, and duration MOLb of MOL B in machine B (during which it performs task

B1, task B2, etc. with durations b1, b2, etc.). Of course the component might have

unlimited number of future uses. In this way time describes the continuity of the

functionality of the components.

4.5.2 Basis for The “Duration of Time” Concept

This work introduces the “Duration of Time” concept for improving today’s ALM and

PLM systems in the domains of data visibility, data integration and system interoperability.

The main element of the concept, used for improving the systems performance is time. The

concept is:

Chapter 4: Ontology Development for Closed-Loop PLM

 82

 Since time exists naturally in all parts of these systems, it could be used as the universal

common reference-basis for providing a first level of integration among the systems.

To fulfil this concept, time, should not be one part of the model, but it should be the basis

of the model and all other elements should be parts of it. A schema of a possible model

implementing the concept is shown in Figure 20.

Figure 20: Schematic Duration of Time representation example.

The concept is easily applied on existing models by making a “duration of time” class as a

super-class of all classes of the model. This class provides the unified time framework for

the entire system (Figure 20). The concept is filed as a PCT (Patent Cooperation Treaty)

application with serial number PCT/EP2010/053238 [134]. In general to implement the

concept the following steps are necessary:

1. Set the Duration of Time class as a super-class of the model

2. Develop a time framework for the existing ontology PLM (i.e. start_date_time,

end_date_time, duration), and introduce it in the Duration of Time class

3. The already existing data of the model are copied from the datatype properties of

the pre-implementation classes to the new attributes of the Duration of Time class

Chapter 4: Ontology Development for Closed-Loop PLM

 83

4. All the time related datatype properties of the pre-implementation classes are

deleted from the model. They are expressed by the datatype properties of the

Duration of Time class

5. Select a central reference time for the model i.e. GMT or CET

Steps 3 and 4 are necessary only in the case of implementing the concept in already

functioning models which contain data before the implementation. The technical details of

the implementation in already functioning models which contain data depend on the tools

used i.e. different step by step procedure is required to implement the concept in models

developed in OWL-DL than in models developed in C++ or Java.

Figure 21: Multi-system architecture using the Duration of Time concept.

The “Duration of Time” concept has unique advantages over existing concepts, which stem

from the qualities of time characteristics. Time is objective and it may be used as a

guideline basis for achieving data integration and system interoperability. Therefore,

Chapter 4: Ontology Development for Closed-Loop PLM

 84

systems built on this concept take advantage of the time characteristics and when combined

with semantics provide data visibility, data integration and system interoperability. Time is

used as a reference-basis to provide a first step system to system visibility and common

understanding no matter the different vocabulary, definitions, semantics or language used

in the different systems. This allows for a better compatibility and portability of data from

one system to another, since all of these elements are essentially defined with reference to

time, which is common across all systems. Two different time based systems will certainly

have in common their time attributes and therefore, they are synchronised even though they

might have been extended and used differently. An example of how a group of systems

using the “Duration of Time” concept would work and it would provide vertical and

horizontal integration is shown in Figure 21. The description of this figure is:

 X-Axis: represents time; the length of the boxes represents the duration of the lifecycle

of the element i.e. robotic machine, system A, etc.

 Y-Axis (Vertical integration): represents the different levels of abstraction (as it is

shown also in Figure 2). These levels contain the different information systems for each

level. The important information is whether two or more are on the same Y-Axis level.

Therefore, System B and System C are in the same level. They seem to be on top of

each other only for illustrative reasons.

 Z-Axis (Horizontal integration): represents the fact that more than one box can be at the

same “Y-Axis” level on the same time of “X-Axis”. Therefore, System A and System B

are in the same level Y-Axis and X-Axis. They are parallel to each other on the Z-Axis

only for illustrative reasons.

 “Current Time” line illustrates the vertical and horizontal visibility achieved by

Duration of Time system. One may integrate all the systems on the time basis.

A comment on the figure is that it is clearly illustrated that a System may have longer

lifecycle time of a decision making team. In this case the system collects the information

and the knowledge of the other levels. Case studies implementing the concept are presented

in sections 5.2 and 5.3.

Chapter 4: Ontology Development for Closed-Loop PLM

 85

4.6 Implementation Methodology of our Ontology­Based approach
This section describes a step-by-step methodology of implementing and using efficiently

the system architecture described in section 4.1 in order to exploit DL capabilities in

ontology-based PLM models. As it has been demonstrated in sections 4.2, 4.4 and 4.5, the

initial model was slightly modified to facilitate several of the OWL-DL capabilities, always

maintaining previously achieved characteristics. The developed ontology model is dynamic,

it can store data about multiple products on a single source (it allows to record, store and

process data-information about a number of systems in a single ontology source) and it has

higher description ability (allows the user to see the multiple levels of inheritance).

Implementation Process

The proposed implementation methodology assumes that the initial OWL-DL model is

developed by one team of developers of the manufacturer (or OEM: original equipment

manufacturer) of the product, which has full administrator rights on the model (step 1). The

model should be generic facilitating the most abstract concepts necessary to describe the

domain. An example of such model is the model developed in 4.2. Then, the OEM team

should populate the concepts with instances which are static (step 2) i.e. which parts of the

car are being tracked (see Physical_Product_Group class in section 5.1). These

instances cannot be changed by the users, but only by the OEM team. Therefore, they will

be common for all the partners that will be using the model and they are the common

vocabulary among the variations of the model. In the next step, the OEM team should

develop a methodology for extending the model (step 3). The instructions to be followed by

the users are: study the concepts of the model to find out according to what element

(guideline) data will be categorised; select the most appropriate guideline; and then create

sub-classes with DL rules using the guidelines you have selected. In the fourth step the

OEM team develops a typical example following the instruction of the previous step. Then,

the OEM team makes copies of the OWL-DL model (steps 5, 6 and 7) and distributes them

to the partners (step 8). The partners populate their copies with data and extend them with

classes following the instructions described in step 3. Furthermore, the OEM team collects

copies from the partners in predefined time intervals i.e. the first working day of every

month (step 10) and imports them into one model (step 11). Then, the DL-reasoner may be

Chapter 4: Ontology Development for Closed-Loop PLM

 86

used to check consistency, equivalencies and re-classification on classes and to categorise

instances (step 12). Finally, SWRL or Jess rules might be added if necessary (step 13). The

implementation steps briefly are:

1. Develop the ontology in OWL-DL (ontology O with the URI U)

2. Provide instances for the static parts of the model

3. Develop instructions for extending the model with DLs. A possible order is:

a. Study the concepts included in the model

b. Select guideline

c. Develop sub-classes with rules

4. Provide a typical paradigm how to implement this methodology (of the previous

step) according to the requirements

5. Make copies of the ontology model

6. Change the URI of each copy to U’ (unique URI for each copy)

7. Set as its default namespace the URI U of ontology O

8. Distribute the models to the partners

9. The copies are populated and/or extended by the partners. In case of extension the

partners have to follow the instructions of step 3

10. Collect the copies

11. Import the copies into one model

12. Execute the reasoner to check consistency, equivalencies and re-classification on

classes and to categorise instances

13. Add SWRL and/or Jess rules if necessary

It should be noted that steps 6 and 7 may vary depending on the ontology editor used. In

this work these steps have been developed to function correctly with the Protégé editor

(version 3.4) and its current plug-ins as shown in Figure 11.

The most important part of the method consists of steps 2 and 3. Step 2 demonstrates how

to use the developed ontology and step 3 provides the user with an application example on

the domain. The latter is used to demonstrate the benefits obtained from implementing the

ontology model.

Chapter 4: Ontology Development for Closed-Loop PLM

 87

In the case of implementing the time concept, the process described in section 4.5 is

considered in different steps depending on the status of the model. If the model is new and

does not contain data then the concept is implemented in step 1. The extra steps to be

considered while developing the step 1 are (as described in section 4.5.2):

1. Set the Duration of Time as a super-class of the model

2. Develop a time framework for the existing ontology PLM (i.e. start_date_time,

end_date_time, duration), and introduce it in the Duration of Time class

3. Select a central reference time for the model i.e. GMT or CET

If the model is already in use then the concept is implemented in step 3. The extra steps to

be considered while developing the step 3 are (as described in section 4.5.2):

1. Set the Duration of Time class as a super-class of the model

2. Develop a time framework for the existing ontology PLM (i.e. start_date_time,

end_date_time, duration), and introduce it in the Duration of Time class

3. The already existing data of the model are copied from the datatype properties of

the pre-implementation classes to the new attributes of the Duration of Time class

4. All the time related datatype properties of the pre-implementation classes are

deleted from the model. They are expressed by the datatype properties of the

Duration of Time class

5. Select a central reference time for the model i.e. GMT or CET

The proposed implementation methodology makes the model being extensible while

keeping compatibility with the other copies of the initial model. Each partner might use

different terms describing the same concepts, which in other cases causes confusion,

problems of interoperability and data integration, and still, no such problems are created

since, efficient use of DL rules provides a solution. Moreover, the methodology is generic

and therefore, applicable in a number of different domains. In chapter 5 applications of the

proposed methodology in practice are presented.

4.7 Conclusion
In this chapter it has been presented: which methods, tools, models and theory we used;

how we used them to create new opportunities for the PLM models; why we used them

Chapter 4: Ontology Development for Closed-Loop PLM

 88

(implement new functionalities in current models); what new opportunities are created for

PLM models; the original “Duration of Time” concept developed; how to implement the

combination of developed concepts and used methods and tools in PLM models.

To achieve the comprehensive demonstration of the system we presented the system

architecture (Figure 11) and the functionality of all the different parts in the structure. Then,

the goal was to make the current PLM models capable of utilising this architecture.

Therefore, we transformed the PROMISE SOM model from UML to OWL-DL. This

provided the new functionality of facilitating multiple data about multiple products under

one single source. The transformation provided also the functionality of merging two or

more models together. The question which arises on this is: “how to use the system

architecture to automatically perform the mapping of the models during merging?”. This

question is discussed in chapter 5 section 5.1.5. Ontology merging has provided an extra

capability which seems to be very promising: even if only in one model there is an

important (one or more) new and beneficial element, after the merging the whole system

will benefit from it. Moreover, the model was extended with elements of the PROTEUS

model in order to facilitate more capabilities for maintenance.

Furthermore, the original “Duration of Time” concept is presented. The main aim of this

concept is to exploit the characteristics of time (in its generic meaning) and to provide

original solutions towards data integration and system interoperability.

Finally, a generic implementation method of the system architecture and the developed

“Duration of Time” concept is proposed. Applications in case studies of this method, the

system architecture and the concepts are presented in the next chapter.

 89

5
Case Studies

In this chapter three case studies are described in detail. The aim of these case studies is to

demonstrate the new opportunities existing for the Closed-Loop PLM. This includes the

demonstration of the functionalities of the ontology models using DLs, the exploitation of

the reasoning capabilities of the relevant architecture described in section 4.1 and the

implementation of the “Duration of Time” concept. The first case study is an application of

the model developed in section 4.2. In this case study the main benefits of using OWL-DL

are demonstrated. Applications described in this case study show: the usage of the DLs and

the DL-reasoner for the re-classification of the class-hierarchy; the check of equivalencies

among the concepts of the model; the check of consistency of the model; the expressivity of

the model; and the logical categorisation of the instances under the classes. These

functionalities support data integration among the different variations of the system and

therefore, data is located in the right place in the model. Actors of all the PLM phases may

retrieve and use the data. The second case study is an application of the model developed in

section 4.2 combined with the “Duration of Time” concept developed in section 4.5. Its aim

is to demonstrate the applicability of the “Duration of Time” concept and the benefits it

provides to the current model. The “Duration of Time” elements may be used as the

common reference-basis among the different models that implement the architecture of the

concept. The advantage towards Closed-Loop PLM is that the continuity of information is

preserved through the common reference-basis during the lifecycle. The third case study is

an application of the model developed in section 4.4 combined with the concept developed

in section 4.5. This case study demonstrates the applicability of the “Duration of Time”

concept and of the OWL-DL in a complex industrial environment.

Chapter 5: Case Studies

 90

5.1 Case Study 1
The aim of this case study is to demonstrate the functionalities of the ontology model

developed in section 4.2 towards providing features for realising the Closed-Loop PLM.

This is performed through extending the model using DLs and exploiting the reasoning

capabilities of the relevant architecture shown in Figure 11. The machine-understandable

model is used to make the information visible and ready for further use as input to all PLM

phases, which means that information is categorised at its logical place in the model. The

case study deals with information collected during the Middle of Life (MOL) in order to be

used in the Beginning of Life (BOL) and in the End of Life (EOL).

This case study represents an example of using the developed ontology as a database for the

MOL of passenger vehicles, the data of which can be later used as input to provide decision

support for agents in both the BOL and the EOL. The specific dictionary (describing which

values and parts need to be tracked through MOL) for the case study has been developed

after combining requirements of application scenarios dealing with MOL and EOL cases in

automotive industry [135]. In this case a part of the data stored in the model is to be used as

input to a Decision Support System (DSS) for all PLM phases: in BOL for improving

design and production, in MOL for improving maintenance and in EOL for supporting

dismantling, recycling, re-manufacturing, re-use and disposal. The steps followed are:

populate the ontology model with instances, extend the model according to requirements,

provide guidelines for sorting data according to requirements to the extended model while

supporting data integration.

This case study represents an implementation of the method described in section 4.6 on the

ontology model developed in section 4.2 (Figure 18). Strictly following the steps of section

4.6, this case study goes as far as step 12 and overall provides a paradigm for

implementation (step 4). It should be noted that, initially, in section 5.1.2 the model has

been populated without following steps 3 and 4. The extended model is compared with both

the initial model and the model before the extension as well as with a variation of the model.

The implementations included in section 5.1.3 are actually step 3 and provide extension

guidelines. Section 5.1.4 represents steps 4 and 12: testing the model. The contents of 5.1.3

and 5.1.4 can then be used as a paradigm for constructively extending the model.

Chapter 5: Case Studies

 91

The model is developed by the OEM and copies of the model are distributed to its

maintenance providers to collect the maintenance data of the products. Each maintenance

provider extends the model according to his needs, using its local language and terms, and

uploads the data into the model. When the OEM collects the different models from the

different maintenance providers, and loads them under the same Protégé-OWL project, the

DL-reasoner categorises the information as well as the new classes at their logically correct

place in the model. This is performed through efficient use of DL rules (section 5.1.4). The

categorisation of the data-instances contained in the model under the new sub-classes and

classes has been also proposed and demonstrated (section 5.1.3).

In section 5.1.2 it is shown how the model is developed and used initially as taxonomy

without using the DLs and other tools. In sections 5.1.3 and 5.1.4 excessive use of the DLs

and the relevant tools is performed in order to demonstrate the capabilities of the model.

5.1.1 Ontology Development Description

The OEM team has developed (step 1) the model shown in section 4.2 (Figure 18). Then,

data describing three passenger vehicles has been added to the model. Therefore, data was

loaded in the model without having the necessary detailed structure. The amount of data

stored, grew significantly as we added data describing more physical products. The aim is

to test its functionality using the provided reasoning capabilities. Hence, the classes of the

ontology have been deliberately populated with instances in such a way as to create the

most complicated possible “data management case”.

This situation demonstrates the case of not having defined the concepts (classes and sub-

classes) to the right level of detail in advance. This is due to either poor or due to

incomplete design of the system for the implementation or/and later changes in

requirements. The data model developed for an application has been at some stage

considered as “complete” and is implemented by engineers in real-life use. It is like

performing steps 1, 2, 5, 6, 7, 8 and 9 (without performing the steps 3 and 4) of section 4.6.

However, the models initially considered as “complete” in a later stage are extended and

improved according to experience collected in practice and according to new requirements.

In our case, the initial model is extended by adding sub-classes to the already existing

classes or even by creating new classes. This provides support to data categorisation

Chapter 5: Case Studies

 92

through semantics which is very useful for Closed-Loop PLM since it makes data both

human- and machine-understandable. Thus, the data is ready for further use as input to all

PLM phases.

5.1.2 Populating the Ontology Model

The existing classes of the model developed in section 4.2, are populated with instances

containing the data of three passenger vehicles. Thus, there is no structure of sub-classes

describing the specific application requirements for directing the user to store the right data

to the right place. As a consequence, each class of the initial ontology model has a mixture

of different instances. For instance, all physical products such as batteries, engines, etc. are

instances of the Physical_Product and whenever a new physical product is added, it is

added randomly to the list of instances of this class (Figure 22). The same applies for all the

rest of the classes. On the other hand, this provides easy data integration and

interoperability since the classes are the same for all the variations of the model of all the

partners.

Figure 22: Physical Product class data of the initial model.

5.1.2.1 Populating Process

Firstly, we populated the Physical_Product_Group class and the

Valid_Field_Data_Type class because they describe groups of instances of other classes.

These instances are static and cannot be changed by the users, but only by the OEM team

Chapter 5: Case Studies

 93

(step 2). The instances of these two classes were named according to the requirements of

PROMISE application scenarios, i.e. a passenger vehicle consists of a battery, a clutch, a

crankshaft, an engine, pistons, pins, rings and valves. This is because these are the car parts

that the manufacturer, engineering team, etc. is interested to track. The

Physical_Product_Group class was populated containing instances describing physical

products of the same type. These instances declare the types of physical products that can

appear in the ontology. The same strategy was followed for the Valid_Field_Data_Type

class instances, which define the measuring unit and other attributes of the Field_Data

instances as well as Field_Data_Source instances. The instances of these two classes are

shown in Table 2. Furthermore, the Property class contains the information provided by

the manufacturer and was extended with the sub-classes Material_Code, Product_Info,

Serial_Number, Substitution_Mileage and Vehicle_Code.

Table 2: List of instances for two selected classes

Class Instance

Physical_Product_Group_Battery

Physical_Product_Group_Clutch

Physical_Product_Group_Compressor

Physical_Product_Group_Crankshaft

Physical_Product_Group_Engine

Physical_Product_Group_Passenger_Vehicle

Physical_Product_Group_Pin

Physical_Product_Group_Piston

Physical_Product_Group_Ring

Physical_Product_Group_Starter

Physical_Product_Group

Physical_Product_Group_Valve

Aging

Battery_Voltage_Data

Car_Temp

Car_Humidity

Clutch_Pressed

Compressor_Pressure

Eng_Temp

Mileage

New_Substitution_Date

New_Substitution_Mileage

Out_Temp

Valid_Field_Data_Type

Starting

Chapter 5: Case Studies

 94

Then, copies of the model were made and distributed to partners (steps 5, 6, 7 and 8). Next

step was the addition of the instances of the rest of the classes. This represents a part of step

9 since the model is not extended with sub-classes. These are the instances that normally

are added by the users. While creating each instance, all values for the datatype properties

were added. Furthermore, the new instance was either associated to already existing

instances or new instances were created to be associated with them. For example when

Passenger_Vehicle_1 was created, it was associated to the already existing

Physical_Product_Group_Passenger_Vehicle. Then, for the object property

isParentOf the instance Engine_1 was created. This process continued until we had all

related instances. The lists of instances are dynamic and can be altered whenever necessary.

The final state of Passenger_Vehicle_1 is shown in Figure 23.

In this way all classes were populated containing all the data about attributes and

associations in their instances. The main drawback about this process is that big amounts of

data are stored in each class, referring to different real life artefacts. In Physical_Product

we have all different kinds of physical products, while in Field_Data we have all

instances collected by the field data sources and they are referring to both different physical

products and different valid field datatypes. Similar is the situation for the

Field_Data_Source where its instances are representing all sources of data (i.e. sensors)

for all physical products and different valid field datatypes. In Property we also have all

properties given by the manufacturer about all different physical products. While adding

data describing more physical products, the amount of data in each class grows and data

becomes very difficult to handle and to extract useful information from. This represents, for

example, the situation that is faced by maintenance teams tracking data and willing to have

an overview about the fleet of vehicles they are responsible for. On a higher level, the

manufacturer can also collect the data from different maintenance teams, from different

countries and merge them together under one source. At this stage a data repository on a

common source has been developed, without having any ruled sorting and hence, and it is

difficult to manage.

At this stage the system provides the following advantages:

 Data of multiple products are stored under one source

Chapter 5: Case Studies

 95

 The different copies of the model can be collected and merged. This is performed

without any problems since all the copies have exactly the same class-hierarchy. Thus,

data integration and interoperability between the different copies of the model is

guaranteed.

Figure 23: Instance editor of Passenger_Vehicle_1 instance.

Chapter 5: Case Studies

 96

The model at this stage has some disadvantages such as that when the model is extended it

loses the integration and interoperability with the other copies of the model and to solve

this a manual mapping between the models should be performed; the data is not sorted

according to various criteria i.e. to what type of data it is. These disadvantages are dealt

with in the following paragraphs.

5.1.3 Inferring Instances

In this section, it is demonstrated how to create new sub-classes with rules for sorting data

in any desired manner. Thus, all engineering teams may achieve auto-categorisation of data

immediately after it is inserted in the model. In paragraph 5.1.2 we have described briefly

the state of the populated model. Although having the advantages of interoperability and

integration since all classes are the same for all models; these models have a lot of data

allocated in their generic classes. The solution chosen is the extension of the existing

classes with new sub-classes by using DL rules. The means that we have to implement step

3 and provide a representative paradigm (step 4) showing how to follow the guidelines for

extension. Thus, each new sub-class should be defined with DL rules. This is similar to

attempting to sort computer documents by creating new sub-folders of existing folders and

sub-folders of them etc. as well as providing a smart “auto”-sorting method to sort the

documents according to keywords. However, this leads to each different actor of the

extended enterprise, having his own ideas for extending the model in order to facilitate

better his needs. Differences appear in both naming policy of the new sub-classes and in

criteria chosen for sorting data. Thus, in the end we have many different versions of the

model.

Our mission is to solve the problem of how to preserve the advantages of data integration

and interoperability in tandem with extending the model with new sub-classes. The answer

to this is extension of the model with facilitating reasoning capabilities. All different actors

will try to extend the model in order to facilitate better their needs of expressivity. Then, a

new question is which the best guidelines for the rules are. The answer is the requirements.

In this scenario after studying the model (step 3a) we decided to use (step 3b) the

Physical_Product_Group class and the Valid_Field_Data_Type class as two major

guidelines for developing rules for sorting the instances of the Physical_Product class.

Chapter 5: Case Studies

 97

Similarly the categorisation of the instances of the Field_Data class has been performed

mainly according to the Physical_Product class. Other guidelines have also been used as

shown in the following paragraphs.

A lean and easy to apply method has been developed to make the data manageable and

extract useful information from it. To achieve this we added rules and we run them on the

DL-reasoner Pellet 1.5.2. The DL-reasoner has been used to read the semantics of the sub-

classes and to infer and distribute the instances to the sub-classes automatically following

the applied rules. Typical examples are presented in paragraphs 5.1.3.1 and 5.1.3.2. The

way the model is extended is not unique and whenever required it may be altered or

extended further in order to query the ontology. The use of DL rules on the instances

provides the advantages:

 It is no longer necessary for the user to know the exact detailed structure of the model,

since new instances are located under the right class automatically.

 The system automatically avoids the creation of data miss-location or of data duplicates.

 In cases of importing variations of the model under one source the OEM is not required

to know the detailed structure of the final model since the model is machine-

understandable and the DL-reasoner is used.

 The method is very flexible: the way the model is extended is not unique and whenever

required it may be altered or extended further in order to query the ontology.

All the implementations demonstrated in paragraphs 5.1.3.1 and 5.1.3.2 are

implementations of step 3c developing sub-classes with rules. In 5.1.3.2 also an SWRL rule

with the Jess rule engine are used.

5.1.3.1 Physical Product Instances

The Physical_Product class contains all the products that are being tracked. Sorting

them according to their type is useful, giving engineers an overview of how many products

of each product type are being tracked. First of all, eleven sub-classes (step 3c) of the

Physical_Product class were created according to the eleven types of products. The

instances of the Physical_Product_Group class are the dictionary (also called

reference) of the Physical_Product, declaring the types of physical products. This is

declared by adding rules to each new sub-class relating it to a specific instance of

Chapter 5: Case Studies

 98

Physical_Product_Group class. For example, to make the reasoner understand that

batteries are those physical products that are related to the physical product group battery,

we added to the sub-class Battery as Necessary and Sufficient the following restriction:

  Battery Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Battery)

This is translated in human language as: Battery is a Physical_Product whose object

property Physical_Product2Physical_Product_Group, has the value of the

instance of the Physical_Product_Group class, named

Physical_Product_Group_Battery. Similar sub-classes and rules where used for the

other ten types of products.

Figure 24: Physical Product class data after distribution.

Then we run the reasoner to achieve separation and sorting of data. The result for the data

of the Physical_Product is shown in Figure 24. Specifically, this figure shows all the

eleven sub-classes of the Physical_Product class and how the reasoner has distributed

the instances among them according to the rules. Thus, in this case the instances have been

distributed to the sub-classes according to which Physical_Product_Group they belong

to. Comparing Figure 24, with the Figure 22 which shows the structure of all instances

Chapter 5: Case Studies

 99

stored under the Physical_Product class of the initial model, it is obvious that the

mission of sorting data has been accomplished. Answers to questions like “which of the

physical products are batteries?”, “Which are engines?” etc., and in general: “which of the

physical products of a certain, selected product type?” have been achieved.

Another way for categorising the instances of the Physical_Product class was their

complexity. Physical_Product instances were categorised according to their complexity,

described through the datatype property Product_Complexity. To achieve this we

added Complex_Physical_Product as sub-class of Physical_Product with

Necessary and Sufficient the following restriction:

 Complex_Physical_Product Field_Data Product_Complexity.("Complex")

This is translated in human language as: Complex_Physical_Product is a

Physical_Product whose datatype property Product_Complexity has as value

“Complex”. The same was achieved for the “Simple” products. The result of the rule is

shown in Figure 25.

The Physical_Product instances were also categorised according to which

Physical_Product instance they are part of. The need for this categorisation arose in

paragraph 5.1.3.2 when trying to sort the Field_Data instances of the complex physical

products. The sub-classes containing these data are the key for “finding” the indirect

Field_Data instances of the complex physical products. As a solution we added

Parts_of_Physical_Product_P_V_1 as sub-class of Physical_Product with

Necessary and Sufficient the following restriction:

 Parts_of_Physical_Product_P_V_1 Physical_Product hasParent.(Passenger_Vehicle_1)

Similar categorisations were carried out for all the Complex_Physical_Product

instances in order to sort their data.

Chapter 5: Case Studies

 100

Figure 25: Instances of Physical Product class sorted according to their complexity

5.1.3.2 Field Data Instances

The Field_Data class contains all the data which comes from sensors and other sources of

tracked physical products. Sorting field data according to the criterion “which physical

product they belong to” is useful for several maintenance cases. For instance, in the case of

monitoring the status of a product we can have all data about it under one sub-class and

query only this class. For achieving this, a sub-class of the Field_Data should be created,

for each physical product. Firstly, we sorted the data which is being tracked for Engine_1.

For this reason we added Field_Data_of_P_P_Engine_1 as sub-class of Field_Data

with Necessary and Sufficient the following restriction:

 Field_Data_of_P_P_Engine_1 Field_Data Field_Data2Physical_Product.(Engine_1)

This is translated in human language as: Field_Data_of_P_P_Engine_1 is a

Field_Data whose object property Field_Data2Physical_Product has as value

the instance of the Physical_Product class, named Engine_1.

Chapter 5: Case Studies

 101

Then we run the DL-reasoner to achieve sorting of data. The result for the data of the

Field_Data_of_P_P_Engine_1 is shown in Figure 26. In this figure it is shown that

under the Field_Data there are forty two instances and the ones (five) related directly to

Engine_1 have been inferred under Field_Data_of_P_P_Engine_1. By adding more

sub-classes of Field_Data with similar rules we can extend this, sorting the field data for

all individual physical products. Answers to questions like “which field data belongs

directly to Engine_1” or “which field data belongs to any other physical product except

Engine_1?” etc., and in general: “which field data belongs directly to a certain, selected

physical product?” have been achieved. Although the data of the simple products are sorted,

the data sorted for the complex products are not complete since only the data related

directly to them is sorted. This limitation is solved in the next paragraph.

Figure 26: Instances related to Engine_1 instance have been sorted under

Field_Data_of_Physical_Product_Engine_1.

Chapter 5: Case Studies

 102

Alternatively the Field_Data instances are sorted according to the type of the data stored.

This is useful in cases of using the data as input for statistical research, defining for

instance the real requirements of a client (fleet management) according to real field data. In

this case we sorted out the data which is being tracked for engine temperature Eng_Temp.

Then, we added Field_Data_of_V_FD_T_Eng_Temp as sub-class of Field_Data with

Necessary and Sufficient the following restriction:

 Field_Data_of_V_FD_T_Eng_Temp Field_Data Field_Data2Valid_Field_Data_Type.(Eng_Temp)

Rules of this type answer to questions like “which of the tracked field data elements are of

a certain, selected valid field datatype?”.

To answer to questions like “which properties belong to a certain, selected product”, sub-

classes were added under Property and a restriction on the relation

Property2Physical_Product was added to each one. Similar categorisations were

achieved in the classes Field_Data_Source and Resources.

Similarly we sorted the data of the classes: Field_Data, Valid_Field_Data_Type,

Property, Field_Data_Source, Resources and Physical_Product as shown in

Table 3.

Table 3: Sorting of Data overview

Class Guideline General Question Answered

Physical_Product Which field data belongs to a certain, selected
physical product?

Field_Data

Valid_Field_Data_Type Which of the tracked field data are of a certain,
selected valid field datatype?

Valid_Field_Data_Type Battery_1 Which of the valid field datatype instances are
related to a certain (i.e. Battery_1), selected
physical product?”

Property Physical_Product Which properties belong to a certain, selected
product?

Field_Data_Source Physical_Product_Group Which field data sources belong to a certain
group, of physical products?

Resources MOL_ Battery_1 Which resources have worked for a certain
physical product?

Physical_Product Product_Complexity Which product consists of more products?

Chapter 5: Case Studies

 103

Field data of complex physical products

As it is mentioned in the previous paragraph a limitation appeared while categorising the

Field_Data instances of complex physical products. The solution was given with the use

of Parts_of_Physical_Product_P_V_1 class and the rest of the classes of its type. In

the following example we sorted out the data which is being tracked for

Passenger_Vehicle_1. Then, we added Field_Data_of_P_V_1 as sub-class of

Field_Data with Necessary and Sufficient the following restriction:

   

Field_Data_of_P_V_1 Field_Data (Field_Data2Physical_Product.(Passenger_Vehicle_1)
Field_Data2Physical_Product.(Parts_of_Physical_Product_P_V_1))

In this way the Field_Data_of_P_V_1 class contains all the data which are related to

Passenger_Vehicle_1 and to all its simple or complex components. Similarly we sorted

the data of the complex physical products.

Time oriented queries

Accurate estimation of the time intervals for maintenance or of possible breakdowns is

aimed at improving the service provided towards more reliable predictive maintenance.

Therefore, sorting data according to when they were collected is an essential element of

modern PLM systems.

The Field_Data_of_P_V_1 class was used further to accomplish “when” queries for the

complex product Passenger_Vehicle_1. More specifically, we achieved separation

according to when a field data was recorded and to which complex physical product it

belongs to. The construction of the “when” queries was based on the time and date stamps

of the data in the Field_Data class. The Field_Data recorded in June of 2008 about

Passenger_Vehicle_1 were found using the following SWRL rule:

  


Field_Data_of_P_V_1(?fdx) Date(?fdx, ?zx) temporal:after(?zx, "2008-05-31T23:59:999")
temporal:before(?zx, "2008-06-30T23:59:999") Field_Data_of_P_V_1_in_200806(?fdx)

Then they were sorted under Field_Data_of_P_V_1_in_200806 class by returning the

asserted values to the ontology using the Jess rule engine. Answers to questions like:

“which field data of Field_Data_of_P_V_1 was recorded in June 2008?” and in general:

“which Field_Data was recorded in a certain time period about a complex or simple

physical product?” were achieved.

Chapter 5: Case Studies

 104

5.1.4 Supporting Decision on Model Extension

Problems concerning system interoperability and data integration have to be solved. In the

example in 5.1.3 each engineer or engineering group of an extended enterprise might use

different terms describing the same concepts, which causes confusion, problems of

interoperability and data integration like in existing systems. In this paragraph we

demonstrate how the use of DL rules used in the case study provides a solution to these

problems. A number of these applications is presented in [136].

The model was extended in section 5.1.3 according to the needs of the user. The extension

is very practical for the users of each copy of the model. However, when the different

copies of the model are collected by the OEM (step 10) and merged together (step 11)

problems concerning system interoperability and data integration are created. Perhaps two

copies use different words to describe the same concept or the level of detail of one copy is

more than the one in another copy. This situation causes confusion, problems of

interoperability and data integration like in existing systems. In this paragraph we

demonstrate how the use of DL rules used in the case study provides a solution to these

problems. In this section steps 4 and 12 are performed. Step 4 is performed for the overall

testing of the functionality of the model and step 12 is performed for the logical testing of

the model.

The model can be extended to facilitate a wide range of various different requirements.

Each engineering team may extend it differently, sorting data in different classes with

different meanings. On the other hand, at the extended enterprise level, we must have an

overview of the data. The key issue for the extended enterprise are the guidelines for the

rules to be followed by the engineers (described in step 3). No, new sub-class should be

created without having rules. These rules describe the logical concept, each new sub-class

represents in real life. Provided this, each team can use its own way to extend the classes.

In this section the use of DLs allows the DL-reasoner to:

 Check the model for its consistency

 Update the class-hierarchy

o New sub-classes are re-classified to their logical position

o Any equivalencies are understood by the DL-reasoner

Chapter 5: Case Studies

 105

In this way, integration of data and concepts is maintained through DLs and the DL-

reasoner, and therefore, the OEM has clear view of the data and its structure in the total

number of the copies of the initial model.

Supporting Interoperability and Data Integration

The model can be extended to facilitate a wide range of various different requirements.

Each engineering team may extend it differently, sorting data in different classes with

different meanings. On the other hand, at the extended enterprise level, we must have an

overview of the data. The key issue for the extended enterprise are the guidelines for the

rules to be followed by the engineers. No, new sub-class should be created without having

rules. These rules describe the logical concept, each new sub-class represents in real life.

Provided this, each team can use its own way to extend the initial class-hierarchy.

We assume that the initial has been extended with sub-classes using DL rules. The rules

make the model machine-understandable. The reasoner will compare the rules among all

existing classes. Thus, when creating a new sub-class with rules and then run the reasoner,

the reasoner understands the rules and declares the classes as “equivalent”, meaning that

they express the same concept. In this way, it declares that the two classes, which have the

same rules, are actually the same class but with different name. An example is shown in

Figure 27. In this example a new class Class_1 has been created having the same rules as

Battery class. The reasoner has coloured the two classes blue and has declared:

Battery Class_1

In this way the system indicates that the two classes are equivalent. Answer to questions

like: “Does new Class_1 already exist with a different name?”, in general: “does the new

class, which has just been created, already exist?” were achieved.

When the engineers will collect all the models developed by their colleagues they have the

options:

1. Have different categorisations among different models

2. Find same ruled classes between different models

3. They can categorise the data the way they select

Chapter 5: Case Studies

 106

No matter which option is chosen, data integration and system interoperability are

preserved and therefore, the overview of the data at the extended enterprise level is

preserved.

Figure 27: The reasoner re-classified the equivalent classes

Expressivity

The implementation of the ontology model and with the use of the DL-reasoner it has been

more user-friendly for human agents and it has increased the ability of expressing the

Physical_Product instances of the PLM model. The structure and the expressivity of the

UML model allowed the engineers to have a very narrow view of the complexity of the

physical products. They were limited to seeing only one level higher or one level lower of

the physical product (Figure 28, Figure 29 and Figure 30). An example of how the DL-

Reasoner understands the complex physical product Passenger_Vehicle_1 is shown in

Chapter 5: Case Studies

 107

Figure 31. This provides the user with the big picture of what is happening inside the model.

Answers to questions like: “which are all the physical products that belong to

Passenger_Vehicle_1?”, and in general: “from which physical products each complex

physical product consists of?” were achieved. The three-level structure of complexity

described in this example can be increased depending on the requirements of each case.

This expressivity is also understood by the reasoner and it is used for the re-classification of

the model.

Figure 28: Instances related to Passenger_Vehicle_1 instance with the properties hasParent and

isParentOf.

Figure 29: Instances related to Engine_1 instance with the properties hasParent and isParentOf.

Chapter 5: Case Studies

 108

Figure 30: Instances related to Piston_1 instance with the properties hasParent and isParentOf.

Figure 31: Instances related to Passenger_Vehicle_1 instance directly and through inheritance due

to the transitive properties hasParent and isParentOf.

Re­classification of extended model

Each sub-class added to the model has restrictions as well as relationships which it inherits

from its super-class. These are the key elements for re-classification of the sub-classes by

the DL-reasoner. In this case study the classes describing the various parts of the cars have

been re-classified automatically into a three-level super-class/sub-class chain as shown in

Figure 32. The DL-reasoner read the relationships between the rules of all the classes, it

identified that the hasParent, isParentOf object properties are transitive and

therefore, it re-classified the classes.

Chapter 5: Case Studies

 109

Figure 32: The DL-reasoner has re-classified the Parts classes.

5.1.5 Merging Ontologies

The importance of ontology merging has been well highlighted in section 4.3. The most

important aims for the merging are: to achieve auto-mapping of the variations of the

models; and to efficiently find out important beneficial elements in one model and use them

across the models. In this section the model developed so far is used in a scenario in order

to demonstrate how we achieved auto-mapping and how it is possible to share

automatically parts of the models whenever required. It should be noted that the states

described in this section do not claim to be exhaustive for every different use of the

ontology based IT methods and tools, and they depend on the system architecture as well as

on the use of DL rules. The scenario intends to be illustrative of possible problems which

appear while merging one or more models together.

Demonstration Scenario

In this scenario the OEM has followed steps 1 (U=http://www.owl-ontologies.com/

Ontology1202459344.owl), 2, 3 and 4. For step 4 the OEM has provided the paradigm and

Chapter 5: Case Studies

 110

the guidelines developed in section 5.1.3. Then, the OEM has made a copy of the ontology

model (step 5), has changed the URI of the copy to U’=http://www.owl-

ontologies.com/Ontology1202459344_ Copy_001.owl (step 6), has set as the default

namespace of the URI U (step 7) and has distributed the models to the partner (step 8).

Furthermore, the copy was populated and extended by the partner (step 9). After a month

the OEM collects the copy (step 10) and imports it to the extended model developed

according to the paradigm until section 5.1.4 (step 11). Thus, in step 12 the aim is that the

OEM can use the reasoner (in the same way as it is used in 5.1.4) to reason efficiently the

final model after merging. To make this aim real we had to add rules in order to merge

Ontologies safely.

After the merging of two or more models is performed, under each class of the final model

there are all the rules about this class which exist in all models. Regarding the classes of the

final model there are three parameters which are important in order to perform reasoning:

the class name, the DL rules of each class and the properties which are used by the rules.

These three parameters may get various values. The important element is whether these

parameters are the same or different in each one of the models. Thus, after merging there

might appear the following eight cases regarding the classes and their DL rules which are

summarised in Table 4. The information of the first four columns of this table is:

1. Two or more same named classes have the same DL rules about the same property.

2. Two or more same named classes have the same DL rules about different property.

3. Two or more same named classes have the different DL rules about the same property.

4. Two or more same named classes have the different DL rules about different property.

5. Two or more differently named classes have the same DL rules about the same property.

6. Two or more differently named classes have the same DL rules about different property.

7. Two or more differently named classes have different DL rules about the same property.

8. Two or more differently named classes have different DL rules about different property.

The remaining two columns contain information of how well the reasoner handles the data

and the result in the final model regarding the initial classes. It should be noted that cases 1,

Chapter 5: Case Studies

 111

2, 3 and 4 are impossible to occur in one individual model since the editor does not allow

the creation of a class which will be named the same as an existing class. However, these

cases are created while merging two or more models which were developed on different

machines.

In practice the overall system works well after the merging for all the cases except for the

third case: in which exist classes with the same name with different DL rules about the

same property. This is due to the fact that the model (of the paradigm in step 4) was not

tested for merging. It was tested only with data and extension within one model. Therefore,

the designers of the OEM had not considered adding restrictive rules in the upper classes in

order to avoid possible conflicts after merging variations of the initial model.

Table 4: The possible cases after merging.

Case Class Name DL rules Property Handled Result

1 Same Same Same Yes Same class, no changes

2 Same Same Different Yes Same class with all the restrictions

3 Same Different Same No Same class with all the restrictions: Problem

4 Same Different Different Yes Same class with all the restrictions

5 Different Same Same Yes Equivalent classes

6 Different Same Different Yes Different classes

7 Different Different Same Yes Different classes

8 Different Different Different Yes Different classes

Cases where the system Works well

In this section the examples are made by merging two models since the functionality and

results are the same for cases of merging more than two models.

In the first case two classes with the same name have the same DL rules about the same

property. In this case the final model contains a class with the common name which

contains twice the same rule. For example, in the final model for the Battery class we have

the following two rules. One from the first model:

 Battery Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Battery)

Chapter 5: Case Studies

 112

And one from the second model:

 Battery Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Battery)

These rules are well understood as the same rule by the reasoner. Thus, the final model

works well for all: consistency, equivalencies, re-classification and the data instances are

categorised under the right classes. It should be noted that these same rules become one

rule in the case that we merge the two models using OWL 2.

In the second case two classes with the same names have the same DL rules about different

properties. This may occur in cases of rules which use numbers i.e. cardinality restrictions.

These rules are added in the class of the final model and the result is a class with all the

restrictions. For example, a sub-class Field_Data_Battery of Field_Data class in one

model might have maximum cardinality equal to 1 for the property

Field_Data2Physical_Product and in another model might have maximum

cardinality equal to 1 for the property Field_Data2Valid_Field_Data_Type.

Thus, in this case the class becomes more restricted than in the initial models and hence,

new knowledge/value is created for this class.

In the fourth case two classes with the same names have different DL rules about different

properties. This may occur with any properties of the classes. The rules are automatically

added in the class of the final model and the result is a class with all the restrictions. For

example, a sub-class Field_Data_Battery of Field_Data class in one model might have

maximum cardinality equal to 1 for the property Field_Data2Physical_Product

and in another model the same sub-class might have an existential restriction (at least one)

for the property Field_Data2Valid_Field_Data_Type. Thus, in this case the

class becomes more restricted than in the initial models and hence, new knowledge/value is

created for this class.

In the fifth case two classes with different names have the same DL rules about the same

property. In this case the system behaves as expected and identifies the equivalencies, in the

same way as it has been demonstrated in section 5.1.4 and Figure 27.

Chapter 5: Case Studies

 113

In the sixth case two classes with different names have the same DL rules about different

properties. This may occur in cases of rules which use numbers i.e. cardinality restrictions.

In this case the system considers the classes as different and the DL rules of the initial

classes remain unchanged.

In the seventh and eighth cases the system considers the classes as different and the DL

rules of the initial classes remain unchanged.

These seven cases are well understood by the reasoner and hence, it is utilised in the final

model to provide consistency check, to figure out equivalencies, to perform re-

classification of the class-hierarchy and to categorise the data instances under the right

classes.

Possible Weakness

The weakness appeared in the third case. In this case the reasoner, using the current

structure, does not handle cases of having two classes with the same name but with

different semantics and DL rules applied on the same property. It should be noted that in

normal circumstances the result of the reasoner is logical and creates a class with the total

number of rules about this class. For instance, if there are contradicting rules, (i.e.

maximum cardinality equal to 1 and cardinality exactly equal to 2 for the same property on

the same class) then, the reasoner understands the inconsistency and points out the source

of the error. However, in our structure the reasoner creates undesirable cases such as: a

class contains batteries and engines. For example, we have that Class_1 class for the one

model is defined as a class containing engines:

 Class_1 Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Engine)

Whereas, for the other model Class_1 class is defined as a class containing batteries:

 Class_1 Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Battery)

In this case the reasoner understands that Class_1 class contains both engines and

batteries. In fact it understands that Class_1 is equivalent to Battery and to Engine. This

Chapter 5: Case Studies

 114

is an abnormal situation but it is possible to happen since the names Class_1, Class_2, etc.

are generated automatically by the Protégé editor. The result is shown in Figure 33.

Figure 33: The result of the reasoner after merging.

The question is: how to use the DL rules and the reasoner in order to handle this and similar

cases? There are more than one possible solutions to this question and our aim is to provide

a solution as much generic as possible. Actually, similar limitations are a part of the

unsolved problems for achieving automated modular use of Ontologies and there is

research in this direction (for more details see also section 2.2.6 and [56]).

Rules supporting Safe Merging

In this section we are providing a solution for handling the case 3 after merging. Actually,

we need to use the DL rules in a way that the reasoner can understand that the above

situation is abnormal and warn the user about it.

A simple solution is to set a cardinality restriction on the class Physical_Product for the

relationship Physical_Product2Physical_Product_Group. This limits the

number of the DL rules of a sub-class which connect it to the Physical_Product_Group

class. Therefore, we have set the restriction of Cardinality exactly=1 for the relationship

Physical_Product2Physical_Product_Group on the Physical_Product

class. It should be noted that all instances of the Physical_Product_Group class have

Chapter 5: Case Studies

 115

been declared as “All Different” to each other because otherwise they “could” simply

denote the same individual (this derives from the OWA). In this way it is understood by the

reasoner that the instance Physical_Product_Group_Battery is different from the

instance Physical_Product_Group_Engine.

After adding this restriction we study how the reasoner handles this case. In the final model

we have that Class_1 has the rules:

 Class_1 Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Engine)

And:

 Class_1 Physical_Product

Physical_Product2Physical_Product_Group.(Physical_Product_Group_Battery)

This is breaking the cardinality restriction, since Class_1 is related to the

Physical_Product_Group with two different rules. This is read by the reasoner and in

the consistency checking it notifies that the model is inconsistent. This is shown in Figure

34. Then, it is important to know “where is the inconsistent concept in the model”. Using

the pellet reasoner this is notified indirectly when one attempts to compute inference

(categorise the instances under the classes). There is a warning each time there is an

inconsistency (Figure 35). For example in Figure 35 the explanation says that the reason for

the inconsistency is that “individual Battery_3 has more than one values for property

Physical_Product2Physical_Product_Group violating the cardinality restriction”. Thus,

the user understands that a cardinality restriction is violated on the relationship

Physical_Product2Physical_Product_Group and the instance that is trying to

do the violation is the instance of the Physical_Product class which is named Battery_3.

This method is efficient and applicable since only the OEM collects the copies of the

models and it sets the restrictions on the upper classes of the model. Actually, this method

allows importing one model inside the other since merging is not allowed in OWL 1. In the

case that the merging is performed using OWL 2 and the rules are homogenised under one

ontology model, then the reasoner specifies exactly the class that is inconsistent. This

works even if the ontology is built in the OWL 1.

Chapter 5: Case Studies

 116

Figure 34: The reasoner shows that the model is inconsistent.

Figure 35: The reasoner provides an explanation of the inconsistency.

Chapter 5: Case Studies

 117

5.1.6 Discussion of the Case Study 1

This case study has demonstrated an application of the implementation method described in

section 4.6. After implementing the method in the model, a number of applications have

been demonstrated which altogether provide solutions towards Closed-Loop PLM. The

initial model developed in section 4.2 was extended with sub-classes which had DL

restrictions. Having all partners starting from the model of section 4.2, extension with the

use of semantics supports data integration and system interoperability through semantics.

The use of DLs allows checking the extended ontology model for its consistency and

provides class re-classification. As it is shown in paragraph 5.1.4 any new sub-class will be

re-classified to its logical position. Moreover, the usefulness of inference is demonstrated;

the overall result of the extended model achieves simplicity for MOL engineers-

maintenance crew where they may insert data simply at the generic classes and then, data

are auto-categorised at the right place by the reasoner. This is of great significance since the

MOL actors don’t have to change their way of inserting data in comparison to the way they

used before extending the model. In paragraph 5.1.3 an example of such use in practice is

demonstrated according to various criteria. Thus, it is no longer necessary for the user to

know the exact detailed structure of the model and the system automatically prevents the

creation of data miss-location or of data duplicates. Finally, merging of two variations of

the initial model was achieved and it has been demonstrated how to support the merging by

adding simple rules on the upper initial classes of the model.

The implementation of ontologies and the use of DLs provide the following functionalities:

1. The model handles multiple data from multiple physical products by applying DL rules.

2. The model is extensible through the DL rules.

3. The DL-reasoner understands the DL rules and checks the extended ontology model for

its consistency.

4. Concept equivalencies-inconsistencies are efficiently handled by applying DL rules,

supporting system interoperability and data integration. In the case of merging some

more DL rules had been added.

Chapter 5: Case Studies

 118

5. The DL-reasoner provides class re-classification. As it is shown in paragraph 5.1.4 any

new sub-class will be re-classified to its logical position.

6. The DL-reasoner provides class equivalencies. As it is shown in paragraph 5.1.4 any

new sub-class will be re-classified to its logical position.

7. The DL-reasoner reads the DL rules and according to them, infers instances at the

logical position in the class-hierarchy (5.1.3).

8. While ontology merging of the different variations of the initial model, the DL-reasoner

provides auto-mapping of the models as well as the means for exploiting the total

number of rules and knowledge.

It should be noted that the solution provided for achieving the merging, requires further

elaboration to develop generic methods and guidelines for model development in order to

support merging.

5.2 Case Study 2
This case study demonstrates an application of the “Duration of Time” concept (section 4.5

and Figure 20) on an ALM/PLM ontology model, highlighting the capabilities of the final

model. A summary of this case study has already been published by Matsokis et al. [137].

The model used is based on the SOM as it is shown in Figure 18 (developed by Matsokis et

al. [135]) to which the “Duration of Time” concept has been implemented following the

steps described in section 4.5.2. The SOM has been made a sub-class of duration of time

class (Figure 36) and has been extended to facilitate the case study. It describes the

maintenance activities of locomotives and also includes some parts of the model such as

documents which engineers are not used treating (seeing) from the time point of view. The

importance of this vision is that documents and data change or are changed for technical (or

for other maintenance) purposes over time. In this way there is one system monitoring all

the elements on a time basis. Even if the parts, equipments, etc. are using different

information systems, these systems are easily synchronised and organised together.

Chapter 5: Case Studies

 119

Figure 36: PDKM SOM as it is in the Time Centric PLM

The case study describes the application of the model by an authorised locomotive

maintenance provider (MP). The MP is specialised on one model/type of locomotives. The

MP has two maintenance platforms: Platform A and Platform B; each one has one machine

to aid maintenance: Machine A and Machine B; and one mechanic which performs the

maintenance on each platform: Mechanic A and Mechanic B; each mechanic uses one tool-

box: Tool-Box A and Tool-Box B; and there are 5 documents: Document 1, Document 2,

Document 3, Document 4 and Document 5. Document 1 contains the field data from the

locomotive and it is updated each time the locomotive visits an authorised MP (one per

Chapter 5: Case Studies

 120

locomotive, for this reason we have Document 1a, Document 1b, etc.). Document 2

contains the maintenance history of the Locomotive and it is updated each time the

locomotive enters the maintenance (one document per locomotive having a, b, c and d,

similarly to Document 1). Document 3 contains the manufacturer’s guidelines for

performing/ operating maintenance according to the working hours of the locomotive or to

the period of time passed since the last maintenance. Document 4 contains the

manufacturer’s instructions with schemas for removing and replacing parts. Document 5

contains the information about the stock of the spare-parts. To facilitate and to categorise

better the data for this application the model was extended accordingly. The developing

process was:

 The class Duration of Time was made the super-class of the model.

 A time framework for the existing ontology PLM was developed. This framework is

introduced in the Duration of Time class and has the only “time” properties of the

ontology (start_date_time, end_date_time, duration). Thus, all classes and sub-classes

of the ontology have the same “time” framework.

 A central reference time CET was chosen. In this way, misunderstandings concerning

time in communication between different agents around the globe will be avoided.

 The model was extended to facilitate the case study

 Instances are stored for every physical product, activity, event, process, resource etc.

necessary.

The SOM has now become a sub-class of time (Figure 36) and it is extended with several

classes to facilitate the resources, their data and activities. The extended part of the class-

hierarchy is shown in Figure 37. For the case study we have only three locomotives

involved, Locomotive No1, No2 and No3.

Chapter 5: Case Studies

 121

Figure 37: Ontology model extended with necessary classes

5.2.1 System Analysis and Functionality

In this scenario locomotives are visiting the MP with an appointment. The duration of time

for each resource, activity, etc. is shown in Figure 38. The three colours in the rows are

referring to Locomotive No1, No2 and No3 accordingly and show for which locomotive

and for how long is each resource used. This could be referring to the future

(daily/weekly/monthly etc. schedule according to appointments). All the uncoloured cells

of each row represent the time that the resource related to this row is in idle status. Each

column represents 5 minutes. These time periods of 5 minutes could have been time periods

of any required type such as years, months, days, hours, minutes, seconds, milliseconds.

In Figure 38 we have that Locomotive No1 arrives to the service department and Mechanic

A is responsible for it. He updates Document 1a with field data from the locomotive’s on-

board computer unit and he checks Document 2a which contains its maintenance history.

Then, according to the status of the locomotive he reads the manufacturer’s guidelines for

Chapter 5: Case Studies

 122

this type of locomotive to see the maintenance activities to be performed and decides to

replace some parts. He checks document 5 to see if there is any in the local stock and

document 4 for the replacing instructions. Similar are the activities for Locomotives No2

and No3 shown in Figure 38 (for Locomotive No2 there is no need to remove/replace parts

and Locomotive No3 arranges an appointment out of schedule). In case the MP provides

multiple maintenance sites Locomotive No3 would have chosen the closest, soonest

available maintenance site. Documents like all resources are seen as duration of time

elements which appear in the system when they are used.

Figure 38: MOL Locomotives as seen from the “duration of time” Point of view with Queries

Using the “Duration of Time” approach provides engineers with all the necessary

information for the state of each resource at every moment. Engineers can have information

according to Which-queries such as “Which machines are available at this time slot?”

which is equivalent to “Who is in stand by status at this time” and returns all the non-active

Chapter 5: Case Studies

 123

values at that “Duration of Time”, or according to Availability-queries such as “Is

Mechanic A available at a certain time?” or “When and for how long is a certain resource

(mechanic or machine or document) available?” which return instances showing

availability. This information is used for the best management of the resources. Moreover,

the system also provides the information of the duration of time a Locomotive is using each

resource.

Figure 39: The example of MOL Locomotives along time.

In Figure 38 several examples of the queries are shown. Firstly, a Which-Query is shown,

which is applied on the model about the machine and describes “Which Machine(s) is (are)

available right now (now=8:40 AM) and for how long?”. It returns the idle instance(s) of

the available resources or nothing if the resources are not available. Secondly, there is the

query “Is Mechanic B available right now (now=6:30AM)?” is shown. This query applies

only to the certain resource instance (the query could be more generic like “who is

available at this time?”) and returns either the idle instance if the resource is available or

nothing if the resource instance is not available. Furthermore, Figure 38 shows an example

Chapter 5: Case Studies

 124

of “When and for how long is Machine A available until 11am?” query. This query applies

to all instances of Machine A and returns the idle instances of Machine A. Finally, an

example of “When and for how long is Document 3 used?” query is shown; returning all

the time slots during which Document 3 is being used. Furthermore, the system contains

the information of the overall availability-usage of resources and maintenance time of the

locomotives. The maintenance time per locomotive on real time is shown in Figure 39.

We obtained similar results using SQWRL to query the knowledge base (the list of the

rules is provided at Appendix C). In Figure 40 an example of a Which-Query is shown. The

query is applied on the machine and describes “Which Machine(s) is available right now

(now=8:40 AM) and for how long?”. It returns the idle instance of the available resources

or nothing if the resources are not available.

Figure 40: An example of Which Queries.

Figure 41 shows an example of “Is Mechanic B available right now (now=6:30AM) and for

how long from now?” query. This query applies only to the certain resource instance (the

query could be more generic like “who is available at this time?”) and returns either the idle

instance if the resource is available or nothing if the resource instance is not available.

Figure 41: An example of Availability on certain time Queries.

Figure 42 shows an example of “When and for how long is Document 3 used?” query. This

query applies to all instances and returns the result shown in Figure 42. Figure 43 shows an

example of “When and for how long are any resources available?” query. This query

applies to all instances and returns the result shown in Figure 43. This figure is only a

snapshot and doesn’t contain all the results. All the results are shown in Figure 44 after

exported to excel.

Chapter 5: Case Studies

 125

Figure 42: An example of Document 3 Availability; (when and for how long) Queries.

Figure 43: An example of MOL phase-Availability (when and for how long) Queries.

Chapter 5: Case Studies

 126

Figure 44: The result of MOL phase-Availability (when and for how long) Query of Figure 43

exported to excel.

5.2.2 Discussion of the Case Study 2

The scope of this case study is to demonstrate the behaviour of the system after

implementing the “Duration of Time” concept. It describes the maintenance of locomotives

and the description also includes some parts of the model such as documents which

engineers are not used treating (seeing) them from the time point of view.

The implementation of the “Duration of Time” concept has two aims: to preserve the

continuity of information along time (i.e. changes on information and usage of

information); and to provide the basis for synchronising different information systems no

matter the different products they are tracking (i.e. documents, components, machines, etc.)

or the semantics they are using. The importance of the implementation is that once all

Chapter 5: Case Studies

 127

different systems are based on the “Duration of Time” concept, all information contained

on them may be plotted along time. Thus, data from different information systems are

easily synchronised and organised together.

This case study has demonstrated that the initial model has been made simpler with the

implementation of the “Duration of Time” concept. This is due to the fact that the time

attributes are unified and in case of model extension these attributes are inherited by the

new classes. A number of applications have shown that the system provides complete data

visibility and hence, inter-OEMs/Suppliers co-operation for better resources exploitation.

Documents like all resources are seen as duration of time elements which appear in the

system when they are used. Under this perspective one can have an overview of all

documents, resources, etc. of all systems. Using similar queries, engineers are provided

with a complete overview of the time slots and they are supported in decision making for

optimal management of resources, activities, agents and processes. Moreover, the entire

model has been described by the Duration of Time concept and still keeps its previous

functionalities. Finally, through time it is very simple to track system or data changes and

thus, keep track of all the past states of all the parts of the system. The functionalities are

summarised as:

 The concept is easily implemented in PLM models using current technology.

 The models maintain their initial functionalities.

 The system provides complete data visibility.

 This visibility functions also under multi-system circumstances.

 Systems based on the concept may be easily synchronised.

 Optimal management of resources, activities, agents, information and processes

through complete overview of the time slots.

 Inter-OEMs/Suppliers co-operation for better resources exploitation through

synchronisation.

Chapter 5: Case Studies

 128

 Documents or other elements which originally did not have any time data, are now

seen as duration of time elements which appear when they are used. Under this

perspective one can have an overview of all documents of all systems.

5.3 Case Study 3
This case study combines the use of the ontology based IT methods and tools as they are

used is section 5.1 with the implementation of the “Duration of Time” concept as shown in

section 5.2. It aims at demonstrating several of the new capabilities provided by the

ontology model as well as at providing a wider aspect and aid understanding of the benefits

of applying time-based models in PLM.

The SMAC-Model is generic and extensible to fulfil the user’s requirements. The extension

of the initial model is required to be performed using DL rules in order to maintain the

interoperability and data integration among the variations of the initial model. Then, the

DL-reasoner may be used in order to find equivalencies, consistency and re-classification

on classes and to categorise instances. Moreover, to this model we have implemented the

“Duration of Time” concept. Thus, the model may be easily synchronised with other

models using the concept and all the different data stored in the model may be represented

along the lifecycle. In the next section a case study presents a number of capabilities of the

developed system.

The concept is that the industrial partner uses the SMAC ontology model (Figure 19) to

facilitate the information and the data about a lathe machine. The data describes the

machine as it is manufactured (BOM, functions, etc.) as well as its lifecycle. The initial

SMAC-Model model is extended to facilitate better the user’s needs depending on the

usage and the type of the machine. In the long term the industrial partner provides its

maintenance groups with copies of the ontology model, in order to facilitate the lifecycle

data of each machine. Then, the industrial partner collects the different copies and merges

the different elements of these copies under one single ontology model in order to have an

overview of the status, maintenance, faults etc. of all the machines. A summary of the

results of this case study can be found in [138] and in [139].

Chapter 5: Case Studies

 129

5.3.1 Functionality
The functionality of the SMAC-Model (Figure 19) is quite simple. Firstly, the list of the

physical products is stored in the Physical_Product class. The physical products may be

complex products which consist of many parts such as vehicles or simple which consist of

only one part such as screw. The complexity of the product and its parts is described

through a “physical product to physical product” object property hasParent and its

inverse isParentOf. Depending on the requirements of the application, the level of

detail which is considered as “simple” may vary. Even for the same product, in different

cases, one might have different levels of detail: i.e. the level of detail is different for

products of a fleet management company and different for a single user who might be

interested to have more detailed model for the one product he is using. The properties of the

products are stored in the Property class and the ID_Info class. The Physical_Product

is also related to the Function class in order to store the (one or more) functions (i.e.

rotation, linear movement, store coolant liquid, etc.) a certain product may have. Therefore,

whenever a physical product is degraded one or more of its functions are affected. Through

the connection of this class with the Physical_Product we are able to know which

functions are related to each individual physical product and they are or may be affected

during its degradation. Furthermore, each physical product is related to the

Life_Cycle_Phase class which enables each product to be related to one or more

instances of a lifecycle phase i.e. to multiple instances of the MOL. This relationship

combined with the object properties hasParent/isParentOf allows the information

system to track information about the product through its different phases (and types of

usage) and therefore, preserve continuity of information about the physical product. Thus,

the model stores information about which data is related to the product for each of its use.

For each use there is also a certain user of the User class. During its lifecycle the product

is monitored with sensors which collect valuable data of different types such as temperature,

pressure, velocity, viscosity etc. in various measurement units such as Celsius, bar, m/sec,

Pascal-second respectively. The different sensors related to the product are stored in the

Field_Data_Source class and the types of the data collected are stored in the

Valid_Field_Data_Type class. The collected data from the sensors is stored in the

Field_Data class and in documents if necessary. In the Condition class it is stored a list

Chapter 5: Case Studies

 130

of the required or recommended conditions for the well-functioning of the products. These

conditions may vary depending on the product and are created according to the advice of

the experts. Then, the data of the Field_Data class is compared with the conditions. If one

or more conditions are not met, one or more events are created and stored in the Event

class. Some of the events may be categorised as alarms (instances of the Alarm class).

Data stored under the Alarm class are all the critical events which might also affect the

durability of one or more functions of the system. Alarms may have two values: yellow or

red; declaring the criticality of the alarm. The criticality is calculated based on the extent of

violation of the conditions by the collected field data. Furthermore, there are also events

which are inserted by the user under the Event_Input_of_User class. These events may

have been caused by: the fact that there is place for improvement in the monitoring system

i.e. we have not installed a sensor at a place where we should have it; the slow response of

the system in an abnormal situation; an external factor i.e. in case of flood or fire in the

building. Events, depending on their severity, may trigger activities such as maintenance,

part replacement, etc. which are stored in the Activity class. To perform activities several

resources are used. The available resources are in the Resource class. Moreover,

activities may cause events (i.e. start, finish, etc.). This part of the model combining

activities, events and resources is the part which supports the actual maintenance. Finally,

activities are grouped at the Process class in order to accumulate knowledge about which

activities are performed per process and make the system capable of automatically listing

the activities needed depending on the events.

5.3.2 Facilitating Machine Data

The industrial partner has provided us with the bill of material (BOM) of a lathe machine,

with a description for each component/part of the machine, with the list of the functions the

machine can perform as well as with the information relating each part of the BOM to a

specific function. Moreover, the BOM contains all the 1 770 components of the machine

with a description and a separate component code for every distinct component. Several

components are used in multiple places on the machine and hence, exist multiple times in

the BOM.

Chapter 5: Case Studies

 131

All data from the BOM has been loaded on the Physical_Product class. As soon as all

instances are loaded, each instance is related to an instance of the Physical_Product

class through the properties hasParent/isParentOf depending on whether the

instance consists of more than one components or not. Then, the 1 081 different

components of the BOM, were loaded in the developed model as instances of the

Physical_Product_Group class containing their 6-digit number component code which

is used as the Group_Code. Through this code duplicates are rejected and if a component

exists more than once, it is loaded only once. Therefore, the Physical_Product_Group

class contains one instance per Group_Code. Furthermore, all the information describing

the different functions of the machine and the different types of machines is loaded on 164

instances under the Property class which has been extended with 14 sub-classes. Finally,

each instance of the Physical_Product class is related to one instance of the

Physical_Product_Group class and to one or more instances of the Property class

depending to how many functions the part is involved in. Appendix D contains the SWRL

rules used for making the inserteed instances being related to the right instances.

At this stage a complex environment of more than 3 000 instances and 20 000 triplets

has been created. All the data existing under the Physical_Product class, is mixed. It is

not visible to which function is related each component, to which part of the actual machine

each component belongs, etc. aspects which are required to improve the usability of the

model. In the following paragraph we extend the model to facilitate the instances according

various criteria and we make an extensive use of DL rules and the reasoner in order to

check the model for inconsistencies, equivalencies, infer re-classification of the class-

hierarchy and infer the instances under the new sub-classes.

5.3.3 Extending the model using DL rules to support reasoning

In this section the model described in Figure 19 is extended to facilitate the information

about the lathe machine with the aim of demonstrating the capabilities provided by the use

of DLs. In order to improve the created situation the Physical_Product class has been

extended with 144 sub-classes, one for each “complex” component, which are all placed at

the first level of abstraction of the class. Each one of these sub-classes is defined by a DL

rule defining which instances should be under each class. This is performed by adding a DL

Chapter 5: Case Studies

 132

rule using the object property hasParent. For example for the Arrosage_Canon class

we have the restriction:

 Arrosage_Canon Physical_Product hasParent.(_)Arrosage Canon

This rule means that: Arrosage_Canon is a Physical_Product whose object property

hasParent has as value the instance of the Physical_Product class, named

Arrosage_Canon. The meaning of each sub-class (in total 144 sub-classes) was defined

using similar rules. The hierarchy of classes before (left part of the figure) and after the

classification of classes (right part of the figure) are shown in Figure 45. The sub-classes

have been re-classified under six levels of abstraction and the Arrosage_Canon class

now is placed under the second level of abstraction. In Figure 46 the result on the instances

focusing on the Arrosage_Canon class is shown. All instances which are parts of the

Arrosage_Canon are categorised under the Arrosage_Canon class. In this figure also

the sub-class Porte_Filtre class with its inferred instances and the object properties

hasParent and isParentOf are shown. These rules allow the reasoner to understand

the content of each class and according the rules to re-classify all the sub-classes at the right

level of abstraction at six levels and all instances are categorised under the classes.

Figure 45: Classes are re-classified under six levels of abstraction.

Level 0

Level 1

Level 0

Level 1
Level 2

Level 2

Level 6

Chapter 5: Case Studies

 133

To fulfil the requirement of tracking a specific type of component which exists in

multiple products, more DL rules where added. This is useful i.e. in cases of discovering

that a component is faulty due to a design error and announcing a machine recall. Thus, the

manufacturer knows which machines contain this type of component and they are recalled.

In order to describe this requirement in the model, new sub-classes were added to the

Physical_Product class containing a DL rule according to the instance of the

Physical_Product_Group class they are related to. For instance, for collecting all the

machine parts which are the component with code 561019 we created the

Inferred_All_Parts_561019 class with the following restriction:

 Inferred_All_Parts_561019 Physical_Product Physical_Product2Physical_Product_Group.()561019

This rule means that: Inferred_All_Parts_561019 is a Physical_Product whose

object property Physical_Product2Physical_Product_Group has as value the

instance of the Physical_Product_Group class, named 561019. In Figure 47 it is

shown that two instances have been categorised under this class.

Figure 46: The instances have been inferred under the sub-classes according to the object property

hasParent.

Another requirement was to make the system able to understand which components are

involved in each basic function of the machine. In this way when an abnormality is

observed on a component, the system knows which function might be affected and warns

Chapter 5: Case Studies

 134

the user. All the parts which are related to Axis X1 where collected under the

Inferred_All_Parts_Axis_X1 class with the following restriction:

 Inferred_All_Parts_Axis_X1 Physical_Product Physical_Product2Property.(- - _)M X 01Axis X1

The inferred twelve instances of the Physical_Product class which are related with Axis

X1 are shown in Figure 47. It should be noted that several instances are related to multiple

functions. The selected instance in Figure 47 is related to both Axis X1 and Axis X2.

Figure 47: Inferring instances according to Function and to Physical Product Group.

Figure 48: Equivalencies and re-classification.

As long as the model in extended with classes containing DL rules, the reasoner will

categorise the new classes under the right position in the class-hierarchy and it will check if

the newly created classes actually already exist in the model. An example is shown in

Two instances are categorised
under this class.

Axis X1
Axis X2

Selected instance

Chapter 5: Case Studies

 135

Figure 48 were the classes Class_1 and Class_2 were created having DL rules. The

reasoner read the rules, checked them for their consistency, re-classified Class_1 under

the second level of abstraction and declared that the meaning of this class is the same with

Arrosage_Canon and hence these two classes are equivalent. Regarding Class_2, there

was no need for re-classification, but the class is declared to be the same with

Inferred_All_Parts_Axis_X1 class.

These capabilities are very important in cases of merging one or more ontology models

shared among partners. Taking for granted that all partners started from the same initial

SMAC-Model and they extended their models according to their needs, when merging

them, the reasoner will figure out the new elements of each model. The merged model will

contain only the new elements avoiding duplicates. Thus, data integration and

interoperability between different model variations are preserved.

5.3.4 Time implementation

The next step was to implement the “Duration of Time” concept. As it has been already

explained the model contains many instances with data. Therefore, the implementation of

the “Duration of Time” concept should be performed carefully in order not to lose any data.

This is secured by performing the implementation of the concept by the following steps:

1. Set the Duration of Time class as a super-class of the model. This class provides

the unified time framework for the entire system.

2. Develop a time framework for the existing ontology PLM, and introduce it in the

Duration of Time class. The datatype properties are: Start_Date_Time,

End_Date_Time, Duration.

3. The already existing data of the model are copied from the datatype properties of

the pre-implementation classes to the new attributes of the Duration of Time class.

In our system architecture this is performed using SWRL rules combined with the

Jess rule engine.

4. All the time related datatype properties of the pre-implementation classes are

deleted from the model. They are expressed by the datatype properties of the

Duration of Time class

5. CET was selected as central reference time for the model

Chapter 5: Case Studies

 136

The model at this stage is generic and preserves the functionalities of the previous

models including: the DLs of the SMAC-Model; the connection and the continuity of

information belonging to the three phases of the lifecycle beginning of life, middle of

life, end of life; and the common time basis for achieving model synchronisation and for

tracking down changes in any data in any part of the combination of models.

5.3.5 System Analysis

At this stage a number of sensors are monitoring temperature of certain components of the

machine. The system is managing the input data from the sensors and creates events and

alarms which might trigger activities. To perform activities a number of resources are

required which might be available or not and might be on different systems. The model was

extended to facilitate the field data coming from the sensors. The new classes of the model

are shown in Figure 49. All these classes are facilitating the collected data from specific

sensors which is later processed. It should be noted that the data of each sensor might be

affecting more than one components of the machine and possibly one or more functions of

the machine.

The sensors are constantly monitoring the temperature on the outer case of specific parts of

the machine. As long as the measured value is within the pre-defined normal limits, the

sensor does not transmit any data to the system. When the measured value of a sensor

exceeds the limits then the sensor starts sending data to the system in real-time. Data is sent

to the Field_Data class and from there with DL rules it is categorised under the right class.

The sensor makes a measurement every 30 seconds. Therefore, each time that a

measurement is inserted in the system an instance of field data is created with

Start_Date_Time, End_Date_Time and Duration. For example,

Start_Date_Time=2010-04-11T21:31:00, End_Date_Time=2010-04-11T21:31:30

and Duration=30. The field data is analysed against conditions in order to create events

some of which are categorised as alarms.

The concept is as follows. The temperature is monitored by sensors. Experts have set two

types of conditions: the first type is based on thresholds of the temperature; and the second

type is based on thresholds of the temperature which are combined with the duration of the

threshold violation. The normal working temperature of the current system is 60 degrees

Chapter 5: Case Studies

 137

Celsius with a tolerance of ±3 degrees. Therefore, as long as the temperature is measured

below 63 degrees, the sensor is not sending any measurements to the system and the

temperature is assumed as 60 degrees. When the temperature is measured higher than 63

degrees, the sensor starts sending data to the system. The sensor sends one measurement

every 30 seconds. Whenever the temperature falls back, below 63 degrees the sensor stops

transmitting data to the system. The same applies for all the sensors of the system. The

normal working temperature is 60 degrees Celsius with a tolerance of ±3 degrees.

Therefore, as long as the temperature is measured below 63 degrees the sensor is not

sending any measurements to the system. It should be noted that temperature below 57

degrees exists only in the cases that the machine is off and hence, there are no conditions

for lower temperatures.

Chapter 5: Case Studies

 138

Figure 49: Ontology model extended with necessary classes

The collected data is compared with conditions and this comparison may create events and

activities. Table 5 shows the list of: conditions; indicative field data which is necessary for

the condition to be met; as well as the created events and alarms. When the threshold of 63

degrees is passed, the sensor starts transmitting data. This process continues as long as the

temperature remains higher than 63 degrees. Then, depending on the value of the

measurement alarms might be created. There are two ways this can occur: the first case is

that an upper threshold has been passed; and the second case is that the measurements are

in a certain region of values for more than a certain period of time.

Chapter 5: Case Studies

 139

Table 5: A list of the conditions followed creating events and alarms.

Previous
Field
Data

Current
Field
Data

Condition Event Alarm

60 63 T=63 degrees increasing Threshold of 63 degrees passed No

66 67 T=67 degrees increasing Temperature higher than 67
degrees & increasing

Yellow

64 65 63<Tave≤67 for more than 2 minutes Temperature between 63<T<67
degrees for more than 2 minutes

Yellow

69 70 T=70 degrees increasing Temperature higher than 70
degrees & increasing

Red

68 69 67<Tave≤70 for more than 2 minutes Temperature between 67<T<70
degrees for more than 2 minutes

Red

69 68 T=68 degrees decreasing Temperature higher than 67
degrees & decreasing

Yellow

65 63 T=63 degrees decreasing Temperature OK No

The first condition is that the temperature was measured higher than 63 degrees. Then the

sensor starts sending data and an event is recorded. When the temperature is higher than 67

degrees then a yellow alarm is created. If the temperature exceeds the value of 70 degrees

then a red alarm is created. Moreover, if the average temperature (Tave) is between 63 and

67 degrees for more than two minutes then this is a yellow alarm. If it is between 67 and 70

degrees for more than two minutes then this is a red alarm. It should be noted that the

system is able to understand if the temperature is increasing or decreasing. This is achieved

by comparing the current measurement with the previous one.

In Figure 50 it is shown how the system understands the measured values of temperature.

In this figure there are three instances of the Field_Data class (FD1, FD2 and FD3). The

width of the instances is indicative to aid understanding. In practice the measurement has

one value for temperature and not a range of values and it is considered as a single straight

line along time. A measurement is received every 30 seconds. The value of the

measurement corresponds to the starting time of the instance. The length of the instance

illustrates that the temperature is considered stable until the next measurement arrives. In

this way the temperature changes in the system only when a new measurement arrives and

not before this time point.

Chapter 5: Case Studies

 140

Figure 50: Field data as it is understood by the system.

Figure 51: Field data plotted along time.

Chapter 5: Case Studies

 141

Figure 52: Field data with Event and Alarm Management example.

Measurements which cause events and alarms are plotted along time and are shown in

Figure 51. It should be noted that these measurements are hypothetical in order to

demonstrate the functionality of the system taking into account all the events. In the

beginning until the 3rd minute the temperature is below 63 degrees and there are no

measurements transmitted from the sensor. Therefore, it is assumed that the temperature is

stable, and has the value of 60 degrees. The behaviour of the system when it receives this

data is shown in Figure 52. In this figure, for visualisation reasons the measurements are

connected together to form a graph. Three dotted horizontal lines (at 63, 67 and 70 degrees)

are showing the thresholds defined by the conditions: for triggering the sensors to start

sending measurements; and for generating yellow and red alarms marked with “Y” and “R”

respectively. The creation of alarms is performed by using SWRL. Then, alarm and event

instances are created either manually or by using the system architecture (Figure 11) with

the process of exporting the result to CSV file, making it a spreadsheet and create instances

Lathe Machine Field Data

58

60

62

64

66

68

70

72

74

0 1 2 3 4 5 6 7 8 9 10 11

Time t (min)

T
em

p
er

at
u

re
 T

 (
C

el
si

u
s)

Y

R

Event: threshold passed

Event: Yellow Alarm Time limit

Event: Red Alarm Threshold

Event: Yellow Alarm Threshold det.
Event: OK

Y

Event: Yellow Alarm Threshold imp.

Y

Chapter 5: Case Studies

 142

using the DataMaster tab. Another way is to insert the alarms in the model is by using the

Jess rule engine, but this way is not DL safe and therefore was not selected. For more

details please see the second part of Appendix D. When the time t=3min the temperature

becomes 63 degrees and the system starts receiving measurements. The temperature is

measured until t=5min where the temperature is 67 degrees. At that point there is a yellow

alarm. The yellow alarm remains valid until t=6min 30 sec since we have that the average

temperature is between 63 and 67 degrees for t=2min 30 seconds which is more than the

limit of the 2 min. Then, there is a second yellow alarm from t=6min until t=7min since the

temperature goes up to 68 degrees, which is higher than the yellow alarm threshold. At

t=7min, there is a red alarm since the temperature is 72 degrees. This is followed by a

yellow alarm starting at t=8min 30sec and lasting until t=9min 30 sec. Finally, the

temperature continues to decrease until it reaches 63 degrees when an event is created

meaning that temperature is ok, and the sensor stops transmitting data.

The currently developed information system might be synchronised with other systems

using the “Duration of Time” concept for managing all the different elements which might

be in different enterprises and countries. Data collected from all various systems is easily

plotted along time no matter the different semantics or language used.

5.3.6 Discussion of the Case Study 3

This case study is an application of the SMAC-Model (Figure 19) in industrial environment.

All the components of a lathe machine, their properties and their functions together with

other BOL information have been loaded on the model. Then, the model has been extended

with sub-classes using DL rules (5.3.3). Thus, the concept of each class is machine-

understandable and the DL-reasoner may be applied on the model. This supports engineers

to add more products on the same model; replace parts on the fly; add more levels of sub-

classes; etc. Moreover, engineers do not need to know the exact structure of the model, but

they simply add “instances” (following the procedure described in 5.3.3) or “classes with

DLs” on the initial level of the model. Then they execute the reasoner and as it has been

presented classes are checked for their consistency, for equivalencies and they are re-

classified to the right position in the model; added and/or existing instances will be

categorized under the right classes. These capabilities also may provide support in cases of

Chapter 5: Case Studies

 143

merging one or more ontology models (variations of the same initial model) by preserving

data integration and interoperability among the models.

Furthermore, the case study includes the monitoring system and the process of data for

creating events and alarms which are valuable for maintenance. The model exploits the

advantage of the “Duration of Time” concept of having unified time attributes which are

inherited in the whole model in order to provide complete data visibility and therefore,

inter-OEMs/Suppliers co-operation for better resources exploitation. The use of the

“Duration of Time” concept achieves the synchronisation of the different systems and

provides the capabilities of merging the data of different sources under one common time

basis. By using the “Duration of Time” approach engineers have an overview of all the

necessary information for: the state of each resource at every moment; the state of each

component of their assets; events; the activities performed; etc. The importance of this is

that the system provides information and data along time about the whole system or a

combination of systems. For example, one may organise activities, collect field data,

manage events, manage resources and arrange spare parts in stock, under one “Duration of

Time” basis. Moreover, the system allows to track down data and to keep information about

changes and updates of the data in the group of systems. The assumption made is that all

the co-operating systems are using the “Duration of Time” concept. A limitation of the case

study is that the model has not been tested in a multi-system environment.

5.4 Conclusion
In this chapter all the developed case studies of this dissertation are presented. The first

case study is an implementation of the model shown in Figure 18 and demonstrates well the

functionalities of the model after using the system architecture and the related ontology

based IT methods and tools. The overall performance of the model proved to provide a

number of benefits including the ontology merging. However, merging requires further

testing and elaboration, in order to develop methods for model architectures and extensions

which support merging. In the second case study the “Duration of Time” concept was

implemented in the model shown in Figure 18. The model proved to achieve

synchronisation of the different elements of the model which might be used for data

integration in multi-system and multi-level environments in a later stage. Finally, the third

Chapter 5: Case Studies

 144

case study is a combination of the benefits of DL rules with the “Duration of Time”

concept. In this case study the SMAC-model shown in Figure 19 was extended with sub-

classes and DL rules. Furthermore, the “Duration of Time” concept was implemented and

several of the advantages were demonstrated including processing of field data and the

creation of events and alarms. Under this perspective engineers have an overview of all

documents, resources, data, etc. of all utilised systems, and they are supported in decision

making for optimal management of resources, activities, agents and processes.

 145

6
Model Evaluation

Our aim for evaluating the model is to show the overall functionalities, strengths and

weaknesses of the developed models and concepts. Therefore, the evaluation of the model

is performed towards highlighting its functionalities and utilisation.

Several techniques and methods for evaluating ontologies have been developed aiming at

estimating and evaluating how well an ontology covers a certain domain. It should be noted

that there is not a standardised, objective and widely accepted way of performing ontology

model evaluation. Evaluation methods developed and described in section 6.1 are

evaluating ontologies according to how accurate are the contained definitions and how well

they describe a certain domain. In this way the methods judge the definitions contained in

the ontologies like comparing the definitions contained in dictionaries. This point of view

about evaluation is targeting on ontology re-use which is described in section 2.2.6. More

specifically, it is aiming at supporting the selection of the most appropriate definition

among a group of ontologies for each use-case.

To perform evaluation we have selected an alternative way of comparisons which are a

combination of the results of the survey carried out by Brank et al. [140]. The core of the

evaluation is based on the differences in coverage/functionalities/capabilities between the

starting SOM model and the model developed in this work. The characteristics of the

developed models are acquired by the case studies of chapter 5. Firstly, we check if the

initial functionalities are preserved in the final model. Then, we check to which extent are

the ontology based IT methods and tools exploited. For this reason, we study the

functionalities of the final model and compare them with the theoretical functionalities of

the utilised IT methods and tools. Finally, we evaluate the “Duration of Time” concept

through the results of case studies 2 and 3 of chapter 5.

Chapter 6: Model Evaluation

 146

6.1 Evaluation Methods
Several studies concerning methods for ontology evaluation have been carried out. Brank et

al. [140] carried out a survey on ontology evaluation approaches and sorted out four types

of approaches. The first is based on comparing the ontology to a “golden standard”; The

second is based on using the ontology in an application and evaluating the results; The third

involves comparisons with a source of data about the domain to be covered by the ontology

and finally, the one where evaluation is done by humans who try to assess how well the

ontology meets a set of predefined criteria, standards, requirements, etc. They concluded

that the selection of a suitable evaluation approach depends on the purpose of the

evaluation, on the application in which the ontology is to be used and on what aspect of the

ontology we are trying to evaluate. Obrst et al. [141] describe ontology evaluation

strategies used in biomedicine, and make recommendations for future approaches. In this

work are also highlighted current ontology evaluation techniques such as: evaluate an

ontology in an application, compare an ontology against domain data and perform natural

language evaluation. According to the authors the best evaluation of an ontology is whether

it is adopted and successfully used. Finally, the authors highlight the need for developing at

an interdisciplinary level: a formal and verifiable science base; tested theories that allow

prediction; defined units of measure; and well-defined engineering practices. Furthermore,

Guarino [142] introduced the basis for a new formal framework for evaluating and

comparing ontologies by measuring their “distance” from a reference conceptualisation. In

FP6 project KnowledgeWeb [143] researchers have surveyed well-known methods and

tools already used to evaluate ontologies according to their usefullness and re-usability with

the aim of implementing ontologies in industry. They also described glass box (component-

based) and black box (task-based) evaluation; the latter usually applied to ontologies that

are tightly integrated with an application, performing specific tasks. Gangemi et al. [144]

developed a model for ontology evaluation in order to support the future ontology-user to

define which ontology fits best to his application and requirements. Gomez-Perez [145]

presents the evaluation criteria used for ontologies and describes the process of evaluation

on the standard-units ontology. Obrst et al. [146] also proposed three approaches for

ontology evaluation: the development of an ontology evaluation competition, the

certification of ontologies, and the development of an ontology maturity model.

Chapter 6: Model Evaluation

 147

The main aim of ontology evaluation approaches mentioned above is to promote the re-use

of existing ontologies. They evaluate the ontologies according to selected criteria

(consistency, completeness, conciseness, expandability, sensitiveness, etc.) in order to

provide new users with sufficient information about the content of the ontologies and about

the extent of the domain coverage. Therefore, the user utilises this information to re-use an

already developed ontology (as a whole or part of it) which covers his domain and fulfils

his requirements.

Our approach of evaluation consists of three steps:

 First step is to compare the functionalities and concepts of the final model(s) with

the ones of the initial model

 Second step is to compare the capabilities and functionalities of the developed

model with those of the utilised IT methods and tools

 Third step is to evaluate the applicability, efficiency and simplicity of the “Duration

of Time” concept

These three steps, their aims and details are described in the following paragraphs.

6.2 Evaluation Aim
The aim of our evaluation is to highlight the added value to Closed-Loop PLM models

from this work. The first step is performed in order to verify whether all the functionalities

and concepts of the initial model are preserved in the developed model. Thus, if this

criterion is fulfilled, the domain coverage of the developed model is at least the same as the

one of the initial model. The second step is performed to figure out to which extent the

model implements and utilises the functionalities of the IT methods and tools. This is an

indicator of how much the ontology model makes a difference in comparison to the initial

SOM model in terms of re-usability and extensibility by preserving compatibility among

the variations of the initial models. Moreover, this shows the level of utilisation of

reasoning for fulfilling requirements, for supporting decision and for creating new

knowledge. Finally, the third step is evaluating the results of implementing the “Duration

of Time” concept in PLM models. The aim is to show the benefits, the applicability of the

concept as well as its simplicity.

Chapter 6: Model Evaluation

 148

6.3 Evaluation Process and Results
In the first step we have to check if all the initial functionalities are preserved. The initial

model is able to: describe the model as it is; to keep the information about the current and

the past different usages of the product including the information of “which product is part

of another product”; and to connect this information with the different lifecycle phases. The

developed model (Figure 18) preserves the first (describe the model as it is) and the third

(connect product’s information with the different lifecycle phases) functionalities since it

maintains the initial structure. The second functionality, which is to collect the information

of “which product is currently or was part of another product”, is covered, in the new

structure, using the relationships: isParentOf-hasParent and the

Physical_Product2Life_Cycle_Phase and its inverse (for details please see also

section 4.2.4).

Table 6: Functionality Comparison of initial and developed model

Functionality PROMISE SOM OWL-DL Model SMAC-Model

Describe Product as it is Yes Yes Yes

Track history of Part Of Yes Yes Yes

Manage data of BOL-MOL-EOL Yes Yes Yes

Executable No Yes Yes

Load Data on the Model No Yes Yes

Multiple Products under one source No Yes Yes

Consistency No Yes Yes

Equivalencies No Yes Yes

Re-classification No Yes Yes

Inference No Yes Yes

Import/Export Data No Yes Yes

Import multiple Models under one source No Yes Yes

Extended Coverage on Maintenance No No Yes

Moreover, there are additional functionalities which appeared with the use of new tools and

some modifications in the initial architecture. The functionalities have already been

presented in the case studies in chapter 5 (case studies 1 and 3) and they are summarised in

Chapter 6: Model Evaluation

 149

Table 6. It should be noted that in this table the initial model is compared with both the

OWL-DL Model and the SMAC-Model. From the contents of Table 6 it is obvious that the

final model is: executable; data about a single or multiple products may be loaded on the

model; the reasoner is used to check the model about its consistency, to check if there are

equivalencies, to re-classify the class-hierarchy and to provide inference. Furthermore, the

ontology editor provides the means to import and export data from and to spreadsheets and

it provides the ability to import multiple models under one source. Finally, the SMAC-

Model inherits the capabilities and the functionalities of the OWL-DL Model and extends

the domain coverage towards maintenance with a number of new upper classes,

relationships and attributes (Figure 19).

Table 7: Comparison of the developed model with the capabilities of the used IT methods and tools

Functionality OWL-DL Model

Ontology Based IT

methods and tools

Consistency Yes Yes

Equivalencies Yes Yes

Re-classification Yes Yes

Inference Yes Yes

Executable Yes Yes

Load Data on the Model Yes Yes

Multiple Products under one source Yes Yes

Import/Export Data Yes Yes

Merge Models Yes Yes

Simple Calculations Yes Yes

Merge Models No Yes (only in OWL 2)

Restrict All the classes No Yes

Automatic Data Process for Events No Yes

In the second step we performed the comparison of the capabilities of the utilised ontology-

based IT methods and tools. The results are summarised in Table 7. The functionalities

listed under the first column are a summary of the capabilities presented in chapter 2. The

functionalities of the developed models are deriving from the case studies 1 and 3. The

Chapter 6: Model Evaluation

 150

capabilities using the DL-reasoner are used for extracting new knowledge in the model.

This new knowledge was logically hidden in the model (in the forms of equivalencies,

subsumptions, inference) and with the use of the reasoner it becomes tangible and can be

used by the engineers. It should be noted that the upper level of the model has not been

restricted with additional DL rules in order to keep this level generic. Emphasis was given

on the extension of the upper level to a higher level of detail. In the evaluation we focus on

the functionalities which are not fully covered. The most important not supported (by the

system architecture) functionality is the ontology merging. This is a limitation of the

standard of OWL 1 in which we developed our model. However, the Protégé-OWL editor

allowed us to import a number of models under one source and then, apply the reasoner

which is sufficient for our needs. In the case that one wishes to achieve the merging, he has

to pass to OWL 2. In our case to achieve merging, we merged the models in OWL 2 and

then opened the model in OWL 1 (section 5.1.5). The merged model run without any

problems but the process of merging is not directly supported by the used architecture since

we had to switch to an ontology editor (from protégé 3.4 to protégé 4) that supports OWL 2.

It should be noted that OWL 2 became a W3C recommendation only in October of 2009

[48] and still several support tools (i.e. SWRL) are not compatible with OWL 2 editors.

Another, task which has not been performed is to restrict with DL rules the upper classes of

the model. This task initially was performed by the relationships and the attributes of each

class. In this way, the advantage is that the classes are not heavily restricted in order to keep

the generic concepts of the initial model and to keep the model flexible (i.e. “product” may

be something that provides a service or something that one may buy or sale or use or a

combination of the above). However, this restriction might be necessary in the cases of

merging different models together as it is shown in section 5.1.5. Finally, there has not been

developed an automatic data processing system which will be creating events and alarms.

In the case study 3 the relevant events and alarms are created using SWRL rules but these

rules should be run manually. This technical limitation may be solved in a later stage of

implementation of the model.

Up to this point we have addressed research questions 1, 2 and 3. For question 1 we have

provided the development process and an implementation method in chapter 4 and

examples of implementation in case studies 1 and 3. Of course this might be subject to

Chapter 6: Model Evaluation

 151

changes in the future due to the new IT methods and tools (i.e. OWL 2) which might be

developed and used. Regarding question 2 we have shown in Table 7 that following the

implementation method and using the system architecture of chapter 4, almost all the

available functionalities of the utilised IT methods and tools have been implemented into

the developed model. In this framework one may apply the introduced implementation

methods in order to develop a model with inheriting “efficiently” the characteristics of the

utilised IT methods and tools. It should be noted that by the term “efficiently” by no means

we claim that we have tested the functionality towards computing power and resource use.

The models provided the expected results in a reasonable time (~10 min.) on an average

current PC (2x2.0Ghz, 2GB RAM). Finally, regarding question 3 the benefits and

opportunities provided for the PLM models are listed in the rows of Table 7 which include

advancements towards integration and interoperability shown in case studies 1 and 3 such

as model merging.

In the third step we evaluated the capabilities and functionality of the developed “Duration

of Time” concept. In case studies 2 and 3 the concept proved to be easily implemented in

already developed models even if they already contain data (case study 3). The concept is

not altering the structure or the notions of the model in which it is inserted, and at the same

time it provides the time point of view of those concepts. This addresses the research

question 4 meaning that it is possible to describe all elements through time. Moreover, the

concept allows synchronising and applying time-based queries on multi-level systems.

Therefore, it provides a first level of integration and interoperability since it by-passes the

usage of different semantics. This addresses the research questions 5 and 6. The approach

provides an overview of all the necessary information for: the state of each resource at

every moment; the state of each component of their assets; events; the activities performed;

etc. Thus, the system provides information and data along time about the whole system or a

combination of systems. In this way the product data becomes PLM system independent

since it is described through time. This addresses the research question 6 and it is the new

value added by this concept. Finally research question 7 is being addressed in case study 3

in which the ontology model, the data and the “Duration of Time” concept are all under one

source. However, the applicability of the concept remains to be tested and validated in large

scale multi-level cases and will be evaluated by its adaptation and successful use.

Chapter 6: Model Evaluation

 152

6.4 Conclusion
The main source of evaluation are the case studies, the background works describing the

capabilities of the ontology based IT methods and tools as well as the background works

which are the basis of the models and methods developed in this dissertation. Firstly, the

developed models were compared with the initial model on the domain coverage and the

models proved to maintain the initial coverage and functionalities. Secondly, the results of

the case studies were utilised as a source of the capabilities of the developed models and

they were compared with the theoretical capabilities of the used IT methods and tools.

There some operational imperfections of the developed models which are mainly due to

technical limitations. Nevertheless, the DL rules, the reasoner as well as the rest of the

system architecture elements are excessively exploited. The possible improvements would

derive from the usage of newer W3C standards, and the automation of several procedures.

Lastly, the “Duration of Time” concept, judging from the case studies, proved to be easily

applicable even in already developed models with data and it does not influence the already

existing semantics of the models. Its main advantage is the data integration and

interoperability that it provides over the common time basis.

 153

7
Conclusions and Future Perspectives

This dissertation deals with the implementation of ontology-based IT methods and tools in

PLM models. A number of models, methods and case studies have been developed, in

which IT methods and tools have been implemented. In chapter 4 are presented: the system

architecture; the translation of the initial SOM model from UML into an executable OWL

ontology; the extension of the model to facilitate maintenance activities; and a novel time

concept the “Duration of Time” concept, which exploits the objectivity and the universal

status of time and uses it as a reference-basis to integrate different models. Moreover, this

work introduces a generic implementation method of the developed models and concepts in

the system architecture. In chapter 5 three case studies are presented implementing the

developed models and the system architecture of chapter 4. They demonstrate the

applicability of the models, the functionalities of the models as well as the benefits they

provide for Closed-Loop PLM. Finally, in chapter 6 the developed models and concepts are

evaluated.

7.1 Conclusions
The conclusions of this dissertation are related to the two main contributions of this

dissertation: the development of an ontology approach for PLM with the use of the relevant

methods and tools; and the introduction of the original “Duration of Time” concept. In this

dissertation it has been demonstrated that there are several benefits, functionalities and

capabilities added to PLM models.

The work presented in this dissertation, provides the following generic conclusions:

 “How” to implement DL rules (and related IT methods and tools) in the existing

ontology models. The main conclusion of this is that one should first understand in

Chapter 7: Conclusions and Future Perspectives

 154

depth the concepts described by the initial model or standard. Then, the aim is to

describe the same concept with the available methods and tools, and to simplify the

model whenever possible. It is not necessary to strictly follow the initial model

structure, since it is possible that this will prevent the model from acquiring new

functionalities of the utilised methods and tools.

 “Why” to do this implementation? This is performed in order to introduce the

functionalities of the IT methods and tools in the PLM models and create or discover

new knowledge. Such implementations have lead to providing benefits towards:

consistency checking, checking for equivalent concepts, re-classification of the class

hierarchy and inference of the instances under the right place of the model.

 “What” are the benefits for the PLM models? Models are able to store data about

multiple products; models have become extensible with characteristics of merging and

auto-mapping.

 What is the “new knowledge” generated? Well, with the use of equivalencies and re-

classification it is made possible to find out which classes describe concepts which are

equivalent to other classes, to position the classes at the right level in the class-

hierarchy and to infer instances under the classes. These functionalities are provided

automatically without the requirement of the user to know the detailed structure of the

model. Therefore, the user has an overview of the concepts that already exist in the

model and the system identifies which instances (data) are useful also in other parts of

the model.

The implementation of ontologies and the use of DLs have provided the following

functionalities shown in detail in Case Studies 1 and 3:

 The DL-reasoner understands the DL rules and checks the extended ontology model for

its consistency; identifies equivalencies among the classes; re-classifies classes to their

logical position in the model; and infers instances at their logical position in the class-

hierarchy.

 The model is extensible and the extended models are compliant to each other with the

proper use of DL rules.

Chapter 7: Conclusions and Future Perspectives

 155

 The model facilitates and handles multiple data from multiple physical products.

As it has been shown in Case Study 1 in section 5.1.5, these functionalities aid ontology

merging. They could be used to achieve auto-mapping of the variations of the models and

to efficiently find out important beneficial elements in one model and then, use them across

the models. Regarding the merging, the conclusion is that more research still should be

performed in this field in order to provide methodologies for ontology and rule

development in order to support automated ontology merging [56]. The research could also

be towards providing model-developing rules for safe extension and consistency after

merging.

The second part of the conclusions derives from the development of the “Duration of Time”

concept. The implementation of the “Duration of Time” concept is aiming at preserving the

continuity of information along time as well as at providing the basis for synchronising

different information systems. These advantages are valid no matter the different products

tracked, the different information systems used or the semantics used. Therefore, once all

different systems are based on the “Duration of Time” concept, all information contained

on them may be plotted along time. In this way, data from different information systems are

easily synchronised and organised together.

The functionalities of models implementing the “Duration of Time” concept are presented

in detail in Case Studies 2 and 3 and they are summarised as:

 The concept is easily implemented in PLM models using current technology while the

models maintain their initial functionalities.

 The system provides complete data visibility which functions also under multi-system

circumstances.

 Systems based on the concept may be easily synchronised.

 Partners achieve better resources exploitation through synchronisation.

It should be noted that the concept still, remains to be tested in a real commercial multi-

system environment.

Chapter 7: Conclusions and Future Perspectives

 156

Moreover, the results of the three case studies are used as the source of performing the

evaluation of this work. The evaluation process has demonstrated that the model has

improved in several aspects (chapter 6). Firstly, we performed the comparison of the

functionalities and concepts of the final model(s) with the ones of the initial model and we

concluded that the initial functionalities are preserved and that the final models contain new

functionalities as well as concepts. Secondly, we compared the capabilities and the

functionalities of the developed models with those of the utilised IT methods and tools, and

we concluded that the IT methods and tools are exploited in a great extend. However,

technological advances are actively changing and therefore, new opportunities might

appear by implementing the most recent methods and tools. Finally, we evaluated the

applicability, efficiency and simplicity of the “Duration of Time” concept, which proved to

be promising for first level integration of information systems.

7.2 Future Perspectives
This work could be extended in several aspects related to the technology used, the

developed concepts and models.

 The use of newer ontology-based IT methods and tools such as OWL 2 which can

provide extra functionalities to the existing models according to our initial

investigations discussed in section 6.3.

 Future research may enrich the models through an exhaustive mapping with well

known standards such as MIMOSA and ISO-15926. This will provide added value to

the models and possibly be a basis for their wider adoption and successful use by the

PLM community.

 Future research may also attempt to provide a widely accepted standard of terms and

meanings (similar i.e. to biology). This will create a reference-basis for mapping

existing and future models and standards.

 Engineers could collaborate with computer scientists and define methodologies for

developing and extending models towards allowing ontology merging. Models

developed using such methodologies would guarantee seamless ontology merging.

Chapter 7: Conclusions and Future Perspectives

 157

 The provided method for developing models implementing new technologies can be

utilised for creating ontology models for various applications such as manufacturing

processes, resources, generic components, product families per industrial sector,

identification of best practices, etc.

 Regarding the “Duration of Time” concept future applications would include multi-

system and multi-level environments as well as possible implementation of the concept

in a commercial PLM platform.

 158

 159

References

[1] Sääksvuori A. and Immonen A. Product Lifecycle Management. 3rd Edition; Springer-
Verlag; 2008

[2] Stark J. Product lifecycle management: 21st century paradigm for product realisation.
Springer-Verlag; 2005

[3] Kiritsis D., Bufardi A. and Xirouchakis P. “Research issues on product lifecycle management
and information tracking using smart embedded systems”. Advanced Engineering Informatics
2003; 17 (3-4), pp. 189-202

[4] Noy N.F. and McGuinness D.L. Ontology development 101: A guide to creating your first
ontology. Stanford University; 2001.

[5] McGuinness D.L., Fikes R., Rice J. and Wilder S. “An Environment for Merging and Testing
Large Ontologies”. In Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000; Breckenridge, Colorado, USA 12-15
April 2000.

[6] Grossmann G. “Horizontal and Vertical Integration of Object Oriented Information Systems
Behaviour”. PhD thesis, University of South Australia. 2008,
URL: http://arrow.unisa.edu.au:8080/vital/access/manager/Repository/unisa:35964

[7] PROMISE deliverable DR5.4: Generic PEID roadmap for each group.
http://www.promise.no/downloadfile.php?i=b7b16ecf8ca53723593894116071700c last
accessed April 2010.

[8] International Society of Engineering Asset Management: ISEAM www.iseam.org last
accessed April 2010.

[9] Berners-Lee T. “Semantic Web on XML”. XML 2000; Washington DC, USA, 3-8 December
2000, http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

[10] Signore O. “Representing Knowledge in the Semantic Web”. Open Culture Conference -
accessing and sharing Knowledge (organised by the Italian office of W3C); June 27-29, 2005
Milan, Italy. http://www.w3c.it/papers/openCulture2005.pdf

[11] “SWRL: A Semantic Web Rule Language Combining OWL and RuleML”.
http://www.w3.org/Submission/SWRL/. Last accessed January 2010.

[12] Prud'hommeaux E., Seaborne A. “SPARQL Query Language for RDF”. W3C
Recommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/ Last accessed
January 2010.

[13] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E. and Yergeau F. “Extensible Markup
Language (XML) 1.0 (Fifth Edition)”. W3C Recommendation 26 November 2008.
http://www.w3.org/TR/2008/REC-xml-20081126/, Last accessed January 2010.

[14] Daconta M.C., Obrst L.J. and Smith K.T. The Semantic Web: A Guide to the Future of XML,
Web Services, and Knowledge Management. Wiley; 2003.

[15] Zeid I. and Gupta S.M. “Disassembly knowledge representation via XML”. Proceedings of
International Conference SPIE Environmentally Conscious Manufacturing; 2000, vol. 4193,
pp. 179-185

http://arrow.unisa.edu.au:8080/vital/access/manager/Repository/unisa:35964�
http://www.promise.no/downloadfile.php?i=b7b16ecf8ca53723593894116071700c�
http://www.iseam.org/�
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html�
http://www.w3c.it/papers/openCulture2005.pdf�
http://www.w3.org/Submission/SWRL/�
http://www.w3.org/TR/rdf-sparql-query/�
http://www.w3.org/TR/2008/REC-xml-20081126/�

References

 160

[16] Fallside D.C. and Walmsley P. “XML Schema Part 0: Primer Second Edition”. W3C
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-0/ Last accessed
January 2010.

[17] Miller E. “An introduction to the resource description framework”. Bulletin of the American
Society for Information Science; 1998, 25 (1) pp. 15-19

[18] Decker S., Melnik S., Van Harmelen F., Fensel D., Klein M., Broekstra J., Erdmann M. and
Horrocks I. “The Semantic Web: The Roles of XML and RDF”. IEEE Internet Computing;
2000, 4 (5), pp. 63-74

[19] Klein M. “XML, RDF, and relatives”. IEEE Intelligent Systems; 2001, 16 (2), pp. 26-28

[20] Klyne G. and Carroll J.J. “Resource description framework (RDF): Concepts and abstract
syntax”. W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-concepts, Last
accessed January 2010.

[21] Manola F. and Miller E. “RDF Primer”. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-primer, Last accessed January 2010.

[22] Klyne G. “Information modeling using RDF-Constructs for Modular Description of Complex
Systems”
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.6732&rep=rep1&type=pdf, Last
accessed May 2010.

[23] Brickley D. and Guha R. “RDF Vocabulary Description Language 1.0: RDF Schema”. W3C
Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/, Last accessed January 2010.

[24] McGuinness D.L. and Harmelen F. “OWL Web Ontology Language Overview”. W3C
Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-features-
20040210/, Last accessed January 2010.

[25] Bruijn J., Polleres A. and Fensel D. “Web Service Modelling Language (WSML)”.
Deliverable D20. 18 July 2004.
http://www.wsmo.org/2004/d20/v0.1/20040629/d20v0.1_20040629.pdf, Last accessed
January 2010.

[26] Baader F., Calvanese D., McGuinness D.L., Nardi D. and Patel-Schneider P.F., editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press; 2003

[27] Horrocks I. and Sattler U. “Description Logics: Basics, Applications, and More”. The
International Joint Conference on Automated Reasoning; June 18-23, 2001, Siena, Italy

[28] Cardoso J. “The Semantic Web Vision: Where Are We?”. IEEE Intelligent Systems; 22 (5),
pp. 84-88

[29] Jena-A Semantic Web Framework for Java: http://jena.sourceforge.net/ Last accessed January
2010.

[30] Racer: http://www.racer-systems.com/ Last accessed January 2010.

[31] Pellet Reasoner: http://clarkparsia.com/pellet/ Last accessed January 2010.

[32] Fact++: http://owl.man.ac.uk/factplusplus/ Last accessed January 2010.

[33] The OWL reasoner of Jena 2: http://jena.sourceforge.net/inference/#owl Last accessed
January 2010.

[34] Sirin E., Parsia B. and Grau B.C., Kalyanpur A and Katz Y. “Pellet: A practical OWL-DL
reasoner”. Web Semantics; 2007, 5 (2), pp. 51-53

http://www.w3.org/TR/xmlschema-0/�
http://www.w3.org/TR/rdf-concepts�
http://www.w3.org/TR/rdf-primer�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.6732&rep=rep1&type=pdf�
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/�
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/�
http://www.w3.org/TR/2004/REC-owl-features-20040210/�
http://www.w3.org/TR/2004/REC-owl-features-20040210/�
http://www.wsmo.org/2004/d20/v0.1/20040629/d20v0.1_20040629.pdf�
http://jena.sourceforge.net/�
http://www.racer-systems.com/�
http://clarkparsia.com/pellet/�
http://owl.man.ac.uk/factplusplus/�
http://jena.sourceforge.net/inference/#owl�

References

 161

[35] Sirin E. and Parsia B. “Pellet: An OWL-DL reasoner”. Proceedings of the 2004 International
Workshop on Description Logics (DL2004); Whistler, BC, Canada June 6-8, 2004, pp. 212-
213

[36] Drummond N. and Shearer R. “The Open World Assumption”. University of Manchester.
Last updated 11 October 2006.
http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf, Last accessed January 2010.

[37] RuleML: http://www.ruleml.org/

[38] O'Connor M.J., Knublauch H., Tu S.W., Grossof B., Dean M., Grosso W.E. and Musen M.A.
“Supporting Rule System Interoperability on the Semantic Web with SWRL”. Fourth
International Semantic Web Conference (ISWC-2005); Galway, Ireland, 2005; Springer,
LNCS 3729 pp. 974-986

[39] Grosof B.N., Horrocks I., Volz R. and Decker S. “Description logic programs: combining
logic programs with description logic”. Proceedings of the 12th international conference on
World Wide Web; May 20-24 2003, Budapest, Hungary. pp. 48-57

[40] Horrocks I., Parsia B., Patel-Schneider P.F. and Hendler J. “Semantic Web architecture: Stack
or two towers?”. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics; 2005, 3703 LNCS, pp. 37-41

[41] The Protégé Ontology Editor and Knowledge Acquisition System. http://protege.stanford.edu/

[42] SWRL protégé plug-in: http://protegewiki.stanford.edu/index.php/SWRLTab. Last accessed
January 2010.

[43] The Jess rule engine: http://herzberg.ca.sandia.gov/. Last accessed January 2010.

[44] SWRL Jess Tab: http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab. Last accessed
January 2010.

[45] SQWRL: The Semantic Query-Enhanced Web Rule Language. http://protege.cim3.net/cgi-
bin/wiki.pl?SQWRL. Last accessed January 2010.

[46] Collections SQWRL: http://protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL, Last
accessed May 2010.

[47] Grau B.C., Horrocks I., Motik B., Parsia B., Patel-Schneider P.F. and Sattler U. “OWL 2: The
next step for OWL”. Web Semantics; 2008, 6 (4), pp. 309-322

[48] Bao J., Calvanese D., Grau B.C., Dzbor M. et al. (OWL Working Group). “OWL 2 Web
Ontology Language”. W3C Recommendation 27 October 2009; http://www.w3.org/TR/owl2-
overview/#ack, Last accessed January 2010.

[49] Stumme G. and Maedche A. “FCA-merge: bottom-up merging of Ontologies”. Proceedings
of the 17th International Conference on Artificial Intelligence (IJCAI’01); Seattle, WA, USA,
2001, pp. 225-230.

[50] Noy N.F. and Musen M.A. “The PROMPT suite: Interactive tools for ontology merging and
mapping”. International Journal of Human Computer Studies; 2003, 59 (6), pp. 983-1024.

[51] Kotis K., Vouros G.A. and Stergiou K. “Towards automatic merging of domain ontologies:
The HCONE-merge approach”. Web Semantic; 2006, 4 (1), pp. 60-79.

[52] Grau B.C., Horrocks I., Kazakov Y. and Sattler U. “Just the right amount: Extracting modules
from Ontologies”. 16th International World Wide Web Conference, WWW2007; May 8-12,
2007, Banff, Alberta, Canada, pp. 717-726

[53] Jiménez-Ruiz E., Grau B.C., Sattler U., Schneider T. and Berlanga R. “Safe and economic re-
use of ontologies: A logic-based methodology and tool support”. 5th European Semantic
Web Conference, ESWC 2008; June 1-5, 2008, Tenerife, Canary Islands, Spain, pp. 185-199

http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf�
http://www.ruleml.org/�
http://protege.stanford.edu/�
http://protegewiki.stanford.edu/index.php/SWRLTab�
http://herzberg.ca.sandia.gov/�
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab�
http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL�
http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL�
http://protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL�
http://www.w3.org/TR/owl2-overview/#ack�
http://www.w3.org/TR/owl2-overview/#ack�

References

 162

[54] Grau B.C., Horrocks I., Kazakov Y. and Sattler U. “Ontology reuse: Better safe than sorry”.
20th International Workshop on Description Logics (DL-2007); 8-10 June 2007 Brixen-
Bressanone, Italy

[55] Grau B.C., Horrocks I., Kazakov Y. and Sattler U. “Modular reuse of ontologies: Theory and
practice”. Journal of Artificial Intelligence Research; 2008, 31 pp. 273-318

[56] Corcho O., Fernández-López M. and Gómez-Pérez A. “Ontological Engineering: What are
Ontologies and How Can We Build Them?”, in Cardoso J editor. Semantic Web Services:
Theory, Tools and Applications; IGI Global (former Idea Group). Hersey, Pennsylvania,
USA, 2007, pp. 44-70

[57] Denny M. “Ontology Tools Survey, Revisited”. July 14, 2004.
http://www.xml.com/pub/a/2004/07/14/onto.html. The complete list is found here:
http://www.xml.com/2004/07/14/examples/Ontology_Editor_Survey_2004_Table_-
_Michael_Denny.pdf Last accessed January 2010.

[58] SWOOP editor: http://code.google.com/p/swoop/ Last accessed January 2010.

[59] OntoStudio: http://www.ontoprise.de/en/home/products/ontostudio/ Last accessed January
2010.

[60] Escórcio L. and Cardoso J. “Editing Tools for Ontology Creation”, in Cardoso J editor.
Semantic Web Services: Theory, Tools and Applications; IGI Global (former Idea Group).
Hersey, Pennsylvania, USA, 2007, pp. 71-95

[61] Kalyanpur A., Parsia B., Sirin E., Grau B.C. and Hendler J. “Swoop: A Web Ontology
Editing Browser”. Web Semantics; 2006, 4 (2), pp. 144-153

[62] Kifer M., Lausen G. and Wu J. “Logical foundations of object-oriented and frame-based
languages”. Journal of the ACM ; 1995, 42 (4), pp. 741-843

[63] Eclipse software editor. http://www.eclipse.org/ Last accessed April 2010.

[64] Golbreich C. and Wallace E.K. “OWL 2 Web Ontology Language New Features and
Rationale”. W3C Recommendation 27 October 2009. http://www.w3.org/TR/owl2-new-
features/, Last accessed January 2010.

[65] Motik B., Grau B.C., Horrocks I., Wu Z. and Fokoue A., Lutz C. “OWL 2 Web Ontology
Language Profiles”. W3C Recommendation 27 October 2009.
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/, Last accessed January 2010.

[66] Rumbaugh J. The UML Reference Manual. Addison-Wesley; 1999.

[67] France R., Evans A., Lano K. and Rumpe B. “The UML as a formal modeling notation”.
Computer Standards and Interfaces; 1998, 19 (7), pp. 325-334

[68] Evans A.S. “Reasoning with UML Class Diagrams”. Second IEEE Workshop on Industrial
Strength Formal Specification Techniques, Oct 20-23, 1998, Boca Raton, FL, USA

[69] Berardi D., Calvanese D. and De Giacomo G. “Reasoning on UML class diagrams”. Artificial
Intelligence; 2005, 168 (1-2), pp. 70-118

[70] MIMOSA (Machinery Information Management Open Systems Alliance) www.mimosa.org
last accessed March 2010.

[71] OSA-EAI Technical Architecture Summary V3.2 [release Dec 2007].

[72] Mathew A., Zhang L., Zhang S and Ma L. “A Review of the MIMOSA OSA-EAI Database
for Condition Monitoring Systems”. Proceedings of the 1st World Congress on Engineering
Asset Management (WCEAM); 11 – 14 July 2006, Gold Coast, Australia, pp. 837-846

[73] OSA-CBM Primer V3.2 [Aug 2006].

[74] Keller K., Wiegand D., Swearingen K., Reisig C., Black S., Gillis A. and Vandernoot M. “An
Architecture to Implement Integrated Vehicle Health Management Systems”. IEEE Systems

http://www.xml.com/pub/a/2004/07/14/onto.html�
http://www.xml.com/2004/07/14/examples/Ontology_Editor_Survey_2004_Table_-_Michael_Denny.pdf�
http://www.xml.com/2004/07/14/examples/Ontology_Editor_Survey_2004_Table_-_Michael_Denny.pdf�
http://code.google.com/p/swoop/�
http://www.ontoprise.de/en/home/products/ontostudio/�
http://www.eclipse.org/�
http://www.w3.org/TR/owl2-new-features/�
http://www.w3.org/TR/owl2-new-features/�
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/�
http://www.mimosa.org/�

References

 163

Readiness Technology Conference (AUTOTESTCON); Valley Forge, PA, USA, 20-23 Aug
2001, pp. 2-15.

[75] Byington C.S., Kalgren P.W., Dunkin B.K. and Donovan B.P. “Advanced
diagnostic/prognostic reasoning and evidence transformation techniques for improved
avionics maintenance”. Proceedings of the IEEE Aerospace Conference; 13 March, 2004, Big
Sky, Montana, USA. (5) pp. 3424-3434.

[76] Chidambaram B., Gilbertson D.D. and Keller K. “Condition-based monitoring of an electro-
hydraulic system using open software architectures”. Proceedings of the IEEE Aerospace
Conference; 5-12 March, 2005, Big Sky, Montana, USA. pp. 3532 - 3539.

[77] Lebold M., Reichard K. and Boylan D. “Utilizing DCOM in an open system architecture
framework for machinery monitoring and diagnostics”. Proceedings of the IEEE Aerospace
Conference; 8-15 March, 2003, Big Sky, Montana, USA. (3) pp. 1227-1236.

[78] Voisin A., Levrat E., Cocheteux P. and Iung B. “Generic prognosis model for proactive
maintenance decision support- application to pre-industrial e-maintenance test bed”. Journal
of Intelligent Manufacturing; 2010, 21 (2), pp. 177-193.

[79] Mun D., Lee S., Kim B. and Han S. “ISO 15926-based data repository and related web
services for sharing lifecycle data of process plants”. Proceeding of the international
conference on Product Lifecycle Management-PLM 09 2009; 6-8 July 2009, Bath, UK.

[80] Teijgeler H. “The process industries and the ISO 15926 Semantic web”. (2007) OntoConsult:
http://www.infowebml.ws/Topics/papers/15926SW.htm (last accessed June 2009)

[81] Batres R., Shimada Y. and Fuchino T. “A graphical approach for representing hazard
scenarios”. American Institute of Chemical Engineers – Global Congress on Process Safety;
Topical 1 (1007), AIChe; 2008, New Orleans, USA, pp. 386-391

[82] Sandsmark N. and Mehta S. “Integrated information platform for reservoir and subsea
production systems”. Proceedings of the 13th Product Data Technology Europe Symposium
(PDT 2004); 18-20 October 2004, Stockholm, Sweden.

[83] Gulla J.A., Tomassen S.L. and Strasunskas D. “Semantic interoperability in the Norwegian
petroleum industry”. 5th International Conference on Information Systems ICIS 2006; 10-13
Dec 2006, Milwaukee, WI, USA

[84] Tomassen S.L., Gulla J.A. and Strasunskas D. “Document space adapted ontology:
Application in query enrichment”. Proceedings of the 11th International Conference on
Applications of Natural Language to Information Systems, NLDB 2006; May 31 - June 2,
2006. Klagenfurt, Austria. pp. 46-57

[85] Strasunskas D. “Resource Monitoring and Rule-Based Notification. Applications in Subsea
Production Systems”. In Khosrow-Pour, M. (Ed.) Managing Worldwide Operations and
Communications with Information Technology (Proc. of the 2007 IRMA International
Conference; 19-23 May 2007, Vancouver, Canada); IDEA Group Publishing, pp. 1211-1213.

[86] Klüwer J.W., Skjæveland M.G. and Valen-Sendstad M. “ISO 15926 templates and the
Semantic Web”. W3C Workshop on Semantic Web in Energy Industries, Part I: Oil & Gas; 9-
10 Dec 2008, Houston, TX, USA

[87] Price D. and Bodington R. “Applying semantic web technology to the life cycle support of
complex engineering assets”. Proceedings in the Third International Semantic Web
Conference-ISWC 2004; 7-11 November, 2004, Hiroshima, Japan. pp. 812-822

[88] OASIS 'Product Life Cycle Support Technical Committee', Available at: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=plcs last accessed April 2010.

http://www.infowebml.ws/Topics/papers/15926SW.htm�
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=plcs�
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=plcs�

References

 164

[89] Stell J.G. and West M. “A 4-dimensionalist mereotopology”. Proceedings of The third
Formal Ontology in Information Systems conference FOIS 2004; 4-6 November, 2004,
Torino, Italy. pp. 261-272

[90] PROMISE FP6 project: www.promise.no, December 2008.

[91] PROMISE Research Deliverable 9.2:
http://www.promise.no/downloadfile.php?i=69adc1e107f7f7d035d7baf04342e1ca, :ast
accessed December 2008.

[92] Cassina J., Tomasella M., Taisch M. and Matta A. “A new closed-loop PLM Standard for
mass products”. Journal of Product Development, 8 (2) (2009), pp. 141-161

[93] Spackman K.A., Campbell K.E. and Côté R.A. “SNOMED RT: A Reference Terminology for
Health Care”. Journal of the American Medical Informatics Association 1997; 4 (SUPPL.),
pp. 640-644

[94] Humphreys B.L. and Lindberg D.A.B. “The UMLS project: Making the conceptual
connection between users and the information they need”. Bulletin of the Medical Library
Association 1993; 81 (2), pp. 170-177

[95] SNOMED CT: http://www.ihtsdo.org/snomed-ct/, Last accessed March 2010.

[96] Bodenreider O., Smith B., Kumar A. and Burgun A. “Investigating subsumption in SNOMED
CT: An exploration into large description logic-based biomedical terminologies”. Artificial
Intelligence in Medicine 2007; 39 (3), pp. 183-195

[97] Horrocks I., Li L., Turi D. and Bechhofer S. “The Instance Store: DL Reasoning with Large
Numbers of Individuals”. Proc. of the 2004 Description Logic Workshop (DL 2004) 2004; pp.
31-40

[98] Brandt S. “Reasoning in ELH w.r.t. General Concept Inclusion Axioms”. Technical Report
LTCS-Report 04-03, Chair for Automata Theory, Institute for Theoretical Computer Science,
Dresden University of Technology, Germany, 2004. http://lat.inf.tu-
dresden.de/research/reports/2004/Brandt-LTCS-04-03.pdf

[99] Golbeck J., Fragoso G., Hartel F., Hendler J., Oberthaler J. and Parsia B. “The National
Cancer Institute's thésaurus and ontology”. Web Semantics; 2003; 1 (1), pp. 75-80

[100] The Gene Ontology (GO) http://www.geneontology.org/, Last accessed March 2010.

[101] Rogers J. and Rector A. “The GALEN ontology”. Medical Informatics Europe (MIE 96);
1996, Copenhagen, Denmark. IOS Press; pp. 174-178

[102] Niles I. and Pease A. “Towards a Standard Upper Ontology”. In Proceedings of the 2nd
International Conference on Formal Ontology in Information Systems (FOIS-2001), Chris
Welty and Barry Smith, eds; October 17-19, 2001; Ogunquit, Maine, USA. pp. 2-9

[103] DOLCE ontology. http://www.loa-cnr.it/DOLCE.html, Last accessed March 2010.

[104] Masolo C., Borgo S., Gangemi A., Guarino N. and Oltramari A. “Ontology Library”.
WonderWeb Deliverable D18 (of IST Project 2001-33052 WonderWeb: Ontology
Infrastructure for the Semantic Web)
http://wonderweb.man.ac.uk/deliverables/documents/D18.pdf, Last accessed March 2010.

[105] Batres R., West M., Leal D., Price D., Masaki K., Shimada Y., Fuchino T. and Naka Y. “An
upper ontology based on ISO 15926”. Computers and Chemical Engineering, 2007, 31 (5-6),
pp. 519-534

[106] Smith B. “Against idiosyncrasy in ontology development”. Proceedings of the Formal
Ontology in Information Systems (FOIS 2006), 2006, pp. 15-26

[107] Leal D. “ISO 15926 "Life cycle data for process plant": An overview”. Oil and Gas Science
and Technology, (2005), 60 (4), pp. 629-637

http://www.promise.no/�
http://www.promise.no/downloadfile.php?i=69adc1e107f7f7d035d7baf04342e1ca�
http://www.ihtsdo.org/snomed-ct/�
http://lat.inf.tu-dresden.de/research/reports/2004/Brandt-LTCS-04-03.pdf�
http://lat.inf.tu-dresden.de/research/reports/2004/Brandt-LTCS-04-03.pdf�
http://www.geneontology.org/�
http://www.loa-cnr.it/DOLCE.html�
http://wonderweb.man.ac.uk/deliverables/documents/D18.pdf�

References

 165

[108] Hakkarainen S., Hella L., Strasunskas D. and Tuxen S. “A semantic transformation approach
for ISO 15926”. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 4231 LNCS; 2006, pp. 281-290

[109] Fiorentini X., Gambino I., Liang V.C., Foufou S., Rachuri S., Bock C. and Mani M.
“Towards an Ontology for Open Assembly model”. Proceeding of the international
conference on Product Lifecycle Management-PLM 07 2007; 11-13 July, 2007, Bergamo,
Italy; pp 445-456

[110] Fiorentini X., Rachuri S., Mahesh M., Fenves S. and Sriram Ram D. “Description Logic for
Product Information Models”. Proceedings of the ASME International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference 2008;
DETC2008-49348

[111] Tektonidis D., Bokma A., Oatley G. and Salampasis M. “ONAR: An ontologies-based service
oriented application integration framework”. Proceedings of First International Conference
on Interoperability of Enterprise Software and Applications (INTEROP-ESA) 2005; pp. 68-
77, Geneva, Switzerland.

[112] Lee J.H. and Suh H.W. “Owl-based product ontology architecture and representation for
sharing product knowledge on a web”. Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference 2007; DETC2007; 2 PART B, pp. 853-861

[113] Brandt S.C., Morbach J., Miatidis M., Theißen M., Jarke M. and Marquardt W. “An
ontology-based approach to knowledge management in design processes”. Computers and
Chemical Engineering 2007; 32 (1-2), pp. 320-342

[114] Zhang W.Y. and Yin J.W. “Exploring Semantic Web technologies for ontology-based
modeling in collaborative engineering design”. International Journal of Advanced
Manufacturing Technology 2007; 36 (9-10), pp. 833-843

[115] Suh S.H., Shin S.J., Yoon J.S. and Um J.M. “UbiDM: A new paradigm for product design
and manufacturing via ubiquitous computing technology”. International Journal of Computer
Integrated Manufacturing; 2008, 21 (5), pp. 540-549

[116] Chang X. and Terpenny J. “Ontology-based data integration and decision making for product
e-design”. Robotics and Computer Integrated Manufacturing; 2009, 25 (6), pp.863-870

[117] Jun H.B., Kiritsis D., and Xirouchakis P. “A primitive ontology model for product lifecycle
meta data in the closed-loop PLM”. In: Gonςalves RJ., Müller JP., Mertins K., and Zelm M.,
editors. Enterprise Interoperability II: New Challenges and Approaches, Springer verlag
London Limited; 2007, pp. 729-740

[118] Aziz H., Gao J., Maropoulos P. and Cheung W.M. “Open standard, open source and peer-to-
peer tools and methods for collaborative product development”. Computers in Industry; 2005,
56 (3), pp. 260-271

[119] Sider T. Four-dimensionalism: An Ontology of Persistence and Time. Oxford University
Press; 2001

[120] ISO 15926-2:2003 Integration of lifecycle data for process plant including oil and gas
production facilities: Part 2 – Data model:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557,
Last accessed March 2010.

[121] West M. “Some industrial experiences in the development and use of Ontologies”. EKAW
2004 Workshop on Core Ontologies in Ontology Engineering, 8 Oct. 2004, Whittlebury Hall,
Northamptonshire, UK. pp. 1-14

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557�

References

 166

[122] Roddick J.F., Egenhofer M.J., Hoel E., Papadias D. and Salzberg B. “Spatial, temporal and
spatio-temporal databases - Hot issues and directions for PhD research”. SIGMOD Record
2004; 33 (2), pp. 126-131

[123] Zhang C. and Hammad A. “Spatio-temporal issues in infrastructure lifecycle management
systems”. Proceedings, 1st Annual Conference - Canadian Society for Civil Engineering; 2-4
June, 2005, Toronto, Canada. pp. FR-131-1 to FR-131-10

[124] Roddick J.F., Hornsby K. and Spiliopoulou M. “An Updated Bibliography of Temporal,
Spatial, and Spatio-temporal Data Mining Research”. Temporal, spatial, and spatio-temporal
data mining: first international workshop, TSDM 2000; 12 Sep, Lyon, France, pp. 147–163.
Heidelberg/Berlin: Springer Verlag.

[125] Tanenbaum A.S. and Steen M.V. Distributed Systems: Principles and Paradigms. Upper
Saddle River, NJ : Pearson/Prentice Hall; 2007

[126] Horrocks I. “Semantic Web: The story so far”. ACM International Conference Proceedings
vol. 225, pp. 120-125, Proceedings of the 2007 international cross-disciplinary conference on
Web accessibility (W4A), Banff, Canada; 2007.

[127] Wallace E. and Noy N.F. “Simple part-whole relations in OWL Ontologies”. W3C 2005:
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html, Last accessed
March 2010.

[128] Rasovska I., Chebel-Morello B. and Zerhouni N. “Process of s-maintenance: decision support
system for maintenance intervention”. In: Proceedings of the 10th IEEE conference on
emerging technologies and factory automation, vol. 2, 2005, Catania, Italy. pp. 679-686

[129] TORNOS SA. http://www.tornos.com/

[130] Bangemann T., Rebeuf X., Reboul D., Schulze A., Szymanski J., Thomesse J.P., Thron M.
and Zerhouni N. “PROTEUS-Creating distributed maintenance systems through an
integration platform”. Computers in Industry; 57 (6), pp. 539-551

[131] Rasovska I., Chebel-Morello B. and Zerhouni N. “A conceptual model of maintenance
process in unified modeling language”. Proceedings at 11th IFAC Symposium on Information
Control Problems in Manufacturing (INCOM 2004); April 5-7, 2004, Salvador, Brazil

[132] Karray M.H., Morello-Chebel B. and Zerhouni N. “Towards a maintenance semantic
architecture”. The Fourth World Congress on Engineering Asset Management (WCEAM); 28-
30 Sep. 2009 Athens, Greece. pp. 98-111. London: Springer Verlag.

[133] Matsokis A., Karray M.H., Morello-Chebel B. and Kiritsis D. “An Ontology-based Model for
providing Semantic Maintenance”. 1st IFAC workshop on Advanced Maintenance
Engineering, Services and Technology (A-MEST’10); 1-2 July 2010, Lisbon, Portugal
(Accepted)

[134] Matsokis A. and Kiritsis D. “Time-Centric Product Lifecycle Management System and
Method for developing the Same”. (PCT filing serial number: PCT/EP2010/053238)

[135] Matsokis A. and Kiritsis D. “An Ontology-based Approach for Product Lifecycle
Management”. Computers in Industry; 61 (8), pp.787–797

[136] Matsokis A. and Kiritsis D. “Ontology Applications in PLM”. International Journal of
Product Lifecycle Management; Accepted in 2010. In press.

[137] Matsokis A. and Kiritsis D. “An advanced method for time treatment in product lifecycle
management models”. The Fourth World Congress on Engineering Asset Management
(WCEAM), 28-30 Sep. 2009 Athens, Greece. pp. 120-126. London: Springer Verlag.

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html�
http://www.tornos.com/�

References

 167

[138] Matsokis A., Zamofing S. and Kiritsis D. “A Ontology-based Modelling for Complex
Industrial Asset Lifecycle Management: a Case Study”. In Proc. the 7th International
Product Lifecycle Management Conference; 12-14 July, 2010, Bremen, Germany, (Accepted)

[139] Matsokis A. and Kiritsis D. “Ontology-Based Implementation of an Advanced Method for
Time Treatment in Asset Lifecycle Management”. The Fifth World Congress on Engineering
Asset Management (WCEAM), (2010), Brisbane, Australia. (submitted)

[140] Brank J., Grobelnik M. and Mladenić D. “A Survey of Ontology Evaluation Techniques”.
Eprints pascal-network 2005; 00001198/, Last accessed March 2010.

[141] Obrst L., Ashpole B., Ceusters W., Mani I., Ray S. and Smith B. “The Evaluation of
Ontologies: Toward Improved Semantic Interoperability”. National Institute of Standards,
2007: http://www.mel.nist.gov/msidlibrary/doc/eval_ontologies.pdf, Last accessed March
2010.

[142] Guarino N. “Toward a formal evaluation of ontology quality”. IEEE Intelligent Systems 2004;
19 (4), pp. 74-81 (under: Why evaluate ontology technologies? Because it works!)

[143] Methods for ontology evaluation. KnowledgeWeb FP6 deliverable D1.2.3:
http://starlab.vub.ac.be/research/projects/knowledgeweb/KWeb-Del-1.2.3-Revised-
v1.3.1.pdf, Last accessed March 2010.

[144] Gangemi A., Catenacci C., Ciaramita M. and Lehmann J. “Modelling ontology evaluation and
validation”. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 4011 LNCS 2006; pp. 140-154

[145] Gomez-Perez A. “Evaluation of Ontologies”. International Journal of Intelligent Systems
2001; Volume 16, Issue 3, pp. 391-409

[146] Obrst L., Hughes T. and Ray S. “Prospects and Possibilities for Ontology Evaluation: The
view from National Center for Ontological Research”. 4th International EON Workshop
(EON 2006) located at the 15th International World Wide Web Conference 2006;
http://km.aifb.uni-karlsruhe.de/ws/eon2006/eon2006obrstetal.pdf, Last accessed March 2010.

http://eprints.pascal-network.org/archive/00001198/�
http://www.mel.nist.gov/msidlibrary/doc/eval_ontologies.pdf�
http://starlab.vub.ac.be/research/projects/knowledgeweb/KWeb-Del-1.2.3-Revised-v1.3.1.pdf�
http://starlab.vub.ac.be/research/projects/knowledgeweb/KWeb-Del-1.2.3-Revised-v1.3.1.pdf�
http://km.aifb.uni-karlsruhe.de/ws/eon2006/eon2006obrstetal.pdf�

 168

 169

Appendix A: OWL Model full list of relationships and attributes per class

This section contains tables containing the full list of object and datatype properties per

class of the model developed in section 4.2 (Figure 18). Table 8 contains the list of the

classes and their object properties and Table 9 contains the list of the classes and their

attributes.

Table 8: List of Object Properties

Domain Class Object Property Range Class

Access_Rights

Activity Activity2Life_Cycle_Phase Life_Cycle_Phase

Activity Involves Resource

Activity Causes Event

As_Designed_Product As_Designed_Product2Condition Condition

As_Designed_Product As_Designed_Product2Field_Data_Source Field_Data_Source

As_Designed_Product As_Designed_Product2Physical_Product_Group Physical_Product_Group

As_Designed_Product As_Designed_Product2Property Property

As_Designed_Product As_Designed_Product2Valid_Field_Data_Type Valid_Field_Data_Type

As_Designed_Product hasDefined Physical_Product

Condition Condition2As_Designed_Product As_Designed_Product

Condition Condition2Event Event

Condition Condition2Physical_Product Physical_Product

Condition Condition2Property Property

Document Document2Document_Resource Document_Resource

Document Document2Field_Data Field_Data

Document Document2File File

Document_Resource Document_Resource2Document Document

Equiptment_Resource Equiptment_Resource2Property Property

Event Event2Condition Condition

Event Event2Field_Data Field_Data

Event Event2Life_Cycle_Phase Life_Cycle_Phase

Event Event2Resource Resource

Event Triggers Activity

Field_Data Field_Data2Document Document

Field_Data Field_Data2Event Event

Field_Data Field_Data2Life_Cycle_Phase Life_Cycle_Phase

Field_Data Field_Data2Physical_Product Physical_Product

Field_Data Field_Data2Physical_Product_Group Physical_Product_Group

Appendix A: OWL Model full list of relationships and attributes per class

 170

Field_Data Field_Data2Valid_Field_Data_Type Valid_Field_Data_Type

Field_Data_Source Field_Data_Source2As_Designed_Product As_Designed_Product

Field_Data_Source Field_Data_Source2ID_Information ID_Information

Field_Data_Source Field_Data_Source2Physical_Product Physical_Product

Field_Data_Source Field_Data_Source2Valid_Field_Data_Type Valid_Field_Data_Type

File File2Document Document

ID_Information ID_Information2Field_Data_Source Field_Data_Source

ID_Information ID_Information2Information_Provider Information_Provider

ID_Information ID_Information2Physical_Product Physical_Product

ID_Information ID_Information2URI URI

Information_Provider Information_Provider2ID_Information ID_Information

Life_Cycle_Phase Life_Cycle_Phase2Activity Activity

Life_Cycle_Phase Life_Cycle_Phase2Event Event

Life_Cycle_Phase Life_Cycle_Phase2Field_Data Field_Data

Life_Cycle_Phase Life_Cycle_Phase2Physical_Product Physical_Product

Life_Cycle_Phase Life_Cycle_Phase2Resource Resource

Material_Resource Material_Resource2Property Property

Personnel_Resource Personnel_Resource2Property Property

Physical_Product hasParent Physical_Product

Physical_Product isParentOf Physical_Product

Physical_Product Physical_Product2Condition Condition

Physical_Product Physical_Product2Field_Data Field_Data

Physical_Product Physical_Product2Field_Data_Source Field_Data_Source

Physical_Product Physical_Product2ID_Information ID_Information

Physical_Product Physical_Product2Life_Cycle_Phase Life_Cycle_Phase

Physical_Product Physical_Product2Physical_Product_Group Physical_Product_Group

Physical_Product Physical_Product2Property Property

Physical_Product Physical_Product2Resource Resource

Physical_Product Physical_Product2Valid_Field_Data_Type Valid_Field_Data_Type

Physical_Product isDesigned As_Designed_Product

Physical_Product_Group Physical_Product_Group2As_Designed_Product As_Designed_Product

Physical_Product_Group Physical_Product_Group2Field_Data Field_Data

Physical_Product_Group Physical_Product_Group2Physical_Product Physical_Product

Physical_Product_Group Physical_Product_Group2Valid_Field_Data_Type Valid_Field_Data_Type

Property Property2As_Designed_Product As_Designed_Product

Property Property2Condition Condition

Property Property2Equiptment_Resource Equiptment_Resource

Property Property2Material_Resource Material_Resource

Property Property2Personnel_Resource Personnel_Resource

Property Property2Physical_Product Physical_Product

Resource Resource2Activity Activity

Resource Manages Event

Resource Resource2Life_Cycle_Phase Life_Cycle_Phase

Resource Resource2Physical_Product Physical_Product

Appendix A: OWL Model full list of relationships and attributes per class

 171

URI URI2ID_Information ID_Information

Valid_Field_Data_Type Valid_Field_Data_Type2As_Designed_Product As_Designed_Product

Valid_Field_Data_Type Valid_Field_Data_Type2Field_Data Field_Data

Valid_Field_Data_Type Valid_Field_Data_Type2Field_Data_Source Field_Data_Source

Valid_Field_Data_Type Valid_Field_Data_Type2Physical_Product Physical_Product

Valid_Field_Data_Type Valid_Field_Data_Type2Physical_Product_Group Physical_Product_Group

Appendix A: OWL Model full list of relationships and attributes per class

 172

Table 9: List of Datatype Properties

Domain Class Datatype Property

Activity ActivityDescription

Activity ActivityDuration

Activity ActivityFinishingDate

Activity ActivityFinishingTime

Activity ActivityID

Activity ActivityStartingDate

Activity ActivityStartingTime

As_Designed_Product BoM

As_Designed_Product CAD_Model

As_Designed_Product Condition_State

As_Designed_Product Costs_Information

As_Designed_Product Materials_Information

As_Designed_Product Product_State

As_Designed_Product Product_Type_ID

As_Designed_Product Property_State

As_Designed_Product Tests_n_Specifications

As_Designed_Product Variants_Information

Condition Action_When_Met

Condition Action_When_Not_Met

Condition Condition_ID

Condition Condition_Type_ID

Condition ConditionDatatypeProperties

Document Document_DatatypeProperties

Document Document_ID

Document Document_Type

Equiptment_Resource Equiptment_Type

Equiptment_Resource QA_test_and_Specification

Event EventDatatypeProperties

Event EventFlag

Event Leaving_Product_State

Event Time_Stamp

Event Triggering_Condition

Event Event_Name

Event Entering_Product_State

Field_Data Accuracy

Field_Data Field_Data_ID

Field_Data Field_Data_Type

Field_Data Reference_Group_ID

Appendix A: OWL Model full list of relationships and attributes per class

 173

Field_Data Value

Field_Data WHAT

Field_Data WHEN

Field_Data WHERE

Field_Data WHO

Field_Data Field_Data_Group_ID

Field_Data_Source Source_ID

Field_Data_Source Source_Type

File File_DatatypeProperties

File File_ID

File File_Type

ID_Information Alt_Pres

ID_Information ID_Type

ID_Information ID

Information_Provider ID

Information_Provider Alt_Pres

Information_Provider ID_Type

Information_Provider Type

Life_Cycle_Phase Product_State_Its_Own

Life_Cycle_Phase Starting_Date_Time

Life_Cycle_Phase Finishing_Date_Time

Life_Cycle_Phase Residual_Life

Material_Resource Material_Lot

Material_Resource Material_Type

Material_Resource QA_test_and_Specification

Personnel_Resource E_Mail

Personnel_Resource Personnel_Type

Personnel_Resource Qualification_test_and_Specification

Personnel_Resource Telephone

Physical_Product Birth_Date

Physical_Product End_Date

Physical_Product Object_Lot_ID

Physical_Product Product_Complexity

Physical_Product_Group Group_Code

Physical_Product_Group Group_Type

Property Property_Name

Property Property_Value

Property Category

Resource Resource_Description

Resource Resource_ID

Resource Resource_Location

Resource Resource_State

URI URI_String

URI URIDatatypeProperty

Appendix A: OWL Model full list of relationships and attributes per class

 174

URI Type

Valid_Field_Data_Type Definition_Domain

Valid_Field_Data_Type Measuring_Unit

Valid_Field_Data_Type Valid_Field_Data_Type_Category

Valid_Field_Data_Type Valid_Field_Data_Type_ID

Valid_Field_Data_Type Value_Type

 175

Appendix B: Merging of two or more OWL ontologies in OWL 1 and in
OWL 2

While attempting to achieve ontology merging with OWL we faced several difficulties due

to language limitations. As it is very well described by Grau et al. [47] in OWL 1 the

merging of ontologies is not supported and this has been taken into account for the recently

released OWL 2 which supports it. The concept is that experts would provide copies of the

initial ontology to various partners to extend them according to their needs. Then these

copies will be collected by the OEM and they will be imported into the initial ontology

model. The requirement is that the final model with all the imported ontologies contains all

the new elements which did not exist in the initial ontology model and at the same time

duplicates of any elements are avoided. In this way we can apply the reasoner in the model

as a whole in order to extract knowledge.

In theory

In OWL 1 the merging of ontologies is not supported directly. However, there is an indirect

method to go around this limitation and achieve a similar to the desired result by importing

one or more ontologies into the other. Of course, in this case the ontologies are not merged

into one single ontology but they are called and opened on the same project. Thus, the

reasoner may be applied on the project as a whole (this means that it is applied on the total

number of DL rules, classes etc.) which is the desired result.

In OWL 2 after importing one or more ontologies into the other we are able to create a third

ontology which will contain all the elements of the initial ontologies.

In Practice

In practice there is a technical problem which doesn’t allow the user to acquire the desired

result neither in OWL 1 nor in OWL 2. The technical problem derives from the fact that the

initial ontology O is defined by the URI U and its copies have exactly the same URI U.

For example we have two copies of the initial model which are copy A and copy B. The

result in OWL 1 is: when the initial model or one copy A is loaded on the Protégé-OWL

Appendix B: Merging of two or more OWL ontologies in OWL 1 and in OWL 2

 176

and then we load another copy B, the tool loads copy B and sees it as recursive ontology.

This means that the tool sees the copy B as already loaded. The tool does not perform any

type of comparison between copy A and copy B since it sees them like they are the same

ontology. Therefore, the tool loads only the elements of the first ontology, which in this

case is copy A. In the general similar case, the tool does not perform any type of

comparison between the two or more copies (copy A and copy B) of the (same) ontology

since it understands it as “already loaded” and hence, it does not load any element of the

copy on the model.

In OWL 2 when the initial model (or one copy A) is loaded, we have to import the other

ontology (copy B) on the tool and then save the final project as merged. However, the tool

works similarly as in OWL 1 and sees the ontology as “already loaded” and the tool again

does not load the elements of the copies. Therefore, a real merging of classes, instances,

properties, DLs etc. cannot be performed.

Solution

The solution found was to change the URI of each copy to a unique URI combined with an

ascending three digit number xxx in the end such as U’=http://www.owl-

ontologies.com/Ontology1202459344_ Copy_001.owl, where xxx=001. All initial elements

of the copy (classes, object and datatype properties, instances) keep their original URI U of

the initial ontology O. Moreover, the default namespace of the copy is set to the URI U and

therefore, all the new elements added to the copy have the namespace of the initial ontology

O.

The process steps to be followed in order to achieve the desired result are:

1. Make copy of the initial ontology

2. Change its URI to U’

3. Set as its default namespace the URI U of ontology O

4. Share it with the partners/ Provide partners with copies

5. Partners extend their copies according to their needs following rules

6. Collect the different local copies

7. Merge them together (import one ontology into the other)

Appendix B: Merging of two or more OWL ontologies in OWL 1 and in OWL 2

 177

8. Execute the reasoner to find equivalencies, consistency and re-classification on

classes and to categorise instances

For step 7 it should be noted that it is indifferent which ontology is loaded first in the tool

and the loading order after it. In all cases all elements will be loaded.

This technique allows loading all the elements on the tool with both OWL 1 and OWL 2. It

should be noted that in OWL 2 there are also other solutions i.e. create a new ontology and

merge on it first the initial model and then the copies one by one. What actually happens is

that we import ontology O’ into O and then all the elements of both O’ and O have the

same URI U of ontology O.

 178

 179

Appendix C: SWRL rules for Case Study 2

This section contains the queries and rules of the case study 2 in section 5.2. Actually the

second part of the rules is an SQWRL construct which displays the results in spreadsheet

like format. Similar rules might be constructed in order to obtain various types of results.

The SWRL Query for Figure 40

Activity(?acx) ^
ActivityID(?acx, "Idle") ^
Maintenance_Machine(?mmx) ^
Activity2Resource(?acx, ?mmx) ^
Starting_Date_Time(?acx, ?zx) ^
Finishing_Date_Time(?acx, ?dx) ^
temporal:after(?dx, ?zx) ^
temporal:after(?dx, "2009-02-27T08:41:000") ^
temporal:before(?zx, "2009-02-27T08:41:000") ^
temporal:duration(?minute, ?zx, ?dx, temporal:Minutes)
→
sqwrl:select(?acx, ?mmx, ?zx, ?dx, ?minute) ^
sqwrl:orderBy(?acx) ^
sqwrl:columnNames("Instance", "Machine", "Birth Date ", "End Date", "Duration In
Minutes ")

The SWRL Query for Figure 41

Activity(?acx) ^
ActivityID(?acx, "Idle") ^
Activity2Resource(?acx, Mechanic_B) ^
Starting_Date_Time(?acx, ?zx) ^
Finishing_Date_Time(?acx, ?dx) ^
temporal:after(?dx, ?zx) ^
temporal:after(?dx, "2009-02-27T06:31:000") ^
temporal:before(?zx, "2009-02-27T06:31:000") ^
temporal:duration(?minute, "2009-02-27T06:30:000", ?dx, temporal:Minutes)
→
sqwrl:select("Mechanic B", ?zx, ?dx, ?minute, ?acx, ?zx, ?dx, ?minute) ^
sqwrl:orderBy(?acx) ^
sqwrl:columnNames("Instance", "Birth Date ", "End Date", "Duration From Now In
Minutes ")

The SWRL Query for Figure 42

Appendix C: SWRL rules for Case Study 2

 180

Activity(?acx) ^
ActivityID(?acx, "Idle") ^
Activity2Resource(?acx, Document_Resource_3) ^
Starting_Date_Time(?acx, ?zx) ^
Finishing_Date_Time(?acx, ?dx) ^
temporal:after(?dx, ?zx) ^
temporal:duration(?minute, ?zx, ?dx, temporal:Minutes)
→
sqwrl:select(?acx, "Document_Resource_3", ?zx, ?dx, ?minute) ^
sqwrl:columnNames("Instance", "Resource", "Birth Date ", "End Date", "Duration In
Minutes ")

The SWRL Query for Figure 43

Activity(?acx) ^
ActivityID(?acx, "Idle") ^
Resource(?rex) ^
Activity2Resource(?acx, ?rex) ^
Starting_Date_Time(?acx, ?zx) ^
Finishing_Date_Time(?acx, ?dx) ^
temporal:after(?dx, ?zx) ^
temporal:duration(?minute, ?zx, ?dx, temporal:Minutes)
→
sqwrl:select(?acx, ?rex, ?zx, ?dx, ?minute) ^
sqwrl:orderBy(?rex) ^
sqwrl:columnNames("Instance", "Resource", "Birth Date ", "End Date", "Duration In
Minutes ")

 181

Appendix D: SWRL rules for Case Study 3

This section contains the queries and rules of the case study 3 in section 5.3 and it is

separated into two parts.

First Part

The first part contains examples of the SWRL rules which were used to give the right form

to the imported instances from the excel spreadsheet. When one imports data from an excel

spreadsheet, each row corresponds to an instance and the data contained in the different

columns of the row corresponds to a datatype attribute. This creates instances without

object properties which is not always desirable. In our case we needed to have object

properties in each new instance relating it to other instances such as hasParent,

Physical_Product2Physical_Product_Group,

Physical_Product2Property, Physical_Product2Function, etc. To make

this process we used SWRL rules which were imported in the Jess rule engine. The result

of the Jess rule engine was returned back to the OWL-DL model (triangle in Figure 11):

 This rule relates the instances of the class Parts_of_Deco_10 with an instance of

the Physical_Product_Group class

Parts_of_Deco_10(?pdx) ^
//IF there is an instance (?pdx) of the class Parts_of_Deco_10
NUM_COMPONENT(?pdx, ?ncx) ^
//AND IF the instance (?pdx) has value (?ncx) for the datatype attribute
NUM_COMPONENT
Nomenclature_Deco_10(?ppx) ^
//AND IF there is an instance of the class Nomenclature_Deco_10 (?ppx)
Group_Code(?ppx, ?gcx) ^
//AND IF the instance (?ppx) has value (?gcx) for the datatype attribute Group_Code
swrlb:equal(?ncx, ?gcx)
//AND IF the values (?ncx) and (?gcx) are the same
→
Physical_Product2Physical_Product_Group(?pdx, ?ppx)
//Then relate the instances (?pdx) and (?ppx) through the relationship
Physical_Product2Physical_Product_Group

Appendix D: SWRL rules for Case Study 3

 182

 This rule relates the instances of the class Parts_of_Deco_10 with an instance of

the Property class

Parts_of_Deco_10(?pdx) ^
//IF There is an instance (?pdx) of the class Parts_of_Deco_10
MOUVEMENT_GROUP(?pdx, ?ncx) ^
//AND IF the instance (?pdx) has value (?ncx) for the datatype attribute
MOUVEMENT_GROUP
Property(?ppx) ^
//AND IF there is an instance of the class Property (?ppx)
Property_Value(?ppx, ?gcx) ^
//AND IF the instance (?ppx) has value (?gcx) for the datatype attribute Property_Value
swrlb:equal(?ncx, ?gcx)
//AND IF the values (?ncx) and (?gcx) are the same
→
Physical_Product2Property(?pdx, ?ppx)
//Then relate the instances (?pdx) and (?ppx) through the relationship
Physical_Product2Property

 With similar rules all the instances are related to other instances of the model.

Second Part

The second part contains the SWRL rules which where developed to be applied on the

Field Data. These rules refer to the defined conditions for creating events and alarms. The

system reads the data and warns the user with a message about the possible events and

alarms. Then, it is up to the user to evaluate the messages and create the events or alarms.

Actually, it should be noted that there is a way to create automatically the instances of

events and alarms in the system, which is shown at the end of this section. However, this

method is not DL-safe and therefore, was not selected.

 Condition: T=63 degrees increasing, Event: Threshold of 63 degrees passed

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data
Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^

Appendix D: SWRL rules for Case Study 3

 183

//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds. With this rule we make sure that the two instances are one after the other.
swrlb:greaterThanOrEqual(?vax, 63) ^
//AND IF the value of (?vax) is greater than OR equal to 63
swrlb:equal(?vay, 60) ^
//AND IF the value of (?vay) is equal to 60
→
sqwrl:select(?fdx, ?vax, ?stx, "T=63 degrees increasing", "Threshold of 63 degrees passed",
"No") ^
//Then display the list of the instances (?fdx) and their attributes (?vax) and (?stx) as well
as the strings "T=63 degrees increasing", "Threshold of 63 degrees passed" and "No"
sqwrl:columnNames("Instance", "Value", "Start Date Time", "Condition", "Event",
"Alarm")
//AND Then name the columns accordingly.

 Condition: T=67 degrees increasing, Event: Temperature higher than 67 degrees &

increasing

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data
Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^
//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source

Appendix D: SWRL rules for Case Study 3

 184

temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds
swrlb:greaterThanOrEqual (?vax, 67) ^
//AND IF the value of (?vax) is greater than OR equal to 67
swrlb:lessThan(?vay, 67) ^
//AND IF the value of (?vay) is less than 67
→
sqwrl:select(?fdx, ?vax, ?stx, "T=67 degrees increasing", "Temperature higher than 67
degrees & increasing", "Yellow") ^
//Then display the list of the instances (?fdx) and their attributes (?vax) and (?stx) as well
as the strings "T=67 degrees increasing", "Temperature higher than 67 degrees &
increasing" and "Yellow"
sqwrl:columnNames("Instance", "Value", "Start Date Time", "Condition", "Event",
"Alarm")
//AND Then name the columns accordingly.

 Condition: 63<Tave≤67 for more than 2 minutes, Event: Temperature between

63<T<67 degrees for more than 2 minutes

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data
Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Field_Data(?fdz) ^
//IF there is an instance (?fdz) of the class Field_Data
Field_Data(?fdw) ^
//IF there is an instance (?fdw) of the class Field_Data
Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Value(?fdz, ?vaz) ^
//AND IF the instance (?fdz) has value (?vaz) for the datatype attribute Value
Value(?fdw, ?vaw) ^
//AND IF the instance (?fdw) has value (?vaw) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^
//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Start_Date_Time(?fdz, ?stz) ^
//AND IF the instance (?fdz) has Start_Date_Time (?stz)
Start_Date_Time(?fdw, ?stw) ^
//AND IF the instance (?fdw) has Start_Date_Time (?stw)

Appendix D: SWRL rules for Case Study 3

 185

Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdz, Field_Data_Source_1) ^
//AND IF the instance (?fdz) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdw, Field_Data_Source_1) ^
//AND IF the instance (?fdw) is related to the instance “Field_Data_Source_1” through
the relationship Field_Data2Field_Data_Source
temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:after(?sty, ?stz) ^
//AND IF the instance Start_Date_Time (?sty) is after (?stz)
temporal:after(?stz, ?stw) ^
//AND IF the instance Start_Date_Time (?stz) is after (?stw)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds
temporal:duration(30, ?sty, ?stz, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?sty) and (?stz) is 30
seconds
temporal:duration(30, ?stz, ?stw, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stz) and (?stw) is
30 seconds
swrlb:add(?sum, ?vax, ?vay, ?vaz, ?vaw) ^ swrlb:divide(?avg, ?sum, 4.0) ^
//Calculate the average (?avg)
swrlb:greaterThan(?avg, 63) ^
//AND IF the value of (?avg) is greater than 63
swrlb:lessThanOrEqual(?avg, 67) ^
//AND IF the value of (?avg) is less than OR equal to 67
→
sqwrl:select(?avg, "63<Tave<=67 for more than 2 minutes", "Temperature (average)
63<Tave<=67 for more than 2 minutes", "Yellow") ^
//Then display the average (?avg) and the strings "63<Tave<=67 for more than 2 minutes",
" Temperature (average) 63<Tave<=67 for more than 2 minutes " and "Yellow"
sqwrl:columnNames("Average", "Condition", "Event", "Alarm")
//AND Then name the columns accordingly.

 Condition: T=70 degrees increasing, Event: Temperature higher than 70 degrees &

increasing

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data

Appendix D: SWRL rules for Case Study 3

 186

Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^
//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds
swrlb:greaterThanOrEqual(?vax, 70) ^
//AND IF the value of (?vax) is greater than OR equal to 70
swrlb:lessThan(?vay, 70) ^
//AND IF the value of (?vay) is less than 70
→
sqwrl:select(?fdx, ?vax, ?stx, "T=70 degrees increasing", "Temperature higher than 70
degrees & increasing", "Yellow") ^
//Then display the list of the instances (?fdx) and their attributes (?vax) and (?stx) as well
as the strings "T=70 degrees increasing", "Temperature higher than 70 degrees &
increasing" and "Red"
sqwrl:columnNames("Instance", "Value", "Start Date Time", "Condition", "Event",
"Alarm")
//AND Then name the columns accordingly.

 Condition: 67<Tave≤70 for more than 2 minutes, Event: Temperature between

67<T<70 degrees for more than 2 minutes

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data
Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Field_Data(?fdz) ^
//IF there is an instance (?fdz) of the class Field_Data
Field_Data(?fdw) ^
//IF there is an instance (?fdw) of the class Field_Data

Appendix D: SWRL rules for Case Study 3

 187

Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Value(?fdz, ?vaz) ^
//AND IF the instance (?fdz) has value (?vaz) for the datatype attribute Value
Value(?fdw, ?vaw) ^
//AND IF the instance (?fdw) has value (?vaw) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^
//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Start_Date_Time(?fdz, ?stz) ^
//AND IF the instance (?fdz) has Start_Date_Time (?stz)
Start_Date_Time(?fdw, ?stw) ^
//AND IF the instance (?fdw) has Start_Date_Time (?stw)
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdz, Field_Data_Source_1) ^
//AND IF the instance (?fdz) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdw, Field_Data_Source_1) ^
//AND IF the instance (?fdw) is related to the instance “Field_Data_Source_1” through
the relationship Field_Data2Field_Data_Source
temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:after(?sty, ?stz) ^
//AND IF the instance Start_Date_Time (?sty) is after (?stz)
temporal:after(?stz, ?stw) ^
//AND IF the instance Start_Date_Time (?stz) is after (?stw)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds
temporal:duration(30, ?sty, ?stz, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?sty) and (?stz) is 30
seconds
temporal:duration(30, ?stz, ?stw, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stz) and (?stw) is
30 seconds
swrlb:add(?sum, ?vax, ?vay, ?vaz, ?vaw) ^ swrlb:divide(?avg, ?sum, 4.0) ^
//Calculate the average (?avg)
swrlb:greaterThan(?avg, 67) ^

Appendix D: SWRL rules for Case Study 3

 188

//AND IF the value of (?avg) is greater than 67
swrlb:lessThanOrEqual(?avg, 70) ^
//AND IF the value of (?avg) is less than OR equal to 70
→
sqwrl:select(?avg, "67<Tave<=70 for more than 2 minutes", "Temperature (average)
67<Tave<=70 for more than 2 minutes", "Red") ^
//Then display the average (?avg) and the strings "67<Tave<=70 for more than 2 minutes",
" Temperature (average) 67<Tave<=70 for more than 2 minutes " and "Red"
sqwrl:columnNames("Average", "Condition", "Event", "Alarm")
//AND Then name the columns accordingly.

 Condition: T=68 degrees decreasing, Event: Temperature higher than 67 degrees

& decreasing

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data
Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^
//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds
swrlb:greaterThanOrEqual (?vay, 68) ^
//AND IF the value of (?vay) is greater than OR equal 68
swrlb:lessThanOrEqual (?vax, 68) ^
//AND IF the value of (?vax) is less than OR equal to 68
swrlb:greaterThanOrEqual (?vax, 67) ^
//AND IF the value of (?vax) is greater than OR equal to 67
→
sqwrl:select(?fdx, ?vax, ?stx, "T=68 degrees decreasing", "Temperature higher than 67
degrees & decreasing", "Yellow") ^

Appendix D: SWRL rules for Case Study 3

 189

//Then display the list of the instances (?fdx) and their attributes (?vax) and (?stx) as well
as the strings "T=68 degrees decreasing", "Temperature higher than 67 degrees &
decreasing" and "Yellow"
sqwrl:columnNames("Instance", "Value", "Start Date Time", "Condition", "Event",
"Alarm")

//AND Then name the columns accordingly.

 Condition: T=63 degrees decreasing, Event: Temperature OK

Field_Data(?fdx) ^
//IF there is an instance (?fdx) of the class Field_Data
Field_Data(?fdy) ^
//IF there is an instance (?fdy) of the class Field_Data
Value(?fdx, ?vax) ^
//AND IF the instance (?fdx) has value (?vax) for the datatype attribute Value
Value(?fdy, ?vay) ^
//AND IF the instance (?fdy) has value (?vay) for the datatype attribute Value
Start_Date_Time(?fdx, ?stx) ^
//AND IF the instance (?fdx) has Start_Date_Time (?stx)
Start_Date_Time(?fdy, ?sty) ^
//AND IF the instance (?fdy) has Start_Date_Time (?sty)
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
//AND IF the instance (?fdx) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
//AND IF the instance (?fdy) is related to the instance “Field_Data_Source_1” through the
relationship Field_Data2Field_Data_Source
temporal:after(?stx, ?sty) ^
//AND IF the instance Start_Date_Time (?stx) is after (?sty)
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
//AND IF the “distance” between the two Start_Date_Time instances (?stx) and (?sty) is 30
seconds
swrlb:greaterThan (?vay, 63) ^
//AND IF the value of (?vay) is greater than 63
swrlb:lessThanOrEqual (?vax, 63) ^
//AND IF the value of (?vax) is less thanOR equal to 63
→
sqwrl:select(?fdx, ?vax, ?stx, "T=63 degrees decreasing", "Temperature OK", "No") ^
//Then display the list of the instances (?fdx) and their attributes (?vax) and (?stx) as well
as the strings "T=63 degrees decreasing", "Temperature OK" and "No"
sqwrl:columnNames("Instance", "Value", "Start Date Time", "Condition", "Event",
"Alarm")

//AND Then name the columns accordingly.

As it is described in the rules above, the alarms and events are not created automatically,

but they are added by the user. The problem is that the machine might create multiple

Appendix D: SWRL rules for Case Study 3

 190

alarms by using the same data. For example, if one fires the rules on a data set A then a

group of alarms is created. Then, if one loads more data on the model and fires the rule

again on the whole data, then the instances describing the alarms of the data set A will be

created again. Thus, in the case that we fire the rule on the same data n times we will get n

instances of the same alarm originating from the same field data, which is undesirable.

A rule to create a red alarm (of the type Temperature higher than 70 degrees & increasing)

is shown below:

Field_Data(?fdx) ^
Field_Data(?fdy) ^
Value(?fdx, ?vax) ^
Value(?fdy, ?vay) ^
Start_Date_Time(?fdx, ?stx) ^
Start_Date_Time(?fdy, ?sty) ^
Field_Data2Field_Data_Source(?fdx, Field_Data_Source_1) ^
Field_Data2Field_Data_Source(?fdy, Field_Data_Source_1) ^
temporal:after(?stx, ?sty) ^
temporal:duration(30, ?stx, ?sty, temporal:Seconds) ^
swrlb:greaterThanOrEqual(?vax, 70) ^
swrlb:lessThan(?vay, 70) ^
swrlx:makeOWLIndividual(?inst, ?fdx)
//make a new instance (?inst) for each Field Date (?fdx) that fulfils the above criteria
→
Alarm(?inst) ^
//make (?inst) an instance of Alarm class
Field_Data2Event(?fdx, ?inst) ^
//Relate the instance (?fdx) to the instance (?inst) through the relationship
Field_Data2Event
Alarm_Flag(?inst, “Red”) ^
//Red Alarm
Time_Stamp(?inst, ?stx)
//The time-date is the same as the one of the Field Data (?fdx) that created it.

 191

Curriculum Vitae

Aristeidis Matsokis

Dipl.-Ing. Electrical Engineer

Background
Aristeidis Matsokis has received his Diploma in Electrical Engineering in 2006 from the

University of Patras, Greece. Since 2006 he is working on his PhD Thesis and as a research

assistant in the Computer-Aided Design and Production Laboratory (LICP) of the Swiss

Federal Institute of Technology in Lausanne (EPFL).

Education
 Oct 2006-Oct 2010: PhD thesis in Manufacturing Systems and Robotics in EPFL
 Sep 2000-Mar 2006: Diploma in Electrical Engineering, University of Patras, Greece

Experience­Projects

Research assistant

 IMS 2020 Roadmap: aims at developing a roadmap on Global Sustainable

Manufacturing, Products and Services for 2020.

 SMAC Interreg IV project: semantic-maintenance and life cycle project aims at
improving the performance of products through using semantic systems and techniques
in maintenance. In this project we developed the ontology model for semantic
maintenance.

Teaching assistant

In European Global Product Realisation (E-gpr)

 Feb 2009-June 2009 (Coaching group of students on semester project)
 Feb 2008-June 2008 (Coaching group of students on semester project)
 Feb 2007-June 2007 (Coaching group of students on semester project)

e-mail: amatsokis@hotmail.com

Address:
Chemin des Avelines 5
CH-1004, Lausanne

Curriculum Vitae

 192

Publications

Scientific Journals

 Matsokis A. and Kiritsis D. Ontology Applications in PLM. International Journal of
Product Lifecycle Management; (accepted, in press)

 Matsokis A. and Kiritsis D. An Ontology-based Approach for Product Lifecycle
Management. Computers in Industry; 61 (8), pp.787–797

Conference Proceedings

 Matsokis A. and Kiritsis D. Ontology-Based Implementation of an Advanced
Method for Time Treatment in Asset Lifecycle Management. Proceedings in the 5th
World Congress in Engineering Asset Management (WCEAM 2010); 25-27 Oct. 2010,
Brisbane, Australia (accepted)

 Matsokis A., Zamofing S., and Kiritsis D. Ontology-based Modelling for Complex
Industrial Asset Lifecycle Management: a Case Study. Proceedings The 7th
International Conference on Product Lifecycle Management (PLM10); 12-14 July,
2010, Bremen, Germany (in press)

 Matsokis A., Karray M.H., Morello-Chebel B. and Kiritsis D. An Ontology-based
Model for providing Semantic Maintenance. 1st IFAC workshop on Advanced
Maintenance Engineering, Services and Technology (A-MEST’10); 1-2 July 2010,
Lisbon, Portugal (in press)

 Matsokis A. and Kiritsis D. An Advanced Method for Time treatment in Product
Lifecycle Management Models. Proceedings in the 4th World Congress in Engineering
Asset Management (WCEAM 2009); 28-30 Sep. 2009, Athens, Greece. pp. 120-126.
London: Springer Verlag.

 Matsokis A. and Kiritsis D. Ontology Applications in PLM. Proceedings in The 6th
International Conference on Product Lifecycle Management (PLM09); 6-8 July, 2009,
Bath, UK (in press)

Patents

Matsokis A. and Kiritsis D. Time-Centric Product Lifecycle Management System and

Method for developing the Same. (PCT filing serial number: PCT/EP2010/053238).

Languages

English Greek German French Spanish

Fluent, CPE Native Intermediate: Mittelstufe Basic:B1 Basic:A2

Memberships

 Technical Chamber of Greece
 ACIDE
 Founding member of AEGEL: Association des Etudiantes Grecs de Lausanne

	Aristeidis Matsokis
	 Technical Chamber of Greece

