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Abstract

This paper proposes a capital accumulation model with a random stopping time corresponding to the occurrence of an environmental
catastrophe. Depending on the preventive capital stock accumulated at the time of the catastrophe, the damage cost associated with the catastrophe
varies. The long-term behavior of the optimal accumulation path is analyzed using turnpike theory. The case where the catastrophe process is
uncontrolled is distinguished from the case where there is an anthropogenic effect on the probability of an occurrence. Intergenerational equity
issues are discussed. Numerical experiments with an adaptation of the integrated assessment model DICE94 are proposed to explore the model
responses.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An eventual climate change may trigger in a possibly dis-
tant future large scale catastrophic events like a 5–6 m sea level
rise, due to a collapse of the West-Antarctic Ice Sheet. The
aim of this paper is to explore the relevance to the analysis
of economic decisions in this context of an economic growth
model with random stopping time, representing the occurrence
of a catastrophic event. The economic growth model is akin to
Ramsey’s (Ramsey, 1928) capital accumulation model as revis-
ited by Arrow and Kurz (1970), Cass (1965), Cass and Shell
(1976) and many others. The new feature is the inclusion of a
random stopping time at which a significant catastrophic event
occurs. The model takes then the form of a control problem
with a random stopping time as treated in Boukas, Haurie, and
Michel (1990). One also assumes that the economic good can
be invested in two different physical capital stocks, one being
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the general productive physical capital and the other being an
equipment that will alleviate the consequences (social cost) of
the catastrophe when it occurs. We develop two variants of the
economic growth model in the presence of catastrophic events
that cover the cases where (i) the stopping time of catastrophe
occurrence is uncontrolled, (ii) the stopping time probability
measure is influenced by the economic activity, respectively.
Assuming that the concentration of GHGs1 in the atmosphere
has an influence on the catastrophe risk one can view the prob-
lem as an instance of the derivation of a climate impact re-
sponse function (Tóth, Cramer, & Hizsnyik, 2000). All these
models draw from the theory of asymptotic control exposed in
Carlson, Haurie, and Leizarowitz (1994) and exploit the rele-
vance of infinite horizon control models to the study of sus-
tainable development (Haurie, 2003).

An interesting feature of these models is the very long time
horizon allied with a low intensity of the catastrophe jump
process. We shall discuss the way intergenerational equity can
be represented in this class of models and how this influ-
ences the long-term economic behavior which is represented by
“turnpikes”, which are attractors of the trajectories. The turn-
pike property for piecewise deterministic systems has been first
studied in Fleming, Sethi, and Soner (1987) and extended in

1 Greenhouse gases.
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Haurie and Van Delft (1995) in the context of manufacturing
systems. Another feature of this class of models is that a numer-
ical analysis is essential for exploring the possible outcomes, in
contrast with classical economic growth theory which may rely
essentially on analytic results and their interpretation. We thus
develop in detail the implementation of numerical methods for
this stochastic control problem as an example of a computa-
tional economics approach.

The paper is organized as follows: in Section 2 we consider
the case of an economy facing a stochastic catastrophic event
and which can invest in protective equipment or facilities; we
distinguish the two sub-classes corresponding to the uncon-
trolled catastrophe process (similar to a meteoric collision or a
big earthquake) and to the anthropogenically influenced catas-
trophe process (typically, the threshold events triggered by cli-
mate warming), respectively; in both cases we provide the nec-
essary optimality conditions and we characterize the possible
turnpikes. We also discuss the intergenerational equity issue
and the choice of an appropriate pure time preference rate in
the welfare criterion (defined as the infinite horizon discounted
sum of consumption utility). In Section 3 we detail the method
for computing numerical solutions of these models and we dis-
cuss the results obtained for both classes of models. In conclu-
sion, we envision some further developments of this avenue of
research.

2. The model

In this section we propose two versions of an economic
growth model with random catastrophic event. The first ver-
sion deals with an uncontrolled catastrophe process, whereas
the second version includes an anthropogenic influence on the
catastrophe elementary probability of occurrence.

2.1. The case of an uncontrolled catastrophe

Consider an economy characterized by a malleable good that
is produced with labor L, supposed to be fixed, and a physi-
cal capital K1, according to a production function Y = f i(K1)

where Y is the output and f i(·) is a concave function2 satisfy-
ing the classical Inada conditions, i = 0, 1 (see Arrow & Kurz,
1970). The index i represents two different modes of the econ-
omy (before and after the catastrophe, respectively) that will
be described shortly. There is a second physical capital stock,
denoted K2 whose role is to mitigate the consequences (dam-
ages) of a possible disaster, like the breaking of the antarctic
ice shield and the possible sudden rise of the sea level, or the
collision of the planet with a large asteroid.3 The output Y can
be used for consumption C or investment I.

2 For the sake of simplicity, we have assumed a constant population and
no exogenous technological progress.

3 The asteroid collision is certainly an uncontrolled event, whereas the
ice shield breaking is probably influenced by anthropogenic climate change
which is therefore a controlled process. This case is considered later on in
the paper.

2.1.1. Economic and catastrophe dynamics
The economy dynamics is characterized by the productive

capital accumulation equation

K̇1(t) = I1(t) − �1K1(t), (1)

where �1 is the capital depreciation rate, and the preventive
capital accumulation

K̇2(t) = I2(t) − �2K2(t) (2)

with its own depreciation rate �2. The state of the economy at
time t is described by the hybrid variable s(t) = (K(t), �(t))
where K(t)= (K1(t), K2(t)) describes the accumulated stocks
of both types of capital and �(t) ∈ {0, 1} is a discrete variable
indicating the mode of the economy: � = 0 is the current situa-
tion, whereas � = 1 corresponds to the situation where a catas-
trophic event has occurred, like the breaking of the antarctic
ice shield or the “nuclear winter” that would follow a collision
with an asteroid. We assume that the occurrence of the catas-
trophe is well described as a Poisson process with intensity
�. That is equivalent to say that the process {�(t) : t �0} is a
Markov chain with constant transition rate

� = lim
dt→0

P[�(t + dt) = 1|�(t) = 0]
dt

(3)

and where we assume that the mode � = 1 is a trapping state,
which means that there is no possibility to return to mode
� = 0, i.e.

0 = lim
dt→0

P[�(t + dt) = 0|�(t) = 1]
dt

. (4)

Let T denote the random (stopping) time at which the catastro-
phe occurs. We assume that there will be a large social cost,
due to the loss of lives or morbidity increase, as well as a
loss of productive capital. We assume that the stock K2(T ) of
preventive capital available at the time of the catastrophe has
an influence on the social cost, represented by the function
�(K2); the higher the capital stock the lower this cost. An-
other cost is introduced in the model; it is defined as an impulse
change in the stock of productive capital K1(T ). We denote by
�(K1(T

−), K2(T
−)) the magnitude of the capital loss.4 This

loss depends on the size of the capital stock K1 as the more
capital intensive is the society, the more exposed is this capital
to a catastrophe impact. It also depends on the stock of preven-
tive capital available which is assumed to provide a protection
at the time of the impact. We represent the impulse jump of K1
at the catastrophe time as follows:

K1(T
+) = K1(T

−) − �(K1(T
−), K2(T

−)). (5)

Notice that we do not represent the impact on K2 because this
capital will have no further use after the catastrophe.

4 T − and T + denote the time right before and right after the catastrophe
occurrence, respectively.
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2.1.2. Optimal capital accumulation path
The welfare function of the representative single agent is

defined as

J = E

[∫ ∞

0
e−�tU(C(t)) dt − e−�T �(K2(T ))

]
, (6)

where U(·) is a non-decreasing concave utility function of con-
sumption and � is the pure time preference discount rate. The
expression (6) is hiding the fact that there is a change in the
dynamics accompanied by a state jump for K1(·) that occur at
the stopping time T. It is because this event is triggered by a
stochastic process that we have used the expected value oper-
ator in (6). The welfare criterion can thus be rewritten as

J = E

[∫ T

0
e−�tU(C(t)) dt

+ e−�T

∫ ∞

T

e−�(t−T )U(C(t)) dt − �(K2(T ))

]
. (7)

So we separate the whole time interval [0, ∞) in two in-
tervals, namely I0 = [0, T ) and I1 = [T , ∞). On I0 the
economy prepares for the catastrophe, whereas on I1 it recov-
ers. Using a dynamic programming argument, we introduce a
value function defined by the solution of the optimal economic
growth problem on I1. Due to the stationarity of the economy
description we may change the time set by translation and take
T = 0 for that problem and write

V 1(K1
1 ) = max

[∫ ∞

0
e−�tU(C(t)) dt

]
(8)

s.t.

K1(0
+) = K1

1 , (9)

K̇1(t) = I1(t) − �1K1(t), (10)

Y (t) = f 1(K1(t)), (11)

C(t) = Y (t) − I1(t). (12)

The function V 1(K1
1 ) represents the welfare prospect of the

economy right after the occurrence of the catastrophe when the
productive capital left is K1

1 . Now, conditioning on the time T of
the catastrophe we can define the two-stage economic growth
problem as follows:

V 0(K0) = max E

[∫ T

0
e−�tU(C(t)) dt

+ e−�T (V 1(K1(T
−) − �(K1(T

−), K2(T
−))

−�(K2(T ))))

]
(13)

s.t.

Kj(0) = K0
j , j = 1, 2, (14)

K̇j (t) = Ij (t) − �jKj (t), j = 1, 2, (15)

Y (t) = f 0(K1(t)), (16)

C(t) = Y (t) − I1(t) − I2(t), (17)

� = lim
dt→0

P[T ∈ (t, t + dt)|T � t]
dt

. (18)

It will be convenient to introduce the function

W(K) = V 1(K1 − �(K1, K2)) − �(K2), (19)

which represents the net welfare value of the economy right
after the time of occurrence of the catastrophe. It is possible to
rewrite the stochastic control problem defined in Eqs. (13)–(18)
as a deterministic infinite horizon control problem (see, for ex-
ample, Chapter 10 in Sethi, 1997). In this deterministic control
problem the criterion is given by∫ ∞

0
e−(�+�)t {U(C(t)) + �W(K1(t), K2(t))} dt

and the dynamic constraints are (14)–(17).

2.1.3. Interpretation of optimality conditions
The model developed above shows that the optimal allocation

of resources to catastrophe risk prevention can be reduced to
an optimal economic growth problem with welfare depending
explicitly on the capital stocks. Indeed the representative agent
“consumes” the protection offered by the stock of capital K2(t)

or the exposure due to the stock of capital K1(t). This is more
apparent when we write the optimality conditions given by the
maximum principle.

The optimal control problem to solve is

V 0(K0)

= max
∫ ∞

0
e−(�+�)t {U(C(t)) + �W(K1(t), K2(t))} dt

(20)

s.t.

Kj(0) = K0
j , j = 1, 2, (21)

K̇j (t) = Ij (t) − �jKj (t), j = 1, 2, (22)

C(t) = f 0(K1(t)) − I1(t) − I2(t). (23)

Introduce the current-value hamiltonian

H(K, p, �, I, C)

= U(C) + �W(K1, K2) +
∑

j=1,2

pj (Ij − �jKj )

+ �(f 0(K1) − I1 − I2 − C) (24)

with pj (t) = e(�+�)t�j (t), where �j (t) is the costate variable
associated with the dynamics of Kj , j=1, 2 (that are interpreted
as marginal utilities of capital stocks) and � is the Kuhn–Tucker
multiplier5 associated with the constraint (23). Omitting, for

5 We always assume that sufficient regularity conditions hold for the
K–T multiplier to exist.
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Table 1
Signs of marginals

f 0′
(K1) > 0

V 1′
(K1 − �(K)) > 0

�
�K1

�(K) > 0
�

�K2
�(K) < 0

�′(K2) < 0

the sake of concision, the time indexing and the function argu-
ments the first-order necessary conditions write as follows:

K̇j = �

�pj

H, j = 1, 2, (25)

ṗj = − �

�Kj

H + (� + �)pj , j = 1, 2, (26)

0 = �

�Ij

H, j = 1, 2, (27)

0 = �

�C
H . (28)

Let us focus on the decision (control) variables first. Condition
(28) yields

U ′(C) = � (29)

while Conditions (27) yield

pj = �, j = 1, 2. (30)

So, as usual in these types of models the optimal path equalizes
the marginal utilities of the two capital stocks and the marginal
utility of consumption. Hence, what is critical is the evolution
of the marginal utility of capital stocks. Detailing Eq. (26) for
each type of capital stock we get

ṗ1 = −�
�

�K1
W(K) − �f 0′

(K1) + (� + � + �1)p1, (31)

ṗ2 = −�
�

�K2
W(K) + (� + � + �2)p2. (32)

Recall that we have defined

W(K) = V 1(K1 − �(K)) − �(K2)

so the costate equations can be rewritten with more details

q̇1 = − �V 1′
(K1 − �(K))

(
1 − �

�K1
�(K)

)
− �f 0′

(K1) + (� + � + �1)p1, (33)

q̇2 = �

(
V 1′

(K1 − �(K))
�

�K2
�(K) + �′(K2)

)
+ (� + � + �2)p2. (34)

We may expect the signs of marginal values indicated in
Table 1.

2.1.4. Turnpike
The catastrophe occurrence is a low-probability event. In

practice, the intensity � will be pretty small. Therefore, the
expected value of the stopping time T is quite large and the
economy will have, with high probability, enough time to reach
a quasi-steady state where the capital stocks are maintained
constant over time. This is why it is interesting to look at the
extremal steady state of this infinite horizon control sys-
tem. Under relatively general conditions discussed in Carlson
et al. (1994) one can expect this steady state, also called
turnpike, to be an attractor for all optimal capital accumu-
lation strategies. The extremal steady state is a stationary
solution of the first order optimality conditions, i.e. a solu-
tion (�̄, C̄, Ī1, Ī2, K̄1, K̄2, p̄1, p̄2) to the following system of
algebraic equations:

0��, (35)

0 = �(f 0(K1) − C − I1 − I2), (36)

C = f 0(K1) − I1 − I2, (37)

� = pj , j = 1, 2, (38)

� = U ′(C), (39)

0 = I1 − �1K1, (40)

0 = I2 − �2K2, (41)

0 = − �V 1′
(K1 − �(K))

(
1 − �

�K1
�(K)

)
− �f 0′

(K1) + (� + � + �1)p1, (42)

0 = �

(
V 1′

(K1 − �(K))
�

�K2
�(K) + �′(K2)

)
+ (� + � + �2)p2. (43)

It has been shown (Carlson et al., 1994) that this set of
equations is also the first-order optimality conditions of the
implicit programming problem:

max U(C) + �W(K) (44)

s.t.

0 = I1 − �1K1 − (� + �)(K1 − K̄1), (45)

0 = I2 − �2K2 − (� + �)(K2 − K̄2), (46)

C = f 0(K1) − I1 − I2, (47)

where K̄ = (K̄1, K̄2) is itself the solution of (44)–(47). There-
fore, the computation of the turnpike involves a fixed point
calculation.

2.1.5. A note on existence of solutions
This model is an instance of piecewise deterministic control

systems studied in Davis (1984) and Vermes (1985) where exis-
tence conditions are given. The turnpike property for this class
of systems has been studied in Fleming et al. (1987), Haurie
and Van Delft (1995) and Carlson et al. (1994).
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2.2. The case of an anthropogenic influence on the
catastrophe process

Let us consider now the case where the catastrophe process
has a probability measure which is influenced by a stock of
emissions that are associated with the production process, for
example, the concentration M(t) of CO2 accumulated at time
t in the atmosphere.

The economy dynamics is now characterized by the produc-
tive capital accumulation equations and also the CO2 accumu-
lation equation

K̇1(t) = I1(t) − �1K1(t), (48)

K̇2(t) = I2(t) − �2K2(t), (49)

Ṁ(t) = g(M(t), E(t)), (50)

where E(t) is the emission rate of CO2 by the production sector
and g(·, ·) is the net CO2 accumulation rate. As in Nordhaus
(1994) we assume that the emissions are defined by

E(t) = 	(1 − �(t))Y (t), (51)

where 	 is the initial carbon intensity of the economy and �(t) ∈
[0, 1] is the abatement effort at time t. Also, as in Nordhaus
(1994), we assume that the emission abatement effort has a cost
expressed in output loss, that is the following must hold:

C(t) + I1(t) + I2(t) = D(�(t))Y (t), (52)

where D(�(t)) ∈ [0, 1] is the production loss function associ-
ated with the abatement effort.6

We assume that the occurrence of the catastrophe is well
described as a jump process {�(t) : t �0} with jump rate

q(M(t)) = lim
dt→0

P[�(t + dt) = 1|�(t) = 0, M(t)]
dt

, (53)

where the function q(M) is monotone nondecreasing in M. The
rest of the model is similar to the previous case.7

2.2.1. Optimal capital and CO2 accumulation path
The problem of the optimal accumulation of capitals K1, K2

and pollution M is formulated as in section 2.1.2. After the
occurrence of the catastrophe, the problem for the surviving
economy is the same and can be summarized by the welfare
function W(K1, K2). The only difference comes from the de-
pendency of the jump process probability measure on the con-
centrations M(t). Repeating the same integration by parts we
obtain that the initial welfare value function is given by

V 0(K0, M0) =
∫ ∞

0
e−(�t+∫ t

0 q(M(s)) ds){U(C(t))

+ q(M(t))W(K1(t), K2(t))} dt . (54)

6 The reader will notice that we did not introduce a loss of output
directly linked with the pollution stock variable, or with a climate variable,
like temperature that is influenced by M. This choice has been made to keep
the model focussed on the catastrophe prevention issue.

7 For the sake of keeping the simplest form of the model, we have
assumed that the GHG concentration M is influencing the jump rate. It would
be easy to introduce a temperature T state equation and to assume that q(·)
depends on T instead of M.

This defines an infinite horizon control problem with an en-
dogenous discount rate given by � + q(M(t)).

2.2.2. Interpretation of optimality conditions
The optimal control problem to solve is

V 0(K0, M0) = max
∫ ∞

0
e−(�t+∫ t

0 q(M(s)) ds) {U(C(t))

+ q(M(t))W(K1(t), K2(t))} dt . (55)

s.t.

Kj(0) = K0
j , j = 1, 2, (56)

M(0) = M0, (57)

K̇j (t) = Ij (t) − �jKj (t), j = 1, 2, (58)

Ṁ(t) = g(M(t), E(t)), (59)

E(t) = 	(1 − �(t))f 0(K1(t)), (60)

C(t) = D(�(t))f 0(K1(t)) − I1(t) − I2(t), (61)

�(t) ∈ [0, 1]. (62)

To deal with the endogenous discount rate we have to in-
troduce a new state variable z(t) with state equation ż(t) =
q(M(t)). The optimal control problem to solve is then refor-
mulated as follows:

V 0(K0, M0) = max
∫ ∞

0
e−(�t+z(t)){U(C(t))

+ q(M(t))W(K1(t), K2(t))} dt . (63)

s.t.

Kj(0) = K0
j , j = 1, 2, (64)

M(0) = M0, (65)

K̇j (t) = Ij (t) − �jKj (t), j = 1, 2, (66)

Ṁ(t) = g(M(t), E(t)), (67)

E(t) = 	(1 − �(t))f 0(K1(t)), (68)

C(t) = D(�(t))f 0(K1(t)) − I1(t) − I2(t), (69)

�(t) ∈ [0, 1], (70)

ż(t) = q(M(t)). (71)

Introduce the current-value hamiltonian

H(K, M, p, r, �, 
, I, C, E, �)

= U(C) + q(M)W(K1, K2) +
∑

j=1,2

pj (Ij − �jKj )

+ r g(M, E) + �(D(�)f 0(K1) − I1 − I2 − C)

+ 
(	(1 − �)f 0(K1) − E) + � q(M), (72)

with pj (t)=e(�t+z(t))ϑj (t), where ϑj (t) is the costate variable
associated with the dynamics of Kj , j = 1, 2 (that are inter-
preted as marginal utilities of capital stocks), r =e(�t+z(t))�(t),
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where �(t) is the costate variable associated with the CO2 ac-
cumulation equation (67) and � and 
 are the Kuhn–Tucker
multipliers associated with the constraint (69) and (68), respec-
tively. Finally, �(t) = e(�t+z(t))
(t) where 
(t) is the costate
variable associated with the auxiliary state equation (71).

The first-order necessary conditions write as follows:

K̇j = �

�pj

H, j = 1, 2, (73)

Ṁ = �

�r
H , (74)

ṗj = − �

�Kj

H + (� + q(M))pj , j = 1, 2, (75)

ṙ = − �

�M
H + (� + q(M))r , (76)

�̇ = U(C) + q(M)W(K1, K2) + (� + q(M))�, (77)

0 = �

�Ij

H, j = 1, 2, (78)

0 = �

�C
H , (79)

0 = �

�E
H , (80)

0 = �

��
H , (81)

E = 	(1 − �)f 0(K1), (82)

C = D(�)f 0(K1) − I1 − I2, (83)

0��, (84)

0 = �(D(�)f 0(K1)) − I1 − I2 − C. (85)

Focusing on the control variable we get the following con-
ditions:

U ′(C) = �, (86)

while Conditions (78) yield

pj = �, j = 1, 2. (87)

Condition (80) yields


 = r
�

�E
g(M, E), (88)

and, finally Condition (81) gives


	 = �D′(�). (89)

Conditions (86)–(87) have already been interpreted. Condition
(88) says that the marginal cost of the contribution of emis-
sion E to concentration should be equal to the marginal cost of
the emission process associated to production. Finally, Condi-
tion (89) tells that the marginal value loss associated with the
marginal production loss due to abatement should be equal to
the marginal value of abatement.

2.2.3. Asymptotic steady state
A steady state for the optimal control problem defined above

will be given by a set of values (K̄, M̄, p̄, r̄, �̄, 
̄, Ī, C̄, Ē, �̄)
that satisfy the first order stationary conditions where all time
derivatives are replaced by 0.

0 = �

�pj

H, j = 1, 2, (90)

0 = �

�r
H , (91)

0 = − �

�Kj

H + (� + q(M))pj , j = 1, 2, (92)

0 = − �

�M
H + (� + q(M))r , (93)

0 = U(C) + q(M)W(K1, K2) + (� + q(M))�, (94)

0 = �

�Ij

H, j = 1, 2, (95)

0 = �

�C
H , (96)

0 = �

�E
H , (97)

0 = �

��
H , (98)

E = 	(1 − �)f 0(K1), (99)

C = D(�)(f 0(K1) − I1 − I2), (100)

0��, (101)

0 = �(D(�)(f 0(K1)) − I1 − I2 − C. (102)

2.2.4. A note on existence of solutions
This model is also a particular instance of piecewise deter-

ministic control systems studied in Davis (1984) and Vermes
(1985) and conditions for existence of solutions can be easily
checked. However, the turnpike property is much harder to es-
tablish. We will thus rely on numerical simulations to check
that this property holds for that model too.

2.3. How to deal with intergenerational equity

2.3.1. Adjusting the pure rate of time preference
The optimal economic growth with catastrophe prevention

pauses interesting problems of time scaling. In practice, the very
low jump rate characterizing the catastrophe process might be
several orders of magnitude smaller than the pure time prefer-
ence discount rate; for example � = 3% is usually adopted for
CBA8 related to global warming, whereas � = 0.00000001 is
the intensity for an asteroid collision.9 Even in the case of an

8 Cost–benefit analysis.
9 One counts one big hit for 100 000 000 years.
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anthropogenic influence on the catastrophe occurrence rate, one
may expect this order of magnitude difference between �=3%
and q(M̄) which is of the order of 0.005.

We may view the discounting and the catastrophe processes
as two independent jump processes that evolve independently
and in parallel. The discounting process represents a life dura-
tion for the consuming agent described by an exponential ran-
dom variable with expected length of life 1/�. The expected
time to the catastrophe event is given by 1/� or approximately
by 1/q(M̄). It should be clear that a decision maker using a
high discount rate � will not be concerned with a catastrophic
event having a very low occurrence rate � or q(M̄). Indeed one
could reduce the discount rate � to a value that is commensu-
rate with q(M̄). This would mean that the planner is interested
in a (random) planning horizon that may include with good
probability of the time of occurrence of the catastrophe. How-
ever, when one decreases the pure time preference rate � one
generates a value function which tends to be more “flat”, hence
with a smaller sensitivity to initial values of state variables.
This implies that the cost of capital losses will be reduced.

2.3.2. Introducing a direct concern for the post-catastrophe
generation

We may introduce, in the utility function of the present gener-
ation (which has a high probability of not witnessing the catas-
trophe), a direct concern for the welfare of the generations that
will follow as its descendents. In Haurie (to appear), Haurie and
Moresino (to appear) a multigeneration stochastic game model
has been proposed. It has been shown that if we assume that
each generation � lives between times t� and t�+1 with an ex-
ponentially distributed life duration of expected value 1/� and
if each generation k has a utility function

Uk(�) =
∑
��k

��−kE�

[∫ t�+1

t�
U(C(t)) dt

]
, (103)

where 0�� < 1 and where � is the intergenerational equilib-
rium policy, this is equivalent to having the current genera-
tion use a discount rate �(1 − �) in its CBA exercise. Notice
that (103) implies that the current generation k puts a weight
��−k on the welfare of forthcoming generation �. We refer the
reader to Haurie (to appear), Haurie and Moresino (to appear)
for more details on this game theoretic justification for using
low discount rates in CBA. In the next section we explore via
numerical methods the impact of the relative magnitudes of
discount and jump rates in the long-term behavior of this eco-
nomic growth process.

3. Numerical solutions

In this section, we compute the turnpike values for both mod-
els presented in Section 2 and for different parameters values.
We use a numerical method inspired by Kushner and Dupuis
(KD) (see Kushner & Dupuis, 1992) to approximate the op-
timal policy. We also implement a direct method for comput-
ing turnpikes by solving the steady-state necessary conditions.
Comparing these results we can check numerically that the

model with controlled jump (catastrophe) rate also admits a
turnpike.

3.1. Solving the stochastic control problem via KD method

In this subsection, we provide the Hamilton–Jacobi–Belmann
(HJB) system of equations associated with the controlled catas-
trophe model. We then show how the HJB system of equations
can be approximated by a Markov decision problem (MDP)
using KD method.

3.1.1. The HJB system of equations
Let us first recall the problem we want to solve

V 0(x) = max E

[∫ T

0
e−�tL0(x, u) dt

−e−�T
(
V 1(x(T ) − �(x(T ))) − �(x(T ))

) ]
,

(104)

V 1(x) = max

[∫ ∞

0
e−�tL1(x, u) dt

]
, (105)

with

ẋ = f̃ j (x, u), j = 0, 1. (106)

Applying standard dynamic programming analysis, we ob-
tain the following set of HJB equations that provide suffi-
cient optimality conditions for this stochastic control problem
(Fleming & Rishel, 1975). In full generality we should invoke
viscosity solutions, although the economic growth models are
known to provide smooth value functions.

�V 0(x) = max
u

{
L0(x, u) + �

�x
V 0(x)f̃ 0(x, u)

+[V 1(x − �(x)) − �(x) − V 0(x)]q(x)

}
(107)

and

�V 1(x) = max
u

{
L1(x, u) + �

�x
V 1(x)f̃ 1(x, u)

}
. (108)

3.1.2. The approximating MDP
To simplify notation omit the superscript j and write

f̃ j (x, u) = f̃ (x, u). We approximate the partial derivatives as
follows:

�

�xi

V j (x) →
{

(V j (x + eihi) − V j (x))/hi if f̃i (x, u)�0,

(V j (x) − V j (x − eihi))/hi if f̃i (x, u) < 0,

where ei is the unit vector of the ith axis. Define

f̃ +
i (x, u) = max{0, f̃i(x, u)},

f̃ −
i (x, u) = max{0, −f̃i (x, u)}.
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Substituting the differences to the partial derivatives in Equa-
tion (107), one obtains

�V 0(x) = max
u∈U(x)

{
L1(x, u)

+ [V 1(x − �(x)) − �(x) − V 0(x)]q(x)

+
n∑

i=1

(
(V 0(x + eihi) − V 0(x))

hi

f̃ +
i (x, u)

+ (V 0(x) − V 0(x − eihi))

hi

f̃ −
i (x, u)

)}
. (109)

Define the interpolation intervals

�(x, 0, u) = 1

� + q(x) +∑n
i=1 (|f̃i (x, u)|)/hi

, (110)

�(x, 1, u) = 1

� +∑n
i=1 (|f̃i (x, u)|)/hi

. (111)

One considers an MDP with discrete states xg , g ∈
G and control u ∈ U(xg). The transition rewards are
given by Lj (xg, u)�(x, j, u). The transition probabilities
�(xg, xg′

, j, j ′, u) are defined as follows:

• When g ∈ G\�G the transition probabilities from xg to
any neighboring sampled value xg ± eihi , if we stay in
state j = 0, are given by

�(xg, xg±eihi, 0, 0, u)= (f̃ ±
i (xg, u))/hi

q(xg)+∑n
j=1 (|f̃j (xg, u)|)/hj

and providing that we stay in state j = 1 they are given by

�(xg, xg ± eihi, 1, 1, u) = (f̃ ±
i (xg, u))/hi∑n

j=1 (|f̃j (xg, u)|)/hj

.

• Define x+ = min{xg′ |g′ ∈ G, xg′ �xg − �(xg)} and x− =
max{xg′ |g′ ∈ G, xg′ �xg − �(xg)}. If x+ = x−, the tran-
sition probabilities from j = 0 to j = 1, are given by

�(xg, x+, 0, 1, u) = q(xg)

q(xg) +∑n
j=1 (|f̃j (xg, u)|)/hj

.

If x+ �= x−, we have

�(xg, x+, 0, 1, u)

= xg − �(xg) − x−

x+ − x−
q(xg)

q(xg) +∑n
j=1 (|f̃j (xg, u)|)/hj

,

�(xg, x−, 0, 1, u)

= x+ − xg + �(xg)

x+ − x−
q(xg)

q(xg) +∑n
j=1 (|f̃j (xg, u)|)/hj

.

The transition probabilities for a jump from j = 1 to 0 are
zero.

• On the boundary �G of the grid, the probabilities are de-
fined according to a reflecting boundary scheme.

• All the other transition probabilities are zero.

Discounting factors are defined by

�(xg, 0, u) = �(x, 0, u)

(
q(x) +

∑n

i=1

|f̃i (x
g, u)|

hi

)
, (112)

�(xg, 1, u) = �(x, 1, u)

(∑n

i=1

|f̃i (x
g, u)|

hi

)
. (113)

The DP equations for this approximating MDP are given by

v0(xg) = max
u∈U(xg)

⎧⎨
⎩L0(xg, u)�(x, 0, u)

+ �(xg, 0, u)
∑

g′∈G j∈{0,1}
�(xg, xg′

, 0, 1, u)vj (xg′
)

−�(xg, 0, u)
∑

xg′ ∈{x+,x−}
�(xg, xg′

, 0, 1, u)�(xg)

⎫⎬
⎭ ,

(114)

v1(xg) = max
u∈U(xg)

⎧⎨
⎩L1(xg, u)�(x, 1, u)

+�(xg, 1, u)
∑
g′∈G

�(xg, xg′
, 1, 1, u)v1(xg′

)

⎫⎬
⎭ .

(115)

To solve both DP equations (114) and (115) one uses a linear
programming formulation, as indicated in Puterman (1994, p.
223). It is well established that the approximating MDPs lead
to approximations of the value functions that converge weakly
toward the continuous time solutions of the DP equations. Us-
ing the classical verification theorems of DP, we conclude that
the optimal solutions obtained from the approximating MDPs
provide an ε-optimal solutions to the continuous time problem.

3.2. Computing turnpikes for the uncontrolled catastrophe
model

A numerical experimentation can be made, using an IAM10

like DICE94 (see Nordhaus, 1994 or ICLIPS.11 These mod-
els refer to the whole word, and the catastrophe we have in
mind would also have a global effect that is described in the
model by the functions �(K2) and �(K1, K2). The catastro-
phe rate function � has also to be calibrated. The solution of the
model with � = 1, gives an evaluation of the function V 1(K1).

10 Integrated assessment model.
11 This model has been used in particular for the implementation of the

Tolerable Windows Approach (Petschel-Held, Schellnhuber, Bruckner, Toth,
& Hasselmann, 1999).
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Table 2
Parameters values

�1 0.1 �2 0.1
L̄ 12000 Ā 0.063
�1 20 �2 0.1
�1 0.90 �2 0.0003
� 0.25

This is the value function of a pure Ramsey–Cass economic
growth model. We can solve the Ramsey problem from differ-
ent initial state values Ki

1 and fit a functional form to these
estimates. The solution of the model with � = 0 will then be
looked for.

We show below a numerical model, inspired from DICE94.
The values L̄ and Ā represent the asymptotic values of popu-
lation and technological progresses in this model.

max
∫ ∞

0
e−�t log(C(t)) dt , (116)

L̇(t) = gL(t)L(t), (117)

ġL(t) = −�LgL(t), (118)

Ȧ(t) = gA(t)A(t), (119)

ġA(t) = −�AgA(t), (120)

Y (t) = A(t)K1(t)
�L(t)1−� (121)

= C(t) + I1(t) + I2(t), (122)

K̇j (t) = Ij (t) − �jK(t), j = 1, 2. (123)

We assume the following form for the damage functions:

�(K2) = �1/(1 + �2

√
K2), (124)

�(K1, K2) = �1K1/(1 + log(1 + �2K2)). (125)

According to the parameter values shown in Table 2 the capital
destruction rate at a catastrophe occurrence is 90% when there
is no preventive capital available. Also the catastrophe cost is in
the range of 20 when K2 =0 which is around 20% of the utility
gained from the consumption in the infinite horizon economy.
The value function in mode � = 1, for � = 0.03, respectively
�=0.06, is given in (126) and in (127), respectively. It has been
obtained in two steps. First, we obtained an approximation of
the value function by solving the Ramsey growth model with
the numerical method described in Section 3.1. Then, we fit
this discrete approximating value function with an analytical
function. In our case we have an excellent least-square fit R2 =
0.999999998

V 1(K) = 185.771751 − 0.310653189K0.6

+ 1.850646784K0.5

− 2.949629208K0.4 + 1.670241443K0.3, (126)

V 1(K) = 91.12230248 − 0.308780416K0.61.755896839K0.5

− 2.715196395K0.41.500248749K0.3. (127)

Table 3
Turnpike values for � = 0 and different risk rate values

� � K1 K2 C

0.03 1 × 10−6 719.40 0.00 302.14
0.03 1 × 10−3 704.52 2.78 301.40
0.03 5 × 10−3 649.18 22.58 297.42
0.03 1 × 10−2 586.88 45.17 292.31

0.06 1 × 10−6 545.41 0.00 294.52
0.06 1 × 10−3 535.97 1.94 293.75
0.06 5 × 10−3 500.01 17.48 289.81
0.06 1 × 10−2 459.12 36.50 284.79

Table 4
Parameters values

	 0.33 �1 0.1 �2 0.1 �M 0.0833
� 0.64 � 0.25 L̄ 12000 Ā 0.063
�1 20 �2 0.1 �1 0.95 �2 0.002
b1 0.045 b2 2.15

3.3. Turnpikes for different risk rate values

The turnpike values are computed by solving directly the
implicit programming problem (44)–(47) with EXCEL’s solver.
Table 3 gives the results of our calculations concerning the
turnpike levels in mode �=0, when the risk rate of catastrophe
is 0.001%, 0.005% and 0.01%, respectively. We can see how
the increase in the catastrophe risk rate � changes the values
of the preventive capital stock that is maintained at an optimal
steady state in mode �=0. We can see also that the steady-state
productive capital stock and the value of consumption decrease
when the catastrophe risk increases.

3.4. Computing turnpikes for the controlled catastrophe model

We report below on the numerical solutions obtained, using
the same adaptation of DICE94 as above, for the turnpike values
in mode � = 0, when the accumulation of GHGs is described
by the equation

Ṁ(t) = �E(t) − �M(M(t) − 590), (128)

whereas the catastrophe risk rate is an affine function of the
concentration M(t)

q(M(t)) = �1 + �2M(t). (129)

Emissions E(t) are given by

E(t)) = (1 − �(t))	Y (t), (130)

where �(t) ∈ [0, 1] is the abatement effort and 	 is the nominal
emission rate per unit of output. One assumes that the abatement
cost is represented by a loss of output given by the function

�(t)) = (1 − b1�(t)
b2). (131)

Table 4 gives the values of the parameters introduced in
Eqs. (128)–(131).
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Table 5
Turnpike values for � = 0 and different risk rate values

� �1 �2 K1 K2 M � C

0.03 10−6 1 × 10−9 719.36 0.00 1538.03 0.00 302.14
0.03 10−3 1 × 10−6 698.07 11.11 1409.06 0.13 300.15
0.03 10−3 5 × 10−6 664.36 41.03 1179.94 0.37 294.28
0.03 10−3 1 × 10−5 642.09 69.80 1051.49 0.50 288.74

0.06 10−6 1 × 10−9 545.40 0.00 1474.72 0.00 294.52
0.06 10−3 1 × 10−6 532.23 7.67 1374.63 0.11 292.82
0.06 10−3 5 × 10−6 508.92 30.02 1169.10 0.33 287.72
0.06 10−3 1 × 10−5 492.55 51.33 1022.34 0.50 282.46

Table 6
Space discretization

Space Minimum Maximum Step

K1 0 900 50
K2 0 20 2.5
M 1300 1600 100
I1 0 90 5
I2 0 2 0.25
� 0 0.2 0.05

Using the software MAPLE, we computed the turnpike val-
ues by solving the system of Eqs. (90)–(102) with Newton’s
method. Note that the value functions in mode � = 1 are the
same as the ones of the uncontrolled model and are given in
Eqs. (126) and (127).

In Table 5 the values satisfying the necessary conditions for a
turnpike are reported. We see that when the risk rate decreases
the steady-state economy in initial mode � = 0 has a higher
capital stock for production and a lower one for prevention and
it consumes more. A higher risk rate brings indeed a much
higher abatement effort.

3.5. Numerical solution of the controlled catastrophe model
via KD method

To solve the approximating MDP (Eqs. (114) and (115)),
we used AMPL (see Fourer, Gay, & Kernighan, 1993) coupled
with the solver Mosek. The values for the space discretization
are given in Table 6. We then compute an approximating opti-
mal policy by linear interpolation of the discrete point policy
of the MDP. To compute the optimal trajectory, we discretize
time into small period. At the beginning of each period, we ap-
ply the approximating optimal policy and maintain the control
constant over that period. Two trajectories with different initial
state (K1(0)=850, K2(0)=12, M(0)=1550 and K1(0)=650,
K2(0)=8, M(0)=1450) for the case when �=3%, �1=10−3 and
�2 = 10−6 are displayed in Fig. 1. We see distinctly that, what-
ever the initial point, the trajectories converge to an asymptotic
value. Table 7 shows the asymptotic attractors for different val-
ues of �2 when �1=10−3 and �=3%. To have an idea of the ac-
curacy of our numerical method, we can compare these results

with the one from Table 5. We see that our crude approximation
gives results that remain comparable with those computed di-
rectly from the steady-state necessary conditions. It is important
to note that a much finer discretization was not possible due to
the curse of dimensionality. This provides however a numerical
verification of the existence of a turnpike property for this type
of model.

4. Conclusion

In this essay a model has been proposed to find an optimal
capital accumulation path in an economy facing the prospect
of a possible environmental catastrophe. The model follows the
general philosophy of CBA as it integrates the expected costs
induced by the catastrophe and the cost of investing and main-
taining a preventive capital into a global welfare optimization
scheme. Technically, the optimal accumulation path is deter-
mined by an adjusted discount rate which depends on the in-
tensity of the catastrophe process and also by the introduction
of an endogenously defined valuation of capital stocks in the
reward rate function of the associated optimal growth problem.
The early occurrence of the catastrophe having a low probabil-
ity, it is expected that the economy will reach a steady state.
Conditions characterizing the steady state have been provided.
The consideration of these extremal steady states are interest-
ing for the assessment of optimal prevention policy since they
indicate how much preventive capital a society should be ready
to maintain to prepare for the possible catastrophic event. When
the catastrophe is induced by an anthropogenic effect, like the
accumulation of GHGs, the analysis could also serve to define
the level of emission abatement that the current society should
implement.

The issue of time scale discrepancy, when the discount rate
and the jump rate (intensity) are different by an order of mag-
nitude, pauses also an important problem for this kind of analy-
sis. A way to adjust the CBA analysis so that it shows concerns
for what will impact forthcoming generations has been pro-
posed in Haurie (2005) and Haurie (2006). The model would
be based then on a stochastic multigeneration game structure,
where the pure time preference (discount) rate � is linked with
the expected life duration of a generation, whereas each gen-
eration introduces in its utility function a concern for the well-
being of future generations. A multigeneration equilibrium can
be computed, again using a dynamic programming argument.
A new turnpike would then be defined that would pay more
attention to the long-term consequences of accumulating and
maintaining a preventive capital. Numerical methods have to
be implemented to explore the consequences of these differ-
ent approaches in tackling with this difficult issue: how to deal
with low probability–high cost global environmental events.
For that purpose, the approach that has been sketched in this
paper should be implemented with a more detailed economic
growth model, a more precise carbon cycle description to rep-
resent the accumulation of GHGs and a better representation
of the influence of the GHG concentration on the catastrophe
risk rate. Indeed, a good description of the loss functions when
the catastrophe occurs is also to be provided.
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Fig. 1. Two optimal trajectories with different initial values when � = 3%, �1 = 10−3 and �2 = 10−6. (a) K1, (b) K2, (c) M and (d) C.

Table 7
Turnpike values for � = 0

� �1 �2 K1 K2 M � C

0.03 10−3 1 × 10−6 750 10.0 1501 0.05 228
0.03 10−3 5 × 10−6 700 12.5 1438 0.10 231
0.03 10−3 1 × 10−5 650 15.0 1376 0.15 234

Acknowledgements

This research has been supported by the ATLANTIS
EU-project and by the Swiss NSF “NCCR-Climate” research
program.

References

Arrow, K. J., & Kurz, M. (1970). Public investment, rate of return and
optimal fiscal policy. Baltimore, MD: Johns Hopkins Press.

Boukas, K., Haurie, A., & Michel, P. (1990). An optimal control problem with
a random stopping time. Journal of Optimization Theory and Application,
64(3), 471–480.

Carlson, D., Haurie, A., & Leizarowitz, A. (1994). Infinite horizon optimal
control: Deterministic and stochastic systems. Berlin: Springer.

Cass, D. (1965). Optimum growth in an aggregative model of capital
accumulation. Review of Economic Studies, 32, 233–240.

Cass, D., & Shell, K. (1976). The structure and stability of competitive
dynamical systems. Journal of Economic Theory, 12, 30–70.

Davis, M. H. A. (1984). Piecewise deterministic Markov processes: A general
class of non-diffusion stochastic models. Journal of the Roy Statistical
Society, 46, 353–388.

Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic control.
Berlin: Springer.

Fleming, W. H., Sethi, S. P., & Soner, H. M. (1987). An optimal stochastic
production planning problem with random fluctuating demand. SIAM
Journal of Control and Optimization, 25, 1494–1502.

Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL. London: The
Scientific Press.

Haurie, A. (2003). Integrated assessment modeling for global climate change:
An infinite horizon viewpoint. Environmental Modeling and Assessment,
8(3), 117–132.

Haurie, A. (2005). A Multigenerational game model to analyze sustainable
development. Annals of Operations Research, 137, 369–386.

Haurie, A. (2006). A Stochastic multi-generation game with application to
global climate change economic impact assessment. In A. Haurie et al.
(eds.). Advances in dynamic games. (vol. 8). Annals of the International
Society of Dynamic Games, Basel: Birkhauser.



1428 A. Haurie, F. Moresino / Automatica 42 (2006) 1417–1428

Haurie, A., & Van Delft, Ch. (1995). Turnpikes in flow control models
for unreliable manufacturing systems. European Journal of Operational
Research, 82, 359–372.

Haurie, A., & Moresino, F. (to appear). Equilibria in stochastic game models
of intergenerational equity. International Game Theory Review.

Kushner, H. J., & Dupuis, P. G. (1992). Numerical methods for stochastic
control problems in continuous time. New York: Springer.

Nordhaus, W. D. (1994). Managing the global commons: The economics of
climate change. Cambridge, MA: MIT Press.

Petschel-Held, T., Schellnhuber, H.-J., Bruckner, T., Toth, F. L., &
Hasselmann, K. (1999). The tolerable windows approach: Theoretical and
methodological foundations. Climatic Change, 41, 303–331.

Puterman, M. (1994). Markov decision processes. New York: Wiley
Interscience.

Ramsey, F. (1928). A mathematic theory of saving. Economic Journal, 38,
543–549.

Sethi, S. P. (1997). Optimal consumption and investment with bankruptcy.
Norwell, MA: Kluwer Academic Publishers.

Tóth, F., Cramer, W., & Hizsnyik, E. (2000). Climate impact response
functions: An introduction. Climatic Change, 46, 225–246.

Vermes, D. (1985). Optimal control of piecewise deterministic Markov
process. Stochastics, 14, 165–208.

Alain Haurie was born in Algiers, Algeria, on
August 26, 1940. He received the Licence es
Science degree in mathematics from the Univer-
sity of Algiers, Algeria, in 1961, the Doctorate
degree in applied mathematics from the Univer-
sity of Paris VII, Paris, France, in 1970, and the
Doctorat es Sciences (Doctorat d’état) degree
also from the University of Paris VII in 1976.

Since 1963, he has been a Professor at l’Ecole
des Hautes Etudes Commerciales de Montréal,
Montréal, P.Q, Canada. In 1976 and 1977, he
was on leave of absence at INSEA, Rabat, Mo-
rocco.

From 1970 to 1973 and from 1986 to 1988, he held a part-time teaching and
research position in the Department of Mathematics of l’Ecole Polytechnique
de Montréal where he was responsible for a graduate course on optimal
control theory. In 1979, he held a similar position in the Department of
Operations Research, University of Montréal.

From 1980 to 1988, he has been Director of GERAD (Groupe d’Etudes et
de Recherche en Analyse de Décisions).

Since 1988, he has been Professor of Operations Research in the Economics
and Social Science Faculty of the University of Geneva, Geneva, Switzerland.
His current research interests include application of systems analysis and
optimization methods to environmental management, application of stochastic
control theory to societal problems, application of optimal control theory to
economic planning, modeling of manufacturing systems, and dynamic game
theory.

Francesco Moresino holds a degree in physics
from ETH Zurich and a Ph.D. in economics
from the University of Geneva. He has been a
research associate at the Judge Institute of Man-
agement Studies, University of Cambridge. He
also worked in the risk management solutions
team at Reuters and in the department of finance
at the private bank EFG. He is currently a re-
search associate at EPFL and works on global
environmental management models.

His research interests are in the fields of
stochastic optimization and stochastic game the-
ory, with applications to sustainable develop-
ment, manufacturing and finance.


	A stochastic control model of economic growth with environmentaldisaster prevention62626262
	Introduction
	The model
	The case of an uncontrolled catastrophe
	Economic and catastrophe dynamics
	Optimal capital accumulation path
	Interpretation of optimality conditions
	Turnpike
	A note on existence of solutions

	The case of an anthropogenic influence on the catastrophe process
	Optimal capital and CO2 accumulation path
	Interpretation of optimality conditions
	Asymptotic steady state
	A note on existence of solutions

	How to deal with intergenerational equity
	Adjusting the pure rate of time preference
	Introducing a direct concern for the post-catastrophe generation


	Numerical solutions
	Solving the stochastic control problem via KD method
	The HJB system of equations
	The approximating MDP

	Computing turnpikes for the uncontrolled catastrophe model
	Turnpikes for different risk rate values
	Computing turnpikes for the controlled catastrophe model
	Numerical solution of the controlled catastrophe model via KD method

	Conclusion
	Acknowledgements
	References


