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Abstract

Most applications manipulate structured data. Modern languages
and platforms provide collection frameworks with basic data struc-
tures like lists, hashtables and trees. These data structures come
with a range of predefined operations which include sorting, filter-
ing or finding elements. Such bulk operations usually traverse the
entire collection and process the elements sequentially. Their im-
plementation often relies on iterators, which are not applicable to
parallel operations due to their sequential nature.

We present an approach to parallelizing collection operations in
a generic way, which can be used to factor out common parallel
operations in collection libraries. Our framework is easy to use
and straightforward to extend to new collections. We show how
to implement concrete parallel collections such as parallel arrays
and parallel hash maps, proposing an efficient solution to parallel
hash map construction. Finally, we give benchmarks showing the
performance of parallel collection operations.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming—Parallel programming

General Terms Parallel programming, Collection libraries

Keywords parallel collections, parallel data structures, Scala

1. Introduction

With the arrival of new multicore computer architectures, parallel
programming is becoming more and more widespread. Multipro-
cessor programming is more complex than programming unipro-
cessor machines and often requires platform awareness. Parallel
programs are harder to produce and maintain. There are many ap-
proaches to solve this problem. One is to offer programmers exist-
ing programming abstractions and implement them using parallel
algorithms under the hood. In this way, the programmer is relieved
of the low-level details such as synchronization and load-balancing.
General purpose programming languages often have rich collection
libraries which provide data structures such as arrays, lists, trees,
hashtables or priority queues. Some modern frameworks also have
lock-free versions of these data structures which allow concurrent
access without resorting to classical means of synchronization such
as locks and monitors [23].

Many collection frameworks have collection class hierarchies
with common bulk operations which include sorting, filtering, par-
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titioning, finding elements or applying user-specific functions on
elements as is the case with the map/reduce operation. Functional
programming encourages the use of predefined combinators when
writing a program, which is particularly well-suited for parallel op-
erations because a set of well chosen operations provided by the
library or a framework can allow the user to write efficient parallel
programs. The problem, however, is that frameworks often define
a set of operations common to all collections and these have to
be reimplemented for each collection anew, which can make im-
plementation and addition of new collection classes cumbersome.
So far, collection frameworks have solved this problem by imple-
menting all of their operations in terms of iterators or a generalized
foreach method. However, due to their sequential nature, they are
not applicable to parallel collection operations which require split-
ting data across multiple processors and assembling results. This
paper describes how a wide set of parallel operations can be im-
plemented in divide and conquer style algorithms which rely on
two abstractions implemented in concrete collections - splitting and
combining.

General purpose programming languages and the accompany-
ing platforms currently provide various forms of library support
for parallel programming. Most platforms offer multithreading sup-
port. However, starting and initializing a thread can be computa-
tionally expensive due to stack creation, limiting scalability. It also
usually involves a lot of boilerplate on the part of the programmer,
so some languages support other constructs for parallel program-
ming. For instance, .NET langugages have support for common
parallel programming patterns, such as parallel looping constructs,
aggregations and the map/reduce pattern [4]. These constructs re-
lieve the programmer of having to reimplement low-level details
such as correct load-balancing between processors each time a par-
allel application is written. .NET Parallel LINQ provides paral-
lelized implementations of .NET query operators. Another exam-
ple is the Java ParallelArray, which is an extension to the JSR166
package [9]. It is an efficient parallel array implementation with
many operations. These operations rely on the fact that the under-
lying data structure is an array, which makes them efficient, but also
inapplicable to data representations for trees or hash maps. Groovy
Parallel Systems [21] uses this parallel array to implement parallel
collection processing, but is currently limited to collections based
on arrays. Data Parallel Haskell has a parallel array implementation
with parallel bulk operations [24].

Our parallel collection framework is generic and can be applied
to a multitude of different data structures. It enhances collections
with a large number of operations that allow efficient parallel pro-
cessing of elements within the collection, giving direct support for
parallel programming patterns such as map/reduce or parallel loop-
ing. Some of these operations return another collection as their
return value. For instance, the filter method will return a new
collection comprising of elements in the collection that satisfy a
given predicate. Our solution adresses not only parallel traversal
and processing of elements in a parallel collection, but also paral-
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lel construction of various data structures. We have benchmarked
its performance and we show experimental results. It is fully com-
pliant with the preexisting Scala collection framework in terms of
its operations and integration into the class hierarchy, meaning that
users do not have to switch to a different programming model to
use them. It also allows straightforward definition of custom paral-
lel collections.
Our contributions are the following:

e Our framework relies on splitter and combiner abstractions
which are used to implement a variety of operations. This
design allows extensions of the framework to new collection
classes with a minimum amount of boilerplate.

We apply our approach to the implementation of specific collec-
tion classes such as a parallel hash maps, describing a solution
of merging them in parallel. We are not aware of this solution
prior to our own.

We present benchmark results which compare parallel collec-
tions to their sequential variants and other implementations.

Our framework relieves the programmer of the burden of syn-
chronization, load-balancing and other low-level details. Due
to the backwards compatibility with regular collections, exist-
ing applications can use our collection framework and improve
their performance on multicore architectures.

The rest of the paper is organized as follows. Section 2 gives an
overview of Scala collection framework. Section 3 compares ap-
proaches to parallelizing operations on data and describes adaptive
work stealing, a technique used to load-balance work between dif-
ferent processors. Section 4 describes abstractions used to imple-
ment parallel collection operations, and gives several case studies
on concrete parallel collection classes. Section 5 contains a set of
benchmarks used to measure performance of parallel collections,
and Section 6 concludes.

2. Scala Collection Framework

Scala is a modern general purpose statically typed programming
language which fuses object-oriented and functional programming
[1]. It allows expressing common programming patterns in a con-
cise, elegant and type-safe way. It integrates seamlessly with Java,
and offers a range of features such as higher-order functions, local
type inference, mixin composition and a rich type system which
includes generics, path-dependent types, higher-kinded types and
other. Of particular interest here are higher-order functions and
traits. We summarize these below. After that, we shortly describe
basic concepts of the Scala collection framework. Readers familiar
with Scala and its collections may wish to skip this section. Those
interested to learn more about Scala are referred to [2].

In Scala, functions are first-class objects — functions can be
passed around as regular objects, assigned to variables or specified
as arguments to other functions. For instance, to declare a function
that increments a number and assign it to a variable, one could
write:

var add = (n: Int) =>n + 1

Higher-order functions are useful for certain collection meth-
ods. For instance, the method find found in Scala collections re-
turns the first element in the collection that satisfies some predicate.
The following code finds the first even number in the list of integers
Ist:

1st.find(_ % 2 == 0)

We’ve used some syntactic sugar in the last example. Since the
find method expects a function from an integer to boolean, the local
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type inference mechanism will deduce that the argument of the
provided function must be an integer. Since the argument appears
only once in the body of the function, its occurence can be replaced
by the placeholder symbol _, which makes the code much cleaner.

Throughout this paper we often refer to a construct called a
trait. Traits are similar to Java interfaces in the sense that they may
contain abstract methods and a class is allowed to inherit multiple
traits. But traits, also known as rich interfaces, are less restrictive as
they allow defining concrete methods. Multiple traits can be mixed
together into a class using the with keyword. Here is an example of
a trait describing an iterator:

trait Iterator[T] {
def hasNext: Boolean
def next: T
def foreach[U](f: T => U) =
while (hasNext) f(next)

Collections in the Scala collection framework form a class hi-
erarchy [3] [19]. A simplified version is shown in figure 1. The
Traversable trait is a common ancestor of all collection classes. It
defines an abstract method foreach, which traverses all of the ele-
ments of the collection and applies a specified higher-order func-
tion to each element. This style of traversal is known as the push-
style - all elements are traversed at once. Other operations defined
in Traversable are implemented using the foreach method. A com-
prehensive list of all operations can be found in [3].

Trait Iterable is a descendant of Traversable. It declares an ab-
stract method iterator which returns an iterator used to traverse
the elements. Iterators provide pull-style traversal - the next ele-
ment is requested explicitly and not all elements have to be tra-
versed. Method foreach in Iterable is implemented using the iter-
ator'. Three other traits inherit from Iterable — Set, Seq and Map.

Figure 1. Collection base classes hierarchy

Trait Seq describes sequences — collections in which elements
are assigned an index. These have an apply method taking an
integer index and producing the corresponding element. Examples
of sequences include ArrayBuffer, List and Stream classes. Seq
trait defines operations specific to sequences such as startsWith,
indexWhere and reverse.

Trait Set denotes Iterable collections which contain no dupli-
cate elements. It defines abstract methods for adding and removing
elements from the set, and checking if an element is contained in
the set. It contains implementations for set operations like union,
intersection and difference.

Maps are Iterable collections of pairs of keys and values. They
define abstract methods for adding and removing entries to the map,
and the get method used to lookup values associated with keys.

The collection framework is in the package scala.collection,
which contains subpackages mutable and immutable. All of the
traits described above have corresponding versions in each of the
three packages. Traits in a subpackage inherit those in the root
collection package. Collections in the mutable package additionally
define destructive operations which allow in-place modifications

! The converse is not possible.
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on collections — for instance, sequences define the update method
to change the element at the specified index, and maps define the
put method to associate a key to a new value. Collections in the
immutable package cannot be modified — e.g. adding an element
to the set produces a new set. These operations need not always
copy the entire set. There exist efficient implementations for most
immutable data structures [17].

Most collection operations are implemented in terms of element
traversal, using the foreach method found in Traversable or itera-
tors provided by Iterable collections. Some operations also return
collections as their results. These use objects of type Builder to
build the collections. Trait Builder is parametrized with the ele-
ment type of the collection and the collection type it produces. It
declares a method += which is used to add elements to the builder.
The method result is called after all the desired elements have been
added to the builder and it returns a collection containing those el-
ements. After calling result the contents of the builder are unde-
fined and the builder cannot be used again before calling the clear
method. Specific collection instances provide specific builders.

val withA = for {
(n, s) <- names zip surnames
if n startsWith "A"
} vield (n, s)
val groups = withA.groupBy(_._2)
println(groups.size)
for {
(surname, pairs) <- groups
if pairs.size <= 2
(name, surname) <- pairs
} println(name + " " + surname)

Figure 2. Example program

We give a short example program to show how the collection
framework is used. Assume we have two sequences names and
surnames which contain names and corresponding surnames. We
want to print out the number of distinct surnames for names starting
with "A’ and then print a list of all such names and surnames for
which there exists at most one other name with the same surname.
Code in figure 2 shows how to do this.

We’ve omitted how we obtained the actual sequences of names
and surnames as this is not relevant for the example. We give a
readable solution in terms of for-comprehensions that iterate over
sequence of pairs of names and surnames obtained by calling zip
and filter those which start with A’. We then group these pairs
according to the surname (second element of the pair, which is
referenced with _._2) by calling groupBy and print the number of
distinct surnames. We then iterate over surname groups with 2 or
less names and print them. The code in figure 2 is translated to
code similar to the one shown in figure 3. Readers interested in
exact rules of for-comprehensions are referred to [2].

val groups = names.zip(surnames)
.filter(_._1.startsWith("A"))
.groupBy(_._2)

println(groups.size)

groups.filter(_._2.size < 3).flatMap(_._2)
.foreach(p => println(p._1 + " " + p._2))

Figure 3. Translated program

There are several approaches to adding parallel operations to the
existing collections framework. The approach taken in Data Paral-
lel Haskell is to define a new set of methods for parallel operations
and give them separate names (e.g. names of their sequential coun-
terparts suffixed with "P’) [24]. Method calls in existing programs
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have to be modified to use parallel operations with the same se-
mantics. This clutters the namespace with new names and the new
names cannot be used in existing for-comprehensions.

A different approach is to have parallel operations implemented
in separate classes. The separate class approach solves the issues
above as methods for parallel operations can have the same names
as their sequential variants. Clients can thus only invoke parallel op-
erations if their data is in a parallel collection class. For this reason
we add a method par to regular collections which returns a paral-
lel version of the collection pointing to the same underlying data.
We also add a method seq to parallel collections to switch back to
sequential implementations. Furthermore, we define a separate hi-
erarchy of parallel sequences, maps and sets, and have them inherit
regular sequence, map and set traits.

3. Adaptive work stealing

When using multiple processors load-balancing techniques are re-
quired to divide work. In our case operations are performed on ele-
ments of the collection so dividing work can be done in straightfor-
ward way by partitioning the collection into element subsets. How
partitioning is exactly done for an arbitrary collection is described
later in the paper. Classes in collection frameworks often provide
users with a method that performs some operation on every ele-
ment of the collection — in the case of Scala collection framework
this operation is known as the foreach method. Implementing a par-
allel foreach method requires that subsets of elements are assigned
to different processors. Collection subsets can be assigned to dif-
ferent threads — each time a user invokes the foreach method on
some collection, a thread must be created and assigned a subset of
elements to work on. However, to create and initialize a thread is
expensive and can exceed the cost of the collection operation by
several orders of magnitude. For this reason it makes sense to use
a pool of worker threads in sleeping state and avoid thread creation
each time a parallel operation is invoked.

There exists a number of frameworks that provide thread pools.
One of them is the Java Fork/Join Framework [8]. It introduces
an abstraction called a fork/join task which describes a unit of
work to be done. This framework also manages a pool of worker
threads, each being assigned a queue of fork/join tasks. Each task
may spawn new tasks (fork) and later wait for them to finish
(join). Scala parallel collections use it to efficiently schedule tasks
between processors.

There are many load-balancing techniques previously proposed
[5] [6] [7] [11]. An optimal execution schedule may depend not
only on the number of processors and data size, but also on irreg-
ularities in the data and processor availability. Because these cir-
cumstances cannot be anticipated in advance, it makes sense to use
adaptive scheduling. Work stealing [8] [10] [11] is a lightweight
and efficient load-balancing technique. In work stealing, work is di-
vided into tasks and distributed among processors. Each processor
maintains a task queue. Once a processor finishes with one task, it
dequeues the next task from the queue. If the queue becomes empty,
the processor tries to steal a task from another processor’s queue.

The fork/join pool abstraction can be implemented in a num-
ber of ways, including work stealing, as it is the case with Java
Fork/Join Framework [8]. Still, for work stealing to be effective
work must be partitioned into tasks of a small enough granularity,
which can lead to overheads if there are too many tasks. As stated
earlier, most of the operations in parallel collections can be imple-
mented in terms of a divide and conquer scheme, so we use compu-
tation trees to show the order in which computations are performed,
as shown in figure 4.

Uniformly sized task approach in theory guarantees that the
greatest amount of time that the processors stay idle is equal to
the time it takes to process one task, assuming uniform amount of
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Figure 4. Fine-grained splitting

work per element. This can happen if all the processors finish with
their last tasks at the time when there is one more task remaining.
If the time needed to do the work sequentially is 7', the number
of processors is P and the number of tasks is NV, then equation 1
denotes the theoretical speedup in the worst case. Thread wake-up
times, synchronization and other aspects have been omitted from
this idealized analysis.

T
T —T/N)/P+T/N rae ™ D

What this simple analysis does not take into account is the
overhead incurred by creating many tasks. In practice, fewer tasks
can lead to significantly higher performance. But fewer tasks can
also lead to poorer load-balancing as stated before. The technique
we’ve used to solve these two issues is exponential task splitting,
inspired by [12]. The basic idea is the following — if some worker
thread completed its work, and there are still more tasks in its
queue, then it means other workers are preoccupied with work of
their own, so the worker thread could try to do more work with
the next task. The heuristic used is to double the amount of work
done next time. If the worker thread hasn’t got more tasks in its
queue, then it may steal tasks from other queues. There are two
points worth mentioning here. First, stealing tasks is generally more
expensive than just popping them from the thread’s own queue.
Second, the fork/join framework allows only the oldest tasks on
the queue to be stolen. The former means the less times stealing
occurs, the better — so we will want to steal bigger tasks. The latter
means that what task gets stolen depends on the order tasks were
pushed to the queue (forked) — one can be selective about it.

Once a method is invoked on a collection, the collection is split
into two parts. For one of these parts, a task is created and forked.
Forking a task means that the task gets pushed on the processor’s
task queue. The other part gets split again in the same manner until
a threshold is reached — at that point that subset of the elements in
the collection is operated on sequentially. After finishing with one
task, the processor pops a task of its queue if it is nonempty. Since
tasks are pushed to the queue, the last (smallest) task pushed will
be the first task popped. At any time the processor tries to pop a
task, it will be assigned an amount of work equal to the total work
done since it started with the leaf. On the other hand, if there is a
processor without work on its queue, it will steal from the opposite
side of the queue were the first pushed task is. When a processor
steals a task, it divides the subset of the collection assigned to that
task until it reaches threshold size of the subset. To summarize
— stolen tasks are divided into exponentially smaller tasks until a
threshold is reached and then handled sequentially starting from the
smallest one, while tasks that came from the processor’s own queue
are handled sequentially straight away. An example of exponential
splitting with 2 processors is shown in figure 5.

The worst case scenario that can happen with the above ap-
proach is that a processor gets assigned a biggest task it has pro-
cessed so far at the exact moment when all other processors have

speedup =
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Figure 5. Exponential splitting

finished their work. This task has to come from the processor’s own
queue and not be stolen, otherwise it will be split into smaller tasks
which will be pushed on its queue, enabling the other processors to
steal tasks and not be idle. So, the task will be processed sequen-
tially. At this point the processor will continue working for some
time 7. We assume input data is uniform, so 77, must be equal
to the time spent up to that moment. If the task size is fine-grained
enough to be divided among P processors, work up to that moment
took (1" — Tr)/P,so Ty = T/(P + 1). Total time for P proces-
sors is then T = 277,. The inequality 2 then gives a bound on the
worst case speedup, assuming P < N (the task size is fine-grained
enough).

T P+1
speedup = T = 2 2)

This estimate says that our task scheduling scheme never results
in execution time more than twice as greater than the theoretical
lower limit, given that the biggest number of tasks potentially
generated is N > P.

Equation 2 has the consequence that the threshold size must
depend on the number of processors. We define it according to
3, were n is the number of elements in the collection and P is
the number of processors. This means that the number of tasks
produced will be one order of magnitude greater than the number
of processors if no work stealing occurs. We’ve found that this rule
of the thumb works well in practice.

n
threshold = max(1, SP) 3)

An important thing to notice here is that depending on the
threshold one can control the maximum number of tasks that get
created. Even if the biggest tasks from each task queue get stolen
each time, the execution degenerates to the balanced computation
tree shown in figure 4. The likelihood of this to happen has shown to
be extremely small in practice and exponential splitting generates
less tasks than dividing the collection into equal parts.

4. Implementation

We now describe how Scala parallel collections are implemented.
We describe abstract operations on parallel collections that are
needed to implement other parallel operations. We then classify
parallel operations into groups and describe how operations in dif-
ferent groups are implemented. Finally, we describe implementa-
tions of several concrete classes in our framework. The code exam-
ples we show are simplified with respect to actual code for purposes
of clarity and brevity”.

2 Variance and bounds annotations have been omitted, as well as implicit
parameters. Only crucial classes in the hierarchy are discussed. Source code
can be obtained at http://lampsvn.epfl.ch/svn-repos/scala/scala/
trunk/src/library/scala/collection/parallel/.
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4.1 Initial approach

For the benefit of easy definition of new collection classes and eas-
ier maintenance we want to define most operations in terms of a few
abstract methods. The usual approach is to use an abstract foreach
method or iterators. Due to their sequential nature, they are not ap-
plicable to parallel operations. In addition to element traversal, we
need a split operation that returns a non trivial partition of the ele-
ments of the collection. The overhead induced by splitting the col-
lection should be as small as possible — it influences the choice of
the underlying data structure.
So, we can define one required abstract operation like this:

def split: Seq[ParIterable[T]]

where Seq[ParIterable[T]] is the return type of the method
and denotes a sequence of objects of type ParIterable[T], which
represents parallel collections. There is more than one way to
implement split. A trivial approach of copying elements is not
very efficient. A more refined approach is to produce several views
which iterate over parts of the collection. Certain data structures
such as balanced trees and binomial heaps have the property that
they can be efficiently split.

While split allows assigning collection subsets to different pro-
cessors, there are operations that return collections as their result
(e.g. map). Parts of the collection produced by different tasks should
be combined together into the final result. It is not clear how to split
an arbitrary collection, so we introduce:

def combine(c: ParIterable[T]): ParIterable[T]

This method returns a collection of type ParIterable[T] which
contains elements of both collections. A trivial implementation of
copying the elements of the receiver and c into a new collection
is unacceptable in most cases. It is more efficient to implement
combine lazily and copy the elements when the final collection
needs to be evaluated. One way to evaluate lazily is to simply chain
results of leaf computations together and return them wrapped
within the collection. Once the final collection is needed, it is
allocated and elements are copied. We show later how to do this
for parallel arrays and parallel hash maps.

One might argue that the resulting collection like an array could
be allocated prior to operation invocation, and leaf computations
could simply copy the elements. This is true for methods such
as map where the result size is known a priori, but not for filter
where result size depends on the predicate. It is possible to invoke
the predicate twice — once to count the elements and once more
to copy them. This has several problems. First, the predicate may
not be pure, so invoking it twice may change semantics®. Second,
invoking twice might be more expensive than copying twice. Third,
while copying is applicable to arrays, it is unclear how to apply it
to immutable collections.

Another implementation approach is to use the properties of
data structures at hand to efficiently merge operations. Trees,
skiplists and certain types of heaps are particularly suitable for
this [13] [14].

Once the subsets of the collection have been assigned to differ-
ent processors, method seq can be invoked to process the sequen-
tially. We will show that these methods are specific enough to allow
implementation of all other parallel operations in our framework.

4.2 Further refinement

The split-combine approach allows implementation of collection
operations in terms of abstract methods, but has several downsides.

3 Although operators with non-disjoint side-effects passed to parallel opera-
tions as arguments are subject to data races, they still could be synchronized.
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One issue arises with the combine method. If implemented by copy-
ing or some fast operation inherent to the underlying data structure,
then such a design works well. However, if it is done lazily, the
combine method approach requires either a new class that holds the
unevaluated version of the final data structure, or embedding the
logic for lazy evaluation into the main collection class. The former
requires another collection class, while the latter makes the code
less comprehensible.

When multiple classes are defined for the same collection,
proper semantics for their methods become unclear. For instance,
it is unclear what calling split on a sequential view of the parallel
collection should do, since it is not required. In the same way, if we
use a separate class for lazy combining, its split and seq methods
are not invoked.

Problems described above cause a lot of boilerplate when imple-
menting a collection. Abstract methods are not required in all the
contexts — combine is not invoked while splitting collections subsets
to different processors. Similarly, split method is never invoked
while reassembling results.

We now present a solution that addresses these problems. Fol-
lowing the split-combine idea proposed earlier, we define two new
abstractions — splitting iterators (or splitters) and combiners. We
first describe the concept of splitters.

A splitter is an iterator with standard methods such as next
and hasNext used to iterate elements of the collection. It has an
additional method split which returns a sequence of splitters that
iterate over disjunct subsets of the collection. The original iterator
becomes invalidated after calling split.

trait Splitter[T] extends Iterator[T] {
def split: Seq[Splitter[T]]
}

Method split returns a sequence of splitters such that the union
of the elements they iterate over contains all the elements remaining
in the original splitter. All these splitters are disjoint. If the splitter
is empty or has only one element, then the split method returns
a sequence with the receiver. In other cases, the partition does not
contain empty splitters and has at least two splitters. Implementa-
tions partition the elements into subsets in a ratio that depends on
the collection splitter iterates. However, the number of subsets in
the partition should not be very large and their sizes should not dif-
fer greatly, otherwise load-balancing mechanism described earlier
could be compromised. Parallel sequences define a more specific
splitter PreciseSplitter which inherits Splitter and allows split-
ting the elements into subsets of arbitrary sizes, which is required
to implement certain sequence operations.

One example is a splitter over a collection called ParArray —
splitting it yields two splitters, one iterating over the elements in the
first half of the array and the other iterating elements in the second
half. This is implemented by storing the index bounds inside the
splitter.

Next, we describe combiners, a generalization of the builders
described in an earlier section. Each parallel collection provides a
separate combiner, just as regular collections provide a builder im-
plementation. While a builder can be added elements and produce
the collection with the result method, a combiner has a method
combine that takes another combiner and produces a combiner that
contains the union of their elements. Semantics of combine define
both builders to become invalidated after its invocation.

trait Combiner[Elem, To]
extends Builder[Elem, To] {
def combine(other: Combiner[Elem, To]):
Combiner[Elem, To]
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A combiner takes two type parameters Elem and To which de-
note the element type and the type of the resulting collection, re-
spectively. A combiner for the ParArray holds array chunks in a
singly-linked list — combine links the internal lists of two combin-
ers together. Once result is invoked, the number of elements con-
tained in these array chunks is known, so an array is allocated and
elements are copied in parallel into it using fast array copy opera-
tions.

Having defined splitters and combiners, we now describe the
base trait for all parallel collections — ParIterable. It has the same
operations like the Iterable trait of the Scala collection framework
and methods specific to parallel iterable collections. ParIterable
has an abstract method parallelIterator which returns a splitter
and an abstract method newCombiner which returns the combiner for
the collection. All operations are implemented in terms of splitters
and combiners.

Certain collection operations need to pass information between
processors, as we’ll show later. Each parallel operation invocation
creates an object of type Signalling for this purpose. A splitter
is assigned a Signalling object and its children obtain the same
Signalling object when it is split.

Each collection operation is implemented in a different task in-
ner class of ParIterable. We use the cake pattern [18] to implement
task scheduling logic in a different layer which defines an abstract
type Task. Tasks for different operations inherit this abstract task,
defining leaf computations, how data is split and results are com-
bined. Such a design allows swapping scheduling implementation.

Finally, the method used to calculate the threshold used for
adaptive work stealing is called threshold and simply returns an
integer value according to equation 3. Specific collection classes
may choose to override it if necessary.

Subtraits ParSeq, ParMap and ParSet define parallel sequences,
maps and sets respectively. We do not describe them here in detail,
but refer readers to the accompanying source code.

4.3 Common operations

Scala collections come with a wide range of operations. We divide
them into groups, and show how to implement operations using
abstract operations provided by specific collections.

One of the simplest operations found in the Scala collection
framework is the foreach method [3].

def foreach[U](f: T => U): Unit

It takes a higher-order function f and invokes that function on
each element. The return value of f is ignored. The foreach method
has two properties. First is that there are no dependencies between
processors working on different collection subsets. The second
is that it returns no value*. In other words, foreach is trivially
parallelizable.

When foreach is invoked, a new task is created and submitted to
the fork/join pool. This task behaves as described in section 3. To
split the elements of the collection into subsets, it invokes the split
method of its splitter. The splitting and forking new tasks continues
until splitter sizes reach a threshold size. At that point splitters are
used to traverse the elements — function £ is invoked on elements
of each splitter. Once that is done, the task ends. Another example
of a method that does not return a value is copyToArray.

Most other methods return a result. For instance, the reduce
applies a binary associative operator to elements of the collection
to obtain a result:

def reduce[U >: T](op: (U, U) => U): U

4 Type Unit in Scala is the equivalent of void in Java and denotes no value.
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It takes a binary function op which takes two elements of the
collection and returns a new element. If the elements of the col-
lection are numbers, reduce can take a function that adds its argu-
ments. Another example is concatenation for collections that hold
strings or lists. Operator op must be associative, because the order
in which subsets of elements are partitioned and results brought to-
gether is undeterministic. Relative order is preserved — the operator
does not have to be commutative. The reduce operation is imple-
mented like foreach, but once a task ends, it returns its result to
the parent task. Once the parent task is joined its children in the
computation tree, it uses the op to merge the results. Other methods
implemented in a similar manner are aggregate, fold, count, max,
min, sum and product.

So far different collection subsets have been processed inde-
pendently. For some methods results obtained by one of the tasks
can influence the results of other tasks. One example is the forall
method:

def forall(p: T => Boolean): Boolean

This method only returns true if the predicate argument p re-
turns true for all elements. Sequential collections may take advan-
tage of this fact by ceasing to traverse the elements once an ele-
ment for which p does not hold is found. Parallel collections have
to communicate that the computation may stop. The Signalling ob-
ject mentioned earlier allows tasks to send messages to each other.
It contains a flag which denotes whether a computation may stop.
When the forall encounteres an element for which the predicate is
not satisfied, it sets the flag. Other tasks periodically check the flag
and stop processing elements if it is set.

Tasks like exists, find, startsWith, endsWith, sameElements and
corresponds use the same mechanism to detect if the computation
can end before processing all the elements. Merging the results
of these tasks usually amounts to a logical operation. One other
method we examine here is prefixLength which takes a predicate
and returns the number of initial elements in the sequence that sat-
isfy the predicate. Once some task finds an element e that does
not satisfy the predicate, not all tasks can stop. Tasks that operate
on parts of the sequence preceding e may still find prefix length
to be shorter, while tasks operating on the following subsequences
cannot influence the result and may terminate. To share informa-
tion about the element’s exact position, Signalling has an integer
flag that can be set by different processors using a compare and
swap operation. Since changes to the flag are monotonic, there is
no risk of the ABA problem [16]. Other methods that use inte-
ger flags to relay information include takeWhile, dropWhile, span,
segmentLength, indexWhere and lastIndexWhere.

Many methods have collections as result types. A typical exam-
ple of these is the filter method:

def filter(p: T => Boolean): Repr

which returns a collection containing elements for which p
holds. Tasks in the computation tree must merge combiners re-
turned by their subtasks by invoking combine. Methods such as map,
take, drop, slice and splitAt have the additional property that the
resulting collection size is known in advance. This information can
be used in specific collection classes to override default implemen-
tations in order to increase performance. For instance, ParArray is
optimized to perform these operations by first allocating the inter-
nal array and then passing the reference to all the tasks to work on
it and modify it directly, instead of using a combiner. Methods that
cannot predict the size of the resulting collection include flatMap,
partialMap, partition, takeWhile, dropWhile and span.

Method psplit of PreciseSplitter for parallel sequences is
more general than split. It allows splitting the sequence into arbi-
trary subsequences. Sequences in Scala are collections where each
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element is assigned an integer, so splitting produces splitters the
concatenation of which traverses all the elements of the original
splitter in order. Some methods rely on this. An example is:

def zip[S](that: ParSeq[S]):
ParSeq[ (T, S)]

which returns a sequence composed of corresponding pairs of
elements belonging to the receiver and that. The regular split
method would make implementation of this method quite difficult,
since it only guarantees to split elements into subsets of any sizes
— that may be a parallel sequence of a different type. Different
splitters may split into differently sized subsequences, so it is no
longer straightforward to determine which are the corresponding
elements of the collections that the leaf tasks should create pairs of
— they may reside in different splitters. The refined psplit method
allows both sequences to be split into subsequences of the same
size. Other methods that rely on the refined split are startsWith,
endsWith, patch, sameElements and corresponds.

4.4 Parallel array

A collection that’s used often is an array. ParArray found in the
Scala parallel collection framework stores the elements in an un-
derlying array. It is a parallel sequence and extends the ParSeq trait.

Method split is implemented to return two splitters with differ-
ent bounds pointing to the same underlying array. This makes split
an O(1) method in terms of the size of the array. Method psplit is
implemented similarly.

ParArray combiner internally maintains a list of array chunks.
Parallel array combiners are combined simply by concatenating
their lists of arrays. Once the root task in the computation tree fin-
ishes, the size of the resulting array is known. The array is allocated
and elements are copied into it. Most platforms support fast array
copying operations. Furthermore, copying can be parallelized as
well, as is the case with ParArray. To copy the elements from the
chained arrays into the resulting array a new set of tasks is created
which form another computation tree. An effect known as false
sharing may occur in situations where different processors write
to memory locations that are close or overlap and thus cause over-
heads in cache coherence protocols [16]. In our case, only a small
part of an array could be falsely shared at the bounds of different
chunks and writes from different chunks go left to right. False shar-
ing is unlikely given that chunk sizes are evenly distributed.

As stated earlier, methods producing parallel arrays that know
their sizes in advance are optimized to allocate an array and work
on it directly. These methods do not use lazy building schemes
described above and avoid copying the elements twice. To avoid
copying altogether, a data structure such as a rope can be used to
provide efficient splitting and concatenation [15].

4.5 Parallel hash trie

Parallel collections rely on operations that efficiently split elements
into subsets and merge them back into collections. For an arbi-
trary collection type it is not obvious how to do so efficiently.
For instance, merging two hash tables can be done in linear time,
which could be unacceptable for large hash tables. Another prob-
lem with this is that such construction cannot be parallelized effi-
ciently. We’ve tried using concurrent hash maps which allow con-
current construction by several different processes simultaneously,
but this often lead to poor performance.

Inspired by hash trees we’ve implemented an efficient alterna-
tive to hash tables we call a parallel hash trie. A regular hash trie
works as follows. It constructs a root hash table of 2" elements
which holds key/value pairs, where n is typically 5. Adding a key/-
value pair to the hash trie amounts to computing the hash code of
the key, taking first n bits of the hash code and using them as an

A generic parallel collection framework.

=

STRITR A

||||||m‘§e||||m
AN N -NAVEN Y/ VAN

B merge E

Figure 6. Hash trie operations

index in the array in which we place the key/value pair. In case of
a collision we simply create a new array and put it as a subtrie in
the corresponding entry in the root hash table. The key/value pairs
which collide are put into the new array to indices that correspond
to the next n bits of their hash codes, and this is repeated recur-
sively as long as there are collisions. The resulting data structure
forms very shallow tree, so only a few hops are required to find the
correct element. A further optimisation is to use a bitmap in each
node of the tree to denote which hashcodes are used in the node.
Hash tries are described in detail in [20]. We’ve found hash tries
to be comparable in performance to hash tables, providing faster
iteration and slightly slower construction.

Advantages of hash tries are not only their low space overhead
and good cache-locality, but also the fact that operations on them
can be easily parallelized. Each parallel hash trie iterator has a ref-
erence to a hash trie data structure. To implement split we sim-
ply take the root hash table and put half of the subtries into a new
hash table and the other half in the other new hash table. We obtain
two hash tries and assign each of them to a new iterator. This is
shown in figure 6 above, where the gray elements denote the actual
key/value pairs. Such a split operation is both straightforward and
cheap. Since parallel hash tries are used to implement maps and
sets, and not sequences, there is no need to implement the psplit
method.

Combiners can be implemented to also internally contain hash
tries. To implement the combine method for combiners, one needs
to merge their internal hash tries. Merging the hash tries is illus-
trated in figure 6. For simplicity, the hash trie nodes are shown to
contain only five entries. The elements in the root hash table are
copied from either one hash table or the other for, unless there is a
collision, as is the case with subtries B and F in the figure. Subtries
that collide are recursively merged and the result is put in the root
hash table of the resulting hash trie. This technique turned out to be
much more efficient than sequentially building a hash trie or even
an ordinary hash table. However, in a typical invocation of a par-
allel operation, combine methods of combiners are invoked more
than once (see figure 5). If the amount of work done per collec-
tion element is big enough, then merging cost may be acceptable.
In particular, for the least possible amount of work per element, we
have observed slowdowns of up to 6 times compared to sequential
execution. Merging can be done in parallel. Whenever two subtries
collide, we can spawn a new task to merge the colliding tries.

We obtained much better performance using a lazy evaluation
approach — by postponing the actual evaluation of the hash trie
until the final hash trie is requested, and at that point using its tree
properties to construct it in parallel. Our combiners do not contain
hash tries. Instead, a parallel hash trie combiner contains an array
of 32 buckets, each holding elements with the same 5 bit hashcode
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prefix®. Buckets are implemented as unrolled linked lists — a list of
concatenated array chunks which are more space-efficient, cache-
local and less expensive to add elements to. Adding an element
starts by computing its hashcode and taking its prefix to find the
appropriate bucket. It is then appended to an unrolled list — an
array index is incremented and the element is stored in most cases.
Occasionally, when an array chunk gets full, a new array chunk is
allocated. In general, unrolled lists have the downside that indexing
an element in the middle has complexity O(n/m) where n is the
number of elements in the list and m is the chunk size, but this is
not a problem in our case since we never index an element.

Combiners implement the combine method by simply going
through all the buckets and concatenating the unrolled linked lists
that represent the buckets, which is a constant time operation. Once
the root combiner is produced the resulting hash trie is constructed
in parallel — each processor takes a bucket and constructs subtrie
sequentially, then stores it in the root array. We’ve found this tech-
nique to be particularly effective, since adding elements to unrolled
lists is very efficient and avoids merging hash tries multiple times.
Another advantage that we’ve observed in benchmarks is that each
of the subtries being constructed is on average one level less deep.
Processor working on the subtrie will work only on a subset of all
the elements and will never touch subtries of other processors —
having a better cache coherence than a single processor that builds
the entire trie and inserts new elements all throughout it.

4.6 Parallel range

Most imperative languages implement loops using for-statements.
Object-oriented languages such as Java and C# also provide a
foreach statement to traverse the elements of a collection. In Scala,
for-statements like:

for (elem <- list) process(elem)

are translated into a call to the foreach method of the object
list, which does not necessarily have to be a collection:

list.foreach(elem => process(elem))

To traverse over numbers like with ordinary for-loops, one must
create an instance of the Range class, an immutable collection which
contains information about the number range. The only data Range
class has stored in memory are the lower and upper bound, and the
traversal step. Scala provides implicit conversions which allow a
more convenient syntax to create a range and traverse it:

for (i <- 0 until 100) process(i)

The ParRange collection is used to parallelize for-loops. To per-
form the loop in parallel, the user of can write:

for (i <- (0 until 100).par) process(i)

The ParRange is an immutable collection which can only contain
numbers within certain bounds and with certain steps. It cannot
contain an arbitrary collection of integers like other sequences, so it
does not implement a combiner. It only implements the split which
simply splits the range iterator into two ranges, one containing
the integers in the first half of the range and the other integers in
the second. The refined split method is implemented in a similar
fashion.

4.7 Parallel views

Assume that the user wants to increase numbers in some collection
c by 10, filter positive numbers in the first half of a collection

5 We could have had buckets hold elements with n bits in general, meaning
combiners would have to hold 27 buckets, but we’ve found that 5 bits work
well in practice.
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and then sum these together. Using operations provided by Scala
collections, he could write something like this:

c.map(_ + 10).take(c.size / 2).filter(_ > 0)
.reduce(_ + _)

Even with all the operations parallelized, there is an inherent
performance problem above, since each of the operations produces
anew collection. The Scala collection framework provides a special
type of collections called views. A view is a wrapper around another
collection that can be used to traverse the elements of the original
collection in some way. For instance, a Filtered view will only
iterate over the elements of the original collection which satisty
a given predicate, while a Mapped view will iterate over all of the
elements, but will apply the specified mapping function to each
element before processing it. Invoking any of the methods that
produce collections on a view will results in creating a new view.
It is possible to stack views — each view holds a reference to the
view it was created from. If the user wants to produce a concrete
collection from the elements of the view at some point, he can do
so by invoking the force method.

In the above example, calling view on the collection ¢ and then
all the subsequent methods would produce wrapper views on top
of each other, until reduce gets invoked. Method reduce does not
produce a collection, so the elements of the view would be traversed
to produce a concrete result.

Parallel views reimplement behaviour of regular views in the
Scala collection framework to do these non-stacking operations
in parallel. They do so by extending the ParIterable trait and
having their iterators implement the split method. Since their
tranformer methods return views rather than collections, they do
not implement combiners nor their combine method. Method force
is also reimplemented to evaluate the collection represented by the
view in parallel.

lazy N i’
seq par
view view
force force
—
. seq par
strict
sequential parallel

Figure 7. Strict-lazy and parallel-sequential conversions

Since regular collections also have views, the entire collection
framework now provides a nice way to switch between strict and
lazy collections on one axis, and sequential and parallel implemen-
tation on the other. Methods par and seq allow the collection to
switch from a sequential to a parallel version and vice versa, re-
spectively. Method view produces a view of a collection, while the
method force produces a strict collection from a view. This is illus-
trated in figure 7.

5. Experimental results

Parallel collections were benchmarked and compared to both se-
quential versions and other currently available parallel collections,
such as Doug Lea’s extral66.ParallelArray for Java. We show
here that their performance improves on that of regular collec-
tions and that it is comparable to different parallel collection im-
plementations. The benchmarks shown were performed for parallel
arrays and parallel hash tries on a machine with 4 Dual-Core AMD
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Opteron 2.8 MHz processor with hyper-threading, and are shown
in figure 9. The number of processors used is displayed at the hori-
zontal axis, the time in milliseconds needed is on the vertical axis.
All tests were performed for large collections, and the size of the
collection is shown for each benchmark. Each method was invoked
few hundred times, and the time was measured for this batch of
invocations — this was repeated until this value stabilized®. Each
benchmark was made on a separate JVM invocation.

class Matrix[T: Numeric: Manifest](n: Int) {
val array = new Array[T](n * n)

def apply(y: Int, x: Int) = {
array(y * n + X)

3

def update(y: Int, x: Int, elem: T) {
array(yv * n + X) = elem

}

def =(b: Matrix[T]) = {
val m = new Matrix[T](n)
m.setProd(this, b)
m

3

def setProd(a: Matrix[T], b: Matrix[T]) {
for (i <- (0 until n+n).par)
this(i/n, i%n) = prod(a, b, i/n, i%n);
}

private def prod(a: Matrix[T],
b: Matrix[T], y: Int, x: Int): T =

{
var sum = zero
for (i <- 0 until n) {

sum += a(y, i) * b(i, x)

}
sum

}

}

Figure 8. Matrix multiplication

We’ve used computationally cheap operators for the bench-
marks. For instance, the argument function for the foreach method
simply changes a field in the object assigned to a position in the ar-
ray. The function for method map simply returns the argument, and
the predicate for find simply compares two numbers. By showing
that parallel collections exhibit good performance for such fine-
grained operators compared to which per element processing is
high, we show that they can be applied to operators that are com-
putationally more expensive and for which per element processing
overhead is negligible, as shown in the benchmark in which integer
primality is checked for each element.

The entry Sequential denotes benchmarks for sequential loops
implementing the operation in question. All operations in the Java
parallel array (extral66) are specialized since the underlying struc-
ture is an array. Operations in our framework are implemented
without any specific knowledge about the underlying data struc-
tures which leads to more indirections and other overheads. This
is why our parallel array is slightly outperformed in some tests.
The entry HashMap denotes regular flat hash tables based on lin-
ear hashing. If the per-element amount of work is increased, data

© The reason for this kind of benchmarking lies in the way the JVM works.
Due to in-place compilations, inlining and other optimizations, the JVM
goes through a heat-up phase after which the figures get more reliable.
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Figure 9. Benchmarks: (A)  ParArray.foreach, 200k;
(B) ParArray.reduce, 200k; (C) ParArray.find, 200k;
(D) ParArray.filter, 100k; (E) ParArray.map, 100k; (F)
ParArray.flatMap, 10k; (G) ParHashTrie.reduce, 50k; (H)
ParHashTrie.map, 40k; (I) ParArray.foreach, primality, 200; (J)
matrix multiplication
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structure handling cost becomes negligible and parallel hash tries
outperform hash tables even for two processors.

We should comment on the results of the filter benchmark.
Java’s parallel array first counts the number of elements satisfying
the predicate, then allocates the array and copies the elements.
Our parallel array assembles the results as it applies the predicate
and copies the elements into the array afterwards using fast array
copy operations. When using only one processor the entire array
is processed at once, so the combiner contains only one chunk —
no copying is required in this case, hence the reason for its high
performance in that particular benchmark.

The map benchmark for parallel arrays uses the optimized ver-
sion of the method which allocates the array and avoids copying,
since the number of elements is known in advance. Benchmark for
flatMap includes only comparison with the sequential variant, as
there is currently no corresponding method in other implementa-
tions.

A larger example is shown in figure 8, where a matrix class
uses parallel ranges to implement trivial matrix multiplication. The
matrix internally holds an array of object of type T, which have a
Numeric context bound. This means that the matrix is generic, but
can only hold elements that are numbers, so it is applicable to Int,
Double, BigDecimal, etc. The apply and update methods get and set
matrix entries, respectively. Method = allocates a new empty matrix
and assigns it the product of the receiver and the argument matrix.
This method makes the syntax for matrix multiplication transparent
with respect to ordinary multiplication. Method setProd is where
the magic happens. We traverse all of the elements of the array
as with ordinary ranges, but we invoke par to make the operation
parallel. Each element in the resulting matrix is then computed in
parallel within method prod. Figure 9 shows benchmark results.

6. Conclusion

We’ve provided parallel implementations for a wide range of oper-
ations found in the Scala collection library. We’ve done so by in-
troducing two simple divide and conquer abstractions called split-
ters and combiners needed to implement most operations. These
abstractions have been successfuly blended into the existing Scala
collection framework. All parallel collections integrate smoothly
and enchmarks show good performance.

One other task we plan to address in the future is to apply spe-
cialization to parallel arrays in order to achieve better performance
for arrays of primitive types [22]. Currently, parallel arrays hold
boxed objects instead of primitive integers and floats, which not
only brings in boxing/unboxing overhead, but also means that these
objects are distributed throughout the heap. This leads to cache
misses and hinders performance.

In the future, we plan to extend our framework with new col-
lection types. Also, future research includes finding and integrating
new operations convenient for parallel applications. One example
is to augment parallel collections with operations which allow ex-
pressing data dependencies in processing the elements of the col-
lection. The challenge is how to do this in an expressive and ef-
ficient manner, which is applicable to a plethora of programs and
algorithms. These and other tasks will be addressed in near future.
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