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Astratto

Scala è un nuovo linguaggio di programmazione che unisce la programmazione
orientata agli oggetti con la programmazione funzionale. Le sue caratteristiche
principali sono l’uniformità e l’estensibilità. Scala offre ai programmatori un
grande livello di flessibilità, permettendo loro di accrescere il linguaggio uti-
lizzando librerie. Ciò che sembra essere una caratteristica del linguaggio, è in
effetti spesso implementato in una libreria, dando in concreto ai programma-
tori delle possibilità solitamente riservate ai progettisti di linguaggi.

Il lato negativo di tale flessibilità, peraltro, è che codice dall’aspetto famil-
iare può nascondere costi inaspettati in termini di prestazioni. È importante
quindi che i compilatori per il linguaggio Scala riducano tali costi il più possi-
bile.

Abbiamo identificato le seguenti aree in cui le prestazioni dei programmi
scritti in Scala possono risentire di effetti significativi: funzioni di ordine su-
periore e chiusure, e contenitori generici usati con tipi primitivi. Presentiamo
due approcci complementari per il miglioramento delle prestazioni in tali aree:
ottimizzazione e specializzazione.

L’ottimizzazione nel compilatore può ridurre i costi, grazie ad una combi-
nazione di espansione in linea condotta in modo aggressivo, di una versione
estesa della propagazione delle copie, e dell’eliminazione del codice non rag-
giungibile. Utilizzando tale approccio, è possibile eliminare sia le funzioni
anonime che la conversione di tipi primitivi in oggetti. Usando macchine virtu-
ali disponibili allo stato attuale, possiamo mostrare come nel caso di numerosi
benchmark tali costrutti possano essere eseguiti fino a cinque volte più rapida-
mente usando una opportuna ottimizzazione.

La nostra proposta consiste in un nuovo approccio per la compilazione
del polimorfismo parametrico nel caso vengano utilizzati tipi primitivi, un-
endo ad uno schema di traduzione omogeneo una specializzazione del codice
per tipi primitivi configurata dall’utente. I parametri di tipo possono essere
contrassegnati da annotazioni in modo da ottenere una consequente specializ-
zazione del codice in uso. La nostra proposta utilizza una specializzazione ap-
plicata al sito di definizione, il che rende possibile una compilazione modulare,
nonché l’assenza di conversione di tipi primitivi in oggetti quando sia il sito di
definizione che il sito di utilizzo siano specializzati. Le classi specializzate sono
compatibili con il codice non specializzato, ed il codice non a conoscenza della
specializzazione può operare su istanze specializzate; ciò significa che la spe-
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cializzazione è opportunistica. Inoltre, presentiamo la formalizzazione di un sot-
toinsieme ristretto di Scala che utilizza la specializzazione, e dimostriamo che
la specializzazione preserva i tipi. Abbiamo implementato tale trasformazione
nell’ambito del compilatore per il linguaggio Scala; ne descriviamo i miglio-
ramenti che ne derivano utilizzando diversi benchmark, mostrando come la
specializzazione possa rendere i programmi più veloci di oltre due volte.

Parole chiave: compilatore, ottimizzazione, polimorfismo parametrico, gener-
ici, specializzazione, boxing, Scala.



Abstract

Scala is a new programming language bringing together object-oriented and
functional programming. Its defining features are uniformity and extensibil-
ity. Scala offers great flexibility for programmers, allowing them to grow the
language through libraries. Oftentimes what seems like a language feature is
in fact implemented in a library, effectively giving programmers the power of
language designers.

The downside of this flexibility is that familiar looking code may hide un-
expected performance costs. It is important for Scala compilers to bring down
this cost as much as possible.

We identify several areas of impact for Scala performance: higher-order
functions and closures, and generic containers used with primitive types. We
present two complementary approaches for improving performance in these
areas: optimizations and specialization.

Compiler optimization can bring down the cost through a combination of
aggressive inlining of higher-order functions, an extended version of copy-
propagation and dead-code elimination. Both anonymous functions and box-
ing can be eliminated by this approach. We show on a number of benchmarks
that these language features can be up to 5 times faster when properly opti-
mized, on current day JVMs.

We propose a new approach to compiling parametric polymorphism for
performance at primitive types. We mix a homogeneous translation scheme
with user-directed specialization for primitive types. Type parameters may
be annotated to require specialization of code depending on them. We pro-
pose definition-site specialization for primitive types, achieving separate com-
pilation and no boxing when both the definition and call site are specialized.
Specialized classes are compatible with unspecialized code, and specialization
agnostic code can work with specialized instances, meaning that specializa-
tion is opportunistic. We present a formalism of a small subset of Scala with
specialization and prove that specialization preserves types. We implemented
this translation in the Scala compiler and report on improvements on a set of
benchmarks, showing that specialization can make programs more than two
times faster.

Keywords: compiler, optimization, parametric polymorphism, generics,
specialization, boxing, Scala.
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Chapter 1

Introduction

Compiler optimizations can significantly improve Scala code when running on
the Java Virtual Machine. Java compilers generally rely on the JVM for opti-
mizations, and that proved a viable approach in practice. However, Scala (and
any language that is sufficiently different from Java) should not rely entirely
on VM optimizations, as there are important benefits to be gained from static
optimizations. In this thesis we show how two features of Scala can be made
significantly faster through static compiler optimizations. Higher-order func-
tions and closures can be optimized together to yield much better performance
when run on a state of the art JVM. Generic code instantiated with primitive
types usually incurs a penalty due to boxing and unboxing, and we show a
technique that can eliminate the overhead by specializing (some) generic defi-
nitions.

Virtual machines are known for more than 40 years, dating back to the 60s.
As Java and .NET became popular in the late 90s, virtual machines (VMs) be-
came mainstream [37, 6]. Virtual machines are very attractive because compil-
ers get simpler and programs become more portable. The VM abstracts over
the target architecture and provides a high-level instruction set. In fact, VMs
offer numerous advantages over the traditional model, relieving compiler writ-
ers of issues such as memory management, garbage collection, register alloca-
tion, scheduling, the choice of an object-model. Moreover, better monitoring
and debugging tools are generally available, and they can be reused for differ-
ent languages targeting the same platform.

VMs have moved from the initial interpreted model to more efficient, just-
in-time compiled execution [6]. VMs are well-positioned to optimize code, as
they can gather information during program execution and identify hot-spots,
code paths that are executed very frequently. By focusing on the hot-spots,
the VM can spend more time producing better native code, resulting in better
performance as long as the cost of compilation is amortized by running the
application long enough. Optimizations such as value numbering, common
subexpression elimination, constant propagation/folding, inlining, are regu-
larly performed by nowadays VMs [29, 44, 5].

13



14 CHAPTER 1. INTRODUCTION

The optimizations performed by VMs are limited by several factors. Firstly,
optimizations are performed while the application is running, so they need to
be fast. Secondly, they have to remain general enough to accommodate many
languages (over 30 languages for the JVM, and over 60 for .NET [59, 58]). And
lastly, VMs can not optimize for all features found in languages that target
them, so they aim for the most common subset.

Even when compiling for a virtual machine, optimizing compilers can sig-
nificantly improve performance. Compilers have more knowledge about the
program and the language they are compiling, and they can spend more time
optimizing. For instance, a richer type system may point out opportunities for
inlining. Furthermore, they may choose different compilation techniques when
translating language features that have no direct correspondence on the VM.
For example, the JVM does not have support for generic classes. A compiler
for a language with generics may choose to compile them using type erasure
when performance is not critical, and using specialization when it is.

In this work we focus on compiling the Scala language and improving per-
formance when running on the Java Virtual Machine. One of the features
of Scala is higher-order functions. Higher-order functions are heavily used
throughout the standard library, and all collections implement a foreach method
for iterating through their elements

items.foreach(x => println(x))

The argument to foreach is a function literal, which is compiled to an object
that implements a known interface. The object may “capture” variables from
the environment where foreach is applied. While general and elegant, this
way of structuring programs loses in terms of performance when compared to
a simple for-loop. When both the higher-order function and its argument are
known statically, they should be optimized together and completely eliminate
the additional object.

Generic classes and methods in Scala may be instantiated with primitive
types. Since the JVM does not have support for generics, Scala has to trans-
late such classes and methods to plain, monomorphic definitions. It does so
using type erasure, which requires primitive values to be boxed and unboxed as
they enter and leave generic code. The extra indirection and object allocation
seriously impact performance of using primitive types with generic code.

To improve performance in such cases, this thesis proposes two compiler
techniques: optimization and specialization. The former tackles higher-order
functions and the overhead of closures when the caller and callee are statically
known. The latter tackles the overhead incurred by boxing primitive values
when passed to generic code.

1.1 The Scala language

Scala fuses object-oriented and functional programming in a type-safe way [40].
From the object-oriented world, Scala takes the concept of class, and follows
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the principle that “everything is an object”. From the functional world, it
brings in algebraic data types, pattern matching, anonymous functions and
closures. Staying true to the above principle, algebraic data types are encoded
as classes (case classes), pattern matches as partial functions or extractor objects,
functions as generic interfaces of one method and finally closures as objects
implementing a function interface1.

Scala was designed to be interoperable with Java and the .NET platform [1].
Owing to the design of the two platforms, it distinguishes behind the scenes
between primitive types (such as Int, Long, Double) and reference types. This
distinction is necessary for having efficient execution of arithmetic primitives
on the two platforms. However, to the programmer all values appear as ob-
jects, and the compiler adds the necessary boxing operations to turn a primitive
value into a heap-allocated object when necessary. As described in more detail
in Chapter 2, this can be a source of important performance degradation.

Despite having primitive types, Scala has a unified type hierarchy. The top
type is called Any, with immediate subtypes AnyRef, the supertype of all refer-
ence types, and AnyVal, the supertype of all primitive types. Parametric defini-
tions can be instantiated with any type, including primitives. Scala compiles
generics through type-erasure, and primitive values need to be boxed when
entering generic code.

Classes and methods can be parameterized with types which may have
bounds. Furthermore, type parameters can be annotated as being covariant or
contravariant, allowing to extend the subtyping relationship from the type ar-
gument to the instantiated type. For example, the interface for unary functions
is defined like this:

trait Function1[+R, -T] {
def apply(x: T): R

}

Function subtyping has the usual definition, covariant in the return type and
contravariant in the arguments, denoted by the + and - respectively. For in-
stance, Function1[String, Any] is a subtype of Function1[Any, String]. In or-
der to preserve soundness, covariant and contravariant type parameters have
restrictions on where they may appear in a class definition [40].

One of the design goals of Scala is to be extensible. Programmers can easily
embed Domain Specific Languages (DSLs) in Scala, relying on features such
as implicits and call-by-name parameters. For example, the following code to
test a stack class is written using the ScalaTest [57] framework. None of the
“keywords” is part of the Scala language:

"A Stack" should "pop values in last-in-first-out order" in {
val stack = new Stack[Int]
stack.push(1)
stack.push(2)

1Closures capture the environment as usual. The environment is represented as fields of the
anonymous class from which the closure object is instantiated.
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stack.pop() should equal (2)
stack.pop() should equal (1)

}

In Section 2.3 we review the most important tools in the Scala programmer’s
bag of tricks.

1.2 Contributions

This thesis identifies several features of Scala that can be improved when com-
piling for the JVM, and concentrates on closures and generic code instanti-
ated with primitive types. Higher-order methods and closures are pervasive in
Scala programs, and essential when implementing DSLs because call-by-name
parameters are encoded as nullary functions. Generic classes and interfaces are
used throughout the standard library and form the backbone of a uniform col-
lection library. When they are used with primitive types, performance suffers.

We describe, implement and evaluate two complementary techniques that
improve the performance of Scala programs.

The main contributions of this thesis are:

• We describe and implement a number of static compiler optimizations
that can improve the cost of using higher-order functions and closures.
Our solution works with separately compiled libraries, and improves
performance significantly when running on the JVM.

• We propose a translation technique for generic classes that gives good
performance for primitive values. Programmers may choose to specialize
generic code when performance is critical. Our approach is compatible
with the current translation technique (using type erasure), and supports
separate compilation and variance.

• We give a formal description of specialization using a Featherweight Java-
like calculus, and prove that our translation preserves typing.

• We evaluate both techniques on a set of benchmark programs and report
on performance improvements.

Both optimization and specialization are part of the current release of the
Scala compiler (version 2.8.0). Some late developments were added after the
official release and are to be included in the next release.

1.3 Overview

This thesis is organized as follows: Chapter 2 discusses in detail the perfor-
mance implications of various Scala features, and gives a glimpse of the tech-
niques we employ to bring down their cost.
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Chapter 3 is dedicated to compiler optimizations, and describes the infras-
tructure for optimizations found in the Scala compiler, together with a number
of optimizations.

Chapter 4 describes in detail our approach for compiling generic code for
performance on primitive types, which we name opportunistic specialization. We
formalize our translation for a subset of Scala, and discuss the implementation
challenges when supporting the whole language.

We used the current implementation to validate our techniques in Chapter
5. We show how optimization and specialization can improve the execution
time of several benchmarks, and asses the impact on code size.

We discuss related work in Chapter 6, and conclude and provide directions
for future work in Chapter 7.
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Chapter 2

Language Extensibility and
Performance

If I could speak the language of
rabbits, they would be amazed,
and I would be their king.

Rajesh Koothrappali

2.1 Introduction

The ability to grow the language through libraries is a key aspect of Scala. Its
syntax allows users to write code that looks like built-in features, keeping the
language small. For instance, the standard library provides a BigInt class that
is indistinguishable from the standard Int type, and the for loop on integers
is provided through a Range class.

This approach is elegant and gives programmers the power of language
designers. However, everything comes at a price, and in this case the price is
efficiency. Familiar looking code, like an assert statement or a for loop may
conceal unexpected costs. While library designers are usually aware of these
implications, users are often surprised by such performance hits.

In this chapter we present several features of Scala that make it especially
suited for building expressive libraries. We then take a closer look at their
performance implications and sketch an approach for optimizing compilers
that can improve on their cost.

2.2 Domain Specific Languages

Programming languages research has traditionally focused on general purpose
programming languages which aim to be good at solving any programming
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def Term: Parser = AbsOrVar ~ rep(AbsOrVar)
def AbsOrVar: Parser =

ident
| "\\" ~ ident ~ "." ~ Term
| "(" ~ Term ~ ")"
| "fix" ~ Term
| failure("illegal start of ..")

Figure 2.1: A parser using the combinator parser DSL.

task. Decades of research have given us numerous languages and several
paradigms for solving general programming problems. Recently there is a
shift of focus towards Domain Specific Languages (DSL), languages suitable
for solving one specific task. They are usually small, simple and use a nota-
tion that is familiar to their domain. Specialists in the domain of interest can
easily understand and write programs in a DSL. Examples of DSLs are lex and
yacc for describing grammars, Excel for describing spreadsheets, or SQL for
database queries and updates.

According to Taha [52], DSLs can be defined by four characteristics:

• The domain is well-defined

• The notation is clear

• The informal meaning is clear

• The formal meaning is clear and implemented

The first three points are more a concern of the language designer, who is
in a position to make decisions about the domain, notation and the meaning
of the language. In the following we focus on the last point, where we believe
Scala makes a notable contribution in the implementation of DSLs.

Just like traditional programming languages, one can implement a DSL
starting with a grammar, writing a parser and moving on to a full-blown in-
terpreter. The downside is that building a full interpreter is time-consuming
and makes the evolution of DSLs costly. In [24], Hudak argues for Domain
Specific Embedded Languages, DSLs that are built on top of an existing, general
purpose language. DSELs are implemented as libraries, and share the syntax
and implementation of the host language.

2.2.1 DSLs in Scala

Scala is well suited for building DSLs by allowing syntactic extensions in an
easy and natural way. For example, Figure 2.1 shows how to specify a parser
using the standard combinator parsing library DSL:



2.3. THE SCALA TOOLBOX 21

This example shows the definition of two non-terminals of the lambda cal-
culus grammar. Terms consist of one or more abstractions or variables. AbsOrVar
is either an identifier, a lambda abstraction, a parenthesized term or the key-
word “fix” followed by a term. If none of the above is found, an error is issued
and parsing fails. It is important to note that this code has no special support
from the compiler, all operators being user-defined.

The two operators at work, ~ and |, are user-defined methods on class
Parser. Any unary method in Scala can be used in infix notation by skipping
the dot and the parenthesis around its argument. The given string literals de-
note keywords, and are turned by implicit conversions into parsers matching
that exact string.

2.3 The Scala toolbox

In the following sections we describe a few features of Scala that make it suit-
able for developing embedded DSLs, the cost they carry and how an optimiz-
ing compiler may alleviate it.

2.3.1 Higher-order functions

Scala supports higher-order functions and has convenient syntax for function
literals. For instance, method foreach is defined like this:

def foreach[U](f: A => U) = // ..

Here, foreach takes a function from type A (we assume foreach is defined
inside a generic collection of elements of type A) to U (most of the times U is
instantiated to Unit). Iterating over such a collection is then done like this

xs foreach { x =>
// x is bound successively to each element in xs

}

Notice how infix notation makes foreach look like a built-in feature of the lan-
guage (which it is, for C#, Ada, Java, D, JavaScript).

The ability to extend the language with new control structures demands a
way to delay evaluation of terms. To this end, Scala provides call-by-name pa-
rameters, which allow programs to pass unevaluated arguments to a method.
Such arguments are evaluated each time their value is needed. Behind the
scenes, the compiler transforms such arguments into nullary functions. For
example, we may define an assert method whose diagnostic message is only
evaluated if the assertion fails:

def assert(b: Boolean, msg: => String) =
if (!b) throw new AssertionFailed(msg)

//..
assert(tree.depth < 6,
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"Too shallow: " + (new TreePrinter(tree)).toString)

2.3.2 Implicit parameters and views

When designing a library it often happens that an existing type has to be aug-
mented with new methods. For instance, a DSL may want to reuse the primi-
tive values of the host language, but specific functionality is (naturally) missing
on those types. To enable after-the-fact extension of existing types, Scala pro-
poses a mechanism based on implicit values and views.

A parameter marked implicit can be filled automatically by the compiler
when the programmer does not provide an explicit value. All values in scope
that are marked implicit are eligible. Chapter 7 in the Scala specification [40]
provides a complete description of how the scope is formed and how a value
is chosen.

Views allow the user to define implicit conversions between a type T and a
type U, by defining an implicit value v of type T => U. Whenever the expected
type of an expression is U, and the static type is T, the compiler will convert it
by applying v to the expression. This leads to a convenient way of augmenting
functionality of existing types, including primitive types. In the parser exam-
ple in Figure 2.1, string literals are lifted to full-blown parsers by a defining a
view from String to Parser.

implicit def kw(str: String): Parser[String] =
accept(str) // ...

A view is also applied when a member is selected on a type that does not
define it. In the same example, method ~ is not a member of String, so the
compiler looks for a view to a type that has a member named ~. Views facil-
itate a pattern for extending existing classes, used throughout the library for
augmenting primitive types. DSLs may use them to lift primitive types in the
host language to values in their domain. For example, the standard library
adds method abs to integers by an implicit conversion to a “carrier” class for
the additional operations:

final class RichInt(val n: Int) {
def abs: Int = if (n < 0) -n else n
// additional operations may be defined

}

implicit def intWrapper(x: Int) =
new runtime.RichInt(x)

// users can then write
x.abs
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2.3.3 For comprehensions

Scala provides an extensible way to iterate over collections by means of for
comprehensions. A for expression is translated to a sequence of method calls to
foreach, map and withFilter.

In its most general form a for-comprehension contains any number of gen-
erators and filters. For instance,

for (i <- xs; j <- ys; if (i % j == 0)) print (i, j)

prints i and j only when i is a multiple of j. The first two statements are gener-
ators, binding i and j to each element of xs and ys respectively. This is achieved
by translating the given comprehension into a series of method calls:

xs.foreach(i =>
ys.withFilter(j => i % j == 0).foreach(j => print(i, j)))

Any type that has these methods can be used as a generator inside a for
comprehension. Even more, Scala does not provide a for loop as in most im-
perative programming languages, instead it has a Range class in the standard
library with the required methods. However, to the programmer it looks like
the language has built-in support for iterating over integers.

for (i <- 1 to 10) print(i)

2.4 Uniform collection libraries

Uniformity is one of the bases on which Scala is built: class members are ac-
cessed using the same notation, regardless of whether they are stored or com-
puted (sometimes called the “uniform access principle”); classes, methods and
types may be parameterized by type and value; any definition may be nested,
and may contain any other definition; parameterized types may be instanti-
ated with any type, including primitive types or type variables; every term
produces a value. It should come as no surprise that the standard library fol-
lows the same philosophy.

The Scala collections library [39] provides implementations for commonly
used data structures. It is based on the very general concept of Traversable

structures, further divided in maps, sets and sequences. More than a collec-
tion of classes, it is a framework where new collections can be added easily,
avoiding code duplication.

2.4.1 Java arrays

Along with the eight primitive types, the JVM provides arrays at the machine
level. JVM arrays are typed and mapped to contiguous regions in memory, so
they provide a very efficient alternative to user-defined collections. Unlike, say,
linked-lists, which allocate each element in a separate object, arrays promise
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very good cache behavior by exposing data locality. Furthermore, the JVM
may apply optimizations such as array bounds check elimination. It follows
that arrays are essential for good performance on the JVM, and Scala has to
accommodate them.

The question is how to fit arrays in the collection library. Arrays are se-
quences, and based on the uniformity principle, they should be part of the col-
lection library. Arrays should be polymorphic in the element type, and allow
the same operations as the standard Vector class. Arrays could look like

class Array[A] extends IndexedSeq[A] {
// ...

}

However, the problem we face is that arrays are typed at the bytecode level.
An array of integers is different from an array of doubles, and each one has
specific VM instructions. All arrays opcodes (instantiation, indexing and up-
dates) require the type of the element, so writing generic code on arrays poses
problems. Suppose we wanted to write a method that copies the contents of
one array into another:

def copy[A](xs: Array[A], ys: Array[A]) {
var i = 0
while (i < xs.length) {
ys(i) = xs(i)
i += 1

}
}

The code for copy needs to read and update an array of an unknown type A.
The compiler cannot emit the required bytecode, as the array type may change
with each call to copy. Instead of the specific bytecodes, it has to perform a
series of instance tests to determine the runtime type of the array1. Unfortu-
nately, the performance of code is seriously hurt, very bad news for a collection
that is meant for high performance.

This situation is not specific to arrays, though it does carry the largest im-
pact in this context. Any generic class that may be instantiated at primitive
types will perform much worse than similar code that has full type informa-
tion. A prime example is function literals: function literals in Scala implement a
FunctionN interface that is polymorphic in its result and argument types. When-
ever the function operates at primitive types, boxing (wrapping of primitive
types inside object on the heap) and unboxing is performed at call sites (for a
more detailed discussion see § 2.5.1).

We propose user-directed specialization as a solution to this problem: the
compiler generates specialized code for some type instantiations, as directed
by the user. Code is tailored to match the type instantiations, using the efficient
bytecode instructions. Furthermore, whenever the static type information at a
caller site permits, the call is rewritten towards the specialized version. This

1Initially it was using reflection, but that proved to be too slow.
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approach is described in Chapter 4.

2.5 The abstraction penalty

In the following we look at the code generated by the Scala compiler, and high-
light where performance may be hurt. To illustrate, we’ll be looking at a sim-
ple for loop that prints integers between 1 and 10. As mentioned before, Scala
does not have a specific for-loop, as does Java or C++. Instead, the standard
library comes with a class Range that defines foreach, filter, withFilter, map
and flatMap. This solution is more general and more extensible than having a
special case in the compiler, and allows users can write their own looping con-
structs. Coming back to the example, integers are lifted to ranges by implicit
conversion, so that programmers can simply write:

for (i <- 1 to 10) println(i)

The call to method to (in infix notation) is not resolved, so an implicit conver-
sion from Int to a type that has such a member is looked up. As mentioned
previously, the standard library provides an implicit conversion, so the code is
type-checked as

for (i <- Predef.intWrapper(1).to(10)) Predef.println(i)

The for loop is desugared to an explicit call to foreach and a function literal:

Predef.intWrapper(1).to(10).foreach[Unit](((i: Int) => Predef.println(i)))

Scala translates closures to anonymous classes. For each function arity there
is a corresponding trait that defines the apply method with the right number of
parameters. In this example, the anonymous class extends trait Function1:

Predef.intWrapper(1).to(10).foreach[Unit]({
final class anonfun extends Function1[Unit, Int] with ScalaObject {
final def apply(i: Int): Unit = Predef.println(i);

};
new anonfun()

})

but the actual code that is generated after type erasure is

Predef.intWrapper(1).to(10).foreach[Unit]({
final class anonfun extends Function1 with ScalaObject {
final def apply(i: Int): Unit = Predef.println(i);
final def apply(i: Object): Object = {
apply(Int.unbox(i))
BoxedUnit.UNIT

}
};
new anonfun()

})
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Through successive transformations, the innocent looking for-loop now re-
quires four method calls2, two additional loaded classes, two new objects, plus
boxing/unboxing. In order to describe what boxing is, we need to talk about
compiling generics for the Java Virtual Machine.

2.5.1 Type erasure

The Java Virtual Machine (JVM) does not have support for generic classes.
Polymorphism needs to be “compiled away” so that the code presented to the
VM has no type parameters. There have been various proposals for adding
genericity to the Java language while keeping the current VM design, but all
can be roughly divided in two categories: those based on type erasure, and
those based on code specialization. Type erasure [11] is based on removing
type parameters and keeping a single version of the code, that runs on unmod-
ified JVMs. All type parameters are replaced by type Object, the top of the type
hierarchy, so generic code always operates on references. The alternative is to
generate specialized code for each (or some) type instantiation, removing type
parameters from generated code as well. The cost is increased code size (and
depending when specialization is performed, class load time) and complexity
of implementation3. A more detailed discussion follows in Chapter 6.

Similar to Java 1.5, Scala implements generics through type erasure. We
will use a few examples to show how to define and instantiate parameterized
classes, then how erasure transforms generic code. We begin by defining a
generic class for linked lists, similar to the one found in the standard library:

abstract class List[+A] {
def head: A
def tail: List[A]
def prepend[B >: A](x: B): List[B]

}

This introduces an abstract class for lists which has only three operations:
head, returning the first element of the list, tail, returning a list containing all
but the first element, and prepend, an operation for obtaining a new list con-
taining the given element followed by the current list. The plus sign in front
of the type parameter marks it as covariant, meaning that when List is instan-
tiated with types in a subtype relationship, lists of those types are themselves
in a subtype relationship. The signature of method prepend says that one can
prepend values of any type that is a supertype of A, and it gets back a list of
the less precise type. For instance, one can prepend a plain Object to a list of
strings, but it gets back a list of objects. This is safe, since strings are objects.

We continue by defining two concrete classes, one for empty lists and one
for lists carrying at least one element.

2In addition to three visible calls in the example, there is the call to apply; and this is without
counting constructor calls for the extra objects.

3Another concern when Java generics were considered was compatibility with pre-generics
code, which is ensured by the type erasure approach.
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case object Nil extends List[Nothing] {
def head = error("Head of empty list")
def tail = error("Tail of empty list")
def prepend[B](x: B) = new Cons(x, Nil)

}

case class Cons[+A](val head: A, val tail: List[A]) extends List[A] {
def prepend[B >: A](x: B) = new Cons(x, this)

}

The implementation classes are case classes, meaning they can be used in
pattern matching. Cons takes two parameters, head and tail, which are public
members and implement the inherited abstract methods.

Lists defined so far are not very useful, so we add a map method:

class List[+A] {
// .. same as before
def map[B](f: A => B): List[B] = this match {
case Nil => Nil
case Cons(x, tail) => tail.map(f).prepend(f(x))

}
}

Next we take a look at the code after erasure. As mentioned earlier, the
Scala compiler removes type parameters and generates a single version of the
code. Type variables are replaced by Object (more precisely by their upper
bound, but for simplicity this example uses only unbounded type parameters).

abstract class List extends java.lang.Object with ScalaObject {
def head: Object;
def tail: List;
def prepend(x: Object): List;
def map(f: Function1): List = this match {
case Nil => Nil
case Cons(x, tail) => tail.map(f).prepend(f.apply(x))

}
}

One can observe how the class definition does not take any type parame-
ters, and wherever A appeared before now stands Object. The function type
taken by map is desugared to (erased) trait Function1. For brevity we omit the
translation of the two concrete classes, and look next at an example that adds
one to each element of a given list:

val xs: List[Int] = // some list
xs map (x => x + 1)

The function is translated to an anonymous function, and after erasure the
code looks as shown in Figure 2.2.

Function literals are translated to anonymous functions that carry their code
in method apply. In this example map is instantiated at type Int, which is a primi-
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xs.map({
final class anonfun extends Object with Function1 with ScalaObject {
final def apply(x: Int): Int = x + 1
final @bridge def apply(v1: Object): Object = Int.box(apply(Int.unbox(v1)))

};
(new anonfun(): Function1)

}

Figure 2.2: Map example after erasure.

tive type. For efficiency reasons, the JVM distinguishes between primitive types
(numeric and boolean) and reference types, and provides different bytecodes
for each of them. Reference types are used exclusively for objects living on the
heap, while primitive types have value semantics.

In the type erasure model there is a single version of the generic code. Nat-
urally, that code needs to operate on the most general type possible, Object. To
accommodate primitive types, the compiler needs to add boxing and unboxing
operations whenever a primitive value is passed or received from generic code.
Boxing simply instantiates a carrier object living on the heap, and initializes it
to the given value.

Notice how this example has a second apply method, marked bridge. A
bridge method is a synthetic forwarder that implements an abstract method4

whose signature differs from the signature of the implementing method. The
reasons become clear when we look at how Function1 is erased:

trait Function1[+R, -A] {
def apply(x: A): R

}

trait Function1 {
def apply(x: Object): Object

}

After erasure, method apply is defined in terms of Object, but the imple-
menting method in the anonymous class is defined in terms of Int. The JVM
mandates that an overriding method has to have exactly the same signature as
the method that it overrides, so the compiler has to add a bridge method that
overrides the inherited method with the original signature, which performs the
necessary boxing and then delegates to the actual implementation.

Erasure may also need to add casts around the points where generic code
is instantiated. This is because a type parameter is erased to its upper bound
(in this example, Object), but the instantiation may be at a more specific type
(for instance, List[String]). Such casts are guaranteed not to fail, but they are
needed so that the JVM can verify the emitted code.

Now we can see better what overhead is incurred by a simple map call: each
element of the list is first unboxed, passed to the real apply method, incre-
mented and then boxed again. An optimizing compiler should eliminate the
overhead induced by boxing when it is known statically what closure is instan-
tiated and called. In fact, whenever the anonymous function is never stored nor

4The same solution is applied for overriding concrete generic methods.
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used more than once, the code should be inlined and the whole class should be
optimized away, saving both code size and memory footprint.

2.6 A look ahead

In this section we describe what techniques we use to eliminate the overhead
imposed by closures and erasure. A central concern of our design is to al-
low separate compilation. A more detailed description of the implementation
follows in the next chapters, while the coming sections focus on a conceptual
description of what is being performed during an optimized compilation run.

2.6.1 Compiler optimizations

Traditional optimizations techniques, like inlining, are not always effective.
Code is often spread across several compiled libraries, and many short-lived
objects on the heap make analysis harder. Difficulties arise from both control-
flow and data-flow imprecision: virtual, non-final methods cannot be resolved
statically, and values stored in objects on the heap (such as boxed values) hide
their flow.

We put forward a number of optimizations implemented in the Scala com-
piler: a boxing optimization (that removes unnecessary boxing and unboxing
operations), a type-propagation analysis (that obtains more precise types for
values on the stack and local variables) and a copy-propagation optimization
(that has a simple heap model handling common object patterns like boxed val-
ues and closures). All these would be of little use for library code, unless the
compiler had a way of analyzing libraries. The Scala compiler is using a byte-
code reader for reading back compiled code into the intermediate representation
on which the optimizer works.

The optimizer is organized as a series of phases that operate on an interme-
diate representation called ICode. In a first phase, methods are inlined. Then
a copy-propagation phase tries to remove all references to the closure object
(or environment). A dead-code elimination pass removes unnecessary assign-
ments, mainly coming from the inlining phase, and all unreferenced closure
objects (including their class).

Inlining

Automatic inlining, or procedure integration, replaces method calls with their
bodies [36]. This is an extremely useful optimization, because besides saving
the overhead of the call, it allows one to optimize a method in the context of
the caller. The additional information gained by this step may statically resolve
calls to other methods, allowing further integration.

In Scala, this step is essential for eliminating closures:

xs.foreach(x => print(x))
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Suppose the compiler inlines foreach and brings the loop in the context of the
caller. The function application inside the loop can now be resolved and re-
placed by a simple call to print (a second inline step).

Before inlining can take place, method calls have to be resolved. A method
call is resolved when there is a single possible implementation that could be
called. Method resolution has been studied extensively in the context of opti-
mizations for object-oriented languages [50, 22, 14, 8].

The Scala compiler uses a fairly expensive analysis to derive precise types
for local variables. The goal of this analysis is to resolve method calls. Al-
though the JVM performs inlining when it compiles methods to native code,
it does so only when a method is final or when the receiver class provides the
only implementation loaded in the VM [44, 29]. This technique (Class Hierar-
chy Analysis [14]) is very fast and works well when there is at most one imple-
mentation of an interface method. This is not our case of interest: all method
calls to FunctionN.apply are truly polymorphic, since it is very likely that more
than one implementation of such a trait exists in the system (the standard li-
brary alone has more than 1200 anonymous functions). Instead, our data flow
analysis aims to derive the most precise type possible for the receiver object.
It turns out that in most cases this is the anonymous function type, which is
final and statically known. Since we are not relying on whole–program analy-
sis, the inliner can inline only final methods. This is not a problem in our main
cases of interest, closures: they are always final classes that extend a FunctionN
interface.

The decision to inline is taken based on method size (calls inside small
methods are usually poor choices, as the JVM native compiler already favors
small methods). Higher-order methods are preferred for inlining, as they usu-
ally allow complete elimination of their argument. In our previous example,
inlining method map allows, in a next step, to inline the anonymous function
given as argument.

The analysis and inlining phase are repeated until a fix point is reached (no
more methods can be inlined) or a size limit is reached. This ensures reasonable
compilation times and method sizes (as mentioned before, large methods take
a penalty hit as the JIT compiler is more reluctant to compile them).

Copy propagation

Copy propagation is a transformation that replaces the use of a variable x with
another variable y, as long as there is a previous assignment x = y, and the two
variables have not been changed between the definition and the point where x
is used [36].

This phase is trying to infer what values passed in the closure environment
can be accessed from the method environment. In other words, the analysis
tells whether fields of the anonymous class can be proved to be the same as
some local variable available in the enclosing method. This case is common
after inlining both a higher order function (such as foreach) and the closure’s
apply method.
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Compared to the textbook version of copy propagation, this analysis adds
a simple model of the heap: in addition to local variables and stack positions,
values of objects on the heap that are reachable from locals or stack are mod-
eled as simple records. Such records are populated when known constructors
are invoked. Examples of constructors that can create non-empty records on
the heap are closure constructors (which populate the record with the cap-
tured environment), case class constructors (which populate the record with
the given case arguments) and box methods (which populate the record with a
single field, the boxed value).

Once the analysis has determined copy-of relations between locals and val-
ues on the heap, it proceeds by replacing them by the cheapest operation. At
the end of this phase, boxed and closure objects may be unreferenced, and they
will be cleaned up by the next phase.

Dead-code elimination

A variable is dead if its value is not used on any control flow path starting at
its definition. Instructions that compute values that are never used are also
dead [36]. Such code is likely to appear as a result of the previous optimization
phases.

The last optimization phase is cleaning up dead code. It uses a standard
mark and sweep algorithm: in a first phase, useful instructions are marked,
then in a second phase all instructions not marked are removed.

To mark useful instructions, the algorithm starts with instructions that are
known to be needed, like those that produce the return value of a method,
and side-effecting methods. Then, based on reaching definitions, it recursively
marks all instructions that create the definitions used by marked instructions.
By the end of this phase there might be altogether unreferenced closure classes:
they are removed completely and no code is generated for them.

2.6.2 Opportunistic specialization

Type specialization is complementary to optimizations, and targets the over-
head resulting from type erasure. The Scala compiler proposes a novel way of
specializing generics on-demand, by definition-site annotations on type param-
eters. For instance, the definition of Function1 could be

trait Function1[@specialized R, @specialized A] {
def apply(x: A): R

}

By default, the Scala compiler specializes Function1 for all combinations of
primitive types for R and A. The generic class is augmented with specialized
variants of method apply, and a number of additional classes is generated, car-
rying specialized definitions of apply. For example, the type Int => Int would
look like
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xs.map({
final class anonfun extends Object with Function1$IntInt {
final def apply$IntInt(x: Int): Int = x + 1
final def apply(v1: Object): Object = Int.box(apply$IntInt(Int.unbox(v1)))

};
(new anonfun(): Function1)

}

Figure 2.3: Specialized map example

trait Function1[+R, -A] {
def apply(x: A): R
def apply$IntInt(x: Int): Int
def apply$IntLong(x: Int): Long
// all combinations of primitive types

}

trait Function1$IntInt {
def apply$IntInt(x: Int): Int
def apply(x: Object): Object =
Int.box(
apply$IntInt(Int.unbox(x)))

}
This specialized interface offers now two methods that “do the same thing”:

one has a specialized signature that does not need boxing and runs at full-
speed, and a generic signature that may work with any object, but which re-
quires boxing. The compiler makes sure the implementations are “in-sync”, by
deriving the specialized version from the user-defined method.

The generic apply found in the specialized subclass is similar to the bridge
method seen in Section 2.5.1. The difference is that specialized versions of
apply are promoted to the generic interface, and accessible to code that does
not know the exact subclass of Function1 they are dealing with. This allows the
compiler to reroute calls to the specialized variant without knowing the pre-
cise subclass where it is implemented. The bridging is needed to keep the two
methods in-sync.

Users of this interface may now call the specialized method whenever the
static type context allows it. Similarly, instantiations of generic classes are op-
portunistically rewritten to a specialized subclass whenever the static type in-
dicates it is possible. Figure 2.3 shows the map example when specialized:

Assuming method map is defined in a context where the element type is
known to be Int (for instance the list class is specialized as well), it will call
the specialized version of apply, apply$IntInt, skipping boxing/unboxing al-
together. However, specialized instances are compatible with unspecialized
code, and a generic version of apply still exists, and delegates to the special-
ized version. This allows the compiler to specialize only parts of the program,
and supports separate compilation. A complete description of this technique
follows in Chapter 4



Chapter 3

Optimizations

Although personally I am quite
content with existing explosives, I
feel we must not stand in the path
of improvement.

Winston Churchill

3.1 Introduction

Ever since programming languages began the race for more expressiveness
and higher abstraction, compiler writers have been fighting to bring their cost
down. As shown previously in § 2.5, there is an abstraction penalty for using
some of the high-level features of Scala. Higher-order functions and boxing
are examples of costly, but also highly-used and useful features of the lan-
guage. Their compilation scheme cannot be improved in the general case, but
we identify cases when the full generality is not needed and show how they
can be optimized.

Scala targets the Java Virtual Machine1. There is an important body of work
on dynamic optimizations implemented in the JVM (see § 6.2.3). VMs have
evolved considerably from interpreters to high-performance just-in-time (JIT)
compiled runtimes [6]. Adaptive optimization relies on identifying hot-spots
through runtime performance counters, and then directing the JIT compiler to
those methods. By focusing on the code that gets executed the most, the VM
can spend more time optimizing the code that yields the best payoff.

Some of the optimizations performed by JIT compilers are the “classical”
optimizations like value numbering, constant propagation/folding, common
subexpression elimination [29, 49, 44, 5]. Scala benefits from these optimiza-
tions, and there is little incentive to duplicate them in the Scala compiler. How-

1There is a second backend targeting the .NET platform.

33
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ever, the main observation is that such optimizations happen inside a method,
and inlining can easily miss opportunities in languages with higher-order func-
tions like Scala. Looking again at the foreach example, the VM may decide to
optimize it, but looking at the call-site it may not be able to inline the function
application, simply because foreach is called with many different functions:

override def foreach[U](f: A => U): Unit = {
var i = 0
val len = length

while (i < len) { f(this(i)); i += 1 }

}

The call to f is truly polymorphic, and there may be thousands of implementa-
tions of unary functions. To correctly handle such cases one needs the context
of the foreach call, or a context-sensitive analysis. We opted for inlining, which
is simpler and gives good results (see § 3.3.1 for details on the decision proce-
dure).

The JVM was designed mainly for running Java, and consequently the op-
timizations are geared towards this language. For the first 8 years of its exis-
tence, Java did not have parameterized types [11], and higher-order functions
are missing still [43]. Both features are essential to Scala and require optimiza-
tion for good performance, but because of the differences between the two lan-
guages (generics can not be instantiated with primitive types in Java) the VM
does not tackle them aggressively enough.

We propose a solution based on more aggressive inlining across compila-
tion units, and complete elimination of closure objects whenever their envi-
ronment can be inlined. As a beneficial side-effect, boxing can be removed
altogether while inlining closures. The next sections describe the optimizing
phases in the Scala compiler, starting with the intermediate representation, the
bytecode reader, then moving to the data-flow analysis infrastructure and fi-
nally the optimization and analysis phases.

3.2 Compiler infrastructure

The Scala compiler is organized in a sequence of phases, each one translating
the input language into a simpler form, until the program is close enough to
Java to make code generation simple. The front-end uses an abstract syntax
tree (AST) that is passed between phases, while the backend uses ICode, a stack-
based intermediate representation similar to Baf [55] and JIR [15].

A summary of the phases is depicted in Figure 3.1. Most of the transforma-
tions are done on the AST, and many of the interesting ones, like lambda lift-
ing (constructing environments for free variables in lambda terms) and mixin
(mixin composition, a form of multiple inheritance based on traits [46, 40]) are
performed after type erasure. The ICode phase translates the AST to ICode,
which is then used for several optimization phases, and code generation. The
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Figure 3.1: Scala compiler phases and intermediate representations

last phase, JVM, can be replaced by another backend. Currently, there is a sec-
ond backend which targets the .NET platform.

3.2.1 Intermediate representation

ICode is a relatively standard control-flow graph based intermediate represen-
tation [36]. It is designed to be close to Java bytecode in order to facilitate byte-
code parsing, but still be suitable for other target architectures, like the .NET
platform. ICode is best introduced through an example:

val xs: List[Int]
def sum(start: Int, end: Int) = {
var i = start
var sum = 0
while (i < end) {
sum += xs(i)
i += 1

}
}

This method is defined inside a class, but for clarity we ignore the details
around sum. The code loops on the elements of a List of integers and sums
them up.
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RETURN (UNIT)

LOAD_LOCAL value start
STORE_LOCAL variable i
SCOPE_ENTER variable i
CONSTANT (0)
STORE_LOCAL variable sum
SCOPE_ENTER variable sum
JUMP 2

LOAD_LOCAL variable i
LOAD_LOCAL value end
CJUMP (INT)LT ? 3 : 5

LOAD_LOCAL variable sum
THIS
CALL_METHOD Foo.xs (dynamic)
LOAD_LOCAL variable i
CALL_METHOD LinearSeqOptimized.apply (dynamic)
UNBOX INT
CALL_PRIMITIVE Arithmetic(ADD,INT)
STORE_LOCAL variable sum
LOAD_LOCAL variable i
CONSTANT (1)
CALL_PRIMITIVE Arithmetic(ADD,INT)
STORE_LOCAL variable i
JUMP 2

Figure 3.2: The control-flow graph of the sum method

The ICode representation is shown in Figure 3.2. Each basic block is a se-
quence of instructions, and there is only one entry point, at the beginning of the
block. Each instruction is executed in sequence, the last instruction is a control-
flow instruction (jump, return or switch), and edges connect blocks with their
successors. Blocks are referenced by their label, which is simply an integer
value.

Similar to Java bytecode, ICode has both local variables (accessed through
LOAD_LOCAL and STORE_LOCAL, and referred by their symbolic name) and an ope-
rand stack. This decision was taken to ease parsing compiled libraries and
avoid the problem of generating good stack-based code from register-based
code (see Raja et al for a discussion of this issue [55]). Furthermore, the rela-
tively simple optimizations we implement would not justify the effort and cost
of a more advanced IR like SSA.

Instructions are pretty straight forward, and most of them take their ope-
rands from the stack, where they store back their result. The SCOPE_ instructions
are special and are discussed later in this section. All instructions are typed,
for instance CJUMP is a conditional jump on an integer, using the top of the stack
to decide where to jump. Primitives are multiplexed through CALL_PRIMITIVE,
which is parameterized with the type of the operands and the actual operation
to perform. One last thing to note in this example is the use of UNBOX, which is a
primitive in ICode, taking the top of the stack and unboxing it to the specified
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overed by 6

LOAD_LOCAL value start
STORE_LOCAL variable i
SCOPE_ENTER variable i
CONSTANT (0)
STORE_LOCAL variable sum
SCOPE_ENTER variable sum
JUMP 2

LOAD_LOCAL variable i
LOAD_LOCAL value end
CJUMP (INT)LT ? 3 : 5

LOAD_LOCAL variable sum
THIS
CALL_METHOD Foo.xs (dynamic)
LOAD_LOCAL variable i
CALL_METHOD LinearSeqOptimized.apply (dyn)
UNBOX INT
CALL_PRIMITIVE Arithmetic(ADD,INT)
STORE_LOCAL variable sum
LOAD_LOCAL variable i
CONSTANT (1)
CALL_PRIMITIVE Arithmetic(ADD,INT)
STORE_LOCAL variable i
JUMP 2

RETURN (UNIT)

STORE_LOCAL value e
LOAD_MODULE object Predef
CONSTANT ("NPE")
CALL_METHOD Predef.println (dyn)
 JUMP 2

NullPointerException

Figure 3.3: The control-flow graph of sum with exception handlers

primitive type.

Exception handlers

Exception handlers complicate a bit the design of basic blocks. Suppose we
add a handler around the body of sum

def add(start: Int, end: Int) = {
var i = start
var sum = 0
try {
while (i < end) {
sum += xs(i)
i += 1

}
} catch {
case e: NullPointerException => println("NPE")

}
}

It would be too tedious to break each basic block after every instruction that
might throw an exception, since that is the case for most of them. Instead, sim-
ilar to [15], we consider exceptional successors as special edges, and represent
each handler as a pointer to the starting block of a handler, a list of covered
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blocks, and the type of the exception that is caught. Note in Figure 3.3 how
the exception handler covers the loop body and the test, but not the return
instruction.

ICode structure

Program code is represented as a set of ICode classes, and each class in turn is
composed of fields and methods. All definitions are referred by their symbolic
name, which uses the same entry in the symbol table as all the previous phases.

The Scala compiler assigns a symbol to each definition in a program. Distinct
definitions may have the same name, but they get different symbols during
name resolution, right after parsing. In turn, each symbol has a type which may
refer to symbols, such as Int or List[Int]. We chose to use the same represen-
tation for symbols in the backend in order to reuse the existing infrastructure,
such as overloading resolution and subtype tests.

Methods carry the code associated with a method (represented as a list of
basic blocks and the entry point) and provide factory methods for basic blocks
and local variables. Related functionality, like merging basic blocks that form
a straight sequence is also provided at this level (such code may arise after
inlining, for instance).

Local variables, just like every other definition, use a symbolic name. When
translated to bytecode, local variables are assigned to slots, which are more like
registers: they can be used for values of different types, as long as the defini-
tion and use are compatible. While the Scala compiler maps local variables to
slots on a one-to-one basis, statically typed locals add complexity to bytecode
parsing: types have to be inferred for slots, which might not be always possible
if the bytecode was generated by other compilers (see § 3.2.2).

Instructions are implemented as case classes, and all instructions carry some
additional information, such as the number and types of consumed values off
the stack, the line number from which they were generated, and the number of
values pushed on the stack.

ICode has the usual structural requirements for stack-based code, such as
the stacks at each control-flow merge point have to have the same sizes and
be pairwise type-compatible. Each instruction is typed, and the static types of
local variables and stack have to match the expected types of the instruction
(very much like Java bytecode).

Locals and constats

LOAD/STORE_LOCAL, THIS/STORE_THIS, CONSTANT. Their meaning is straight-forward:
the load instructions put the variable on top of the stack, stores pop it off the
stack and place it in the given variable. The current instance is handled spe-
cially through THIS. Constants load their value on top of the stack.
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Object manipulation

LOAD/STORE_FIELD, LOAD_MODULE, IS_INSTANCE, CHECK_CAST, MONITOR_ENTER/EXIT, BOX,
UNBOX, NEW. Loading and storing a field operates on the object instance found
on top of the stack. The field is specified through its symbol, as an argument
to the instruction. Instance checks and casts check that the object on top of the
stack has a given class type (specified as a symbol). The last two instructions
are used to enter and exit synchronized blocks, by entering/exiting the monitor
represented by the object on top of the stack.

BOX/UNBOX are used to turn primitive types into their wrapper object. They
are parameterized with the type of the primitive.

NEW creates an instance of a class type. As in Java bytecode, the instance is
not initialized. A constructor has to be called explicitly before the object can be
used. To make analyses simpler, we keep around a def-use chain between a call
to NEW and the corresponding constructor call.

LOAD_MODULE places on top of the stack a Scala top-level object. In the JVM
backend, top-level objects are translated to an implementation class and a syn-
thetic static field, initialized on first acces. This instruction is translated to a
load of the corresponding field, but having an explicit operation at the ICode
level gives freedom of implementation for other backends.

Array manipulation

CREATE_ARRAY, LOAD_ARRAY_ITEM, STORE_ARRAY_ITEM. An n-dimensional array is
created by pushing on the stack the size on each dimension. The instruction is
parameterized with the element type and the number of dimensions. The in-
structions for loading and storing elements are parameterized with the element
type. The array object and index are taken, as usual, from the stack.

Primitives and methods

CALL_PRIMITIVE, CALL_METHOD. Primitives are multiplexed, and they are divided
in arithmetic, test, logical, conversion, array length and string concatenation.
The reason for the last two is that their implementation is platform dependent.
In addition to the specific primitive, the instruction takes the type of the ope-
rands.

Methods can be called with different conventions: dynamic (normal virtual
call), static (no receiver object) and special (static dispatch but with a receiver
object – used for constructors and private methods). These conventions are
taken directly from Java.

Control flow

JUMP, CJUMP, CZJUMP, SWITCH, RETURN, THROW. All control-flow instructions specify
their targets using basic block labels. CJUMP compares the two values on top of
the stack using the provided test operator and jumps to either of two blocks.
CZJUMP is similar, but compares the top stack value to zero.
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SWITCH takes an array of block labels and jumps to the one corresponding to
the top of the stack, taken as an index into the array. The last value in the array
represents the default destination.

RETURN is parameterized with the type of the returned value, and causes
the control flow to leave the current method. If the type is UNIT, no value is
returned to the caller, and the stack may be empty.

THROW raises an exception using the value on top of the stack. We use the
Java semantics for exceptions: a throw transfers control to the exception handler
that covers the current block, and which handles an exception type that is a
supertype of the raised exception. If there is no matching handler, the search
continues up the runtime stack until a matching handler is found. If none is
found, the thread is terminated [32].

Stack manipulation

DUP, DROP. DUP duplicates the top of the stack. It is parameterized with the type
of the stack element it duplicates. DROP(n) pops n elements off the stack.

Miscellaneous instructions

SCOPE_ENTER/EXIT, LOAD_EXCEPTION. Debugging information is kept around at
the instruction level, and local variable scope is delimited by SCOPE_ENTER/EXIT
instructions. They have no runtime effect. LOAD_EXCEPTION represents the VM
operation of loading the exception object on top of the stack when executing
an exception handler. It does not generate any executable code, but it makes
the optimization phases more uniform, by having all values on the stack be
produced by some instruction.

3.2.2 Bytecode reader

One of the goals of this work is to optimize higher-order functions like foreach

and map. While definitions of these functions are relatively rare in user code,
almost all collection classes implement these methods. We need a way to an-
alyze and inline them without requiring the source code. To this purpose we
implemented a parser from Java bytecode to ICode.

There are several issues to be considered when lifting low-level bytecode to
ICode: name resolution, local variable typing, def-use chains for object initialization
and abstraction recovery. We begin by looking at the simple cases and then move
on to describe each issue in more detail.

Basic blocks

A first pass over the bytecode translates every instruction into its equivalent
ICode instruction. For the most part, there is a direct translation for each Java
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bytecode. Preliminary ICode is stored into an array, and each jump target ad-
dress is recorded, while jump instructions are translated into pseudo jumps re-
ferring to the pc address. After this pass all basic block boundaries are known,
and empty blocks are created for each jump target. A second pass over the code
translates pseudo-jumps to proper jumps in terms basic blocks, and distributes
each instruction to its own basic block.

Name resolution

ICode uses symbols to refer to classes, methods and fields. These are the same
symbols used by the compiler for the front-end, so we need a way to get back to
symbols from the (sometimes mangled) names in bytecode. To see why this is
important, imagine parsing method map, which at some point calls its function
parameter f on its elements:

..
CALL_METHOD scala.Function1.apply()
..

The optimizer needs to know that the called method is in fact the same apply

method that is implemented by the closure that is passed in the call to map.
Name resolution is problematic because Scala uses a number of techniques

to compile features that have no direct correspondence in Java.

splitting Traits are similar to interfaces (essentially, they can be inherited multiple
times) but can have concrete methods. Since the JVM does not support
this feature, a trait is split into an interface and an implementation class.
The implementation class carries concrete method implementations as
static methods. The bytecode reader has to match the class and interface,
and enter the method in the right scope. In a similar way, objects and their
companion class are two different classes for the same symbolic name.

mangling Name mangling is used pervasively. Inner classes, top-level objects, pri-
vate members of traits, to name a few of the cases where this occurs.
Most symbol types are computed lazily, so the bytecode reader may read
a name that does not exist yet in the symbol table, even though it is part
of the program. For instance, inner classes are not added to the package
scope2 unless they are referenced. Suppose the following method call is
parsed:

CALL_METHOD Outer$Inner.bar()

The symbol table contains an entry for class Outer, and initially class Inner
appears as a member of Outer. After lambda lifting, inner classes are
lifted top-level and their names are mangled. The resulting top-level class
is Outer$Inner. The lazy nature of typing delays the lifting unless the
outer class is referenced somewhere in the source code that is currently

2This is done in phase Flatten, when inner classes are lifted to top-level
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compiled. Supposing the bytecode reader encounters that mangled name
for the first time, it has to force the outer class to find the right symbol.

There are situations in which the name cannot be resolved to a symbol that
exists already. Such is the case for anonymous functions, which being local to
the method where they are defined, are not part of the interface of any class. In
this case the name resolver simply creates a new symbol.

Local variables

ICode requires that each local variable is typed. While Scala-generated byte-
code always follows this requirement, javac is more liberal, and may use slots
for different types. We take a very simple approach: each local acquires the
type of its first use. If a subsequent use demands a different, unrelated type,
we create a new local variable. This proved to work well in practice, leading
to very few “spills”. Unlike Miecznikowski et al., we do not try to recover an
image as close as possible to the original source code [34], and that allows more
freedom in the way we handle local variables.

In order to remain sound, we lose some type information: the type of a lo-
cal variable can be only a primitive type (boolean, int, long, double, float) or
Object. We also assume that the bytecode is verifiable by the JVM [32]. This
makes any type-conflict of a local variable to correspond to different local vari-
ables in the source code.

To see that this is the case, consider a read of slot x. Bytecode is typed,
therefore any read or write to x mentions a type (one of the 5 primitive types
plus the reference type). Verifiable bytecode implies that every read of a slot x
using a type T has an assignment to x using the same type T on all control-flow
paths leading to it. Therefore, the pair 〈x, T〉 unambiguously determines all
verifiable uses of slot x. If we need to split a slot, it means we encounter an
instruction that uses x with an incompatible type T′, and verifiability implies
that all assignments that flow into (or uses flowing from) the current instruc-
tion will be done using T′.

Gagnon et al. describe a more advanced approach to infer types for local
variables in bytecode [16], but for our purposes the lack of more precise refer-
ence types was not a problem. Type-flow analysis recovers most types during
inlining (see § 3.3.1).

Object initialization

As explained in § 3.2.1, NEW instructions link to the corresponding constructor
call. This def-use chain has to be recovered from bytecode. To see why this is
not trivial, consider the following example:

new Pair(new A, new B)

and the resulting ICode shown in Figure 3.4. Notice that there may be any
number of instructions (including other NEW or constructor calls) between a NEW
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NEW REFERENCE(scala.Tuple2)
DUP
NEW REFERENCE(A)
DUP
CALL_METHOD A.<init>
NEW REFERENCE(B)
DUP
CALL_METHOD B.<init>
CALL_METHOD scala.Tuple2.<init>

Figure 3.4: ICode for instantiating a pair.

and its corresponding initialization call. In fact, the two instructions don’t need
to be in the same basic block:

new Pair(if (n > 0) new A else new B, new B)

This is a global data flow analysis problem, and we rely on a classical reach-
ing definitions analysis to recover the def-use chain for uninitialized objects.

Abstraction recovery

Even though ICode and Java bytecode are very similar, there are a number of
operations that require special treatment in the parser:

dup_x1/2 Duplicate and exchange bytecodes are not supported in ICode. The top
element of the stack is duplicated and inserted two values down the
stack. The operation is simulated using temporary variables (occurs fairly
rare in practice).

iinc Increment local variable by a constant. Simulated using arithmetic oper-
ations.

modules Loads of the special module instance variable are converted back to one
LOAD_MODULE instruction.

box/unbox Calls to the runtime library that box/unbox primitive values are con-
verted to explicit BOX/UNBOX operations.

3.2.3 Data Flow Analysis framework

To facilitate the implementation of various data flow analyses in the compiler
we provide a simple framework for iterative forward and backward data flow
analysis [38]. The framework is parameterized with a semilattice, that can im-
plement different abstracts values of the analysis domain. The semilattice is
specified in terms of the Scala type of the domain values, and an implemen-
tation of the least upper bound of two abstract values. For instance, suppose
we are interested in liveness of local variables [38]. A variable is live at a cer-
tain program point if there is at least one path in the control-flow starting at
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that program point on which the variable is used without being reassigned in
between. The lattice is implemented as follows:

object livenessLattice extends SemiLattice {
type Elem = Set[Local]

val top: Elem = new ListSet[Local]
val bottom: Elem = new ListSet[Local]
def lub2(exceptional: Boolean)(a: Elem, b: Elem): Elem = a ++ b

}

The abstract values of this analysis are sets of variables. When two control-flow
paths merge, the result is the union of the two sets. Intuitively, variables that
are live on either of the two possible control-flow paths are live at a split point.

The analysis is fully implemented by providing an implementation for the
transfer function of a basic block. The transfer function takes a basic block and
the current value at the exit of the block (for a backward analysis like liveness)
and returns the value at the entry of the block:

def blockTransfer(b: BasicBlock, out: lattice.Elem): lattice.Elem =
gen(b) ++ (out -- kill(b))

where the gen and kill sets describe the effect of a basic block on local vari-
ables [38]. gen contains variables that get a new value while kill are those
whose value is invalidated by operations inside b.

The framework provides an implementation of a worklist algorithm for
computing a fix-point of the transfer functions.

3.3 Optimizations

3.3.1 Inlining

Inlining is the basis on which other optimizations build. Bringing the callee
into the caller provides more context for analysis and opportunities for opti-
mizations, so it is very important to be able to inline “interesting” methods,
such as map or foreach, in order to get to the ultimate goal: inline closure meth-
ods and remove anonymous function objects altogether.

Inlining depends on being able to statically resolve a method call: to know
which implementation is going to be selected at runtime. As described in
detail in § 6.2.1, numerous techniques have been proposed in the literature
[50, 22, 7, 14, 45]. All of them require the whole-program, and most impor-
tantly they are not precise enough: Class Hierarchy Analysis (CHA) consid-
ers only methods implemented in subtypes of the static type of the receiver,
while Rapid Type Analysis (RTA) prunes them further by keeping only those
instances that appear in a call to new. Considering the most important use-case,
that of closures, the static type of the receiver is always one of the FunctionN

traits. They have literally hundreds of implementations in a normal program
(1200 in the standard library alone). All of them are instantiated.
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lub(x 7→ T1, y 7→ T2) = x 7→ lub(T1, T2) for x ∈ x ∩ y

lub([T1, rest1], [T2, rest2]) =


[T1] if s1 is exceptional
[T2] if s2 is exceptional
[lub(T1, T2), lub(rest1, rest2)] otherwise

lub(〈v1, s1〉 , 〈v2, s2〉) = 〈lub(v1, v2), lub(s1, s2)〉

Figure 3.5: Type Flow Analysis lattice

Our technique is pretty straight forward: propagate types from allocation
sites to the call site, through local variables and stack slots. This is similar to
Sundaresan’s VTA [50], but instead of propagating through the whole program
(collapsing methods into one single node in the call graph), we propagate only
inside the method. The types are flow sensitive (meaning we may have more
precise type for a variable on one of the branches), and the inlining decision can
be taken only if the method is final (because we do not have a whole-program
assumption).

Type flow analysis

Type Flow Analysis (TFA) infers the type of local variables and stack elements
at every point in a method. We use a classical forward data flow analysis,
formulated in terms of a type lattice. We begin by defining the type lattice,
which is composed of the 9 primitive types and the class hierarchy, having the
usual subtyping semantics.

The abstract values of this analysis are pairs of local variable state and stack
state: 〈

x 7→ T, [T1, T2, . . . Tn]
〉

The first element of the pair maps local variables to types, while the second
element is a list of types corresponding to the stack.

We define the ordering relation by a least upper bound operation on the
elements of this lattice. We base the operation on the implicit ordering rela-
tion defined by the subtyping relation on Scala types, and define a least upper
bound for bindings and stacks, as shown in Figure 3.5. Special care has to be
taken for control-flow paths involving exceptions. There may be control-flow
merge points at the beginning of an exception handler (for instance, when dif-
ferent basic blocks are covered by the same exception handler). The least upper
bound in that case has to be the special exception handler stack, containing ex-
actly one element, of the type of the exception being caught. This is a direct
consequence of the semantics of Java exception handlers: when an exception
handler is invoked, it has exactly one value on the stack (the exception that
was thrown). Figure 3.6 shows an exception handler covering an object in-
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NEW Pair
DUP
LOAD_LOCAL n
CZJUMP 2 : 3

NEW REFERENCE(A)
DUP
CALL_METHOD A.<init> 
JUMP 4 ...

NEW REFERENCE(B)
 DUP
CALL_METHOD B.<init> 
JUMP 4

...

new Pair(if (n > 0) new A else new B, new B)

Figure 3.6: Control-flow merge point for exception handlers. The exception
handler is a successor of all other basic blocks.

stantiation. The exception handler is a successor of all other basic blocks, but
their output stacks may not necessarily have the same number of elements nor
types. The least upper bound of any set of stacks flowing into an exception
handler is the special exception handler stack. Interestingly, this does not af-
fect local variables, whose state is valid in the exception handler, and whose
least upper bound proceeds the normal way.

The analysis is defined in terms of an abstract state and the effect of each
ICode instruction. Since all instructions are typed, it is very straightforward
to model their effect on the stack and local variable environment. The only
instructions that may introduce more precise types are NEW and CHECK_CAST.

Inlining

TFA provides more precise types at a call site than the static type of the receiver.
If the type is precise enough to identify only one possible method implemen-
tation, and that method is final, a decision to inline may be taken. The decision
depends on safety and heuristic criteria.

Assuming the icode for the callee method m is available, inlining is safe
inside method c when all of the following are true:

visibility Method m does not access any private members, or if it does, both m and
c are in the same compilation unit. In the latter case, the member is made
public.

hierarchy Method m does not call methods through super.
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stack-compatibility If m has exception handlers, the stack in c at the call-site has to be empty
(except for the arguments to m). The reason is that if an exception occurs,
the VM would drop all elements off the stack, losing everything that was
on the stack before the call to m. Without inlining, the exception may be
caught inside m and the caller stack would be unaffected.

recursive Method m is not recursive. Even though theoretically this is safe, it makes
little sense, given that tail recursive calls have been already turned into
jumps by an earlier phase.

The heuristics for inlining are taking into account the type of the method,
its size, and the combined sizes of the two methods:

+1 The callee is small (one basic block with less than 10 instructions).

+1 The callee is a higher-order method (but not monadic).

+3 The callee is a monadic method (one of foreach, map, flatmap, withFilter).

+2 The callee is the apply method of a closure.

-1 The caller was straight-line code, and gets turned into a method with
more than one basic block.

-1 The callee is a large method.

-2 The callee has been inlined more than twice already in the same method.

This heuristics are used to compute a score for each call-site and callee. If the
score is above 0, the optimizer decides to inline. We noticed that too much in-
lining can hurt performance by increasing the time spent in the JIT compiler,
so we increased the cost of the first inline operation by staring with a negative
score. After one inline decision has been taken, the initial score is zero for fur-
ther call-sites in the same method, allowing more inlining to occur, for instance
in the body of the recently expanded method.

We also penalize inlining inside closure apply methods, even though this
means we miss some opportunities to eliminate closure classes. The reasoning
is that if a method can be statically resolved inside a closure, it will also be
statically resolved when the closure is itself inlined. Cascading inlines of this
sort are much more likely to yield good results, since they can reveal nested
loops, while a large expanded closure is unlikely to benefit from it unless itself
inlined.

The heuristics can be overridden by the user, who can demand a method to
be inlined whenever it is safe to do so, by using the @inline annotation.

The decision to invoke the bytecode reader when the ICode of a class is
not available is driven by another set of heuristics. All methods in the scala
runtime may trigger loading, together with methods annotated with @inline

and final monadic methods.
Inlining proper is relatively straight-forward, although there are a few places

that require special attention:
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• The active exception handlers at the call site are extended to cover the
inlined blocks. Exception handlers in the callee are merged into the caller.

• def-use chains between object instantiation and initialization have to be
updated to the new context. Each occurrence of NEW is recorded in a ta-
ble, mapping the old constructor call with the new instance of the NEW
instruction. A pass through the table at the end of inlining updates all
chains to the new instructions.

• RETURN instructions executing on a stack with more than one element have
to be adapted by dropping the surplus.

Inlining is applied iteratively until reaching a fixpoint, or the maximum
number of inline operations. At the end of inlining there is a normalization
pass through the method control-flow graph, which removes unnecessary jumps.
A sequence of basic blocks that have a single predecessor and a single succes-
sor is collapsed into one basic block.

3.3.2 Copy propagation

The goal of this optimization pass is to remove as much indirection as possible.
We are interested mostly in finding pairs of local variables and object fields that
have the same value, and replacing field loads by local loads. The success of
this phase depends on the ability of the inliner to inline interesting methods,
like higher-order functions and their closure arguments. For example, consider
this for loop:

def sample {
val d = 1
for (i <- 1 to 10) println(i + d)

}

The actual code after for-comprehension expansion and implicit application is
(see § 2.5):

def sample(): Unit = {
val d$1: Int = 1;
Predef.intWrapper(1).to(10).foreach(new Foo$$anonfun$1(Foo.this, d$1))

}

and the anonymous function is expanded to the following closure class:

final <synthetic> class Foo$$anonfun$1 extends runtime.AbstractFunction1 {
final def apply(v1: Int): Unit = Predef.println(Int.box(v1.+(this.d$1)))
final <bridge> def apply(v1: Object): Object = {
apply(Int.unbox(v1));
runtime.BoxedUnit.UNIT

}
<synthetic> private[this] val d$1: Int = _;
def this($outer: Foo, d$1: Int): Foo$$anonfun$moo$1 = {
this.d$1 = d$1;
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CONSTANT (1)
STORE_LOCAL value d$1

...
LOAD_LOCAL value d$1
CALL_METHOD Foo$$anonfun$1.<init>

...

LOAD_LOCAL variable i0
LOAD_LOCAL variable last0
CJUMP (INT)NE ? 13 : 14

LOAD_LOCAL variable f0
LOAD_LOCAL variable i0
STORE_LOCAL variable boxed10
LOAD_LOCAL variable boxed10
BOX INT
STORE_LOCAL variable v10
STORE_LOCAL variable $inlThis4
LOAD_LOCAL variable $inlThis4
LOAD_LOCAL variable v10
UNBOX INT

...
LOAD_LOCAL variable $inlThis5
LOAD_FIELD value d$1

Figure 3.7: Closure elimination: box and unbox pairs and field loads can be
replaced by a LOAD_LOCAL

super.this();
}

}

Notice how the closure has captured local value d from the method environ-
ment, and how the environment is constructed by passing the outer class and
the captured variables to the anonymous function constructor. Suppose that
after inlining, most of these methods have been inlined, including foreach and
Function1.apply (remember that foreach is defined in terms of the Function1

interface). The closure phase should be able to infer that v1 + this.d$1 can be
rewritten to v1 + d$1.

The analysis infers copy relations between local variables and other locals,
fields and constants. Figure 3.7 shows part of the ICode of method sample after
inlining. The dotted arrows show interesting relations between costly opera-
tions. The field access in the closure can be traced back to the local variable as-
signment, through the constructor call of the anonymous function. The unbox
operations can be paired with the earlier box, and notice that variable v10 con-
tains a boxed representation of variable boxed1, and the unbox operation is per-
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L ::= Local(v) local variable
Field(r, sym) field in record r with name sym
This the special local variable this

v ::= Deref(L) value at location L
Boxed(L) boxed value of L
Const(k) constant
Record(cls, b) record with type cls and bindings b
> top value

State ::=
〈
{L 7→ v}, [v]

〉
Figure 3.8: Abstract values for copy propagation

lub([v1, rest1], [v2, rest2]) =

{
[v1, lub(rest1, rest2)] if v1 = v2

[>, lub(rest1, rest2)] otherwise

lub(L1 7→ v2, L2 7→ v2) = L 7→ v1 for L ∈ L1 ∩ L2, if v1 = v2

Figure 3.9: Least upper bounds for copy-propagation

formed on v10. The unbox operation can be replaced by a LOAD_LOCAL boxed10.

Copy Propagation transformation

We extend the classical copy propagation algorithm [36] to handle constants,
boxed values and simple records. We compute at each program point the avail-
able bindings between abstract locations and abstract values. We model the
stack as a list of abstract values, and locals as a map from locations to values.
Figure 3.8 defines locations and values of our analysis. Values can be stored in
local variables or in record fields. A value is either a dereference of a location,
a boxed representation of a value found at another location, a constant (literal)
or a record. Records are very simple models of heap objects which carry a type
(the class from which they are instantiated) and a binding of their fields. We
do not deal with aliasing, instead we get around it by merging together all in-
stances of a class, so assigning to a field destroys all bindings in all records
that contain that field. Local variables cannot be aliased on the JVM, so this is
enough to ensure correctness.

The analysis proper is a forward data-flow analysis, and the least upper
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bound is computed as shown in Figure 3.9. The least upper bound of two
stacks is computed pairwise, and use > at stack positions where the two val-
ues are not the same. Variable bindings are computed similarly, keeping only
mappings that appear in both states, and that map the same location to the
same value.

We model the effect of each instruction on the abstract state:

• LOAD_LOCAL L, THIS place on top of the stack Dere f (L)

• CONSTANT k places Const(k)

• BOX places Boxed(L) if the top of the stack is Dere f (L).

• NEW places a new empty Record(cls, ε)

• LOAD_FIELD f places the corresponding binding, when the top of the stack
is Record(cls, b)

• STORE_LOCAL L, STORE_THIS add a binding between L and the value on top
of the stack (if it is not >). It removes all bindings referring to L (or this)
from both the stack and bindings, including inside records.

• UNBOX places v, if the top of the stack is Boxed(v)

• STORE_FIELD f adds a binding to the corresponding field, if the top of the
stack is Record(cls, b). Removes all bindings and values referring to f
from both the stack and other bindings, including inside records.

• CALL_METHOD m If m is a known constructor (see below), places a Record(cls, b)
with determined bindings. Unless m is pure (see below), removes all
bindings of mutable fields in all records.

Whenever the side condition is not true (and for all other instructions), the
operation is simulated by consuming and replacing the required number of
stack locations, producing the top value >.

Operations are straight-forward, except for method calls. If the call is a
constructor, we may be able to infer the shape of the object after the call. In
the case of a case class, constructors are predetermined to fill its fields with
their arguments, and there is a one-to-one mapping between arguments and
fields. This is especially useful for anonymous function classes, which use the
same technique. We approximate the effect of a CALL_METHOD to conservatively
modify all fields, and therefore lose all information gained so far. A side-effect
analysis would help to greatly increase the precision of this analysis. Currently
we consider getter methods (as generated by the scala compiler) to be side-
effect free.



52 CHAPTER 3. OPTIMIZATIONS

Optimization pass

The previous analysis provides for each program point the values on the stack,
and bindings between local variables. It is now easy to perform one pass
through the code, replacing each instruction that loads a location with the value
found by copy propagation (another location, a constant or an unboxed value).
We follow the longest chain through the bindings, hoping that intermediate
nodes in the chain are local variables that become dead after this phase. This
is a common case in practice, since inlining introduces many local variables
to hold the parameters of the call, which later can be proven to be aliases of
existing locals, and therefore eliminated.

There are a few cases to consider:

• LOAD_LOCAL L if we have a binding for L, is replaced by a load of the corre-
sponding value (another local, this, or a constant – effectively achieving
constant propagation)

• LOAD_FIELD F if the top of the stack can be resolved to a record, and that
field is bound by the record, is replaced by a DROP and a load of the target
value (unless volatile).

• UNBOX if the top of the stack is Boxed(L), is replaced by a DROP and a load
of the corresponding value

Volatile fields on the JVM have special multithreaded semantics. A read
from a field is a synchronization point, and even if the value is not used, its
effect may be visible, therefore optimizations cannot remove them.

In order to maximize the chance of having available an unboxed version of
a value, the code generator introduces special local variables for each BOX op-
eration. These synthetic locals are dead otherwise and if the copy propagation
phase does not use them (to eliminate an UNBOX), they are collected in the next
optimization pass, dead-code elimination.

3.3.3 Dead code elimination

Inlining and copy propagation leave behind code that is no longer needed.
Many local variables introduced by the inliner to hold parameters to the inlined
method are later dead because copy propagation can prove they are aliases
of other local variables. Objects allocated to hold the state of an anonymous
function may become dead once the apply method is inlined, and all references
to its own field have been rewritten to use the existing method environment.
Local classes (classes defined inside a method) that are never instantiated are
no longer needed and can be completely removed from generated code.

We use a mark & sweep algorithm for finding the instructions that are
needed for the correct execution of a method. In a first pass, we mark instruc-
tions that are useful regardless of their result. This consists of:

• RETURN – the value returned by a method is by definition live.
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• STORE_ARRAY_ITEM, STORE_FIELD – arrays and fields may be aliased, and the
effects of these instructions may be visible outside the current method.

• MONITOR_ENTER/EXIT – synchronization cannot be removed.

• control-flow instructions – we do not remove jumps and throws. Techni-
cally it would be possible, but we chose to keep this phase simple.

• CALL_METHOD m – if method m is side-effecting. A pureness analysis would
help this analysis as well. We consider getters and closure constructors
to be side-effect free, together with the Rich* objects in the Scala runtime.

• DROP – if reaching definitions for the dropped value contain a side-effecting
method, it is marked useful. Otherwise, the usefulness of a DROP cannot
be determined by itself. Instead, it is useful only if one of the instructions
that produce the value to be dropped is useful (see discussion below).

Once the initial instructions are marked, we precess each one in turn using a
worklist. Each instruction in the worklist is marked as useful and its reaching
definitions are added to the worklist, iterating until the list becomes empty.
Some care has to be taken for DROP and NEW:

• If an instruction is useful, and we recorded that its value flows into a
DROP, the DROP is marked as useful. This corresponds to the case when an
instruction produces a useful value on one branch, and that is dropped
on another. Notice that this is follows a def-use chain, as opposed to the
other cases which follow use-def.

• If a NEW instruction is marked as useful, the corresponding constructor
call has to be marked as well.

Once marking is done, we perform a sweep over the code, keeping only in-
structions marked in the previous step. This requires some stack bookkeeping,
basically adding the necessary amount of DROPs for each of the values produced
by a dead instruction.

3.3.4 Peephole optimizations

A last pass through the code eliminates simple patterns by more efficient (or
simply more pleasant to look at) operations. The peephole optimizer is limited
to replacing a pair of consecutive instructions by another sequence, possibly
empty. Some of the combinations we tackle are:

• A load (local variable, field, or constant) followed by a drop are both
eliminated (unless the field is volatile)

• A load followed by a store to the same local are both removed.
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• A store followed by a local of the same local are replaced by DUP; STORE_LOCAL.
We implemented a variant of this optimization by using liveness infor-
mation. If the variable is dead after the assignment, both instructions are
eliminated. This situation appears fairly frequently in inlined code.

• A box followed by an unbox are both removed.

We did not notice significant performance improvements due to the peep-
hole optimizer, but it helps understanding generated code and results in cleaner
bytecode.



Chapter 4

Opportunistic Specialization

As much as I love boxing, I hate it.
And as much as I hate it, I love it.

Budd Schulberg

4.1 Introduction

Parametric polymorphism has become a standard feature in statically-typed
programming languages. The ability to write code that operates uniformly on
values of different types increases expressiveness and leads to shorter, clearer
programs. Polymorphic1 code is able to manipulate values of unknown types,
and does so in a generic way. Unfortunately, run-time efficiency is achieved
through optimal use of primitive operations, and current day processors op-
erate on values such as double precision floating point values, in other words
require precise type information to select the right instruction.

There are two ways to compile polymorphic code [35]: use a single version
of the compiled code, operating on a uniform representation of values (homo-
geneous approach); or generate a specialized version of the generic code, as a
function of the concrete instantiated type (heterogeneous approach). One way
of implementing an homogeneous approach is through type erasure, a transla-
tion technique which replaces type variables with their upper bound (or Any in
Scala, Object in Java). When the code enters/exits generic code, the compiler
inserts casts to maintain type correctness. As explained in detail in § 2.5.1, the
main shortcoming of erasure is performance for primitive values: primitives
need to be boxed into heap-allocated objects to fit the uniform representation.
Each access to a primitive needs an extra indirection.

1In this section we use the term polymorphism to mean parametric polymorphism. When we
refer to subtyping polymorphism it will become clear from the context.

55
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In the heterogeneous approach polymorphic code generates a number of
variants which are specialized to work on the given concrete type instantiation.
In this case, values use their natural representation, and code runs at full speed.
In addition, run-time type information is usually available. The downside is a
risk of code bloat (and long compilation times), as there may be any number of
different instantiations of a generic definition. Furthermore, this implies a lack
of true separate compilation, as the compiler needs to generate new code at each
instantiation. C++ templates are the most famous example of generics that are
statically compiled through specialization [10]. They notoriously exhibit long
compilation time and may lead to code explosion [17].

Some of these adverse effects can be alleviated by link-time specialization,
the approach taken by the .NET Common Language Runtime [27]. By raising
the abstraction level of the compiled code, polymorphic code is instantiated by
the VM, and compilers generate code in terms of type variables. Since the VM
has the whole program at hand, it can perform instantiation and specialization
at runtime, and it may decide to share code between instantiations when it is
safe to do so.

There seems to be a tension between tight, efficient code and predictable
code size. Moreover, the ideal compilation model depends on the program
at hand: a scientific library needs every bit of performance and programmers
would gladly sacrifice compilation speed and code size, while a generic UI
container library is very likely to favor fast compilation times and small code
size over performance. So far language designers chose one compilation model
that is set in stone per language, and programmers had no choice but to switch
to another language when the model does not suit their application. We pro-
pose a hybrid model in which programmers annotate generic definitions that
should be specialized.

In this chapter we present a new way of compiling generic code that can
be both fast and compact, and that does not require special support from the
runtime system. Based on the observation that significant performance is lost
only for a small number of type instantiations, we design a solution that is a
combination of the two alternatives described above: most generic code uses
a common representation, but when performance is critical the programmer
may require certain classes or methods to be specialized. Our solution supports
separate compilation and allows mixing specialized and generic code.

The rest of this section is structured as follows: Section 4.2 introduces spe-
cialization in an intuitive way. Section 4.3 presents a formal description of the
specialization translation and proves type preservation, while the last section
discusses the implementation in the context of the full Scala language.

4.2 Generic versus specialized code

To illustrate our approach we use a generic matrix definition and a function
that implements matrix multiplication on integers. Figure 4.1 shows a simple
matrix class defined in Scala. The annotation on type parameter A instructs the
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class Matrix[@specialized A: ClassManifest](val rows: Int, val cols: Int) {
private val arr: Array[Array[A]] = new Array[Array[A]](rows, cols)

def checkBounds(i: Int, j: Int) {
if (i < 0 || i >= rows || j < 0 || j >= cols)
throw new NoSuchElementException("Indexes out of bounds: " + (i, j))

}

def apply(i: Int, j: Int): A = {
checkBounds(i, j)
arr(i)(j)

}

def update(i: Int, j: Int, e: A) {
checkBounds(i, j)
arr(i)(j) = e

}
}

Figure 4.1: A generic Matrix class

compiler to specialize code that depends on A. By default, the matrix will be
specialized for all primitive types.

The matrix class provides only two operations, retrieving and updating an
element at position i, j. The type parameter is bounded by a ClassManifest,
which is not essential for this example, but we chose to include it in order to
show compilable code2.

4.2.1 The gist

A generic class definition with specialized type parameters generates a set of
specialized classes, deriving each one from the original class using a specific
combination of specialized type parameters. When generic code is used in a
context where more type information is available, and there exists a special-
ized version, the compiler rewrites method calls and class instantiations to the
specialized version.

For specialized and non-specialized code to work together, a specialized
class has to be a subtype of the generic one. This fact allows the compiler to
safely replace an instantiation of a generic class with a specialized class when
one exists, and the code around it to work with a specialized instance even
when the code is not specialized itself. In a context where type information
is more specific, for instance the matrix is known to be Matrix[Int], the com-
piler inserts calls to its specialized variants. We call this approach opportunistic

2A class manifest is a runtime representation of type A, and is needed for instantiating arrays
of an unknown type.
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because correctness does not depend on the ability of the compiler to replace
generic calls with specialized variants, instead it is a best-effort in the quest for
better performance.

We achieve separate compilation by specializing at the definition-site on a
finite number of types. When requested, specialization is performed for all
primitive types but the user may indicate that only a subset of those should be
considered. Eager specialization may generate classes for instantiations that
are never needed, but this will not impact performance too much: the Java
Virtual Machine relies on lazy class loading, so these additional definitions
won’t be loaded. The increase in code size we deem tolerable, and leave it to
the library designer to find a good balance between performance and code size.
The key difference from traditional specialization is that code size is bounded
and completely determined by the generic definition, regardless of the number
of instantiations.

Figure 4.2 shows how the Matrix class is specialized. For clarity, we consider
only type Int and only one method. In addition to the original methods, the
generic class has additional specialized methods whose signature was changed
to use concrete, primitive types. These provide a “fast path” for code using ma-
trices at a specialized type, like Matrix[Int], who can call them without a cast
or instance check. These methods have a default implementation that simply
delegates to the original method, boxing and unboxing values as needed. This
way we ensure that specialized code can use generic instances.

Each combination of specializable type parameters generates a specialized
subclass. Each inherited member that needs specialization (a more precise
definition follows in the next section) is overridden in the subclass, and the
generic/specialized delegation is rewired in the opposite sense: the generic
method delegates to the specialized variant and takes care of boxing/unbox-
ing as needed. This rewiring ensures that calls through the generic methods
end up executing the same payload. If the overridden method is concrete, a
specialized implementation is added in the subclass, rewriting the code to take
advantage of the new type information. In Figure 4.2 the update method is
rewritten to directly access the array of integers, instead of going through a
runtime method that uses instance tests (see §2.4.1).

So far we have looked at how definitions are specialized. To close the loop
we need to rewrite existing code to use specialized code whenever possible.
There are two transformations that together lead to improved performance:

• method calls, or more generally, any member selection, should be rewrit-
ten to use the most specific member available. This can be done whenever
the type on which a selection is made is a generic type that is instantiated
with primitive types.

• new should create the most specific type available. As before, this can be
done whenever the type passed to new is a generic type that is instantiated
with primitive types.

Figure 4.3 shows a straight-forward function for multiplying two matrices.
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def updateInt(i: Int, j: Int, e: Int)

def update(i: Int, j: Int, e: A)

Matrix[A]

override def updateInt(i: Int, j: Int, e: Int)

override def update(i: Int, j: Int, e: A)

MatrixInt

box and delegate

unbox and delegate

array_update(arr(i), j, e)

arr(i, j) = e

specialize

Figure 4.2: Matrix specialization

The code is desugared to show explicit calls to apply and update. Inside method
mult the type of m, n and p is known to be Matrix[Int], so a specializing com-
piler can safely rewrite method calls to more specific variants. Similarly, the
instantiation is rewritten to MatrixInt.

The whole approach is based on the ability to rewire generic methods to-
wards specialized variants. The question arises what happens for other class
members, like fields or types. Type members are the easy case since they have
no representation at runtime, so they need not be specialized. On the other
hand, fields do, and their representation is important: we do not wish to store
primitive types into generic fields, relying on boxing. Moreover, fields are not
overridable from the point of view of the virtual machine. The solution is to
access all fields through getters and setters, and rely on the same mechanism
to rewire accessors. Fortunately, Scala already does so (another example of the
uniformity principle, which dictates that all members should be overridable).

So far we have presented an intuitive translation that glossed over details
such as method type parameters, bounded type parameters, inner classes, in-
heritance or object initialization. This omission will be addressed in the follow-
ing two sections, which introduce a general translation procedure and describe
solutions to the problems mentioned above.

4.3 A formal description of specialization

In the following sections we use the term specializable class or specializable method
instead of the exact but cumbersome “a class/method that has specialized type
parameters”. Specialized class/method refers to the result of specialization ap-
plied to a class or method.
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def mult(m: Matrix[Int],
n: Matrix[Int]) {

val p = new Matrix[Int](m.rs,n.cs)

for (i <- 0 until m.rs;
j <- 0 until n.cs) {

var sum = 0
for (k <- 0 until n.rs)
sum+=m.apply(i,k) * n.apply(k,j)

p.update(i, j, sum)
}

}

def mult(m: Matrix[Int],
n: Matrix[Int]) {

val p = new Matrix$Int (m.rs, n.cs)

for (i <- 0 until m.rs;
j <- 0 until n.cs) {

var sum = 0
for (k <- 0 until n.rs)

sum += m. apply$Int (i, k)

* n. apply$Int (k, j)

p. update$Int (i, j, sum)

}
}

Figure 4.3: Matrix multiplication example.

4.3.1 BabyScala

We formalize our translation using a calculus in the spirit of Featherweight
Generic Java [25] and Baby IL with Generics (BILG) [60]. BILG was designed
in an effort to formalize the compilation of generics on the .NET platform, and
therefore is closer in purpose to our goal. Figure 4.4 shows Baby Scala, a cal-
culus that captures the main aspects of the object system of Scala. Except for
the syntax, which we adapted to be more like Scala, the language is almost
identical to BILG.

Types can be primitive types, instantiated types or type variables. For sim-
plicity, we consider only one primitive type, integer. Classes can be instantiated
at any type, including primitive types, and similar to BILG, we do not have
bounds on type parameters. Constructors are completely determined by the
class definition, so we choose to omit them. We add one syntactic construction
to BILG, type ascription. The specialization translation is much easier to define
if we have the explicit type of the receiver in method calls, and we require that
the input to specialization is a well-typed program. The type-checker adds
all ascriptions for method calls. Internal types include method types, which
cannot appear in the source program, but which are needed in the translation.

Figure 4.5 describes well-formed types and the rules for subtyping. We use
the standard rules, with transitive and reflexive subtyping. Notice that prim-
itive types are in a subtype relationship only with themselves. We departed
from the unified hierarchy of types in Scala in order to be closer to the gen-
erated code, that requires boxing and unboxing for this relationship to hold.
Typing is defined with reference to an environment Γ, and a class table D. The
environment binds variables to their type, and also contains all type variables
currently in scope: Γ = X, x : T with all free type variables in T appearing in
X. The class table contains all classes defined in a BabyScala program.
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T ::= P | X | I types
P ::= Int primitive types
I ::= C[T] instantiated type
L ::= class C[X] extends I { f : T; M} class definition

M ::= def m[X]
(

x : T
)

: T = e method definition

e ::= n integer constant
x variable
e. f field selection
e.m[U](e) method call
new I(e) instance creation
e.as[T] type cast
e : T type ascription

v ::= n | I( f 7→ v) values

IT ::= T internal types
∀Y.T → T method types

Figure 4.4: BabyScala syntax

Figure 4.6 defines the typing rules for BabyScala. Typing is straightforward,
and to keep the rules clean we use two helper functions: fields(I) returns all
fields of an instantiated type, including the inherited ones; mtype(m, C[T]) re-
turns the type of a method seen from the given instantiated type. A type seen
from an instantiated type C[T] is a type whose occurrences of C’s type param-
eters have been replaced with the corresponding types. We use the standard
notation for arrow types, ∀X.T → T, meaning the type of a method taking
type parameters X, value parameters of types T and returning a value of type
T. For a class to be well-formed we require that its superclass and its methods
are well-formed. Fields cannot be overridden (unlike Scala). Methods cannot
be overloaded and overriding is valid only when the types of the two methods
are exactly the same. The predicate override checks that when there is an inher-
ited method with the same name as the defining method, they have the same
type (modulo method type parameters).

The evaluation rules are shown in Figure 4.8. Values are integers and ob-
ject instances, each field in an object instance being in turn a value. We use a
big-step semantics, and the only difference compared to BILG is that we have
failing casts. BILG uses a type-test expression with a default value if the tests
fail, while in BabyScala a failing cast causes a stuck term. We chose explicit
casting in order to stay closer to Scala, and because casts to primitive types/-
type variables is the way Scala represents unboxing/boxing operations at the
source level. A cast from a primitive type to a type variable represents a box
operation (and conversely for a cast to a primitive type). Other casts may issue
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Γ ` T ok

Γ ` Int ok.
X ∈ Γ

Γ ` X ok.
Γ ` T ok. C[X] ∈ D

Γ ` C[T]ok.

Γ ` S <: T

Γ ` S <: S
Γ ` S <: T Γ ` T <: U

Γ ` S <: U
C[X] extends I {...} ∈ D

Γ ` C[T] <: [T/X]I

Figure 4.5: Well-formed types and subtyping.

warnings when erasure may prevent a correct answer.
We split the formal transformation in three, which makes it easier to ex-

plain but also follows our implementation. The main translation procedure is
called spec, and generates specialized variants with regard to class type pa-
rameters. Method type parameters are specialized using a specific translation
called norm, which normalizes method definitions by generating variants for
their type parameters. The output of norm is then used by spec. Besides the
two translations for definitions, there is a third translation called TS, which
rewrites terms to instantiate specialized classes and use specialized methods
whenever it is safe to do so.

We only consider well-typed programs, and all method calls are ascribed
with the receiver type. This sort of type elaboration can be done during type-
checking, which produces both a type and a new term.

4.3.2 Method expansion

We begin by defining a normalization transformation which takes care of generic
methods, generating a number of specialized variants for each specialization of
its type parameters. This first step takes into consideration only method type
parameters, specialization of the enclosing class being left for the spec transla-
tion, presented in the following section.

Normalization adds a number of method definitions derived from the orig-
inal method, called variants (Figure 4.9). Each specialization of its type param-
eters generates one variant. The original method definition is unchanged, and
the additional methods differ only in that all type annotations, both in its type
and in its implementation, have been mapped through their respective special-
ization.

Specializations, denoted by s are functions from type variables to primitive
types, and P generates all specializations of the given type parameters. We
use s1 ⊕ s2 to denote extending a specialization with another specialization,
when the domains of s1 and s2 are disjoint. A specialization applied to a type,
denoted by |T|s, recursively replaces occurrences of type variables with the
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Γ ` e : T Γ ` T <: T′

Γ ` e : T′
(T-SUBSUMPTION)

Γ ` n : Int (T-INT)
x : T ∈ Γ
Γ ` x : T

(T-VAR)

Γ ` e : I f ields(I) = T f fi ∈ f
Γ ` e. fi : Ti

(T-FIELD)

Γ ` e : I mtype(m, I) = ∀Y.T → T Γ ` e : [U/Y]T
Γ ` e.m[U](e) : [U/Y]T

(T-INVOKE)

Γ ` I ok f ields(I) = T f Γ ` e : T
Γ ` new I(e) : I

(T-NEW)

Γ ` e : T′ Γ ` T ok.
Γ ` e.as[T] : T

(T-TEST)
Γ ` e : T

Γ ` (e : T) : T
(T-ASCRIPTION)

Class and method typing ` md ok in C[X]
` cd ok in D

mtype(m, C[T]) = ∀X.S→ S =⇒ [Y/X]S = U and [Y/X]S = U
override(m, C[T], ∀Y.U → U)

C[X] extends I{...m..} ∈ D override(m, I, ∀Y.T → T)
X, Y, x : T, this : C[X] ` e : T
` def m[Y](x : T) : T = e ok

(T-METHOD)

X ` I, T ok. f ields(I) = g : U
f , g distinct md ok in C[X]

` class C[X] extends I { f : T; md} ok
(T-CLASS)

Figure 4.6: Typing Rules
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C[X] extends I { f1 : U1; md} f ields([T/X]I) = f2 : U2

f ields(C[T]) = f1 : [T/X]U1, f2 : U2

C[X] extends I { f : V; ...def m[Y](x : U) : U = e...}
U1 = [T/X]U U1 = [T/X]U

mype(m, C[T]) = ∀Y.U1 → U1
mbody(m, C[T]) =

〈
x, [T/X]e

〉
C[X] extends I { f : V; md} m /∈ md

mtype(m, C[T]) = [T/X]mtype(m, I)
mbody(m, C[T]) = [T/X]mbody(m, I)

Figure 4.7: Helper functions for BabyScala type checking

(x = v) ∈ E
E ` x ⇓ v

(E-VAR)
E ` e ⇓ I( f 7→ v)

E ` e. fi ⇓ vi
(E-FIELD)

E ` e ⇓ I′( f 7→ v) E ` e ⇓ w
mbody(m, I′) = 〈x, e′〉 this = I′( f 7→ v), x = w, E ` e′ ⇓ w′

E ` e.m[U](e) ⇓ w′
(E-CALL)

E ` e ⇓ v fields(I) = f : T

E ` new I(e) ⇓ I( f 7→ v)
(E-NEW)

E ` e ⇓ n
E ` e.as[Int] ⇓ n

(E-ASINT)

E ` e ⇓ I′( f 7→ v) I′ <: T

E ` e.as[T] ⇓ I′( f 7→ v)
(E-AS)

Figure 4.8: Evaluation rules for BabyScala
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norm
q

def m[Y](x : T) = e
y

::=
{

def m[Y](x : T) = e
}

∪
{

def ms(x : |T|s) = JeKs | s ∈ P(Y)
}

Figure 4.9: Normalization of BabyScala methods

type they are mapped to. The same transformation applied to a term is denoted
by JeKs. Their precise definitions are listed in Figure 4.10.

For example:

norm Jdef m[X, Y](x : X, y : List[Y]) = (y : List[Y]).head()K =

{def m[X, Y](x : X, y : List[Y]) = (y : List[Y]).head()}
∪ {def ms(x : Int, y : List[Int]) = (y : List[Int]).head()}

Given that Int is our only primitive type, there is only one specialization that
can be formed. For clarity, we do not give an explicit name mangling scheme,
and name all specialized variants ms, but in the following section we describe
a necessary criteria for choosing one.

4.3.3 Class specialization

The next translation scheme for definitions takes into account only class type
parameters. For each class, spec generates specialized subclasses for each spe-
cialization s. The original class definition is augmented with specialized variants
of each method3 and specialized overrides. Each variant delegates to the original
method. Figure 4.11 shows the formal definition of spec. The interesting bit to
note is how f wds implements delegation: because the parameter types may be
different from the original types, it has to add casts. For example:

f wdsJdef m(x : T) : T = xK ::=

def ms(x : Int) : Int = (this : C[X]).m(x.as[T]).as[Int]

The call to m expects an argument of type T, while x has type Int. These casts
are guaranteed to succeed, as specialized variants are only called when the
static type of the receiver is compatible with s.

A specialized override for method m is necessary when it overrides m′ and
m′ has specialized variants. In order to keep the implementations ’in sync’,
any overriding has to occur both for the generic and specialized method. We
use a helper macro overriddenFrom, which given a method m and a class type,

3The implementation is optimized to not generate variants if the method type does not use any
class type parameters. In that case, all variants would be identical to the original method.
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P(X) = {s = {X 7→ T} |T ∈ P}
P(X, X) =

{
s1 ⊕ s2 | s1 ∈ P(X), s2 ∈ P(X)

}

|T|s =



s(X) when T = X, s is defined at X
X when T = X, s is not defined at X
P when T = P
C[s(X)] when T = C[X]

∀Y.(|T|s → |T|s) when T = ∀Y.(T → T) and s not defined at Y

|x : T, Γ|s = x : |T|s, |Γ|s
|X, Γ|s = |Γ|s if s is defined at X
|X, Γ|s = X, |Γ|s if s is not defined at X

JnKs = n
JxKs = x

Je. f Ks = JeKs . f
q

e.m[U](e)
y

s = JeKs .m[|U|s](JeKs)

Jnew I(e)Ks = new |I|s(JeKs)

Je.as[T]Ks = JeKs .as[|T|s]
Je : TKs = JeKs : |T|s

Figure 4.10: Additional definitions used for the specialization translation
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spec
r

class C[X] extends I{val f : T; M}
z

::={
class C[X] extends I{val f : T; spec

q
M

y
C[X] ; ovs

q
M

y
C[X]}

}
∪
{

class Cs extends
∣∣C[X]

∣∣
s

{
specimp

q
M

y
s

}
| s ∈ P(X)

}
specJMKC[X] ::=

{
f wds(M) | s ∈ P(X)

}
f wds

q
def m[Y](x : T) = e

y
::=

def ms[Y](x :
∣∣T∣∣s) : |T|s = (this : C[X]).m(xi.as[Ti]).as[|T|s]

specimp
q

def m[Y](x : T) = e
y

s ::= def ms[Y](x :
∣∣T∣∣s) : |T|s = JeKs

Figure 4.11: The spec translation

C[X] extends I D[P] = overriddenFrom(m, I) D[Z] ∈ D s = {Z 7→ P}
ovs

q
def m[Y](x : T) : T = e

y
C[X] ::={

def ms[Y](x : T) : T = JeKs , def m[Y](x : T) : T = (this : C[X]).ms[Y](x)
}

(S-OVERRIDES)

m ∈ C[X]

overriddenFrom(m, C[T]) = C[T]

m /∈ C[X] C[X] extends D[U]

overriddenFrom(m, C[T]) = [T/X]overriddenFrom(m, D[U])

Figure 4.12: Specialized overrides
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TSJnK ::= n
TSJxK ::= x

TSJe. f K ::= TSJeK . f

TS
q
(e : C[P1]).m[P2](e)

y
::= (TSJeK : C[P1]).ms(TSJeK)

where C[X]...{..def m[Y](x : T) : T = e..} ∈ D,

s = {X 7→ P1, Y 7→ P2}
TS

q
(e : C[P]).m[T](e)

y
::= (TSJeK : C[P]).ms[T](TSJeK)

where C[X]...{..def m[Y](x : T) : T = e..} ∈ D, s = {X 7→ P}
TS

q
(e : C[T]).m[P](e)

y
::= (TSJeK : C[T]).ms(TSJeK)

where C[X]...{..def m[Y](x : T) : T = e..} ∈ D, s = {Y 7→ P}
TS

q
new C[P](e)

y
::= new Cs(TSJeK)

where C[X]...{...} ∈ D, s = {X 7→ P}
TSJe.as[T]K ::= TSJeK .as[T]

TSJe : TK ::= TSJeK : T

Figure 4.13: Specialized term translation

returns the instantiated type of the defining class D. The instantiated type of
D is the type “as seen from” the subclass where overriding occurs. All type
parameters of D are substituted for the types with which D was instantiated
when inherited by C (transitively) (Figure 4.12).

Special overrides are created only if the overriding method inherits a fully
specialized supertype. This constraint is formalized in S-OVERRIDES by re-
quiring that the instantiated type returned by overriddenFrom, D[P], mentions
only primitive types. If this condition doesn’t hold, ovs is the identity. When
ovs applies, it changes the overriding method m to call the specialized variant
ms, and a new method ms is created in C, whose body is the specialized body
of m. The forwarding call does not need any casts in this case, since the type of
ms is the same as m’s.

4.3.4 Term rewriting

So far we have showed how generic definitions are translated to have special-
ized variants. The last step in specialization is to rewrite method calls and
instantiations to use these specialized definitions, shown in Figure 4.13. The
only interesting terms are method calls and object creation. Method calls can
be completely specialized, when both the class and method type parameters
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are primitive types. The call is rewritten towards the specialized variant using
a specialization of all type parameters. Partial specializations are also possible,
when only class or method type parameters are instantiated at primitive types.
For a new object instance when all type parameters are primitive, TS rewrites
it to its corresponding specialized subclass.

To sum everything up, we need to define what a BabyScala program is and
extend the various definitions to operate on programs.

A BabyScala program is a collection of class definitions C and a term t. A
well-formed program P = (C, t) satisfies ` c is ok for all classes in C, and
`D t : T where D is the corresponding class table for C.

We extend the previous translations to programs in the natural way.

norm
r

class C[X] extends I{val f : T; md}
z

::=

class C[X] extends I{val f : T; normJmdK}

TS
q

def m[Y](x : T) : T = e
y

::= def m[Y](x : T) : T = TSJeK

TS
r

class C[X] extends I{val f : T; md}
z

::= class C[X] extends I{val f : T; TSJmdK}

specJ(c, t)K ::= (TSJspecJnormJcKKK, TSJtK)

The last line shows the order in which the various steps are performed: method
expansion, class specialization and lastly term specialization.

4.3.5 Specialization preserves typing

In this section we give a formal proof that the transformation introduced previ-
ously preserves typing. More formally, given a well-typed BabyScala program,
we prove that spec does not introduce any badly-typed definitions nor terms.

Theorem 1. Given a BabyScala program P and a class table D, and that `D P : ok.,
spec(P) : ok.

Before we delve into the proofs proper, we need a couple of lemmas on how
type specialization interacts with fields, mtype and substitution.

Lemma 1 (Type Substitution). Given a specialization s not defined at any type vari-
able in X, |[T/X]U|s = [|T|s/X]|U|s.

Proof. See Appendix A.

Lemma 2 (Field Specialization). Given a specialization s, a well-formed type C[T],
and fields(C[T]) = U f , we have that

fields
(∣∣C[T]∣∣s) = |U|s f .
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Proof. See Appendix A.

Lemma 3 (Term Specialization). Given a valid class table D, a specialization s and
a term e such that Γ ` e : T, we have

|Γ|s ` JeKs : |T|s

Proof. See Appendix A.

First we prove that normalization introduces only well-typed methods.

Theorem 2 (Normalization preserves typing). Given a well-formed class C[X]
normJCK is still well formed.

Proof. We prove that normJMK preserves typing.
We have that

M = def m[Y](x : T) : T = e, is well-formed

and that

normJMK = def ms(x : |T|s) : |T|s = JeKs , for some s = {Y 7→ P}.

We prove that

Γ ` def ms(x : |T|s) : |T|s = JeKs is well-formed.

According to the type checking rule

C[X] extends D[V]{...m..} ∈ D override(m, D[V], ∀Y.T → T)
X, Y, x : T, this : C[X] ` e : T
` def m[Y](x : T) : T = e ok

we need to first prove that override(ms, I, [Y]T → T) holds. In other words, if
there is a method with the same name ms in C’s superclass, it has the same type
as ms. If there is no such method, the proof is trivial.

Assume there is a method ms in class D, the superclass of C. By construc-
tion, such a method exists iff there is a method m in D which is specialized
using a specialization s′. Let that method be

def m[Y′](x : U) : U = e

The type of m is then ∀Y′.(U → U) and the type of ms′ is
∣∣U → U

∣∣
s′ .

Let
s =

{
Y 7→ P

}
, s′ =

{
Y′ 7→ P

}
Because the two specializations give rise to methods with the same name, both
s and s′ map to the same primitive types. They differ however in the name of
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Let s = {Xi 7→ Pi|i ∈ [1..n]}. Then

[Y/X]s =
{

Yi 7→ Pi | ∀i, j ∈ [1..n], Yi = Yj =⇒ Pi = Pj
}

Substitution is defined only if all types Y are type variables, and there are no
conflicting mappings.

s1 = s2 iff s1(x) = s2(x) ∀x ∈ dom(s1) ∪ dom(s2)

Figure 4.14: Substitution and equality on specializations

the type variables, as the overridden method may have named its own type
parameters differently.

We need to prove that the type of ms′ is the same as the type of ms, seen
from C.

ms :
∣∣T → T

∣∣
s

=
∣∣∀Y.(T → T)

∣∣
s by spec definition

=
∣∣∣[V/X]∀Y′.(U → U)

∣∣∣
s′

by mtype definition

= [|V|s′/X]
∣∣∣∀Y′.(U → U)

∣∣∣
s′

by Lemma 1

= [|V|s′/X]
∣∣(U → U)

∣∣
s′ by definition of specialization

V are the types used to instantiate the supertype of C and therefore cannot
mention any type variable in Y′. It follows that

∣∣V∣∣s′ = V and that∣∣T → T
∣∣
s = [V/X]

∣∣U → U
∣∣
s′

which is exactly what we needed to prove: the type of ms is the same as the
type of ms′ , when seen from C, therefore overriding is legal.

The last thing we need to prove is that the body of ms is well-typed

X, x : |T|s, this : C[X] ` JeKs : |T|s

This is follows directly from Lemma 3.

Before we move to the next theorem, we need to explain overriding of spe-
cialized methods. We did not specify how method names are derived from a
specialization s, and we are going to leave that as an implementation detail.
However, we need to specify when two methods ms1 and ms2 have the same
name for the purpose of overriding.

Definition 1. Assume ms1 is defined in a class C[X], and ms2 in D[Y] and
D[Y] extends C[V]. Then ms2 overrides ms1 iff [V/X]s1 = s2.
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The definitions of substitution on specializations and equality between spe-
cialization is shown in Figure 4.14.

Lemma 4 (Substitution on specialization). Given a specialization s, X and Y type
variables such that s is not defined anywhere in Y, and [Y/X]s is defined, we have∣∣[Y/X]T

∣∣
[Y/X]s = |T|s

Proof. See Appendix A.

Theorem 3 (specJK preserves typing). Given a well-typed program P = (C, T),
` specJCK ok, ∀C ∈ C.

Proof. We begin by proving that specJMKC[X] is well-typed. By definition, we
have that

spec
q

def m[Y](x : T) = e
y

C[X] ::=
{

f wds(M) | s ∈ P(X)
}

f wds
q

def m[Y](x : T) = e
y

::=

def ms[Y](x :
∣∣T∣∣s) : |T|s = (this : C[X]).m(xi.as[Ti]).as[|T|s]

We prove that the new method definition is well-typed. We do so by using
T-METHOD, and we need to prove that overriding is sound, and the body of
ms is well-typed. We begin with the last goal, as it is simpler:

Γ = X, Y, x : |T|s, this : C[X] ` (this : C[X]).m(xi.as[Ti]).as[|T|s] : |T|s

We have

Γ ` this : C[X] trivially

mtype(m, C[X]) = ∀Y.T → T by definition of f wds

Γ ` xi.as[Ti] : Ti trivially

and the method call is well-typed.
In the following we assume that method type parameters do not change

name through overriding. This has no impact on generality but keeps things
simple, as there is one less step of alfa-renaming needed when looking at type
equality.

We now prove that overriding is correct. If ms overrides an inherited method
ms′ , then they have the same type.

Let C[X] extend B[V] and B[Z] be the declaration of B. Let m′ the original
method for m′s. We have that m overrides m′ correctly (the initial program is
well-typed, and they have the same name). Let the type of m′ be Y.T′ → T′.
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We have

[V/Z]s′ = s by overriding ms (∗)
[V/Z]∀Y.T′ → T′ = ∀Y.T → T by overriding m′∣∣∣[V/Z]∀Y.T′ → T′

∣∣∣
s
=
∣∣∀Y.T → T

∣∣
s specializing with s∣∣∣[V/Z]∀Y.T′ → T′

∣∣∣
[V/Z]s′

=
∣∣∀Y.T → T

∣∣
s by (∗)∣∣∣∀Y.T′ → T′

∣∣∣
s′
=
∣∣∀Y.T → T

∣∣
s by Lemma 4

We have proved that the specialized methods have the same type, therefore
overriding is legal.

The next step is to prove that ovsJMKC[X] preserves typing. We have

ovs
q

def m[Y](x : T) : T = e
y

C[X] ::=

{def ms[Y](x : T) : T = JeKs ,

def m[Y](x : T) : T = (this : C[X]).ms(x)} (4.1)

and that

C[X] extends I D[P] = overriddenFrom(m, I) D[Z] ∈ D s = {Z 7→ P}

Let m′ be the method overridden by m, defined inside class D[Z]. We have

mtype(m′, D[Z]) = ∀Y.T′ → T′

and by overriding rules

[P/Z](∀Y.T′ → T′) = mtype(m, C[X]) = ∀Y.(T → T) (**)

We notice that [P/Z] and s have exactly the same effect on any type (they both
substitute type variables in Z with the same primitive types).

mtype(m′s, D[Z]) =
∣∣∣∀Y.T′ → T′

∣∣∣
s
= [P/Z](∀Y.T′ → T′)

= ∀Y.T → T by (**)

Since the type of ms is ∀Y.T → T, we conclude that ms correctly overrides m′s.
Using T-METHOD, we need to prove that the body of ms is well typed:

X, Y, x : T, this : C[X] ` JeKs : T

Because the initial method is well-typed, we have that

X, Y, x : T, this : C[X] ` e : T



74 CHAPTER 4. OPPORTUNISTIC SPECIALIZATION

and by Lemma 3, the body is well typed.
The second method generated by ovsJK keeps the original method type, but

changes the body. Therefore, the overriding condition is trivially satisfied and
we only need to prove that the body has type T

Γ = X, Y, (x : T), this : C[X] ` (this : C[X]).ms[Y](x) : T

We trivially have that
Γ ` (this : C[X]) : C[X]

Γ ` x : T

and
mtype(ms, C[X]) = ∀Y.T → T

Using T-INVOKE we conclude that

Γ = X, Y, (x : T), this : C[X] ` (this : C[X]).ms[Y](x) : T

and furthermore, that ovsJK preserves typing.
Let’s have a look at the class definition where these translations are used:

spec
r

class C[X] extends I{val f : T; M}
z

::={
class C[X] extends I{val f : T; spec

q
M

y
C[X] ; ovs

q
M

y
C[X]}

}
∪ { . . .} (4.2)

We have proved so far that all method definitions in class C[X] are well typed.
In order to prove that the class if well-typed, we still have to prove (according
to T-CLASS):

X ` I, T ok. f ields(I) = g : U f , g distinct

specJK does not change the supertype, nor the field names or types. Since the
original class was well-typed, these conditions are trivially satisfied.

The last thing we need to prove is that the specialized implementation
classes are also well typed:{

class Cs extends
∣∣C[X]

∣∣
s

{
specimp

q
M

y
s

}
| s ∈ P(X)

}
According to T-CLASS, we have to prove

` |C[X]|s ok. md ok in Cs

and since Cs has no fields, we only have to prove the superclass is a well-
formed type, and that methods are well-typed.

A specialization maps type variables to primitive types, which are trivially
well-formed. It is immediate that, if X ` C[X] ok, |C[X]|s is also well-formed.

We prove that

specimp
q

def m[Y](x : T) = e
y

s ::= def ms[Y](x :
∣∣T∣∣s) : |T|s = JeKs
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is well typed. We first prove that overriding is correct. We need to prove

mtype(ms, C[X]) = mtype(ms, Cs)

We have that s takes all values from P(X), and that specJMK generates a for-
warding method ms for each s ∈ P(X). Therefore, there must be a method ms
in C[X] using the same specialization s.

mtype(ms, C[X]) = ∀Y.|T|s → |T|s by definition of specJK

mtype(ms, Cs) = ∀Y.|T|s → |T|s by definition of specimpJK.

Next we prove that the body of ms is well typed

Y, x : |T|s, this : Cs ` JeKs : |T|s

We know that the original method, m, is well-typed and we have

Γ = X, Y, x : T, this : C[X] ` e : T

Using Lemma 3 we get
|Γ|s ` JeKs : |T|s

This is almost what we need, but we have to take care of the environment Γ.

|Γ|s = Y, x : |T|s, this : |C[X]|s

We omitted type parameters X, because s replaces them by primitive types,
and the environment contains only type variables and bindings. The type en-
vironment under which we have to type-check ms’s body differs in the type of
this: instead of |C[X]|s it has type Cs. However, we have that

class Cs extends
∣∣C[X]

∣∣
s

And by using T-SUBSUMPTION we have this : |C[X]|s. Therefore, by Lemma
3 we can prove that JeKs : |T|s under weaker assumptions than we are given.
Therefore,

Y, x : |T|s, this : Cs ` JeKs : |T|s
and specimpJK preserves typing.

We have proven that all classes generated by spec
q

classC[X] . . .
y

are well
typed.

We can now turn to the last step of the specialization translation, TSJK.

Lemma 5. Given two specializations s1 =
{

X 7→ P1
}

and s2 =
{

Y 7→ P2
}

, X ∩
Y = ∅, we have∣∣∣|T|s1

∣∣∣
s2
= |T|s1⊕s2

= [P2/Y][P1/X]T = [P2, P1/Y, X]T
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Proof. Specializations are just a special case of substitutions. If the domains
are distinct, they can be applied in any order (they are commutative). The
conclusion is proven by straight-forward induction on the structure of types.

Theorem 4. Given a well-typed program P = (c, e), specJPK is well-typed, and
TSJeK has the same type as e.

Proof. We have

specJ(c, t)K ::= (TSJspecJnormJcKKK, TSJtK)

and we prove that if Γ ` e : T,

Γ ` TSJeK : T

We use induction on the structure of terms.

• n Trivial.

• x Trivial.

• e. f

We have
Γ ` e. f : T

We prove
Γ ` TSJeK . f : T

By Induction Hypothesis we have

Γ ` TSJeK : T1

where T1 is the type of e. By T-FIELD we have that

Γ ` TSJeK . f : T

• (e : I).m[U](e) We have the following subcases, according to the defini-
tion of TSJK:

– U = P
We have

TS
q
(e : I).m[P](e)

y
::= (TSJeK : I).ms(TSJeK)

where C[X]...{..def m[Y](x : T) : T = e..} ∈ D,

s = {Y 7→ P}
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Let mtype(m, I) = ∀Y.(T → T), and the type at the call be [P/Y]T →
T = T1 → T1. The initial call is well-typed, and by the Induction
Hypothesis we have

Γ ` TSJeK : I Γ ` TSJeK : T1

We prove that
Γ ` (TSJeK : I).ms(TSJeK) : T1

We have the receiver and argument types, and we need to prove
that the call is well-typed according to T-INVOKE, in other words,
that the type of ms is T1 → T1.
By definition,

norm
q

def m[Y](x : T) = e
y

::=

def m[Y](x : T) = e ∪
{

def ms(x : |T|s) = JeKs | s ∈ P(Y)
}

(4.3)

therefore there is one method for specialization s in the same class,
whose type is |T|s → |T|s.
Specializations are just a special case of type substitutions, so we
have

|T|s → |T|s = [P/Y]T → [P/Y]T

= T1 → T1

Therefore, mtype(ms, I) = T1 → T1.

– T = P
We have

TS
q
(e : C[P]).m[U](e)

y
::= (TSJeK : C[P]).ms[U](TSJeK)

where C[X]...{..def m[Y](x : T) : T = e..} ∈ D,

s = {X 7→ P}

We prove
Γ ` (TSJeK : C[P]).ms[U](TSJeK) : T1

where T1 → T1 is the type of ms at application point, [P, U/X, Y]T →
T.
The initial term is well-typed, and by the Induction Hypothesis we
have

Γ ` TSJeK : C[P] Γ ` TSJeK : T1

Using T-INVOKE, we are left to prove that ms exists and

mtype(m, C[P]) = mtype(ms, C[P]) = [P/X](∀Y.T → T)
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We have

spec
q

def m[Y](x : T) = e
y

C[X] ::=
{

f wds(M) | s ∈ P(X)
}

f wds
q

def m[Y](x : T) = e
y

::=

def ms[Y](x :
∣∣T∣∣s) : |T|s = (this : C[X]).m(xi.as[Ti]).as[|T|s]

therefore, specJK generates a method for each possible specialization,
including s:

mtype(ms, C[X]) = ∀Y.|T|s → |T|s
= ∀Y.([P/Y]T → [P/Y]T)

= mtype(m, C[P])

= mtype(ms, C[P])

– T = P1, Y = P2

We have

TS
q
(e : C[P1]).m[P2](e)

y
::= (TSJeK : C[P1]).ms(TSJeK)

where C[X]...{..def m[Y](x : T) : T = e..} ∈ D,

s = {X 7→ P1, Y 7→ P2}

Let s = s1 ⊕ s2 and s1 = {Y 7→ P2}, s2 = {X 7→ P1}. We prove that

Γ ` (TSJeK : C[P1]).ms(TSJeK) : [P1/X][P2/Y]T

Let mtype(m, C[P1]) = ∀Y.T1 → T1 and the type at the application
be [P2/Y](T1 → T1) = T2 → T2. By Induction Hypothesis we have
that

Γ ` TSJeK : C[P1] Γ ` TSJeK : T2

We need to prove that the type of ms in C[P1] is T2 → T2. We have
from the definition of normJK and specJK:

norm
q

def m[Y](x : T) = e
y

::=
{

. . . def ms1(x : |T|s1
) = JeKs1

}

spec
q

def ms1(x : T1) = e
y

C[X] ::=
{

f wds(M) | s ∈ P(X)
}

f wds2

q
def ms1(x : T1) : T1 = e

y
::=

def ms(x : |T|s) : |T|s = (this : C[X]).m(xi.as[Ti]).as[|T|s]
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where we use the fact that s = s1 ⊕ s2 and that T1 = |T|s1 . Using the
fact that s1 and s2 are disjunct because they are in different scopes,
we have that

mtype(ms, C[X]) = |T|s → |T|s
=
∣∣∣∣∣T∣∣s1

∣∣∣
s2
→
∣∣∣|T|s1

∣∣∣
s2

= [P1/X][P2/Y]T → [P1/X][P2/Y]T = T2 → T1

Using T-INVOKE we conclude that the method call is still well-typed.

• new C[P](e)

We have
Γ ` new C[P](e) : C[P]

We prove
Γ ` TS

q
new C[P](e)

y
: C[P]

Using the definition of TSJK we have that

TS
q

new C[P](e)
y

::= new Cs(TSJeK)

and we prove
Γ ` new Cs(TSJeK) : C[P]

Using T-NEW, we need to prove that

Γ ` Cs is ok f ields(Cs) = f : T TSJeK : T

Cs is ok follows directly from Theorem 3. From the definition of specJK
we know that Cs does not define any new fields, therefore f ields(Cs) =

f ields(C[P]) = f : T. By Induction Hypothesis we have

Γ ` TSJeK : T

Using T-NEW we have

Γ ` new Cs(TSJeK) : Cs

From the definition of specJK we have that

spec
r

class C[X] extends I{val f : T; M}
z

::={
. . . class Cs extends

∣∣C[X]
∣∣
s

{
specimp

q
M

y
s

}
| s ∈ P(X)

}
therefore Cs <: C[P], where s = {X 7→ P}. Using T-SUBSUMPTION we
have

Γ ` new Cs(TSJeK) : C[P]



80 CHAPTER 4. OPPORTUNISTIC SPECIALIZATION

class C[T] {
private var f: T

def f: T
def f_=(x: T): Unit

}

class C$Int extends C[Int] {
private var f$: Int

def f: Int = f$Int
def f_=(x: Int): Unit = f_=$Int(x)
def f$Int: Int = this.f$
def f_=$Int(x: Int): Unit = this.f$ = x

}

Figure 4.15: Field Specialization

• e.as[T]. Trivially using the Induction Hypothesis.

• e : T. Trivially using the Induction Hypothesis.

In this section we have shown that specialization preserves types. The nat-
ural next question is whether specialization preserves semantics as well. While
this may be the case for BabyScala, in the presence of type erasure (and the full
Scala language) this is not the case. For example, before specialization, and
because of type erasure, a program cannot distinguish between List[Int] and
List[String]. After specialization, the two types have different classes, and a
type test would distinguish them. It would be interesting to explore for what
subset of the Scala language semantics are preserved. We leave a detailed dis-
cussion of this topic for future work.

4.4 Implementation

The formal treatment introduced so far describes well how specialization inter-
acts with the core of the Scala language. However, as any calculus, BabyScala
glosses over many language features that may nevertheless interact with the
transformation we propose. Inheritance, field overriding and (arbitrary) con-
structors need to be properly treated when implementing specialization for the
Scala compiler. In the following sections we describe the challenges of treating
these additional language features.

4.4.1 Field specialization

We have shown how methods are specialized, but class fields benefit from spe-
cialization as well. Objects may store generic data, and having a specialized
representation for them may save numerous boxing operations.

Specialization is fundamentally based on overriding, and Scala allows field
overriding through a translation that turns all field accesses in getter/setter op-
erations. Specialization on getters and setters proceeds as usual method spe-
cialization. The only additional operation is to add a field of the specialized
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List[@specialized T]

LinkedList[@specialized T]

List$Int

LinkedList$Int

<<Int>>

<<T>>

<<Int>>

Figure 4.16: Specialized inheritance

type in the specialized subclass, and rewire the specialized getters to operate
on the new field. The original field in the generic version exists but it is inac-
cessible in a specialized class. Figure 4.15 shows how this happens in practice.

4.4.2 Specialized inheritance

A specializable class may extend another specializable class. When the super-
type is instantiated using a specialized type variable, we deal with specialized
inheritance. The intention is that the subclass is specialized itself, and inherits
the specialized representation of its superclass. Consider the following exam-
ple:

class List[@specialized A] {
..
}
class LinkedList[@specialized A] extends List[A] {
..
}
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Figure 4.16 shows the generated classes and their relationship. Each class
generates a specialized subclass, LinkedList$Int and List$Int. The problem
becomes clearer when we ask what should be the superclass of LinkedList$Int:
according to our transformation, it is the generic LinkedList (to allow mixing
specialized and unspecialized code). If we follow the inheritance chain, we
notice the superclass of LinkedList is List, not List$Int, therefore it does not
inherit the specialized representation of plain lists. Moreover, inherited meth-
ods would require boxing, even in the case of a specialized instance such as
LinkedList$Int. While this does not break anything, it is not what a program-
mer expects, and it implies a certain performance penalty.

This limitation stems from our use of overriding for rerouting existing meth-
ods and field accesses. Whenever a specialized instance is created, the original
methods are overridden to use the specialized representation. However, there
is one thing that cannot be overridden on the Java Virtual Machine: the inheri-
tance relationship.

One solution is to override all specialized variants inherited from List in
the context of LinkedList$Int It turns out that exactly the same effect can be
achieved using Scala’s mechanism for multiple inheritance (mix-in composi-
tion in Scala). Whenever a specialized type parameter is used in a supertype of
a specialized class, we mix-in again that type in a specialized subclass. In our
example, LinkedListInt becomes:

class LinkedList$Int
extends LinkedList[Int] with List$Int {

..
}

Scala mix-in composition requires that List is a trait. The Scala compiler
issues a warning when it encounters specialized inheritance involving a class
instead of a trait, since inherited members in the specialized subclass require
boxing.

4.4.3 Specialized instance initialization

BabyScala constructors are hard wired, and consist solely of field initialization.
However, a class definition in Scala contains member definitions, freely inter-
spersed with arbitrary statements. They are evaluated top to bottom when a
new instance is created, and field values are available immediately after their
definition point:

abstract class Stack[@specialized T](size: Int) {
val data = new Array[T](size)

println("created array of size " + data.length)

def push(x: T)
def pop: T

}
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abstract class Stack$Int extends Stack[Int] {
val data$Int: Array[Int] = _

override def data = data$Int

def this(size: Int) {
super.this(size)
this.data$Int = new Array[Int](size)

}
// ...

}

Figure 4.17: Specialized instance creation

The compiler groups all initialization code in one method, consisting of
expressions and field initializers. Each constructor method first calls the super
class constructor, thus making sure it is itself a valid instance of the super class.
Here’s the stack class again, this time with an explicit constructor, as created
by the compiler in later phases:

abstract class Stack[@specialized T] {
val data: Array[T] = _

def this(size: Int) {
super.this()
this.data = new Array[T](size)
println("created array of size " + data.length)

}

def push(x: T)
def pop: T

}

Figure 4.17 shows one specialized subclass of Stack. Unsurprisingly, it has
its own constructor, that initializes its own (specialized) fields. In this example,
data is the only field specialized in Stack$Int. Similar to method specialization,
a field is specialized by overriding its accessors towards its specialized repre-
sentation (all Scala fields are accessed through getters and setters, regardless of
specialization). The specialized constructor calls the superclass constructor be-
fore it initializes its own fields. The problem is that the super class constructors
expects that data has been initialized already, and tries to get its length. At the
same time, Stack$Int has overriden the getter for data towards the specialized
variant, resulting in an unitialized field access.

There is another, less obvious problem with this example: the initializer
for data is evaluated twice: once in the superclass constructor, for the generic
version of the field, and another time in the specialized subclass. This is a
problem, since the right-hand side of a value definition can have arbitrary code.
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class Stack[@specialized T] {
def specInstance$: Boolean = false

def this(size: Int): Stack = {
super.this();
if (!this.specInstance$) {
Stack.this.data = new Array[T](size)
println("created array of size "
+ data.length)

}
}

//..
}

class Stack$Int extends Stack[Int] {
override def specInstance$: Boolean = true

def this(size: Int): Stack = {
super.this(size);
Stack.this.data$Int = new Array[Int](size)
println("created array of size "
+ data.length)

}
// ..

}

Figure 4.18: Specialized initialization solution

We need to solve two problems: field initializers should be evaluated only
once, and instance initialization should not see uninitialized fields introduced
by specialization. We notice that the uninitialized field problem may arise only
during object construction, when expressions depend on fields of the object
being initialized.

The first problem is easier to solve: we simply need to distinguish between
specialized and generic instances, and guard the constructing code with the
specific test. To solve the second problem, we move the constructor code to the
specialized subclass. The generic and specialized classes are two sides of the
same definition, so we can freely move code from one to the other. By copying
all the constructor code from the superclass to the subclass we are guaranteed
to have the same behavior regarding data dependencies between fields and
other statements. The only case in which behavior is changed as a result is if
the constructor uses reflective calls. In such a case, it could for instance reveal
that the current class name is different from the source-level name.

The Scala compiler generates the code shown in Figure 4.18. Notice the
additional method specInstance$ that allows the superclass to decide whether
to evaluate or not its own constructor. The specialized subclass overrides it to
signal that the current instance is specialized. We could have used reflection,
or isInstance calls, but we opted for this solution as it is more efficient.

The specialized constructor merges the superclass expressions with special-
ized field initialization:

ci =

{
this. fs = JeiKs if gi is this. f = ei (initialization of a specialized field)
gi otherwise

The specialized constructor statement at position i is denoted by ci, a special-
ized field by fs and a generic field by f . We use the initialization of a specialized
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field fs when the original statement in the generic constructor is an initializa-
tion of a generic field f . In the other cases (normal field initialization or plain
statements), the specialized constructors simply copies over the corresponding
statement.

4.4.4 Type bounds

Type parameters in Scala may have lower and upper bounds which restrict the
applicable types when the corresponding class or method is instantiated. Type
parameters of classes are simple to handle: we only generate specialized sub-
classes for primitive types that fall between the bounds. Things get interesting
when we look at method type parameters, in particular when their bounds
involve type parameters of the enclosing class.

Consider the following:

def m[@specialized B >: Lo <: Hi, C](x: B, y: C): B

This definition has two type parameters, B and C. Parameter B has type
bounds Lo and Hi, which means that all instantiations of B have to be supertypes
of Lo and subtypes of Hi. We can derive the expanded method definitions of
some method by iterating over all combinations of its specialized parameters
(only B in this example), keeping only those that fall between the bounds. If we
assume that Int falls between the bounds, this gives

def m[B >: Lo <: Hi, C](x: B, y: C): B
def mInt[C](x: Int, y: C): Int

The question is what to do otherwise, and here we distinguish two cases:

• satisfiable: The bounds of a type parameter mention a specialized type
parameter of the enclosing class. We cannot conclude that any concrete
type satisfies its bounds until the enclosing class is instantiated.

• conflicting: The bounds of a type parameter clearly forbid a concrete type
combination.

To understand why we need this distinction, we look at the way linked lists
are defined in the standard library

class List[@specialized A] {
def ::[@specialized B >: A](x: B): List[A] =
new ::(x, this)

..
}

We notice that Int is not a valid specialization for the cons operation (::),
because Int is not a supertype of A, for all types A. However, a cons operation
specialized for Int makes sense when working on a List[Int]. By noticing that
A is also specialized, and that the constraint may be fulfilled when specializing
List, we let expansion generate a specialized variant for Int.
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Expansion generates only satisfiable variants. Conflicting combinations
give a compile-time warning, since most probably this is not intended.

What should go into the body of expansions? We distinguish again between
two cases: a valid expansion is implemented by rewriting the original body
with the valid type bindings. By contrast, a satisfiable expansion cannot be
implemented the same way, as that would yield type-incorrect code (remember
that satisfiable methods are instantiated at types that do not fall between the
bounds). Therefore it is implemented by delegation to the original method.

4.4.5 Selection

Specialization is not needed on all members. A class may have many methods
that do not operate on generic types, and whose specialization would be a
waste of space and time, with no obvious gain. In the implementation we chose
to specialize only those members that mention a specialized type parameter in
their signature. For example,

abstract class Foo[@specialized T, U] {
def apply(x: T): U
def get(x: Int): Array[T]
def foreach(x: T => Unit)
val a: Array[T]

def bar1(x: U): Unit
def bar2(x: List[T]): U
val b: List[T]

}

In class Foo it makes sense to specialize the first four members, since calling any
of them involves boxing. However, it makes little sense to specialize bar2, for
example, whose parameter is List[T], even though T is specialized. The reason
is that the argument to bar2 is an object, therefore no boxing is involved.

The important observation is that, besides naked specialized type parame-
ters, we need to specialize members that mention specialized type parameters
in specialized positions inside a generic class. Such is the case for method
foreach, that does not have a naked type parameter in its signature, but would
still benefit from specialization. The reason is that the parameter T => Unit is
in fact a generic type, Function1[Unit, T], and T appears inside Function1 at
a specialized type parameter position. Therefore, by specializing foreach, we
enable specialized use of the argument f.

In general, a member is specialized if at least one of the following is true:

• its return type or one of the parameter types is a specialized type variable.

• its return type or one of the parameter types is a polymorphic type C[T1,..]

with specialized type parameters, and at least one specialized type pa-
rameter T is used in C’s instantiation at a specialized position
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Arrays are considered to be defined as Array[@specialized T], so the last rule
selects for specialization members get and a in the above example.
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Chapter 5

Evaluation

Measure a thousand times and cut
once

Turkish proverb

5.1 Introduction

Language features such as closures and generics make code more expressive
at the expense of performance. In Chapter 2 we have identified and presented
several areas where performance can be improved: boxing and unboxing, higher-
order functions and generic arrays. We have implemented the techniques de-
scribed in Chapter 4 in the current version of the Scala compiler1. In the fol-
lowing sections we use a series of micro-benchmarks in order to assess how
well the techniques described so far are actually improving the performance of
Scala programs.

5.2 Methodology

We use two criteria for evaluating how well the compiled program performs.
Naturally, the first thing we are interested in is speed: how fast is the result-
ing program compared to a baseline (unoptimized/unspecialized) program.
The second criteria is code size: specialization generates new class definitions
thus increasing code size, while optimization may remove unused classes com-
pletely.

Measuring performance of the Java Virtual Machine is notoriously difficult
[20, 19]. Garbage collection, just-in-time compilation and dynamic optimiza-
tion interact in non-obvious ways with the program under inspection. The VM

1At the time of this writing, the Scala compiler version 2.8.0 is not yet released.
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loads the program and starts executing bytecode in interpreter mode. At some
point during execution the VM may decide that some method should be com-
piled to native code to improve performance (usually, the method is deemed
a “hotspot” if it has been executed a large number of times, e.g. 10,000 times).
At this moment the VM compiles and optimizes the code, using everything it
knows about the code currently loaded in the VM. Some of these assumptions,
for instance that a certain method is never overridden (even though it’s not
marked final), may be invalidated in the future. For example, the VM loads
a new class that overrides that method, triggering de-optimization of exist-
ing compiled code. Measuring the execution time under this scenario would
be misleading, since we’d be really measuring the interpreter, the just-in-time
compiler and the de-optimizer, in addition to the real benchmark program.

We can roughly caracterize the VM state as being either “cold” or “warm”:
the VM starts cold, loading classes, compiling and optimizing hot spots, pos-
sibly de-optimizing code based on too optimistic assumptions. At the point
where these activities are down to a minimum, the VM reaches maximum per-
formance: we say the VM is “warm”. It is meaningful to measure performance
in both states, as long as the times we compare are measured in the same state.

Micro-benchmarks are designed to exercise a small set of features, like higher-
order functions. Typically, they have a tight loop performing some computa-
tion whose result is not really needed. The problem is that the VM may be
smart enough to dead-code eliminate the computation if the result is not used
in any way. However, printing or writing to a file may distort the measure-
ments in a significant way, so they should not be part of the actual benchmark.
All of the benchmarks presented in this chapter have a step that prints the re-
sult, outside the measuring loop, thus making sure we are actually measuring
what we are interested in.

Each measurement is repeated 5 times, and we use the mean as the single-
value performance metric. There have been several metrics used in litera-
ture,e.g. best, second-best or worst-time [31], but in Georges et al. conclude
that the mean gives the most realistic picture of how the program will be-
have [18] . Unless otherwise stated, all benchmarks are run on an Intel Core
2 Duo 2.5 GHz with 4 GB of RAM, running Mac OS X 10.6.4 and Java 1.6.0_20,
64-bit server VM.

5.2.1 Steady-state performance

Steady-state performance measures how well the program performs on a warm
VM. We warm up the VM by running the benchmark payload 2 times, and
garbage collect between runs. We run the program another 5 times in the same
VM, this time measuring the execution time. Before each iteration we force a
garbage collection run. To check that no additional compilation takes place,
we enable a VM flag to log when methods are jit-compiled2. Note that even

2We use -XX:+PrintCompilation.
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though it is very likely that the garbage collector runs during the benchmark
payload, it is not a problem: the GC cost is part of the overall performance.

5.2.2 Start-up performance

Start-up performance measures how well the program performs on a cold VM.
In this scenario we measure the time needed to execute the test in one invoca-
tion of the VM, over 7 runs. We do not consider the first two measurements,
which are a warm-up of the operating system (loading from disk, paging, etc).
We average over the following 5 times and provide the standard deviation as
a measure of the range we witnessed. Even though this measurement includes
dynamic compilation, class loading and optimization, it gives an overall pic-
ture of how the start-up time of a program is affected by our optimizations. For
instance, specialization may generate a large number of methods and classes,
and class-loading time may increase significantly. This metric shows whether
this is the case, and the assumption is that the baseline numbers include the
same components beside actual program execution.

5.2.3 Code size

We are interested in the effect on compiled code size. The Java bytecode for-
mat [32] is verbose: each class has its own file, with its own symbol table and
linking is done symbolically, using fully qualified names. We check the impact
of new classes and methods by measuring the size on disk.

A number of tools alleviate the cost of the classfile format by applying sev-
eral specific compression techniques, including symbol table sharing. We use
pack200, the tool distributed with the standard Java environment, to give a
more realistic view of the the class size when loaded by the VM (we can as-
sume that the VM shares symbol table entries).

5.3 Specialization

This section presents the results we obtain by using only code specialization.

5.3.1 Benchmark suite

The benchmark suite consists of 6 programs, each exercising some specific as-
pect of the Scala language:

matrix A straight-forward implementation of matrix multiplication. The matrix
class is generic in the element type. We multiply two random matrices of
250x150 integers.

fft A simple implementation of the fast Fourrier transform. Complex num-
bers are represented as pairs of double precision numbers. The Pair class
is generic in its element type. The input is 65,536 data points.
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Specialized Average StdDev
matrix.Main$ 209.20 23.17 280 197 196 206 250 197 197
fft.Main$ 252.60 5.37 619 289 252 250 249 262 250
closures.Main$ 79.80 0.84 97 80 81 80 79 80 79
arraybuf.Ops$ 72.40 1.67 206 83 75 73 72 71 71
arraybuf.RandomAcc$ 421.80 60.77 589 553 470 496 391 406 346
arraybuf.RandomBurst$ 218.40 28.90 385 242 239 258 208 194 193

Generic
matrix.Main$ 506.00 2.65 787 510 507 502 509 507 505
fft.Main$ 568.20 6.22 974 616 574 573 561 562 571
closures.Main$ 2,865.40 235.11 3006 2626 2746 2959 2728 3235 2659
arraybuf.Ops$ 179.80 9.36 335 196 176 186 193 171 173
arraybuf.RandomAcc$ 826.00 70.42 1072 813 858 811 928 790 743
arraybuf.RandomBurst$ 459.80 25.19 591 438 481 481 433 472 432

0

225.00

450.00

675.00

900.00

matrix fft closures arrray random bursts

specialized generic

Figure 5.1: Steady-state performace of specialization

closures A program that applies a function literal computing x2 + 1 to each ele-
ment of a 10,000 element array and then summing up all the elements.

arraybuf The next three benchmarks are all based on a specialized implementation
of ArrayBuffer. The buffer is backed by an array and can shrink and grow
as needed. It provides higher-order operations like map and fold.

ops The first test creates a buffer of 1,000,000 integers and then performs
an in-place map, a reverse and a fold-left to sum up all its elements.

reads Creates a 1,000,000 element buffer and performs 10 million random
reads.

burst Same as before, but the 10 million random reads are distributed in 1
million bursts of 10 consecutive location reads.

Steady-state

Figure 5.1 shows how performance of each benchmark compares to the base-
line (same code, without specialization). The speed is measured in millisec-
onds and the error bars show one standard deviation of the data set. As de-
scribed in § 5.2, each data point is the mean of the last 5 runs out of 7 runs per
JVM invocation.

Figure 5.2 shows the average running times and speedup. We notice that
all programs are around 2 to 2 1/2 faster with specialization, with one notable
outlier. The closures benchmark is a massive 35 times faster when specialized!
Most of the time spent by the “closures” benchmark is in boxing (around 200
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Generic Specialized Speedup (Nx)

matrix 506.00 209.20 2.42
fft 568.20 252.60 2.25

closures 2,865.40 79.80 35.91
arraybuf.Ops 179.80 72.40 2.48

arraybuf.Reads 826.00 421.80 1.96
arraybuf.Burst 459.80 218.40 2.11

Figure 5.2: Steady-state execution time (ms) and speedup

[spec] - startup time 7 runs
*
matrix.Main$
fft.Main$
closures.Main$
arraybuf.Ops$
arraybuf.RandomAcc
arraybuf.RandomBurst$

[generic]
matrix.Main$
fft.Main$
closures.Main$
arraybuf.Ops$
arraybuf.RandomAcc$
arraybuf.RandomBurst$

236.67 48.96 2.84 302 284 189 280 203 279 185
608.17 26.33 1.65 620 589 632 597 624 571 636
95.83 1.94 27.95 97 94 97 93 96 98 97

204.00 3.10 1.67 204 201 203 204 203 203 210
469.50 24.35 1.86 449 454 450 512 480 472 449
374.50 16.01 1.56 404 368 363 389 365 362 400

671.83 14.05 651 661 650 680 671 686 683
1,005.33 45.36 1019 1037 993 1079 951 988 984
2,679.00 9.80 2672 2681 2664 2675 2678 2694 2682
340.17 8.86 335 333 341 347 327 342 351
874.50 14.01 889 859 868 868 868 893 891
585.67 8.76 594 601 590 585 577 581 580

0

375.00

750.00

1,125.00

1,500.00

matrix fft closures arrray random bursts

specialized generic

Figure 5.3: Startup performace of specialization

million operations). We also believe that the cache performance was greatly
improved when there was no boxing, amplifying the benefits of direct integer
manipulation.

Start-up time

Figures 5.3 and 5.4 show roughly the same tendency as for steady-state perfor-
mance. The speedups are slightly lower than before, as specialized programs
have more classes to load/verify.

Code size

Figure 5.5 shows the results of measuring code size in the Scala standard li-
brary. The first line shows the increase in size of the standard library when
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Generic Specialized Speedup (Nx)

matrix 671.83 236.67 2.84
fft 1,005.33 608.17 1.65

closures 2,679.00 95.83 27.95
arraybuf.Ops 340.17 204.00 1.67

arraybuf.Reads 874.50 469.50 1.86
arraybuf.Burst 585.67 374.50 1.56

Figure 5.4: Startup execution time (ms) and speedup

Generic Specialized Increase

stdlib 10.7M 12.5M 17%
specific 142K 426K 300%

specific[pack200] 32.1K 51.8K 161%

Figure 5.5: Code size in the standard library

specializing array-backed collections, functions up to two parameters and lists.
The cost is relatively small, 17%. However, when we look at the modified
classes alone the picture is rather bleak: the specialized code is around three
times larger. This is the exact size on disk, and we believe the effect of spe-
cialization is seriously aggravated by the class file format of the JVM. Most
specialized classes are relatively small, and pay the price of a full constant pool
and structure information. In the last line we show the results after using the
pack200 jar file compressor, which is known to share constant pool informa-
tion between classfiles; the relative cost went down to almost half of what it
was before.

When we turn to the previous benchmarking suite, the code size follows the
same pattern: specialized library code takes a hit, but application code using
such libraries is roughly the same size. However, things are much worse for
the array buffer class, whose code increases over 20 times. The reason is that
ArrayBuffer is specialized for all 9 primitive types, and one closure defined in-
side foldLeft is specialized for all primitive types of the method type parameter,
bringing in 81 specialized classes for the relatively small closure class.

The cost of extra classes is alleviated by using a jar compressor, but it is
definitely a concern for library writers. This is not unexpected, and we be-
lieve that library developers are in a good position to make decisions about
performance-critical areas and where specialization is truly needed. For in-
stance, the cost can be brought down by requiring specialization only on a few
primitive types (for instance, Unit is most likely useless as a specialization).
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Generic Specialized Increase

matrix 120 160 33.5%
fft 88 88 0%

closures 48 48 0%
arraybuf 64 1448 22x

arraybuf[pack200] 16 48 3x

Figure 5.6: Code size in the benchmark suite

5.4 Optimizations

In this section we look at the performance improvements we can get from com-
piler optimization alone. The benefits of optimization come from closure and
boxing elimination. Since specialization is guaranteed to remove boxing on
specialized code paths, we turn it off for the following benchmarks. We are
interested to see if optimization can entirely eliminate anonymous functions,
and if this truly improves program execution times. The JVMs have improved
greatly in terms of the runtime optimizations they perform, and the space left
for static optimizations has been consequently reduced (or so it is thought).

5.4.1 Benchmark suite

As described in Chapter 2, we are mainly interested in reducing the cost of
language extensions through libraries. We have identified boxing and higher-
order functions as prime candidates for optimization, and we tailor our suite
to this purpose. General purpose optimizations, like strength reduction, loop
unrolling, code motion, redundant expression elimination [36, 29, 44, 28] are
not of prime interest to this work. The JVM is very good at doing it already, and
most of these optimizations are intra-procedural, meaning they have little to no
effect when using compiled libraries. We focus instead of several patterns of
usage of language extensions, and show that the JVM does not match the static
optimizations that we perform. This is in part due to the speed restrictions of
the just-in-time compiler, and to the limited type information available for the
JVM runtime.

The benchmark suite we use for optimizations is a slightly modified version
of the original suite. We have added a new use-case that shows a language
extension, Java-like asserts, and have removed the ArrayBuffer benchmarks.
The matrix multiplication show-cases for-comprehension on integers.

fft, closures Fast-Fourier Transform and closure test. They are the same benchmarks
as in § 5.3.1.

matrix Matrix multiplication. Essentially the same algorithm as in § 5.3.1, but
instead of using a matrix class it manipulates arrays directly. It mainly
measures the effectiveness of for-loop optimizations (see § 2.3.3).
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def assert(cond: => Boolean, message: => Any) {
if (assertionsEnabled && !cond)
throw new AssertionError("assertion failed: " + message)

}

Figure 5.7: Predef.assert

def sqrt(x: Int): Int = {
assert(x >= 0, "Expected positive integer: " + x)

}

def test(xml: Node) {
assert(xml.label == "persons", "Wrong Xml root element: " + xml)

}

Figure 5.8: Using assert

asserts A language extension that implements Java-like asserts, in two scenarios:
enabled and disabled. See discussion below.

The assert keyword from Java can be implemented in Scala as a library
function. The tricky part consists in the requirement that the condition and
message should not be evaluated unless assertions are enabled, and the as-
sertion fails, respectively. In a strict language like Java, and in the absence of
macros, this is impossible to express. Scala offers call-by-name parameters,
which turn arguments at each call site into nullary functions. The body of the
method applies the function each time it needs to obtain the value.

The matrix multiplication example is centered around a triple nested for
loop:

def multiply(n: Int, a: Array[Array[Int]], b: Array[Array[Int]]) = {
val c: Array[Array[Int]] = new Array(n, n)
for (i <- 1 until n; j <- 1 until n; k <- 1 until n)
c(i)(j) += a(i)(k) * b(k)(j)

c
}

As explained in § 2.3.3, for comprehensions are expanded to nested calls to
foreach, which in turns gets a closure argument. The purpose of this bench-
mark is to show that we can keep the library implementation of plain loops on
integer values, and still get good performance.

Steady-state performance

Figure 5.9 shows the execution times for the benchmark suite. For asserts we
measure both enabled and disabled asserts, to show that the evaluation of the
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Non-optimized Average StdDev Speedup

Matrix$ 177.20 0.45 272 178 178 177 177 177 177
assertson.XmlTest$ 785.00 4.12 847 785 792 782 782 784 785
assertsoff.XmlTest$ 768.60 1.14 820 772 769 767 770 768 769
fft 362.40 6.73 514 358 357 360 356 368 371
closures 2,666.40 92.82 2715 3199 2832 2636 2625 2621 2618

Optimized
Matrix$ 40.80 0.84 4.34 271 61 42 41 41 40 40
assertson.XmlTest$ 52.60 0.55 14.92 63 45 52 52 53 53 53
assertsoff.XmlTest$ 36.00 0.00 21.35 42 28 36 36 36 36 36
fft 314.60 6.84 1.15 530 406 308 308 314 323 320
closures 76.60 0.55 34.81 91 87 77 77 76 77 76

0

112.50

225.00

337.50

450.00

matrix asserts(1) asserts(0) fft closures

optimized unoptimised

Figure 5.9: Optimized steady-state execution times

condition is optimized as well. Matrix multiplication is 4.3 times faster, and the
two assert benchmarks are an order of magnitude faster. The execution time
for the two assert benchmarks is dominated by closure application, and the
fact that the compiler eliminated the overhead leads to a large improvement
It is interesting to note that for matrix multiplication, static optimization gives
better speedup than specialization alone, showing that optimizations can re-
move more than just the boxing cost, and that the JVM does not perform the
same level of inlining and cross-method optimizations.

The closures benchmark shows the same 35x speedup, which is hard to
beat. The amount of boxing that optimizations alone can remove seems to be
in line with specialization. Comparatively, The Fast-Fourier transformation is
not improved by much: it is only 15% faster. In this case the optimizer is not
able to remove boxing and unboxing that goes on when using the generic Pair

class, so specialization is outperforming the optimizer. Why does the optimizer
fail to eliminate pairs? There are several reasons at play:

access modifiers In order to inline methods, like accessors to the tuple fields, their body
has to use only public members (otherwise, code would not pass verifi-
cation). Pairs keep their fields private.

redundancy Boxing can be eliminated when the boxed value exists in unboxed form
and is guaranteed to have the same value. This usually happens with
closures that capture an environment: the boxed value is passed to the
closure, but the unboxed value still exists in the caller’s environment.
However, in this benchmark pairs are stored in an array, and their ele-
ments exist only as Doubles. The only way out is to specialize the holder
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Optimized Unoptimized Speedup (Nx)

matrix 40.80 177.20 4.34
asserts(1) 52.60 785.00 14.92
asserts(0) 36.00 768.60 21.35

fft 314.60 362.40 1.15
closures 76.60 2,666.40 34.81

Figure 5.10: Execution time (ms) and speedup for steady-state.

Non-optimized Average StdDev Speedup
Matrix$ 177.20 0.45 272 178 178 177 177 177 177
assertson.XmlTest$ 785.00 4.12 847 785 792 782 782 784 785
assertsoff.XmlTest$ 768.60 1.14 820 772 769 767 770 768 769
fft 362.40 6.73 514 358 357 360 356 368 371
closures 2,666.40 92.82 2715 3199 2832 2636 2625 2621 2618

Optimized
Matrix$ 40.80 0.84 4.34 271 61 42 41 41 40 40
assertson.XmlTest$ 52.60 0.55 14.92 63 45 52 52 53 53 53
assertsoff.XmlTest$ 36.00 0.00 21.35 42 28 36 36 36 36 36
fft 314.60 6.84 1.15 530 406 308 308 314 323 320
closures 76.60 0.55 34.81 91 87 77 77 76 77 76

baseline
Matrix$ 23.80 1.10 86 33 25 23 23 25 23
assertson.XmlTest$ 139.80 1.10 187 133 141 139 139 141 139
assertsoff.XmlTest$ 126.20 3.83 184 141 124 125 133 124 125
fft 372.40 17.20 503 366 357 402 369 367 367

basline-opt

Matrix$ 23.20 0.84 74 20 24 23 23 22 24
assertson.XmlTest$ 52.00 0.00 67 48 52 52 52 52 52
assertsoff.XmlTest$ 40.20 0.45 45 33 40 40 41 40 40
fft 367.60 22.71 463 355 355 351 366 359 407

0

112.50

225.00

337.50

450.00

matrix asserts(1) asserts(0) fft closures

optimized unoptimised
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Figure 5.11: Execution times compared to a hand-written baseline. Loops are
rewritten to while, asserts are inlined.

class to have double fields.

Still, we get a 15% speedup, which is non-negligible in performance comput-
ing. It again shows that the JVM is not able to inline/optimize across methods
as well our optimizer.

Figure 5.11 shows how execution times compare to hand-written versions
of the benchmarks, which we call baseline. We measure both optimized and
unoptimized performance in the baseline and original setting. Matrix multi-
plication and fft have been rewritten to use while instead of for-loops, and the
two assert benchmarks have been inlined by hand. The closures benchmark
misses the hand-written versions as it made little sense to transform it. We no-
tice that in the matrix case, the optimized version gets very close to the baseline
performance, while for the two asserts, the unoptimized baseline performance
is actually worse than in the optimized case. However, the optimized baseline
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Optimized Unoptimized Speedup (Nx)

matrix 117.17 262.17 2.24
asserts(1) 61.83 850.33 13.75
asserts(0) 41.67 822.17 19.73

fft 517.33 503.83 0.97
closures 88.83 2,666.50 30.02

Figure 5.12: Execution time (ms) and speedup for startup.

[spec] - startup time 7 runs
optimized
matrix

asserts(on)

asserts(off)

fft

closures

non-optimized
matrix

asserts(on)

asserts(off)

fft

closures

117.17 4.71 2.24 115 116 115 122 113 124 113
61.83 0.41 13.75 61 62 62 62 61 62 62
41.67 0.52 19.73 41 41 42 42 42 41 42

517.33 7.17 0.97 523 525 523 508 513 512 523
88.83 3.97 30.02 85 92 91 94 85 86 85

262.17 3.66 264 262 260 259 259 268 265
850.33 8.43 844 845 867 851 847 846 846
822.17 1.17 820 823 822 820 822 823 823
503.83 5.78 502 505 512 504 494 505 503

2,666.50 2.88 2681 2662 2666 2666 2671 2667 2667

0

250.00

500.00

750.00

1,000.00

matrix asserts(1) asserts(0) fft closures

optimized non-optimized

Figure 5.13: Optimized startup execution times

version performs as well as the original, optimized benchmark. For fft the
baseline version does not perform better than the unoptimized version, proba-
bly because most of the work is done inside the loop.

Start-up time

Figures 5.13 and 5.12 show the results for startup times. We see a different
picture here: only the assertion benchmarks have comparable speedups to the
previous results. The worst case is for Fast-Fourier transform, which actually
gets 3% slower. We blame this slowdown on the increased method size in
the optimized program. Once the methods are jit-compiled (steady-state), the
program is indeed faster, but larger methods increase the compilation time,
and decrease the likelihood of the jit-compiler to inline them.
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Optimized Unoptimized Ratio

matrix 40 56 0.71
asserts(1) 24 72 0.33
asserts(0) 24 72 0.33

fft 80 82 0.97
closures 32 40 0.80

Figure 5.14: Code size for optimized programs

Code Size

The optimizer may affect code size in two different manners: increase the
code size by inlining methods, and decrease by completely eliminating clo-
sure classes that have been inlined. Table 5.14 shows the code size before and
after optimizations

Overall, the optimizer does a pretty good job at removing closures, and
none of the examples show any increase in the code size. For the matrix bench-
mark, the optimizer removes 3 out of 5 closure classes. The ones that are not
eliminated are due to hitting a limit on the overall inlining that is allowed per
method, in order to keep method sizes and compilation times under control.
More inlining can generally be forced by annotating methods with @inline,
which skips this check. In the assert examples, all 7 closures are successfully
inlined and their classes eliminated. In the FFT benchmark, only 3 out of 8 clo-
sures were successfully eliminated, which may also explain the relatively low
speedup observed on this benchmark. On the last benchmark, only one closure
out of two has been removed, but interestingly, it is the right one (the one in
the tight loop). That explains the great speedup we observed.

5.4.2 The Scala compiler

In order to asses how the optimizer handles large programs, and if the per-
formance is indeed improved for non-trivial programs, we benchmarked the
Scala compiler itself. The compiler has 88,000 lines of Scala code, and the stan-
dard library adds another 62,000. There over 450 calls to the assert method
(defined using call-by-name parameters for both the condition and message).
In addition, it calls about the same number of times to the log method, which
we modified to take a call-by-name parameter:

@inline final def log(msg: => AnyRef) {
if (settings.log contains phase.name)
inform("[log " + phase + "] " + msg)

}

Logging may be expensive, since the message may contain pretty-printed
tree fragments, so it is important that the argument to log is not evaluated
unless logging is enabled.



5.5. CONCLUSIONS 101

Execution time Speedup
unoptimized optimized

steady-state 3,432.88 3,317.75 1.035
start-up 13,519.67 12,995.50 1.040

Closures Code size
unoptimized optimized unoptimized optimized

4,445 3,579 9,377,945 8,688,690

Figure 5.15: Benchmark results for the Scala compiler

We measured the time it takes scalac to compile the Scala runtime (41 files,
1,344 lines of code). Results are presented in Figure 5.15. We notice a slight
improvement of 3.5% for steady-state performance, and 4% for start-up. The
results are consistent for larger inputs. The relative small improvement can
be explained by the fact that the compiler is written in a very cautious style,
avoiding constructs that might slow down the compiler or increase memory
usage. Additionally, it uses very few primitive values, so boxing and unboxing
is almost not present in a compiler run. Overall, we were pleasantly surprised
that the optimized version of scalac is actually faster.

In terms of code size, the optimized compiler is indeed smaller by almost
8%, owing to almost 900 closure classes that were completely eliminated.

5.5 Conclusions

We have presented a set of micro-benchmarks that asses the effectiveness of
compiler optimization and specialization. We have been interested in seeing
how performant code can be achieved using high-level constructs, like higher-
order functions and generic container classes, without giving up optimizations
on library code and genericity.

We have showed that specialization achieves speedups between 2 and 3 on
generic code operating at primitive types. In extreme cases, this can go as high
as an order of magnitude faster. The speedups are a bit less pronounced for
startup time, which is a combination of more classes to load and more methods
to jit-compile. The optimizer proved to be less predictable, giving very high
gains when it can remove boxing and closure creation (5 to 6 times speedups),
but it may fail to give high speedups when the structure of the code becomes
too involved (for instance, relying on private fields, or storing containers of
boxed values in other containers).
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Chapter 6

Related Work

Every person I work with knows
something better than me. My job
is to listen long enough to find it
and use it.

Jack Nichols

6.1 Specialization

Polymorphic code is code that can operate on a variety of types, without de-
pending on the actual type of the values it manipulates. Parametric polymor-
phism (generics in object-oriented circles) allows code to be type checked using
type variables instead of concrete types, and to instantiate type variables with
actual types when the code is used.

There are two ways in which polymorphic code can be compiled (using
the terminology from [11]): homogeneous translations use a single representa-
tion for polymorphic data, and heterogenous translations generate specialized
version of the code for each instantiation. Homogeneous translations are com-
pact and allow separate compilation, but they penalize performance when the
concrete types are known. They rely on using one common representation
for all values (usually one machine-word), and representing integers or dou-
ble precision floating point numbers as pointers to boxed objects on the heap.
Heterogeneous translations suffer from code bloat [35] and lack of true separate
compilation, but offer good performance.

6.1.1 Homogeneous translations

Compilation of parametric polymorphism has been studied initially in the con-
text of functional languages [30, 35, 26, 23]. All these approaches start from a
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homogeneous scheme and look for opportunities to use unboxed representa-
tions when the concrete types allow it. Leroy proposes that values use their
natural representation whenever the types are concrete, and add coercion op-
erations (which he calls wrap and unwrap) at the points where concrete types
enter/exit generic code [30]. His approach is similar to how Java handles
generics [11]. Peyton-Jones and Launchbury take a complementary approach,
starting with a language where all values use a uniform representation and
showing a number of source-to-source translations that make boxing explicit
[26]. Algebraic laws allow to further simplify and fuse operations on prim-
itive types, leading to more efficient code. Similar to Leroy, Morrison et al.
propose to use the natural representation for values whenever the types are
concrete, and a uniform representation for polymorphic code [35]. Each poly-
morphic function is wrapped by an envelope function which converts the argu-
ments from a concrete representation to the boxed form. Each value is tagged,
and the envelope function decides at runtime how to convert the value to a
uniform representation.

All of these approaches adhere to a single version of the compiled code.
They are motivated by performance, but they only tackle the case when the
code is truly monomorphic, resorting to boxing whenever a definition is poly-
morphic. This limits their use to fully concrete programs, penalizing the use of
a generic container instantiated at a primitive type.

In the context of object-oriented languages there is less of a consensus on
homogeneous translations. While Java and Scala use an erasure-based transla-
tion [40, 42], Ada, C++ and to some extent C# use heterogeneous translations.

There have been several proposals to extend Java with generics [11, 12, 2, 9].
The design finally chosen is based on [11], and uses a homogeneous transla-
tion. Classes and methods may have bounded type parameters. All types are
checked during compilation, but they are not available at runtime. Casts (that
are guaranteed to succeed) are added around the entry and exit points to/from
generic code (casts are required by the JVM, which uses typed bytecode but is
generics-agnostic).

6.1.2 Heterogeneous translations

C++ is one of the first object-oriented languages to have generics and brought
them to the mainstream [10] (Ada had generics before C++, but the object-
oriented extensions were added later [51]). C++ templates allow definitions
(classes, functions, methods) to be parameterized by types and values. A tem-
plate is instantiated by providing concrete types (and values) for its formal
parameters. A new definition is derived by substituting the arguments for
the template parameters, and the newly formed definition is type-checked at
the point of application. Each distinct instantiation results in a new defini-
tion, and there is no uniform representation for values. The programmer may
provide a specialized implementation for specific template instantiations. To-
gether with the macro-like semantics of template instantiation, it leads to a
Turing-complete language at the type level [56] and a technique based on tem-
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plate meta-programming [4]. Despite their popularity in the C++ community
and the good performance they entail, templates have been criticized for code
bloat, lack of separate compilation, and obscure error messages.

Agesen et al.

One of the first proposals for Java generics is described by Agesen, Freund
and Mitchell [2]. They propose a heterogeneous translation in which generic
classes are compiled to an extension of Java bytecode, and specialized at load
time. The modular architecture of the JVM allows users to write a class loader,
which may perform load-time code modification. In this proposal, a special
class loader pre-processes the extended bytecode and replaces all occurrences
of type variables with their actual types, resulting in a specialized class for
each generic class instantiation. This gives good performance, exact runtime
types and a small code footprint, though this is misleading: new classes are
generated on the fly, as the program instantiates generic code. Compared to
other approaches, this allows type variables in more positions in the source
code, for instance classes may extend type variables. However, it does not
discuss how to handle method type parameters, since they would require an
unlimited number of methods per class, and the JVM requires that classes are
immutable once loaded.

Odersky et al. describe and evaluate their implementation of a heteroge-
neous translation based on Agesen et al for the Pizza compiler [41]. Poly-
morphic methods are translated using a homogeneous scheme, while param-
eterized classes are specialized at load time. They compare the heterogeneous
translation to one based on type erasure and find that, contrary to their expec-
tations, the performance of the specialized code was on average 26% slower on
the pizza compiler itself. The slowdown came mostly from class loading (many
more classes to load) and the specialization translation performed at load time.

Myers et al.

In [9], Myers, Bank and Liskov propose an extension of Java with generics at
the VM level. Classes (but not methods) may be parameterized with types,
which may be characterized by where clauses. A where clause lists required
methods and constructors on a type parameter, together with their signatures.
When a class is instantiated, the actual types have to conform to the where
clauses in the generic definition. The translation is mostly homogeneous, but
primitive type instantiation may require class specialization. The VM is ex-
tended with new instructions for invoking methods on type parameters, and
new data structures for instantiation-specific class data, such as method point-
ers for where methods. Homogeneity holds as long as all types have the same
size, but breaks for longs and doubles. In that case the authors propose class
specialization, but it is unclear when that would be performed.
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NextGen

Perhaps the closest to our approach in realization, if not in intention, is the
approach proposed by Cartwright and Steele [12]. NextGen adds genericity to
Java with full run-time type information, without changes to the JVM. They use
a mixed translation strategy, sharing between all instantiations code that does
not depend on types variables, and turning to a heterogeneous translation for
the parts that do.

Each generic class is translated to an erased base class, plus one interface
and one wrapper class per instantiation. The interface is simply a marker of the
instantiated type, while the wrapper class extends the base class and imple-
ments the interface. Type tests are carried in terms of the interface, which is
name mangled to represent the type instantiation. The wrapper class carries
type-dependent operations grouped in snippets: whenever the base class uses
type variables in code (such as creating an instance of a type parameter), the
operation is extracted in an abstract method called a snippet. The wrapper class
implements these snippets, as it is generated when the instantiation is known.

Unlike the other approaches so far, NextGen supports covariant type pa-
rameters. In order to reconcile the subtype relationship in the language with
the one at the JVM level, each wrapper interface extends the wrapper interfaces
of all supertypes instantiated at the immediate supertype of the argument. This
can lead to many classes being generated, especially when using more than one
type parameter. Unfortunately, this scheme breaks down for contravariant pa-
rameters, as the JVM does not allow the introduction of new supertypes.

Our approach is similarly using a scheme based on type-erasure, and adds
specialized variants for instantiations. In our approach we aim to improve per-
formance, and specialize only a bounded number of types (primitive types),
while interestingly, NextGen does not allow primitive type instantiations. This
keeps code bloat under control, but does not give precise run-time type infor-
mation. Our specialization is optional and opportunistic, meaning the correct-
ness of the translation does not depend on specializing all instantiations. We
support both covariant and contravariant type parameters, which is a result of
the limitation to primitive types (which are final and have only one super type,
AnyRef). We do not need explicit snippets or wrapper interfaces because all
type-dependent code is re-implemented in the specialized subclasses, which
play the role of wrapper classes.

.NET Generics

Kennedy and Syme present an extension of the .NET Common Language Run-
time that supports generics [27]. Similar to Myers et al., they extend the VM
and the instruction set to accommodate polymorphic classes and methods.

The system preserves exact run-time types and uses both specialization
and code sharing. Specialized classes are created lazily, as generic classes are
instantiated. Whenever the code layout permits, an existing instantiation is
reused. In practice this means that primitive types and user-defined value
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classes are specialized, while reference types share the same code. The imple-
mentation does not rely on boxing, leading to good performance and efficient
space usage.

To provide run-time types the implementation uses dictionaries, similar in
intention to Cartwright’s snippets. Dictionaries are lazily computed and con-
tain type handles for all open-type expressions used inside (code-shared) generic
code. Class dictionaries are co-located with vtables, but polymorphic methods
may need an additional parameter to carry the dictionary corresponding to its
own type parameters.

Our approach is similar in the way we mix homogeneous and heteroge-
neous translations. Primitive types trigger specialization, in the quest to save
the cost of boxing, while reference types go through the erased representation.
We differ in that we specialize opportunistically, and specialized and generic
instantiations are interoperable: an instance of List$Int is also an instance of
List[Int] and List[Any].

Furthermore, it is not clear how covariance can be integrated without code
sharing in this approach: suppose List[+A] is covariant in type A, and Int

is a subtype of the top type, Any. It follows that List[Int] is a subtype of
List[Any]. Unless the same representation is used for values of type A, the
layout of the two classes in incompatible. We circumvent this problem by sub-
classing the erased version of List, and paying an extra cost in the additional
fields. Kennedy et al. solve this problem by restricting covariance to interface
and delegate types [1, 33].

Together with Yu, Kennedy and Syme have formalized and proven sound
the specialization transformation [60]. We use a smilar language and technique
to describe our transformation in Chapter 4.

6.2 Optimizations

Compiler optimizations have been extensively studied for the past 40 years. In
this work we focus on optimizations for object-oriented languages for the Java
Virtual Machine. More precisely, we aim to bring down the cost of abstraction
in Scala, mostly through optimizing higher-order functions and eliminating the
cost of boxing whenever possible.

Based on the moment when optimizations are performed, we can roughly
divide them in dynamic and static optimizations. Dynamic optimizations are
performed at run time, and they are usually directed at the points that get exe-
cuted the most (hot-spots). Static optimizations are performed by the compiler
and are done ahead-of-time. Based on the scope of optimizations, we further
divide them in whole program and modular. The former assume the whole pro-
gram is available for analysis, and it is usually implemented by virtual machine
optimizers, while the latter has a limited view of the program and consequently
works with less precise information.
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6.2.1 Virtual method call resolution

The first step in optimizing a program is to build a call-graph, linking call sites
to the methods that might be executed. Object-oriented programs make exten-
sive use of dynamic dispatch, meaning the method that is called depends on
the dynamic type of the receiver object. In other words, on the value that flows
to the receiver. All of the following approaches assume the whole program is
available for analysis.

Control Flow Analysis

Even though initially described as an analysis for dynamically typed functional
languages (Scheme), Shivers is the first to describe a principled solution to re-
solving dynamic function calls [48, 47]. In Scheme, functions are values which
can be passed around, bound to variables or stored in data structures. The
code that is executed when a function is applied depends on the values that
flow into the call site.

Shivers describes a framework to compute the set of possible values that
may flow at a program location, and that may be bound to a variable. The
analysis is called CFA, and in its simplest form it identifies variables and func-
tions with their syntactic expression (0-CFA). This form does not distinguish
between different instances of a function call, effectively merging all closures
that may be created at a program point (and the same for variables). In other
words, the analysis is not contextual. The idea is to build a set of constraints
on the possible functions that may reach a variable or program point. For ex-
ample, a function definition adds itself to the set that could flow to that point,
and a function application adds the constraint that all possible functions flow-
ing in an argument have to be included in the set of possible functions of its
corresponding function parameter. A solution to the constraint system gives
the required information about call sites.

The analysis may be extended to keep track of the context of each function
application. The information computed at program points is qualified with a
context, essentially a stack of program points representing the call-path to that
point. The context depth is bound by a constant, hence the name k-CFA.

Class Hierarchy Analysis

In the context of the Vortex compiler, Dean, Grove and Chambers [14, 22] de-
veloped a series of techniques for optimizing object-oriented programs. Virtual
calls are resolved using Class Hierarchy Analysis (CHA), which is a very nat-
ural and simple technique using the static type of the receiver object: build a
whole program hierarchy of classes, and at each call site retain only the meth-
ods that are actually implemented in a subclass of the static type of the re-
ceiver. They report good results for the Cecil language, results that were later
confirmed by Sundaresan et el. for Java [50].
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Rapid Type Analysis

A simple and effective refinement of CHA is rapid type analysis [7]. The ob-
servation is that many classes are never instantiated, for instance when the
program uses only a small part of an existing library. RTA builds a set of all
instantiated classes, and prunes the call graph by removing methods defined
in classes that are not in this set. Bacon and Sweeney report that 71% of the
virtual calls in C++ can be resolved by RTA, and only 51% by CHA alone. The
results seem to carry over to Java, as reported by Sundaresan in [50], where he
suggests that the biggest improvement comes from unused library code (the
percentage of resolved calls drops from 77% to 7% when they consider the
benchmark code alone).

Variable Type Analysis

In the larger context of the Soot project [55, 54], Sundaresan et al. describe a
more precise algorithm for resolving method calls in Java [50]. The algorithm
starts from a conservative call graph built using CHA, on which it builds a
propagation graph. The idea is to push types from allocation (calls to new) to
their use, through fields, method arguments and return values: edges connect
the two sides of an assignment, and actual to formal method arguments. They
report improvements over RTA, especially when considering only the call-sites
appearing in the benchmark code (thus excluding library code).

Even if we did not mind the whole program assumption, both CHA and
RTA are not precise enough for successfully eliminating closure calls in Scala.
As explained in § 2.6.1, closures are called through an interface that has hun-
dreds of implementations in a typical Scala program, and it is practically im-
possible that only one concrete implementation is ever instantiated (as required
by RTA). On the other hand, VTA can resolve a very limited class of closure
calls: when the call site is truly monomorphic, even though the static type of
the receiver is still the FunctionN interface, it may be able to propagate the in-
stantiated closure class to the application point.

6.2.2 Java static optimizations

Optimization efforts for Java have been directed either at runtime optimiza-
tions at the virtual machine level, or static optimizations at the bytecode level.
Bytecode optimizers translate compiled bytecode to an intermediate represen-
tation, perform various optimizations and then rewrite the program either back
to bytecode or to native code. Both approaches assume the whole program is
available for analysis.

Soot

Soot is a framework for optimizing Java bytecode [55]. It offers three inter-
mediate representations, in increasing order of abstraction: Baf, Jimple and
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Grimp. Baf is a simple, straight line, stack based representation of bytecode.
It abstracts over the constant pool and provides a typed instruction set. Jim-
ple is a three-address code intermediate representation more suitable for intra-
procedure optimizations. The stack is replaced by additional temporary vari-
ables, and the jsr instruction is removed by inlining its target. Lastly, Grimp
is a high-level intermediate language, closer to decompiled Java. For instance,
it uses arbitrary expressions instead of the flat sequence of operations dictated
by three-address codes. A fourth representation, Shimple, has been added later
[53] and it provides a static single-assignment form IL.

Different optimizations have been implemented using Soot. In [54] Vallée-
Rai et al. describe and evaluate a number of optimizations for Java. They have
implemented inlining and a number of traditional intra-procedural optimiza-
tions, like copy propagation, constant folding, conditional and unconditional
branch folding, dead-code elimination and dead assignment elimination. They
report speedups of 4 to 8%. The inlining strategy is based on CHA and starts
with leaf methods, inlining as much as possible, without increasing the size of
the caller above a threshold, and only if the callee is below a fixed size. Being
focused on Java, they do not attempt to eliminate object allocation, as Java did
not have closure objects (and still doesn’t) nor boxing at the time. We believe
our approach is a natural extension of this work.

Transforming bytecode into a typed representation poses some challenges.
Local variables and stack location are untyped at the VM level, and type recov-
ery is not always possible without splitting variables. Gagnon et al. describe
several extensions to Plevyak’s work on type inference in object-oriented pro-
grams [16, 45]. We have found that the problematic cases are very rare in prac-
tice.

Marmot

Marmot is an optimizing Java compiler developed by Fitzgerald et al. at Mi-
crosoft Research [15]. Marmot is a bytecode to native code compiler, so it nec-
essarily is whole program. The goal of this project was to produce code as
efficient as C++, keeping the original Java semantics as much as possible. For
instance, Marmot does not support dynamic class loading, and only supports
a subset of reflection.

The intermediate language is a three-address code that uses additional tem-
porary variables instead of the stack, called JIR. Basic blocks differ from the
classical definition [3] in the same way as in our work: besides the normal
control-flow exit points at the end of the block, exception handlers add special
edges that may originate at any instruction in the block. Handlers are paired
with the type of the exception they may catch and may cover several basic
blocks. JIR is in static single-assignment form.

Marmot performs an impressive list of optimizations, ranging from stan-
dard (common sub-expression elimination, constant/copy propagation, loop
invariant code motion, induction variable elimination, etc) to object-oriented
and Java specific (synchronization elimination, stack allocation of objects, null
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check removal, etc). Calls are resolved using a lazy variation of CHA. Perhaps
surprisingly, inlining is guided by a very simple strategy, and performed only
when the inlined method gives shorter code than the original call sequence.

Their results show speeds comparable to other Java systems, and within 3
to 38% slower than the C++ version of the program.

6.2.3 Dynamic optimizations

The picture of compiler optimizations for the Java platform would be incom-
plete without mentioning the intense research area of runtime optimizations.
Indeed, most research efforts in compiler optimization are focused on just-in-
time compilation. Providing a complete picture of this area is beyond the scope
of this work, but we highlight some of the features of the leading JVM, Sun’s1

HotSpot virtual machine.
Dynamic optimizations are attractive because they provide several impor-

tant pieces of information to the compiler: feedback – what regions of the code
are executed the most, hence where optimization effort should be directed; a
complete view on the program – whole program techniques can be applied. In
addition, it frees compiler writers from restrictions in the bytecode abstraction
level. Some optimizations can only be performed when the target language is
sufficiently close to the processor, like array bounds check elimination, register
allocation, or instruction scheduling.

The downside is that optimizations have to be very fast, since the compi-
lation cost is paid at runtime. This usually forbids algorithms that need many
passes over the code, and leads to a tradeoff between optimized code and fast
compilation. To ease the decision, two compilers have been implemented in
the HotSpot VM, the client compiler which is very fast, but implements only a
few optimizations, and the server compiler, which spends more time optimiz-
ing but whose running time has to be amortized by long running processes.
The user is called on to decide which one to run by passing a command-line
option.

The HotSpot server compiler

The recommended configuration for long running applications is the HotSpot
server compiler [44]. The compiler described by Paleczny et al. uses an SSA-
based representation that blurs the distinction between basic blocks and in-
structions [13]. Each instruction is a node, and it represents the value that it
computes. Similarly, the operands of an instruction are pointers to their defini-
tion node, meaning that use-def chains are part of the representation.

The server compiler performs constant propagation, inlining, global value
numbering, graph-coloring register allocation and instruction scheduling. In-
terestingly, inlining is performed at parse time, when compiling a method.

1Sun has been recently acquired by Oracle, but we chose to attribute this technological achieve-
ment to the original company.



112 CHAPTER 6. RELATED WORK

When the target of the call can be determined (using CHA, or through receiver
profiling), the target method bytecode is merged into the caller and optimized
together. If some of the assumptions on which inlining has been performed
are invalidated later, the method is de-optimized and relegated to interpreted
mode.

Most of the compiler time is spent in the register allocator (49%), followed
by the optimizer (20%) and the parser (14%). The server compiler applies many
of the traditional compiler optimizations, ensuring that Java compilers can re-
main relatively simple and let the runtime deal with the platform specifics.

The HotSpot client compiler

Applications are not always long-running, performance critical programs. Desk-
top applications favor fast response times and usually run for shorter time,
augmenting the relative cost of expensive optimizations. The client compiler
has been developed as an alternative to the performant (but somewhat slow to
start up) server compiler. The two compilers do not share any code, and the in-
termediate representation is different [21]. The code generator is very simple,
and initially the register allocator was unnecessarily pessimistic.

More recently, Kotzmann et al. describe advances in the client compiler
for Java 1.6 [29]. The intermediate representation is now SSA-based sea-of-
nodes [13], the register allocator uses linear scan, and various optimizations
have been implemented, like inlining, global and local value numbering, null-
check elimination and conditional expression elimination.

In the same paper Kotzmann et al. describe a number of optimizations that
may be included in future versions. Of prime interest to our work is scalar re-
placement: when an object is proven not to escape its defining scope, its fields can
be replaced by local variables, and the object construction completely elided. In
the context of closure elimination, this means that the closure object is created
and consumed in the same method, depending essentially on the ability to in-
line both the higher-order function (like foreach), and the function application
inside. Differently to their work, we never add local variables to act as fields
of the eliminated closure; instead we rely on proving that there is a mapping
between each field and a local variable prior to object elimination.

Escape analysis opens the way to a number of other interesting transforma-
tions, like stack allocation and thread synchronization removal. Stack alloca-
tion can be employed when the object escapes only to methods called from the
current method. The object is then allocated on the thread stack, and a pointer
is passed to callees. When the code leaves the method, the object is deallocated
automatically.

Other JVMs

Besides the reference implementation, a number of JVMs have been developed
by others. Most of them rely on a similar approach to adaptive optimization.
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The IBM implementation relies on three levels of optimizations, and a con-
troller that decides when to recompile a method using a more aggressive level
[49]. BEA JRockit is a production-level JVM that uses ahead-of-time compila-
tion. Every method is compiled before it is executed, and based on sampling
profiles hot methods are recompiled using an optimizing compiler. Jikes Re-
search Virtual Machine is a JVM developed by IBM and written in Java [5],
using adaptive optimization, and it is the basis of a large number of research
ideas (over 188 papers on the project’s website).
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Chapter 7

Conclusions and Future Work

Finally, in conclusion, let me say
just this.

Peter Sellers

We have identified and described several areas of impact for efficient Scala
programs: higher-order functions and closures, and generic definitions used at
primitive types. We further identified boxing elimination as essential for tackling
both problems.

This thesis presented two solutions for improving the performance of com-
piled Scala code: optimization and specialization. We have implemented both
proposals in the Scala compiler, and are part of the current release of Scala (ver-
sion 2.8.0)1. To evaluate our approach, we used a set of benchmarks and have
shown that they are viable.

7.1 Optimizations

Closures and higher-order functions can perform better when they are opti-
mized together. We proposed closure elimination through aggressive inlining
and an extended algorithm for copy-propagation.

We have implemented a series of static optimizations that operate across
compilation units and shown how inlining followed by closure elimination
and dead-code elimination can reduce the cost of closures by up to 5 times.
Inlining uses a flow-sensitive analysis to find more precise types at call sites,
and for closure elimination we extend copy-propagation with a simple model
for objects that can flatten closures and remove boxing.

Separate compilation can be achieved without giving up on the optimiza-
tion of library code. We have implemented a bytecode reader that can bring

1Some improvements have been made after the 2.8.0 release. They are available in the nightly
distribution, and will be part of the next Scala release.
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library code back to the same representation used by the Scala compiler for its
own optimizations.

We can improve upon the proposed optimizations by having more precise
analyses. Side effect analysis is of prime interest, and could improve the effec-
tiveness of closure elimination. Escape analysis could allow more interesting
optimizations, like scalar replacement, and both are natural continuations of
this work.

7.2 Specialization

We proposed a new approach to compiling parametric polymorphism for per-
formance. We mix a homogeneous translation scheme with user-directed spe-
cialization for primitive types. Specialized classes are compatible with unspe-
cialized code, and specialization agnostic code can work with specialized in-
stances. We achieve separate compilation by limiting specialization to primi-
tive types.

We have implemented and evaluated the approach on several Scala bench-
marks. Generic collections and closures benefit the most from this scheme, and
we showed that execution speed can increase more than two times with our
technique.

So far specialization is an implementation technique, keeping the current
semantics of Scala programs. Specialized classes are derived automatically by
the Scala compiler, for different combinations of specialized type parameters.
We can extend the current mechanism by allowing users to specify a specializa-
tion for a certain combination of type parameters, similarly to C++ specialized
templates. This would allow a programmer to give a bit set implementation of
generic sets, for instance

class Set[@specialized T] {
def apply(x: T): Boolean

}

and specialize for Int:

@specialized class Set[Int] {
def apply(x: Int) = //...

}

We have shown two complementary approaches for improving performance
of Scala programs. Specialization is more predictable and well-suited for li-
brary designers who can balance between code size and performance. Code
size can be a problem, especially when the number of specialized type param-
eters goes beyond two. On the other hand, optimizations deal better with code
size, but may miss opportunities. They are in general less predictable, but may
give very good results when they apply.

The abundance of optimizing JVMs leads to the conclusion that Java com-
pilers may safely omit traditional optimization techniques like value number-
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ing, constant propagation and folding, or code motion. However, there are
areas where JVMs today do not perform as well as static compilers, mostly be-
cause of the restrictions on execution times and lack of type information. We
have shown that significant improvements can be achieved by static compila-
tion techniques, even when targeting highly-optimizing VMs.



118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK



Appendix A

Proofs

Lemma 1 (Type Substitution). Given a specialization s not defined at any type vari-
able in X, |[T/X]U|s = [|T|s/X]|U|s.

Proof. We prove by induction on the structure of types.

• U = Y (type variable)

– Y ∈ X.

|[T/X]Y|s = |Ti|s
[|T|s/X]|Y|s = [|T|s/X]Y = |Ti|s

– Y /∈ X.

|[T/X]Y|s = |Y|s = s(Y)

[|T|s/X]|Y|s = |Y|s = s(Y)

• U = P (primitive type)

|[T/X]U|s = |[T/X]P|s = |P|s = P

[|T|s/X]|U|s = [|T|s/X]|P|s = |P|s = P

• U = C[V] (instantiated type)

|[T/X]U|s = |[T/X]C[V]|s = |C[[T/X]V]|s = C[|[T/X]V|s]
[|T|s/X]|U|s = [|T|s/X]|C[V]|s = [|T|s/X]C[|V|s] = C[[|T|s/X]|V|s]

and by the Induction Hypothesis,

|[T/X]V|s = [|T|s/X]|V|s
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• U = ∀Y.V → V

We assume Y is distinct from X and dom(s) without loss of generality.

|[T/X]∀Y.V → V|s = |∀Y.([T/X]V → [T/X]V|s
= ∀Y(|[T/X]V|s → |[T/X]V|s)

[|T|s/X]|∀Y.V → V|s = [|T|s/X]∀Y.|V|s → |V|s
= ∀Y.

(
[|T|s/X]|V|s → [|T|s/X]|V|s

)
By Induction Hypothesis

∀Y(|[T/X]V|s → |[T/X]V|s) = ∀Y.
(
[|T|s/X]|V|s → [|T|s/X]|V|s

)
and immediately follows that

|[T/X]∀Y.V → V|s = [|T|s/X]|∀Y.V → V|s

Lemma 2 (Field Specialization). Given a specialization s, a well-formed type C[T],
and f ields(C[T]) = f : U, we have that

f ields
(∣∣C[T]∣∣s) = f : |U|s.

Proof. By induction on the inheritance relationship.

• C = Object. Trivial, since Object has no fields

• C[X] extends I { f1 : U1; md} ∈ D, f ields([T/X]I) = f2 : U2

We have that f ields(C[T]) = f1 : [T/X]U1, f2 : U2

f ields(|C[T]|s) = f ields(C[|T|s]) by definition of s

= f1 : [|T|s/X]U1, f ields([|T|s/X]I) by definition of f ields

All type variables mentioned in the declared field types U1 are drawn
from X (because of T-CLASS, the environment Γ used for typing fields
contains only X). The type [T/X]U1, contains no type variables in X, and
the only place where s can ’fire’ is inside the types T. It follows that

|[T/X]U1|s = [|T|s/X]U1 (A.1)

by the same line of reasoning,

|[T/X]I|s = [|T|s/X]I
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therefore

f ields([|T|s/X]I) = f ields(|[T/X]I|s) (A.2)

= f2 : |U2|s by the Induction Hypothesis
(A.3)

From A.1 and A.2 follows that

f ields(|C[T]|s) = |[T/X]U1|s, f2 : |U2|s

Lemma 3 (Term Specialization). Given a valid class table D, a specialization s and
a term e such that Γ ` e : T, we have

|Γ|s ` JeKs : |T|s

Proof. We prove by induction on the structure of terms.

• e = n
Γ ` n : Int

Trivial.

• e = x

We have
Γ ` x : T.

From T-VAR we have that x : T ∈ Γ. By definition of |Γ|s we have that
x : |T|s ∈ |Γ|s, therefore

|Γ|s ` x : |T|s

• e = e. f

We have
Γ ` e. f : Vi

We prove
|Γ|s ` JeK . f : |Vi|s

From T-FIELD we have

Γ ` e : U f ields(U) = f : V

By Induction Hypothesis we have

|Γ|s ` JeK : |U|s

and by Lemma 2
f ields(|U|s) = f : |V|s

It follows directly that
|Γ|s ` JeK . f : |Vi|s
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• e = e.m[U](e)

We have
Γ ` e.m[U](e) : T

We prove
|Γ|s ` JeKs .m[|U|s](JeKs) : |T|s

From T-INVOKE we have

Γ ` e : I mtype(m, I) = ∀Y.T → T Γ ` e : [U/Y]T

By Induction Hypothesis we have

|Γ|s ` JeKs : |I|s |Γ|s ` JeKs :
∣∣[U/Y]T

∣∣
s

s is not defined at any of the method type parameters Y, so we can use
Lemma 1 and get

|Γ|s ` JeKs : [|U|s/Y]|T|s
To prove our goal we need to apply the same typing rule, T-INVOKE. The
only missing ingredient is the method type, so we will prove that

mtype(m, |I|s) = ∀Y.|T|s → |T|s

Let I = C[V]. Using the definition of mtype we have

mtype(m, |C[V]|s) = mtype(m, C[|V|s])
= ∀Y.[|V|s/X]U1 → [|V|s/X]U1

where X are the type parameters of class C and U1, U1 are the declared
types of method m in class C ([V/X]U1 = T and [V/X]U1 = T).

Similarly to the argument in Lemma 2, all free type variables in U1, U1
are from X, Y. Furthermore, s is not defined at any type variable in Y,
therefore

[|V|s/X]U1 =
∣∣[V/X]U1

∣∣
s = |T|s

We have
mtype(m, |C[V]|s) = ∀Y.|T|s → |T|s

We can now use T-INVOKE to conclude that

|Γ|s ` JeKs .m[|U|s](JeKs) : |T|s

• e = new I(e)

We have
Γ ` new I(e) : I

We prove
|Γ|s ` new |I|s(JeKs) : |I|s
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From T-NEW we have

f ields(I) = f : T Γ ` e : T

By Induction Hypothesis we have

|Γ|s ` JeKe : |T|s

and by Lemma 2
f ields(|I|s) = f : |T|s

Using T-NEW we conclude that

|Γ|s ` new |I|s(JeKs) : |I|s

• e = e.as[T]

We have
Γ ` e.as[T] : T

We prove
|Γ|s ` JeKs .as[|T|s] : |T|s

Using T-AS we have

Γ ` T ok. Γ ` e : T′

then

|Γ|s ` JeKs : |T′|s by Induction Hypothesis
|Γ|s ` |T|s ok. by Lemma 4

It follows immediately that

|Γ|s ` JeKs .as[|T|s] : |T|s

• e = (e : T)

Trivially by Induction Hypothesis:

|Γ|s ` JeKs : |T|s

Lemma 4 (Well-formed Specialization). Given a well formed type Γ ` T ok and a
specialization s, |T|s is well formed under |Γ|s.

Proof. By induction on the structure of types.

• T = Int. Trivial

• T = X. Either s(X) = P and all primitive types are well-formed, or s is
undefined at X, and |T|s is well-formed by the hypothesis.
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• T = C[T]. By Induction hypothesis, |Γ|s ` |T|s ok, and immediately
follows that |Γ|s ` |C[T]|s ok.

• T = ∀Y.T → T.

We have that Y, Γ ` T, T ok. By Induction Hypothesis, we have

|Y, Γ|s ` |T|s, |T|s ok.

It follows immediately that

|Γ|s ` ∀Y.|T|s → |T|s ok.

Lemma 5 (Substitution on specialization). Given a specialization s, X and Y type
variables such that s is not defined anywhere in Y, and [Y/X]s is defined, we have∣∣[Y/X]T

∣∣
[Y/X]s = |T|s

Proof. By induction on the structure of T.

• T = Xi

|[Y/X]Xi|[Y/X]s = |Yi|[Y/X]s = s(Xi)

|Xi|s = s(Xi)

• T = X, s is not defined at X

|[Y/X]X|[Y/X]s = |X|[Y/X]Xs = X

|X|s = X

• T = P Trivial

• T = C[T]

[Y/X]C[T] = C[[Y/X]T]∣∣[Y/X]C[T]
∣∣
[Y/X]s =

∣∣C[[Y/X]T]
∣∣
[Y/X]s

= C[
∣∣[Y/X]T

∣∣
[Y/X]s]

By Induction Hypothesis we have that

C[
∣∣[Y/X]T

∣∣
[Y/X]s] = C[|T|s] = |C[T]|s

therefore ∣∣[Y/X]C[T]
∣∣
[Y/X]s = |C[T]|s
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• T = ∀Z.(T → T)

We prove ∣∣[Y/X]∀Z.(T → T)
∣∣
[Y/X]s =

∣∣∀Z.(T → T)
∣∣
s

We assume X, Y, Z are all distinct type variables. We have

[Y/X]∀Z.(T → T) = ∀Z.([Y/X]T → [Y/X]T)∣∣[Y/X]∀Z.(T → T)
∣∣
[Y/X]s =

∣∣∀Z.([Y/X]T → [Y/X]T)
∣∣
[Y/X]s

= ∀Z.(
∣∣[Y/X]T

∣∣
[Y/X]s →

∣∣[Y/X]T
∣∣
[Y/X]s)

And by Induction Hypothesis we have∣∣[Y/X]∀Z.(T → T)
∣∣
[Y/X]s = ∀Z.(

∣∣T∣∣s → |T|s)
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