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We study the wave functions of exciton polaritons trapped in the elliptical traps of a patterned microcavity.
A homodyne detection setup with numerical off-axis filtering allows us to retrieve the amplitude and the phase
of the wave functions. Doublet states are observed as the result of the ellipticity of the confinement potential
and are successfully compared to even and odd solutions of Mathieu equations. We also show how superpo-
sitions of odd and even states can be used to produce “donut” and “eight-shape” states which can be interpreted
as polariton vortices.
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I. INTRODUCTION

Exciton polaritons are hybrid light-matter quasiparticules
arising from the strong coupling between the electromagnetic
mode of a semiconductor microcavity and quantum well
excitons.1 While their matter part allows for a wide range of
nonlinear behaviors,2–4 their photonic component provides
the polaritons with a very small effective mass and allows for
straightforward optical excitation and detection of the polar-
iton field.5 A direct consequence of their small effective mass
�or large de Broglie wavelength� is the possibility to confine
polaritons in traps of sizes in the micrometer range.6–8 Im-
ages of the two-dimensional distribution of the confined
states probability density can be realized either using a to-
mography technique9,10 or by directly imaging the coherent
emission of a given state when it is resonantly excited with a
continuous wave laser.10,11 The emission intensity gives di-
rect information on the probability density of the confined
polariton states. In this contribution we are demonstrating a
method for imaging the full wave function, i.e., its amplitude
and phase, using a homodyne detection scheme. We use it to
image the wave functions of polaritons confined in the ellip-
tical traps of a patterned semiconductor microcavity. Ellipti-
cal geometries are a topic of interest in optics when one
wants to characterize the transverse patterns of elliptical laser
beams. In this scope, Gutiérrez-Vega et al. have predicted
and demonstrated Mathieu and Ince-Gaussian beams.12–15

However the measurement of the phase structure still re-
mains a missing component. We show here that the measured
amplitude and phase structures of our confined microcavity
polaritons can be successfully compared to even and odd
solutions of Mathieu equations. We also evidence combina-
tions of even and odd states which result in “donut” or
“eight-shape” states featuring the topology of polariton vor-
tices. This phase-resolved measurement technique might also
be applied to probe the eigenmodes of empty optical resona-
tors. Indeed, although all our measurements are performed in
the strong-coupling regime, similar patterns would be ob-
served for the scattering of light on empty elliptical micro-
pillars.

II. SAMPLE DESCRIPTION

The sample under study is a patterned GaAs � cavity with
one embedded InGaAs quantum well �excitonic resonance at

1.484 eV�, sandwiched between two semiconductor distrib-
uted Bragg reflectors �DBRs�, featuring a vacuum Rabi split-
ting of 3.5 meV. Polariton traps consist of elliptical mesas
that were etched on the microcavity spacer �see Fig. 1�a��, in
order to create a lateral confining potential for the cavity
electromagnetic field.16 The electromagnetic field is therefore
confined in the three dimensions: in the growth direction due
to the DBRs and in the in-plane directions due to the local
confinement potential created by the mesa. Strong coupling
between the confined cavity modes and the excitonic reso-
nance produces confinement for both upper and lower polar-
iton branches, leading to discrete confined polariton states.8,9

Figure 1�b� shows a spatially resolved photoluminescence
spectrum of the polariton states confined in a mesa of
10 �m mean diameter, under nonresonant pumping. Dis-
crete confined states can be observed for upper and lower
polariton branches. The linewidth of these states is on the
order of 80 �eV. All measurements presented in the paper
were performed on lower polariton states confined in ellipti-
cal mesas of 10 �m mean diameter, and for a detuning of
��0 meV between the confined photonic mode and the ex-
citonic resonance. Similar results were obtained in traps with
mean diameters varying between 3 and 20 �m, as well as on
the confined upper polariton branch. All results have been
obtained under low power resonant optical pumping, in the
linear regime. Nonlinear emission and relaxation of the con-
fined states were, however, demonstrated in previous publi-
cations on the same sample,17–19 but are not exploited in the
present contribution.

III. SETUP

In order to image the wave function of the confined po-
lariton states rather than their probability density only, we
need a phase-resolved detection scheme. In this perspective,
we built a homodyne detection setup �Fig. 1�c��. We split the
beam of a continuous wave �cw� Ti-Sapphire laser into two
parts: one part was used to resonantly excite the polariton
states from the back of the sample using a camera objective,
the other part served as a phase reference. The sample was
held in a cryostat at a temperature of �4 K and the Gaussian
excitation spot had a diameter of 15 �m. Scanning the ex-
citation energy allows to selectively excite the eigenstates of
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the trap. When an eigenstate was found, fine tuning of the
excitation position and incidence angle was made in order to
maximize the coupling between the pump and the eigenstate,
by maximizing the coherent emission intensity. We made
sure that this fine tuning did not affect the shape of the state.
The light transmitted by the polariton mode was then col-
lected using a 0.5 NA microscope objective and imaged on a
CCD. Depending on the position of the imaging lens, real or
reciprocal space images could be obtained. The reference
arm was sent to a telescope for beam enlargement and wave-
front tuning, and interfered with the signal on the CCD. A
slightly different incidence angle was used for the signal and
the reference, in order to provide straight interference
fringes. After a numerical Fourier transform of the interfero-
gram, we were able to differentiate the interference term
from the continuous part �see Appendix A for more details�.
Using off-axis filtering,20 we could then keep the interference
term only, and extract the amplitude and phase of the polar-
iton states.

This phase and amplitude extraction procedure is demon-
strated in Figs. 2�a�–2�c�, for the ground state �n=1,m=0� of
the trapped lower polariton. Figure 2�a� presents the result of
the interference of the real-space coherent emission with the
reference beam. The extracted amplitude and phase of the
wave function are presented in Figs. 2�b� and 2�c�, respec-
tively. The phase gradient induced by the incidence angle
difference between the signal and reference arms can be de-

duced from this measurement, as the phase is supposed to be
constant for this ground state. This phase gradient was then
used as a reference for all the further measurements, as they
share the same experimental setup alignment.

IV. DESCRIPTION OF THE CONFINED STATES
AND RESULTS

The confined states can be labeled in a circular basis by
two quantum numbers �n ,m� with n=1,2 ,3 , . . . and m
=0,1 ,2 , . . .. In polar coordinates �r ,��, n gives the number
of lobes of the wave function in the radial direction. For a
perfect cylindrical symmetry, there are, for a given quantum
number m, two degenerate �m states which undergo a phase
rotation of e�im� in the azimuthal direction. However, due to
the ellipticity of the trap �see inset of Fig. 3 for a picture of
the mask used for the photolithography of the mesas�, these
+m and −m states will no longer be the eigenstates of the
trap. Let us consider the expression of the confinement po-
tential as V�r ,��=V0+�V�r ,��. In the circular basis, the an-
gular perturbation �V��� will provide coupling terms be-
tween states �m and �m�. The characteristic coupling energy
is given by the perturbation matrix elements Wm,m�, whose
azimuthal component are given by

Wm,m���� = ��m��V�����m�� =	 �V���ei�m�−m��d� �1�

which is nothing but the Fourier transform of the angular
variation in the potential with respect to the transform vari-

FIG. 1. �Color online� �a� Scheme of the microcavity sample
with mesa �not to scale, only a few DBR pairs are shown�. �b�
Spatially resolved photoluminescence spectrum of the polaritons
confined in a mesa of 10 �m mean diameter, under nonresonant
pumping. Energy is plotted with respect to the bare exciton energy
�Ex=1.484 eV�. Discrete confined states are visible for lower �be-
low Ex� and upper �above E−Ex=1.5 meV� polariton branches. �c�
Scheme of the homodyne detection setup. BS stands for beam split-
ter, M for mirror, L for lens, and PH for pinhole.

FIG. 2. �a� Real-space coherent emission of the �a� �n=1,m
=0� lower polariton state in a 10 �m mean diameter mesa, inter-
fered with the reference beam. �b� Amplitude and �c� phase of the
state wave function, extracted using off-axis filtering. �d�–�i� same
as �a�–�c�, but for the �n=1,m=1� doublet state. For this �n=1,m
=1� doublet state, the phase-gradient reference used is the one that
provides a constant phase for the �n=1,m=0� state, as it is theo-
retically expected to be constant. In �f� and �i�, a clear 	-phase shift
is visible between the two lobes, indicating that the two lobes of the
wave function are of opposite sign. The combination of the ampli-
tude and phase information provides a full information on the con-
fined polariton wave function. Interferograms and amplitude pat-
terns are in a linear gray scale from minimal �black� to maximal
�white� intensity. Phase patterns are in a linear gray scale from 0
�black� to 2	 �white�.
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able �m−m�� /2	. This �V can be evaluated in the following
way: let us describe, as an example, the confinement poten-
tial as an infinite elliptic potential well V�r ,��
=limn→
� r

r�
�nV�, where r� is the azimuthal dependence of

the potential radius, given by

r� =
ab


�a sin ��2+�b cos ��2

�with a and b semimajor and semiminor axes of the elliptical
confinement measured from the inset in Fig. 3�, and V� has
the dimension of energy. It is then possible to express the
perturbation of the confining potential as

�V�r,�� = V� lim
n→��� r

r��n

− � r

a + b

2
�

n

�
= V� lim

n→�	rn
r�
−n − � a + b

2 �−n�
��Vn���

 .

�2�
The Fourier transform of the angular variation in the confine-
ment potential �Vn��� is presented in Fig. 3, for n=100. It
shows that the coupling is nonzero only for states satisfying
�m−m��=2u, where u�N, and that it is monotonically de-
creasing over this set of values. A detailed analysis would
reveal that for very small deviation from the cylindrical sym-
metry, this decrease is exponential, and that therefore the
only important coupling occurs between states with quantum
numbers satisfying �m−m��=2. For this reason, in previous
publications,9,11 we considered, in a first approximation, that
the only significant coupling was between m=+1 and
m=−1 states �the coupling between m=0 and m=2 states

will be discussed later�, and experimentally observed that the
perturbation of the cylindrical symmetry results in a degen-
eracy lift of the m= �1 doublet into two new states ��

= 1

2

�e+i��e−i��, featuring �2m�=2 lobes in the azimuthal di-
rection, aligned along the ellipse axes.

This �n=1,m=1� doublet can be observed in Figs. 2�d�
and 2�g� display the interferograms obtained for the ��

states with the corresponding amplitudes �Figs. 2�e� and
2�h�� and phases �Figs. 2�f� and 2�i��.

We measured the energy separation between these two
states, using spatially resolved spectroscopy as described in
Refs. 9 and 10, to be on the order of 50 �eV �with a reso-
lution limit of 30 �eV�. On the phase structure, a clear
	-phase shift between the two lobes of the wave function,
indicating that the two lobes are of opposite sign. By this
way we have obtained the full information about the wave
function of the confined state.

Figure 3 shows that for the values a and b measured in the
inset, we are, in fact, in the case of a pronounced ellipticity,
inducing non-negligible coupling terms for �m−m��
=0,2 ,4 ,6 , . . . It indicates that, even if it is less pronounced
than for the �1 states, there should be a finite coupling be-
tween m=+2 and m=−2 states. This is what we actually
observe on the states characterized by the quantum numbers
�n=1,m= �2�. We can see in Figs. 4�a�–4�d� that there is a
doublet structure separated by a splitting of the order of or
smaller than our resolution limit of 30 �eV.21 Moreover, a
significant qualitative deviation from the patterns expected in
a circular geometry is observed on the amplitude patterns
�Figs. 4�a� and 4�c�� and phase structures �Figs. 4�b� and
4�d��.

Indeed, the state shown in Figs. 4�c� and 4�d� does not
feature a plain four-lobe pattern. In order to understand this
feature, we need to solve the wave equation on the actual
elliptic domain. The two-dimensional wave equation is a
Helmholtz equation

�2� + k2� = 0 �3�

whose eigenvalues k are related to the energy of the eigen-
modes �. In terms of the elliptical coordinates �� ,��, vari-
ables can be separated and one obtains two equations known
as the angular and radial Mathieu equations22 �see Appendix
B for more details on Mathieu equations and their reso-
lution�. Each of them has two families of independent solu-
tions, namely, even and odd Mathieu functions. The com-
plete two-dimensional even �odd� solutions, analogous to the
standing waves of a vibrating membrane, are then given by
the product of the angular even �odd� Mathieu function by
the radial even �odd� Mathieu function.23–25 These eigen-
states are also characterized by two quantum numbers, which
also provide the number of zeros in radial and azimuthal
directions, respectively. For these reasons we will still use
the quantum numbers n and m and indicate the parity of the
state �e.g., �n=1,m=2,e� for the �n=1, m=2� even state� to
describe the eigenstates. These eigenstates should not be
confused with the �n , �m� states, which were eigenstates of
the circular trap. The even and the odd two-dimensional so-
lutions of Mathieu equations for the quantum numbers �n
=1,m=2� have been computed and are presented in Figs.

FIG. 3. �Color online� Absolute value of the fast Fourier trans-
form �FFT� of the angular expression of the elliptical confinement
potential �Vn��� �defined in Eq. �2� with n=100, and using a and b
as measured in inset�. The FFT is plotted with respect to the param-
eter �m−m�� in order to express the coupling between states �m and
�m�. We can see that the coupling is nonzero only for states satis-
fying �m−m��=2u, where u�N, and that it is monotonically de-
creasing over this set of values. The amplitude of the FFT is nor-
malized to its cw component. Inset: picture of the mask used for the
photolithography of the polariton traps. We measured the elliptical
major and minor axes 2a and 2b to be 2a=10.78 �m and 2b
=9.27 �m. The corresponding eccentricity is =0.51.
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4�k� and 4�l� �odd� and �m�-�n� �even�. We have used the
parameters measured in the inset of Fig. 3 for defining the
confinement geometry. There is an excellent qualitative
agreement between these analytical solutions and the experi-
mentally observed patterns for both the phase and the ampli-
tude. It can be observed that the nodal lines of the wave
functions follow confocal ellipses ��=constant� and hyperbo-
las ��=constant�.

We mentioned above that according to our description of
the coupling between states using the Fourier transform of
the elliptical confinement, we expect a coupling between m
=0 and m= �2 states. It means that m=0 states patterns
should also be affected by the ellipticity of the trap. This
qualitative alteration can be observed on the amplitude and
phase structures of the �n=2,m=0� state presented in Figs.
4�e� and 4�f�. The perturbation can be again well reproduced
with the analytical solutions of Mathieu equations �Figs. 4�o�
and 4�p��.

Eventually, the experimental and theoretical patterns for
the �n=2,m=2� doublet are presented in Figs. 4�g�–4�j� and
4�q�–4�t�, showing again an excellent agreement between ex-
periment and theory.

Solving the wave equation on the elliptical domain also
allows to obtain a theoretical energy spectrum. The most
straightforward physical approach is to describe the system
with the time-independent Schrödinger equation.9 The eigen-
values k of Eq. �3� are related to the physical parameters by
k2= 2m�E

�2 , where m� is the effective mass of the polariton and
E is the eigenenergy with respect to the bottom of the con-
finement potential. However, using these physical param-
eters, the experimental spectrum cannot be satisfactorily re-
produced. This is probably due to the two following reasons:
first, with the Dirichlet condition, we have assumed an infi-
nite potential barrier created by the trap whereas the effective
confinement potential for the lower polariton is finite, on the
order of 3 meV; second, the effective mass of the polariton
depends of the detuning of the given polariton mode with
respect to the excitonic resonance and is therefore different
for each confined polariton mode. Another more complicated
approach, consisting in first solving the Maxwell equation to
find the confined optical modes and then strongly coupling
these modes to the exciton,8,27 would allow to overcome the
issue of the variable effective mass, but not of the finite
potential boundary, which would require to use the evanes-
cent radial Mathieu functions �RMF� of the second kind Kem
and Kom. Nevertheless, without going further into the physi-
cal modeling of the system in order to obtain absolute values
for the eigenenergies, we can learn qualitative information
about the splitting between even and odd states with respect
to the quantum numbers �n ,m�. The computation of the RMF
�see Fig. 7 and Appendix B� indicates that for a given n, the
energy splitting between even and odd states is higher for
m=1 than for m=2. Using the values for the elliptical axes a
and b measured from the inset of Fig. 3, we find through the
computation of the RMF a splitting of 48 �eV for the �n
=1,m=1� doublet and of 31 �eV for the �n=1,m=2� dou-
blet. These values are in very good agreement with the mea-
sured values ��50 �eV and �30 �eV, respectively�. An-
other qualitative information �also visible in Fig. 7� is that
for a given order m, the energy splitting between even and
odd states is increasing with n.

We would like to mention another category of wave func-
tions that we can excite in the mesas. The energy splitting
between even and odd wave functions being on the order of
the state linewidths, it is possible, by pumping at an interme-
diate energy, to excite a combination of the two split states,
and therefore overcome the �m splitting �the resulting com-
bination is therefore not an eigenstate of the elliptic trap�.
The kind of superposition will depend on the excitation con-
ditions. An excitation focused on the mesa will excite both
+m and −m states, from which the interference pattern will
be locked by the position of the laser. This has been used to
control the resulting wave-function pattern that features �2m�
lobes.11 On the other hand, an excitation beam with finite
incidence angle, focused on the side of the mesa, can be used
to create pure +m or −m states.28 The emission patterns ob-
tained using these specific pumping conditions are presented
in Figs. 5�a�–5�c� for a superposition of �n=1,m=1,e� and

FIG. 4. Real-space experimental images �obtained by the same
method than for Fig. 2� of the amplitude and phase of the ��a� and
�b� ��n=1,m=2,o� state, ��c� and �d�� �n=1,m=2,e� state, ��e� and
�f�� �n=2,m=0� state, ��g� and �h�� �n=2,m=2,o� state, and ��i�
and �j�� �n=2,m=2,e� state �Ref. 26�. The phase-gradient reference
used is the one that provides a constant phase for the �n=1,m=0�
state of the trap. Amplitude patterns are in a linear gray scale from
minimal �black� to maximal �white� intensity. Phase patterns are in
a linear gray scale from 0 �black� to 2	 �white�. Last two columns:
corresponding amplitude and phase structures obtained from the
analytical solutions of the wave equation. The boundary conditions
are given by the Dirichlet condition �see Appendix B� on the ellip-
tical domain defined by the values measured in the inset of Fig.
3�b�. The amplitude structures are given by the absolute value of the
wave function. For the phase structures, black is plotted for the
negative parts of the wave function and white for the positive parts.
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�n=1,m=1,o�. The interferogram presented in Fig. 5�a� is
characterized by a clear forklike dislocation in its center, sign
of a phase singularity. The extracted amplitude and phase
patterns show then a minimum of the polariton density at the
position of the singularity �core�, and a 2	-phase shift
around the singularity. This superposition carries an integer
angular orbital momentum m=+1. Its topological structure is
identical to a vortex in the polariton gas, although it is
created by geometrical means and is not linked with the
concept of superfluidity. By analogy to laser transverse mode
patterns, this polariton vortex can also be seen as a
TEM01� donut mode, resulting of a superposition of TEM10
and TEM01 modes, as shown in Refs. 29–31. Figures
5�d�–5�f� show the superposition of �n=1,m=2,e� and
�n=1, m=2,o�. The expected double topological charge is
split into two single vortices due to the ellipticity of the trap.
The positions of the two cores are given by the intersections
of the nodal lines of �n=1,m=2,e� and �n=1,m=2,o� state
patterns.

It is also possible to image the polariton emission in the
Fourier plane, simply by changing the position of the imag-
ing lens. Interference of reciprocal space images with the
reference arm provides the same type of interferograms than
for real-space imaging from which we can extract amplitude
and phase of the wave functions as well. A series of recipro-
cal space patterns for four different states is presented in Fig.
6. We can see that patterns in the Fourier plane are very
similar than real-space patterns, except for the fact that
higher order diffraction is visible around the zero-order pat-
tern. The homodyne detection allows to observe the expected
	-phase shift between two consecutive diffraction orders.

V. CONCLUSION

To summarize, we developed a homodyne detection setup
that allows for the imaging in real and reciprocal space of the
complete wave-function patterns �amplitude and phase� of
microcavity polaritons. We have used this setup to record

images of polariton states confined in the elliptical traps of a
patterned microcavity. We could observe the significant ef-
fect of the ellipticity of the confining potential on the wave-
function patterns, which were successfully compared to ana-
lytical solutions described in terms of even and odd solutions
of Mathieu equations. We have also produced superpositions
of even and odd states which take the form of donut and
eight-shape wave functions and are topologically identical to
polariton vortices. This shows the possibility of creating vor-
tices in a coherently pumped polariton gas by geometrical
means only, in absence of superfluidity.
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FIG. 5. �a� Interferogram obtained from the interference of the
coherent emission of a �n=1,m=1� donut state with the reference
beam. A clear forklike dislocation is visible, sign of a phase singu-
larity. ��b� and �c�� Extracted amplitude and phase structures, show-
ing a vortexlike structure. �d�–�f� same as �a�–�c� but for the �n
=1,m=2� state. The two phase singularities of this eight shape are
located at the intersections of the nodal lines of �n=1,m=2,e� and
�n=1,m=2,o� states. Interferograms and amplitude patterns are in
a linear gray scale from minimal �black� to maximal �white� inten-
sity. Phase patterns are in a linear gray scale from 0 �black� to 2	
�white�.

FIG. 6. Experimental amplitude and phase patterns in the Fou-
rier plane, for ��a� and �b�� �n=1,m=0� state, ��c� and �d�� �n
=1,m=1,e� state, ��e� and �f�� �n=1,m=2,e� state, and ��g� and
�h�� �n=2,m=0� state. Higher diffraction orders can be seen around
the main patterns. Amplitude patterns are in a linear gray scale from
minimal �black� to maximal �white� intensity. Phase patterns are in
a linear gray scale from 0 �black� to 2	 �white�.

PHASE-RESOLVED IMAGING OF CONFINED EXCITON-… PHYSICAL REVIEW B 82, 045304 �2010�

045304-5



APPENDIX A: DETAILS OF THE PHASE EXTRACTION
PROCEDURE

We detail here the phase-extraction procedure. When an
interferogram is recorded by the CCD camera, the detected
intensity is proportional to ��Es+Er�2�= �Es

2�+ �Er
2�

+2Es0
Er0

cos��s−�r+���, where Es�Es0
ei�s is the signal

field �with its amplitude Es0
and phase �s�, �Es

2� the signal
field intensity ��¯ � denotes the temporal average�, Er
�Er0

ei�r the reference field, and �� the phase component
induced by the difference of incidence angle between the
signal and reference. The phase of the signal is not accessible
from its intensity but can be extracted from the interference
term 2Es0

Er0
cos��s−�r+���. To isolate this contribution,

we perform a numerical Fourier transform of the interfero-
gram. In the Fourier plane, the interference term is an off-
axis contribution, while the continuous terms are situated at
the origin and can be filtered out. By this way, we filter out
as well all incoherent contributions. We keep then only the
interference term, make the realistic assumption that Er is
constant over the measurement area, and perform an inverse
Fourier transform, from which we obtain Es�x ,y�, including
its amplitude and phase informations. The last step is to get
rid of the phase component �� induced by the setup align-
ment. The procedure that we follow to remove this phase
component is explained in the main text.

APPENDIX B: MATHIEU EQUATIONS AND FUNCTIONS

In this appendix we show the tools that we used to plot
the eigenmodes of the polaritons confined in elliptical traps.
A detailed description of the method can also be found in
Ref. 24 and a comprehensive overview of Mathieu functions
is available in Ref. 25.

In order to find the eigenmodes of polaritons confined in
an elliptical trap, we need to solve Helmholtz Eq. �3� in
elliptical coordinates �� ,��, which are linked to cartesian
coordinates by

x =
c

2
cosh � cos � . �B1�

y =
c

2
sinh � sin � , �B2�

where c is the distance between the two foci of the ellipse
and is given by c

2 =
a2−b2 with a and b semimajor and
semiminor axes of the elliptical confinement, respectively.
The eccentricity  of elliptical domain is given by = c

2a . The
domain boundary is defined by �=�0, such as a= c

2cosh �0 or
b= c

2sinh �0. Ensembles of points with �=const represent
confocal ellipses and ensembles of points with �=const rep-
resent confocal hyperbolas. After performing the separation
of variables �=R�������, one obtains two equations

d2�

d�2 + �a − 2q cos 2��� = 0, �B3�

d2R

d�2 − �a − 2q cos 2��� = 0, �B4�

where q= 1
16c2k2 and a is a separation variable. Equation

�B3� is known as the ordinary or angular Mathieu equation
and Eq. �B4� as the modified or radial Mathieu equation.
Solutions of the angular Mathieu Eq. �B3� form two indepen-
dent families of solutions, even and odd angular Mathieu
functions �AMF�

�m = �cem��,q� m = 0,1,2, . . . �even AMF�
sem��,q� m = 1,2,3, . . . �odd AMF� ,

 �B5�

where m is the order of the function. The AMF satisfy the
periodic boundary conditions on �� �0,2	�, and feature 2m
zeros on this interval. There is therefore a clear analogy be-
tween the order m and the quantum number m defined in Sec.
IV. Solutions of the radial Mathieu Eq. �B4� which satisfy the
continuity conditions at �=0 are even and odd RMF of the
first kind

Rm = �Jem��,q� m = 0,1,2, . . . �even RMF�
Jom��,q� m = 1,2,3, . . . �odd RMF� .

 �B6�

In order to find the eigenmodes of Helmholtz Eq. �3� we
need to find the values of q that satisfy the Dirichlet condi-
tion

Jem��0,q� = 0 or Jom��0,q� = 0. �B7�

There is an infinite family of solutions qn,m that satisfy this
condition. We denote qen,m and qon,m the nth zero of Jem and
Jom, respectively. There is an analogy between this number n
and the quantum number n defined in Sec. IV. Figure 7 dis-
plays Jem��0 ,q� and Jom��0 ,q� �Ref. 32� for m=0,1 ,2,
where the elliptical boundary �0=1.2931 is obtained from the
measurement of major axis 2a=10.78 and minor axis 2b
=9.27 obtained from the inset of Fig. 3, providing an eccen-
tricity of =0.51. To every qn,m can be associated an eigen

FIG. 7. �Color online� Plot of even and odd RMF Jem��0 ,q� and
Jom��0 ,q�, as a function of the parameter q, at the boundary of the
potential trap ��0=1.2931�, for m=0,1 ,2. The parameter q of the
eigenmodes satisfying the Dirichlet condition are given by the zeros
of the RMF. qen,m and qon,m are the nth zero of even and odd RMF
of order m. The energies or frequencies of the eigenmodes are pro-
portional to q. We can see that for a given n, the energy splitting
between even and odd states is higher for m=1 than for m=2. For
a given order m, the energy splitting is increasing with n.
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value k, solution of Helmholtz Eq. �3�, that can be linked to
a frequency or energy by using the physical parameters of
the problem. The even and the odd eigenmodes are given by
the product of radial and angular Mathieu functions

�en,m = Jem��,q�cem��,q� with q = qen,m, �B8�

�on,m = Jom��,q�sem��,q� with q = qon,m. �B9�

The amplitude and sign �black for negative, white for posi-
tive� of the eigenmodes are presented in third and fourth
columns of Fig. 4, respectively, for comparison with experi-
mental measurements. An excellent qualitative agreement is
observed.
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