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1 Introduction

Humans are able to adapt their movements to almost
Abstract any new situation in a very robust, seemingly effortless

way. To explain both adaptivity and robustness, a very
Rhythmic and discrete movements are frequenflyomising perspective is the modular approach to move-
considered separately in motor control, probabiyent generation: Movements result from combinations
because different techniques are commonly usedoiba finite set of stable motor primitives organized at
study and model them. Yet, an increasing interedie spinal level (seBizzi et al(2009 for a review). In
for a comprehensive model for movement generatitis article, a motor primitive is defined as a network of
requires to bridge the different perspectives arisisginal neurons that activates a set of muscles (that we
from the study of those two types of movementsall a synergy) in a coordinated way in order to execute
In this article, we consider discrete and rhythmia specific movement. Motor primitives are thus defined
movement within the framework of motor primitivesyelative to the movement that they produce.
i.e. of modular generation of movements. Thereby wein terms of control, the modularity assumption is at-
hope to get an insight into the functional relationshipgactive because it drastically reduces the dimensional-
between discrete and rhythmic movements and thus of the problem: instead of a complex stimulation
into a suitable representation for both of them. Withigf a vast number of muscles across the body, high-level
this framework we can define four possible categoriesmmands can be summed up as activation signals for a
of modeling for discrete and rhythmic movementnite, discrete set of motor primitives. Strong evidence,
depending on the required command signals and e#tably through the concepts of central pattern gener-
the spinal processes involved in the generation gfors and force fields (see resp. reviews@gliner
the movements. These categories are first discusgeoDg andBizzi et al(2008), supports the existence of
relatively to biological concepts such as force fieldsuch functional modules at the spinal level in vertebrate
and central pattern generators and are then illustratgdmals. For instanceéargo and Gisztef200Q have
by several mathematical models based on dynamigaimonstrated how a finite set of spinal motor primitives
system theory. A discussion on the plausibility afould account for the natural wiping reflex in the frog,
theses models concludes this work. showing that the central nervous system (CNS) could

use such primitives to produce natural behaviors.

This article was originally published in the  Assuming the existence of such motor primitives
journal Biological Cybernetics. The final pub- provides an interesting framework for reflecting upon
lication is available at www.springerlink.com: the potential differences between discrete and rhythmic
http://www.springerlink.com/content/x7n0355642074wx0 movements. It allows us to reflect on these movements
relatively to a simplified view of movement generation:

*This work was supported by the European Commission’s Cogr?l'—hlgh level command activates a (Set Of) motor prim-

tion Unit, project no. 1ST-2004-004370: RobotCub and by $éss itive_(s) at the spina_l level f[hat generates a given ki_ne'
National Science Foundation. matic outcome. Given this scheme, we can consider
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the potential differences between discrete and rhythnde - A Simplified view on motor sys-
movements that are not related to sensory feedback nor tems
muscles interaction but to the spinal processes under-

Iym_g them and tq the high-level commands.needed i1 this section, we briefly present a simple model for

activate these spinal Processes. _We_call this appro?%\/ement generation based on the concept of motor
a fur_1ct|ona| a_pproach to d_|st|ngu_|sh it from the manﬁfr'mitives. We consider the processes underlying the
studies focusing on the kinematics of these typesg neration of both movements with an emphasis on the

movements, as for instance the thorough analysis ntribution of the spinal component of the CNS. Such

Hogan and Sterna@007). a simplified structure will provide us with a framework
of discussion throughout this article.
According to textbooks (see for instani€andel et al
Most of the studies on discrete and rhythmi 2000), movement generat_|on IS achle_ved through
: ree motor structures organized hierarchically and cor-
movements are either based on electromyographic . : .
responding to different levels of abstraction. These
(EMG) analyses of the generated movement

(Hogan and Sternad (2009,  van Mourik and Beek sfructures ar.e.(a) theerebral cortexwhich is. respon-
(2009) or on functional n,wagnetic resonance ima pible for defining the motor task; (b) tHterain stem

. . : YWhich elaborates the motor plan to execute the motor
Lg?,ie(\f,vhigl)inar?éﬁ;s n’o(’s Ch?/?llhe";alt(ﬁggj)sgjs divews” rtm)aevetaSk; and (c) thepinal cord which generates the spatio-
provided insightful re.sults on the nature of discretgmporal sequence of muscles activation to execute the
and rhythmic movements, we think that adopting ttgsk. In addition, the cerebral cortex and the brain stem
' are influenced by theerebellumand thebasal ganglia

functional perspective Is a useful, complementary stg ich can be considered as feedback circuits, the cere-
to understand the differences between the movemen R . .
€llum being also connected to the spinal cord.

regarding the way that they are generated, and 259 order to consider the relationships between dis-

to gain more understanding on how brain and EMgr te and rhythmic movements, we will mainly distin-
studies can be bridged. Moreover, the generation of y ’ y

discrete and rhythmic movements at the spinal le ish between the planning (a) and the execution phase

has been extensively studied in vertebrates throu :C) of movgments. By planning, we mean all the pro-
' esses required to choose the features of the movement
the concepts of force fields and central pattern gengr- .
. - : ; - .(i.e. torepresentthe task) and by execution, the pro-
ators respectively, providing an interesting basis for : . -
reflection cesses responsible for the spatio-temporal activation of
' the musclegyeneratingthe corresponding trajectories
by the limbs. Within this framework, four different pos-
sible structures for the generation of discrete and rhyth-

We start by presenting a simplified model of the mon'e movements need to be considered (seelFig.

tor system on which we will base our reflection (Sectiof,o/Two

2). We then present several studies on the differences pigcrete and rhythmic movements are generated

between discrete and rhythmic movements (Sec#lon  hrqugh two totally different processes, both at the
and some of the literature on the combination of these planning and the execution phase;

movements (Sectiof)). Altough we are well aware that
movement generation is a dynamic process involving
the whole motor system, we discuss movement exegyne/Two

tion and movement planning separately since we think The planning processes involved in the generation

that in this way distinct properties pertaining to those  of hoth movements are the same, while their
two phases of movement can be emphasized, as will be generation depends on different structures;

discussed in Section® and 6 respectively. Further-

more we present in Sectioghsome existing mathemat-

ical models for the generation of discrete and rhythmi@ne/One

movement, since such models provide discerning infor- Discrete and rhythmic movements are two out-
mation on the generation of these movements. comes of the same process, both at the planning



and the execution level; discrete movementis defined as a movement which oc-
curs between two postures, where postures stand for
a non-zero interval of time where (almost) no move-
Two/One ; - ;
The t tsinvolve diff ; ‘ ment occurs. Rhythmic movements are categorized in
€ vilot_movemhe_ln Envo ve |ter(_an types ofrey,, subsets, going from strictly periodic movements
resentations, while the generatoris common. -+, movements with recurrent patterns. However, as the
authors point out in the article, these two definitions are

- - - not exclusive. The so-called rhythmic movements oc-
Discrete Rhythmic Unique . o
represent,| |represent represent, cur in between postures (and thus enter the definition

of discrete), and discrete movements can be repeated in
Yo order to become periodic.
Discrete | |Rhythmic Discrete | |Rhythmic Another difficulty comes from the fact that rhyth-
generator| |generator generator| |generator| | mic and discrete movements have mainly been studied
separately in the literature, although some interesting
(a) Two/Two (b) One/Two (relatively recent) articles on their combinations exist
(as for instanceHogan and Sterna(?007 or Sternad
Unique Discrete | |Rhythmic| | (2007). From our point of view, this distinction is
represent. fopresent| [represent, mainly due to two interlinked factors. First, rhythmic
) and discrete movements have not been studied per se in
Unique Unique generall, but lmalnly as outcomes of some §pe0|f|c pro-
generator generator cesses in trajectory generation, such as for instance cen-
tral pattern generators (CPGs) in locomotion and sen-

(c) One/One (d) Two/One sorimotor transformations in reaching. Second, stud-
ies focusing on the low-level generation of movements
Figure 1:Schematic of the four different categories of modoften concentrate on rhythmic movements such as lo-
els. comotion, while those concerning the high-level gen-
eration typically address discrete movements such as
These four simple categories provide us with basigaching or grasping. This implies different investiga-
grounds for reflection on the possible differences bgon techniques; most of the studies on rhythmic move-
tween discrete and rhythmic movements. We will ref@fients have focused on the spinal cord-brain stem sys-
to them throughout this article. tem in deafferented or spinalized subjects, whereas dis-
crete movement is usually studied using brain imaging
.. . . techniques or kinematic data on awake, behaving ani-
3 Deflnmg discrete and rhythmlc mals. (g)vercoming these differences isanecessa?y step
movements to understand discrete and rhythmic movements.
These two issues make a review of rhythmic and dis-
Mathematically, defining rhythmic and discrete movesrete movements difficult in the sense that any com-
ments is an easy task. Rhythmic refers to periodic sigarison between the numerous studies on the subject
nals, discrete to aperiodic signals. However, when cas-laborious since the methods, the point of view and
sidering movements that we actually perform, the tattke physiological level of investigation are different. It
becomes more complex, the major problem being thatan interesting question whether, in terms of motor
movements are finite in time and that the formal, mathesntrol, the apparent differences between discrete and
matical definition of periodicity is thus unusable. Moreshythmic movement are artifacts due to different scien-
over, intrinsic variability of movements and modulatiotific approaches or if both types of movements are in
by the environment (contacts for instance) change tfaet produced independently.
actual trajectory, so that it is impossible to perform a Schaal et a{2004 andvan Mourik and Beek2004
perfectly periodic trajectory. for instance have defined three hypotheses that need
The attempt byHogan and Sterng@007) to develop to be considered: (@) rhythmic movements are re-
a taxonomy to classify discrete and rhythmic move@eated discrete movement®(icatenation hypothe$ijs
ments confirms the inherent difficulty of the task. Ab) discrete movements correspond to interrupted cyclic



movementsHalf-cycle hypothesjsand (c) discrete andence observed in the fMRI recordings.
rhythmic movements result from different processesAnother non negligible phenomenon is the onset and
(two primitives hypothesis Note that these three hy-the ending of a rhythmic movement: indeed, boundary
potheses would correspond to the One/One case defipedditions change the kinematic properties of the ini-
above for (a) and (b) and to the Two/Two case for (dfal and final cycles (compared to normal, in-between
The mixed cases One/Two and Two/One are not consigcles), making them closer to those of discrete move-
ered here as the planning and the execution phase ofifents. Indeed, when a discrete movementis performed,
movements are not distinguished. the initial and final accelerations are zero while this is
While hypotheses (b) and (c) are still untested, savet the case during in-between cycles.
eral studies have shown that hypothesis (a) is un-wan Mourik and Beek(2004 have studied the in-
likely to be true. According tovan Mourik and Beek petween cycles and first and last half-cycles separately
(2009, the concatenation hypothesis is mainly a They came to the conclusion that, whereas the in-
consequence of trajectory planning theory where Hetween cycles were significantly different from the
is often supposed that discrete segments are ug@gtrete movements, the first and last half cycles were
as building blocks for a movement. It has beetinematically close to discrete movements. Even if
ruled out by several studies comparing discrete afikir results do not rule out the half-cycle hypothesis
rhythmic movements vian Mourik and Beek(2009;  conclusively, they give more support to the two prim-
Hogan and Sterna(2007), where key kinematic fea-itives hypothesis: the cyclical movements performed
tures of rhythmic movements are significantly diffefcould be in fact a sequence of a discrete, onsetting
ent from those of discrete movementsSchaal et al movement, followed by rhythmic movements and ter-
(2004 obtained similar results using fMRi techniquesninated again by a discrete movement. A model by
some cortical areas activated during discrete mo\&chdner and Santg2007) based on this latter hypoth-
ments where not active during rhythmic ones. In adsis will be presented in the last part of this review.
dition, as reported bywan Mourik and Beek(2009,  The questions on the nature of discrete and rhythmic
Guiard (1993 argued that the concatenation assumprovements thus remain open, even if strong evidence
tion would involved a waste of elastic energy (indeegbems to rule out the concatenation hypothesis. In the
at the end of a reaching movement, the energy hashigt section, we present some work on the interaction

be dissipated, whereas for rhythmic movement, the &f-discrete and rhythmic movements in tasks involving
ergy can be stored as potential energy for the remainip@ir combination.

half-cycle).

It is however important to point out that those com-
parisons are always made between a reaching moMe- The combination of discrete and
ment and its corresponding back and forth rhythmic .
movements: Thus the difference observed may be due rnythmic movements
to the characteristics of reaching itself (for instance the
control commands required to characterize it) rathitost of the EMG and kinematic studies on the combi-
than due to the fact that reaching is a discrete movgation of rhythmic and discrete movements are built on
ment. For instance, in the experiment conducted Bye same scheme: a particular joint (usually the finger
Schaal et al(2004), the subjects had to either cycler the elbow) has to be moved from an initial to a target
around a rest position at a self-chosen amplitude orposition (discrete movement) while oscillating (rhyth-
stop at a chosen position, to wait for a while and then meic movement). The oscillation is either physiological
start again. fMRI recordings of this experiments ha&oodman and Kels¢1983; Adamovich et al(1994;
shown that some cortical areas active during the didichaels and Bongerg1994; Sternad et al(2000)
crete movements were not activated during the rhytbr pathological (Vierzbicka et al (1993; Elble et al
mic movements, leading to the conclusion that rhytk1994; Staude et a(20032), the reader is referred to
mic movements cannot be concatenated discrete moSernad2007) for a thorough review.
ments. However, as it has been pointed out, notably byin all these experiments, an entrainment effect is ob-
Miall and Ivry (2004, that discrete movements requirgerved, that is the discrete movement is phase-coupled
more processing, namely choosing where to stop anih the rhythmic movement, in the sense that the on-
when to start again, which could also explain the diffeset of the discrete movement occurs preferably (though



not always) during a specific phase window of the osiovements is supported by a study on whisker move-

cillations. Goodman and Kels(l983 showed that this ments in rats byaiss and Schwai2009, where it has

phase window corresponds to the peak of momentir®en found that rhythmic and non rhythmic movements

of the oscillations in the direction of the discrete move&an be evoked through two different areas of the pri-

ment. Interestingly, it has been shown that professiomaary motor cortex. It has been shown in addition that

pistol shooters press the trigger in phase with their isimultaneous activation of both areas resulted in a shift

voluntary tremor, while beginners try to immobilizeof the offset of the whisker oscillations, that is in a com-

themselves before shootingang et a2008). bination of both movements. This experiment will be
In terms of EMG recordings, the burst initiating theliscussed more in details in Sectién

discrete movement occurs approximately at the timeWe now discuss more precisely the generation of dis-

where the EMG activity for the rhythmic movementrete and rhythmic movements, both at the execution

would have been expected without this perturbatiosnd at the planning levels.

This effect is thus referred to as "burst synchronization”

by De Rugy and Sterna(2003. Performing the same

experiment, although at different frequencies (lower &  Generation of discrete and

De Rugy and Sterna2003), Adamovich et a1994 :
andDe Rugy and Sterna@003 came to different con- rhythmic movements

clusion on movement combinationAdamovich et al ¢ i tion th h two fund
(1999 observed the three following features: (a) th\é/e pt)rtlesen m(:vemtenl gegera 'on “1“9 dfo unda-
oscillations rapidly attenuate and disappear during t ental conceptsyentral pattérn generatorandiorce

|ds that we develop in the following.

discrete movement and resume after the peak vel SC | PGs) thati inal
ity of the discrete movement; (b) there is a phase re- entral pattern generatofCPGs), that s spinal net-

setting of the oscillations after the completion of th%/orks mvoIved. in-many behaviors |n.vertebrates ar_id
discrete movement; and (c) the frequency tends to |Q¥ertebrat_es, is a seminal_concept in the generation
higher after the discrete movement. In addition, th (rhythmic) movementsGrillner (1983, Delcqrriyn
observed that (d) once the discrete movement is inig-280)- Although most work on CPGs were originally
ated, it is performed independently from the rhythmfiedicated to rhythmic movementSillner (2009 for
one, in the sense that the discrete trajectory is not im‘i[]=°’t"’mce nqw extends 'F to discre_te movements as well.
enced by the rhythmic movement. Basing themselveg Nother important discovery in movement genera-
on the monotonic hypothesiS{-Onge et a(1993) ac- tion is the i:oncept pf()_ice f|eldslwh|ch has been
cording to which the command of the discrete mov8rought to light by Bizzi's groupRizzi et al (1993).
ment stops at the time of its peak velocity, they cofi\s we will see, force fields prowde evujenc_;e fqra mod-
clude that discrete and rhythmic movements are excl(f¢” Organization of the spinal cord circuitry in verte-
ing each other at the neural level, in the sense that tH@tes: _ o
cannot co-occur. However, their kinematics outcomes!n the following we present these two notions in
outlast them and leads to overlap. more d_etails, as well as their relationship to discrete and
However, Sternad et a(2000 came to a different "Nythmic movements.
conclusion concerning the interdependence of the two
movements. Indee_d, they observed a significant inflg-1  central pattern generators
ence of the rhythmic movement on the discrete move-
ment (lower frequencies of oscillations lead to longdépproximatively one century ago, two discrepant ex-
discrete movements), which is in contradiction with thglanations for the rhythmic pattern present in loco-
result (d) obtained byadamovich et al(1994. More- motion were competing: one suggesting that sen-
over, the higher frequency observed by Adamovich sbry feedback was the main trigger of the different
al. after a discrete movement (observation (c)) appeapthses of locomotionSherrington(1910), and an-
to be a transient phenomenon. Following these obsere#her one suggesting the existence of central neural net-
tions,Sternad et 82000 propose that both movementsvorks capable of generating rhythms without any sen-
co-occur and that the attenuation of the oscillations dwery input Brown (1919), such neural networks are
ing discrete movements is due to inhibitory phenomemaw called central pattern generators (CPGBjown
Note that co-occurrence of discrete and rhythm{t912 showed that cats with transected spinal cord



and with cut dorsal roots showed rhythmic pattern ebordinated with body movements.
muscle activation. Even if, in the initial experiments, According to Pearson(2000, sensory feedback is
the transection of the dorsal roots does not excludkso involved in the mechanisms underlying short-term
the influence of sensory feedback as pointed out bBgd long-term adaptation of CPGs . He postulates that
Grillner and Zangge(1984, there is now very clear ev-the long-term phenomena are driven by the body and
idence that rhythms can be generated centrally withdumb proprioceptors together with central commands
requiring sensory information. Indeed, experiments @md the action of neuromodulatoksawato(1996 also
lampreys Cohen and Waller§1980, Grillner (1983), proposed that persistent errors detected by propriocep-
on salamander®elvolvé et al(1999) and on frog em- tors are used to recalibrate the magnitude of the feed
bryos Soffe and Robert§1982) have shown that whenforward command.
the spinal cord is isolated from the body, electrical In summary, strong evidence for the existence of
or chemical stimulations activate patterns of activitf;PGs in animals exists, as rhythmic patterns of acti-
called fictive locomotion, very similar to the ones obvation were observed both in decerebrated and in deaf-
served during intact locomotion. Since then, the CP@&ented animals, the observed pattern being thus rea-
hypothesis has been strengthen by experiments on bexihably imputed to the spinal cord alone.
vertebrates and invertebrates (&tein et al(1997 or In humans, the activity of the isolated spinal cord is
lispeert(2008 for more comprehensive reviews). not observable, making the generalization of the previ-
Grillner (1985 proposed that CPGs are organized asis results difficult: influences from higher cortical ar-
coupled unit-burst elements with at least one unit peas and from sensory pathways can hardly be excluded
articulation (i.e. per degree of freedom) in the bod{Capaday(2002). However, evidence suggesting that
Cheng et a{1998 report experiments where these unitthe spinal cord with intact sensory afferents can gen-
can be divided even further with independent osciérate rhythmic locomotor-like given tonic input is pro-
latory centers for flexor and extensor muscles. Fuwided by different studies on patients with complete
thermore, several experiments show that CPGs are diginal lesion Dimitrijevic et al (1999); in addition,
tributed networks made of multiple coupled oscillatoridanna and Frank1999 reported stepping-like move-
centers jspeert(2008). ments in patients before or after brain death and step-
According toMarder and Buche(2001), two types ping responses have been observed in anencephalic in-
of CPG networks can be distinguished: the so-callé&hts just after birthReiper and Naglef1963). It was
pacemaker-driven networks and networks with emeshown that treadmill exercises for patients with spinal
gent rhythms. Pacemaker-driven networks, which azerd injuries (SCI) improved their walking pattern
usually networks that are always active, as in breaf®Barbeau and Rossigno(1994; Dietz and Harkema
ing, consist of a subnetwork of intrinsically oscillating2004; Edgerton et a(2004; Rossignol et a(2007%);
neurons that drives non-bursting neurons into a cyclidlpaw and Tennisser{2001)) which may be ac-
pattern, while in networks with emergent rhythms, theounted for by the fact that CPGs can be trained to
oscillatory pattern comes from couplings between tlienction independently from descending sigh&@sefn
neurons, for instance by mutual inhibition of two ref2008). InterestinglyDietz et al(2002 showed that in
ciprocal neurons. A mathematical model ljatsuoka a setting with 100% body unloading (thus limiting the
(1989 of such a system will be presented in Secffon role of stretch reflexes), patterned leg movements could
While sensory feedback is not needed for generae elicited in patients with para- and tetraplegia. More-
ing the rhythms, it has been shown that some importavier, studies of disabled patients have shown that in the
features of the actual motor pattern are not presentabsence of sensory information, gross movement con-
the fictive motor patternStein and Smitl{2001). For trol is preserved, even if peripheral information is nec-
instance, in the cat scratching movement, the rhythn@issary for precise movement organization and control
alternation between agonist and antagonist musclegsseJeannero@1988 or Gandevia and Burké1992).
already present in the fictive motor pattern, whereas theThe neonatal stepping movements are an illustra-
relative duration of extensor activity observed duriniipn of a complex intra and inter limb coordination of
actual scratching is greater than the one observed in thescle activity, and, even though it lacks some of the
immobilized preparation (fictive pattern). The motounique features of human locomotion, some of its char-
pattern generated by the CPGs thus seems to be maxteristics remain with the onset of real walking, sug-
ulated by the sensory-motor information so that it stagesting that the innate pattern could be transformed



during ontogeny by neural circuits that develop laténe intensity of stimulation does not change the pattern
to obtain mature locomotiorForssberg1989)%. In- of force orientation Giszter et a(1993), the space of
deed, although the innate stepping response usuglbssible end-effector target positions could be spanned
(but not always) disappears, the pattern used by tddrough the weighted summation of a limited set of
dlers is similar in many aspects to the newborn patteriogce fields. Note that similar results were obtained
(Forssberg(1989; Thelen and Cookg1987. While with rats (Tresch et a(1999) and cats Krouchev et al
Forssberg1985 suggested that the inactive period ma§2006; Ting and Macpherso(20059).
be due to a change of excitability in the CPG due to The co-stimulation assumption supports the hypothe-
the developing descending locomotor driving signalsis that movements are produced through the combina-
Thelen and Cookg1987 argue that the innate CPGsion of spinal motor primitives which can be character-
evolve in a more task specific pattern, notably througged by a resulting force field acting on the end-effector
the maturation and experience of key subsystems swéhhe limb. This seminal result could provide a power-
as balance, posture control and strength. ful tool for explaining how the CNS can easily control
As mentioned above, most of the early work on CPGise many muscles involved in any movement. Indeed,
focused on rhythmic movements, but the discovery wistead of having to activate and control the different
functional muscles synergies in the frog linked to disauscles involved in the task, the CNS only has to de-
crete movements have led to an extension of the teffing the level of activation of a small number of syner-
as we will see in the next section. gies. Furthermore, the combination being almost linear,
it provides an efficient way of bypassing the inherent
nonlinearities present in movement control using direct
muscle activation.Tresch et a1999 have developed
The Bizzi's group provided some evidence for the coma-variety of computational methods to extract muscles
cept of motor primitives. Indeed, they brought to lighgynergies involved in different movements. ldentifying
that movements were generated in a modular way those synergies is a difficult task, mainly because mus-
the spinal cord in frogs (for a comprehensive reviewles can belong to more than one synergy at a time.
seeBizzi et al(2008). More precisely, stimulating spe- In an experiment using chemical stimulatfon
cific interneuronal areas of the spinal cord, they ofINMDA iontophoresis) of interneurons in the spinal
served that the limb was moved in the direction of theord of the frog Saltiel et a1999 found out that some
same target posture (equilibrium point) whatever thegions were eliciting rhythmic behaviors. Force mea-
initial position of the limb was. They called the set ofurements of the limb show a finite number of syner-
the vectors corresponding to the directions obtained gies corresponding to the orientation of the oscillations.
the stimulationforce fields Surprisingly, only 3-4 di- More precisely, in rhythmic activation, it seems that the
rections, corresponding to different areas in the spiregjuilibrium point changes periodically, leading to an
cord, were identifiedRizzi et al (1991)); furthermore, oscillatory behavior. It is thus believed that by stimu-
they were sufficient to account for natural limb trajedating a particular area of the spinal cord, a whole CPG
tories Kargo and Giszte2000). network can be activated thanks to connectivity. In-
IndeedMussa-Ivaldi et al(1994 found that stimu- terestingly, the different orientations of oscillatiorear
lating two areas simultaneously was almost equivalargry close to the direction of the force fields for dis-
to a simple linear combination of the vector of therete movements found with the same method. Fur-
force fields proportional to the intensity of stimulationthermore, the areas of activation of the discrete and the
87.8% (36 of 41) of the cases could be explained blyythmic movements for a given orientation were topo-
the summation hypothesis, while an alternative hypotfjraphically close$altiel et a2005). This results sug-
esis, where the outcome correspond to only one of test that rhythms might arise from the temporal com-
field (i.e. a winner-take-all approach), was also testethation of simpler discrete modules. According to
and could explain 58.5% (24 of 41) of the cases. Und8altiel et al(1998, CPGs could be organized such that

the hypothesis that the fields can be summed, and since

2Although both electrical and chemical microstimulationgeghe
11t should be however pointed out that the role of transieonae  same overall picture for discrete movements @akiel et al(1999),

tal reflexes are still unclear, and in particular whethes¢heeflexes differences in the typical responses are observed thatueadthe

are later used to develop mature, voluntary movements beyf tor- fact that electrical microstimulation excites mainly s@aad axons,

respond to different control levels. while chemical microstimulation excites dendrites and a@m

5.2 Motor primitives and forces fields




the discrete modules provides the orientation of the @3- Planning of discrete and rhyth-
\(,:Jl(l)z:l'sons while the timing features comes from the net- mic movements

It is not known yet if the concept of force fieldsye now address the question of discrete and rhythmic
can be extended to higher vertebrates, but it has beggvement during planning. We start by presenting the
shown that a finite set of (time-variant) synergies @fossible role of motor primitives in movement plan-

muscles could account for the movement generationifg; we then discuss movement encoding by the motor
humans during fast reaching movemermf#\yella et al qrtex.

(2006) as well as in primate graspin@yerduin et al

(2008), providing evidence for the existence of motor o )

primitives. 6.1 Motor primitives in movement plan-
ning

The difference between discrete and rhythmic move- .
. dE common hypothesis on how we choose to perform a
ments, at least at the spinal level, may thus be due

to differences in the topologyof the network of mo- given action is that the CNS uses internal models, that

o ) L is representation®f the sensorimotor system and the
tor primitives (CPGs, in the broad sense asGirllner P : ysten :
(2008) rather than to completely distinct pathways In(gnvwonment to select the next action that it is going to

pietely P YS- Msroduce. Aninverse dynamic model is then required for

deed, discrete networks need to encode a target pos@on S . ' S
) ) X . movement initiation, that is to find the activation com-
and possibly a time of onset, while rhythmic networks ) .
. ) mands to be sent to the muscles to fulfill the desired

also need to be endowed with a notion of frequen(fysk

and phase. As reviewed Iiarder and Buche@QOO])_, . The question of how the CNS actually computes
such features seem to emerge naturally from the mtrm—

. : . . .1he inverse model is still open. Indeed, inverse dy-
sic and synaptic properties of the neurons ConSt'tUt'Hgmics roblems are complex. in particular in svstems
these particular (rhythmic) CPGs. b piex, in p y

) . ~with many degrees of freedom, that is with high redun-
_ Insummary, there is strong evidence that basic builgancy. additionally, the dynamics of the body change
ing blocks of movements are present at the spinal leygl, time, as well as external dynamics. According to
and that they are used by the CNS to create beh@ine authors, the existence of motor primitives might
iors by combination. However, at this point it is stilhe|y the CNS to solve the inverse dynamics problem
not clear if distinct motor primitives exist for the 9eN(Bizzi et al(1991); Mussa-Ivaldi1999; Georgopoulos
eration of discrete and rhythmic movement (One/Twp, ggq). Indeed, motor primitives could provide the
Two/Two cases) or if discrete and rhythmic moveme S with built-in links between muscles and move-
are generated by the same process (One/One, Two/Qpgt direction and hence facilitate the resolution of the
cases). It seems reasonable to postulate that the S§grse problem of finding the muscle commands gen-
motor primitives could be involved in the generatiogyating the desired trajectorjssa-Ivaldi and Bizzi
of both discrete and rhythmic movements (by speuf@ooo ).
ing target equilibrium points or orientations of oscilla- ;e precisely, we have seen in Sect®that mo-
tions respectively), while features pertaining to rhyths, hrimitives, at least in frogs, can be combined lin-
mic movements alone (such as frequency and phasgly pypassing the high nonlinearity of muscles. Thus
might arise from the coupling properties of the networl. .o, pe imagined that instead of solving an inverse
In the Sectiorv, we present a unique dynamical Systef}ohjem to control each of the muscles needed to fol-
developed byDegallier et a(2009 that can switch be- |,y the desired trajectory, the CNS chooses a combi-
tween rhythmic and discrete regimes depending on Wigion of motor primitives that best fits this trajectory.
input commands. In this case the only task of the CNS is to optimize the
activation of each motor primitive in order to minimize
3By network topology, we mean the interconnections betwken tthe error between the desired and the actual trajecto-
different elements of the network, including their directiand their rjes. According to what was postulated in Sect®n

types (that s if the connection is excitatory or inhibitamour case). g, 5 hypothesis could mean that discrete movements
Indeed, the main point is to consider the behavior emergimm the

interactions between the elements (for instance a tonio asailla- &€ re_presente_d during _plgnning _by _the CNS by a (pos-
tory output), rather than on the behavior of each element. sibly time-varying) equilibrium point in space, whereas




rhythmic movements would be represented by a (posdiated by other areas than the cortex itself.

bly time-varying) direction and a parameter controlling g ,ch a finding supports the hypothesis according to
the emerging frequem_:yof oscillation of the network. I hich some primary motor cortex neurons are con-
both cases the specification of the speed of the MOYgeieq in a one-to-one relationship with spinal motor
ment (o_r another, related c_;ommand signal) would a'§9nergiesAshe(2005); Georgopoulo€199§ has pro-
be required to fully determine the movement. posed a model for movement control where levels of ac-
Note that the existence and also the need for interightions of motor cortical neurons control the weights
models is still debated. Basically, the opponents of igf gifferent motor primitives at the spinal level, that
ternal models doubt that the brain is able of imitating that cortical neurons elicit combinations of prepro-
the laws of nature, which seems to be required o Solyeammed basic trajectories rather than encode the com-
the inverse problem of finding the motor commandthg&xity of a particular desired trajectory. This could
gives the desired kinematic outcome (for instance ti¢an that the invariants observed in movement execu-
torque needed to accelerate the end effector of a limigyy, are the result of the usage by the CNS of a small
The reader is referred to articles Byidgeman(2007)  set of motor primitives defined at the spinal level rather
andFeldman(2009 for more details. than a kinematic plan or optimization processes in the
We now present some results on movement encodiigpra-spinal structures.
that are relevant for the control of discrete and rhythmic

In particular, Haiss and Schwar2005 have stud-
movements.

ied the electric stimulation of different types of whisker
movements in the rat, namely rhythmic movement
6.2 Movement encoding by the motor cor- (used for tactile explpration) and \{v_hisker _retraction
tex (used to sense an object at a specific location). They
found that both movements, although performed by

The motor cortex can be subdivided in two areas, tHe same set of muscles, where elicited by differ-
primary motor cortex and the premotor cortex. The 18Nt (but adjacent) regions of the primary motor cor-
ter is formed of the lateral (dorsal and ventral) premoté#X- Such a result speaks for different representations
areas and of the supplementary motor area which aref@f- discrete and rhythmic movements (Two/One and
volved in learning sequences of movement, in timing, ifwo/Two cases), even though it is difficult to conclude

the processing of sensorimotor information as well as® this point whether this is due to the nature of move-
the selection of actions. ment (rhythmic or discrete) or simply to the fact that

The primary motor cortex is involved in the conthe motor cortex encodes behaviors (as postulated by

trol of movement parameters. According to a study t§§r@ziano et a(2002). The extension of such an exper-
Graziano et a(2002), if the motor cortex is indeed or-imentto broader range of movements and animals could
ganized somatotopically, it seems that one of the k@gssibly provide further insights on the differences be-

feature that is encoded in the primary cortex is the lod¥/een discrete and rhythmic movement generation.

tion in space towards which the movement is directed.In the same experimentaiss and Schwarf2005
Indeed, in their experiments, regions of the primary méund that stimulating both “discrete” and “rhythmic”
tor and premotor cortex of monkeys were stimulated fareas of the primary motor cortex resulted in a simple
500 ms (the time scale of normal reaching and graspicgmbination of the two behaviors: the resulting move-
movements), this duration being longer than in tradinent was the oscillation expected when only the rhyth-
tional studies. They found that these stimulations wemgc area is activated, but with an offset corresponding
resulting in a complex movement ending in the sante the discrete movement resulting from the activation
location, for any initial position of the limb. They con-of the discrete area. This result is important as it shows
clude that instead of encoding regions of the body, thieat, even if discrete and rhythmic motor primitives re-
motor cortex contains a representation of different corsult from different processes, which is not established
plex postures. Note however that these results are stét, the combination of those primitives still results
disputed, as reported Btrick (2002, some authors ar-in a coherent, meaningful behavior. Two models, by
gue that the length of the stimulation and the high cube Rugy and Sterng@003 andDegallier et a(2008,
rents used do not ensure that only the motor cortexrepresenting complex movements as oscillations around
activated, and thus the resulting movement may be ntieae-varying offset will be presented in the next section.



7 Mathematical models for the we start by presenting two independent models
; ; _ for discrete and rhythmic generation, developed by
ge_neratlon of discrete and rhyth Bullock and Grossber(l 988 and byMatsuoka1985
mic movements respectively. These seminal models, or extensions of
them, have been used extensively in the literature (for
In this section, we illustrate the four categories (i.enstance inSchaal et al(2000, De Rugy and Sternad
Two/Two, One/Two, One/One, Two/One) that were dé2003, Degallier et a2008).
fined in Sectior? with six mathematical systems for the
generation of discrete and rhythmic moveménts —
. e The VITE Model: A Neural Command Circuit
All the mathematical models that we present here are . ) .
based on dynamical system theory, that is on sets of dif- fpr Generating Arm and Articulator Trajecto-
y y Y,
ferential equations that define the evolution of a com-
plex system in time. As we will see, this is a powerful
approach to study the qualitative time course of a sys-
tem as well as the interconnections between its parts The VITE (Vector IntegrationTo Endpoint) model
Furthermore, dynamical systems are particulanyas originally developed byBullock and Grossberg
well-suited for modeling discrete and rhythmic movg198§ to simulate planned and passive arm movements.
ments, as among the existing types sihble solu- The limb position is controlled through a neural com-
tions of a dynamical system — that is, solutions robustand that modifies the respective lengths of a pair of
against perturbations — two of them correspond to diggonist and antagonist muscles according to the desired
crete and rhythmic signals: point attractors and limit cyarget position.
cles. Hence a natural solution for modeling discrete andThe model thus represents a motor primitive that,
rhythmic motor primitives is to use these stable solgiven a volitional target position, controls in an auto-
tions. Several examples of such modeling are presenteatic way a synergy of muscles so that the limb moves
in the following. to the desired end state. More precisely, here the brain
As a side note, combinations of stable modul&®es not encode a trajectory, but a desired state; the ac-
are not necessarily stable themselves. Howeveral trajectory emerges from the dynamics of the motor
Slotine and Lohmille(2001) have shown that a certainprimitive.
form of stability, calledcontractiorf, ensures that any The target of the trajectory of each muscle is encoded
combination of such contracting systems is also cotfirough adifference vectaqri.e. a population of neurons
tracting. representing the difference between the desired length
of the muscle T) and its actual lengthp). The
. movement is produced by modifying the length of the
7.1 Two/Two hypothesis muscle at a rate (called theactivity) that depends on

In the Two/Two hypothesis, it is assumed that two di*b eéj(;fr:fr:qe::e(;/ e;:r':(;{. i;-gefxvnhc(zil(e)np:ﬁgtei?afrgz;fjejatig a
ferent, independent processes are involved in the g Ré speed ogtht)a movement. There are thus two control
eration of discrete and rhythmic movements. This hy- P :

pothesis is convenient for modeling, because each p rameters, the target IengTh:_;md the go command
o . X the output of the system being the muscle length
cess can be optimized in order to finely reproduce t

- . : ote that the functioi® can be chosen to be equal to a
characteristics of both discrete and rhythmic move- . .
nstant, a step function or a more complex signal, we

ments. Yet the question of the combination and of tlsvfél)" <how the impact of the choice of the go command
mutual influence of movements is left open. P 9

in Fig.3.

D. Bullock and S. Grossberg,
in Dynamic Patterns in Complex Systerh388.

“Note that the matlab code used ] ) ] ]
to generate the figures is available at Mathematical model. The following set of differential

http://biorob2.epfl.ch/users/degallie/bc_matlab.tar. equations generates, for each muscle, a trajectory cdngerg
5For an excellent introduction to dynamical systems,Segatz to the target positiofT, at a speed determined by the differ-

(2002. _ , _ _ ence vectoll — p and the go comman@:
6Contracting systems are defined as nonlinear dynamicamsgst

in which “initial conditions or temporary disturbances are forgotte v=a(T—-p-v)

exponentially fast(Slotine and Lohmille{2001), p.138). p=Gmax0,v)
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wherea is a constant controlling the rate of convergence of
the auxiliary variablev.

Go Command
I I A TN I NI LI N I

0 0.5 1 15 2 25 3 3.5 4

Position 2
| — 3 L —
PP 2 1
PO - 1 1
- 3 35 4
1 15 2 25 3 35 4
Velocity
T ‘ 3 35 4
a4 g .._\\.
2:: ..'"":‘.:5'.': ----- 1 Figure 3: VITE model. Trajectory with three differ-
Ofrx T---:,:-.-‘.-:?-.r.nr..-...........‘........ : ent go command&: G=1, in black, plain lineG=2 in
oo e 2 e s s red, dash-dotted line ar@=1 fromt=1 s and 0 before

in blue, dotted line (top graph). For the three systems,
Figure 2: VITE model. Trajectory for three different _the target is constant(= 3). In the middle graph, it
targets: T=1, in black, plain line.T=5 in red, dash- is shown that the go command can be used to postpone
dotted line a’nd':7 in t;lue dotted'Iine) It can’ be seefl€ onset of the movement and that the duration of the

that the three trajectories converge to their targets (hE?Z—eed of convergence to the target can also be modu-

izontal lines) at the same time (top graph) and that t ed. In the_ bottom graph, it can be seen_that increas-
velocity peak is proportional to the displacement, .89 the amphtude ofthe go command also increases the
to the difference vector (bottom graph). Here, for a'ﬂeak velocity. Herer = 10.

systems( = 1 anda = 10.

fined by the difference vector. Thus the CNS can con-

As can be seen in the equations, the activitpf trol not only the target of the movement, but also its
the population depends proportionally on the differenspeed. These features are illustrated in figBingith
vector (the bigger the distance, the higher the activigp commands modeled by simple step functions. Note
and thus the speed of contraction of the muscle). tmat more complex functions can be chosen as go com-
other words, the duration of the movement does not daands, in order to modify (and in particular smoothen)
pend on the amount of contraction needed to reach the velocity profile as will be shown when presenting
target length, but is constant, as it is shown in figutke model oDegallier et a(2009.
2. Such a feature is very interesting when doing syn-In summary, the VITE model is a very simple model
chronized movements: indeed all the muscles automfat- generating discrete movements with open target
ically converge to their target length at the same timgosition and speed, that allows for synchronized and
whatever the difference between the target and the delayed control of several degrees of freedom. It has
tual muscle length was. Moreover this system is cobeen extended many times to different applications,
sistent with the observation that human pointing movas for instance for visually guided reaching move-
ments tend to have the same duration, independentiynoénts (AVITE model, seeGaudiano and Grossberg
the distance that the hand has to cover (see for insta(@®92) or for modeling the interaction with the
Morasso(1981)). spino-muscular system to generate the torque needed

The go commands controls both the onset of theto follow a specific trajectory (VITE-FLETE model,
movement and its speed profile. Indeed once the taeeBullock and Grossber(1989).
get lengthT is known, nothing prevents the movement
from starting but the go command (if it is set to zero).
It thus allows movements to be primed before being ac-e Sustained Oscillations Generated by Mutually
tually executed. In addition, the amplitude of the go Inhibiting Neurons with Adaptation
commandG allows for a modulation of the speed de- K. Matsuoka,

11



in Biol. Cybern 1985. fatigue) of the neurons: when the neuron receives
a step input, the firing rate increases rapidly at first
In this article Matsuoka(1985 proposes a model forand then gradually decreases, as it is shown in4Fig.
oscillating neural networks. As discussed in seclioh  Adaptation has indeed been shown to be essential
has been observed that oscillatory behaviors can emefigiethe generation of oscillations bigeiss(1962 and
from networks of mutually inhibiting neurons (see fogsuzuki et a(1977).
instanceMarder and Buche2001)).
In Matsuoka’s model, the activity of each neuron is pjathematical model. The model becomes
modeled by a simple continuous-variable neuron model
originally developed byMorishita and Yajima(1972. % =T1(S —% —bX)
An input S’ to the system increases the membrane { )ki/: (i — )
potentialx;. When the membrane potential is higher yi = max(0,x; — 0)
than the threshold valué, the neuron starts to fire

(with firing ratey;). where /(> 0) and b(> 0) control the time course of the
adaptation.
Mathematical model. The equations for one neuron are:
% =1(S —x) The neurons are then coupled to form a network.
{ yi = max0,x — ) Here self-inhibition and excitation are not considered.

) ) Mathematical model. For one neurorj, the equations are
wherert is a parameter controlling the rate of convergence of

; and 6 is the membrane threshold. 2
X X =S—%—bX—3say|
X =1y —X)
Yi = max(0,x;)
Step response
0;: | where theajj's (> 0) are the coupling strengths of the
0'67 T e, | inhibitory connections between neuranand j andyj is the
0-47 "”:“7?.“;"-«-‘.,_ | output of neuronj. Note that here, without loss of generality,
o e T e we takef = 0 andt = 1.
00 5 1b e 15

Matsuoka 1985 has derived sufficient conditions for
an oscillatory behavior to emerge for different types of
Figure 4:Matsuoka Oscillator. Three typical step re- networks. The output firing rates for two mutually in-
sponses of a single neuron (i%.= 1 in each case). In hibiting neurons are shown in F.
black, plain line, the fatigue parameteis set to zero  Fig6 shows two possible oscillating networks of
(no adaptation) and the output converges monotonicajifee neurons: one where all the neurons mutually
to the input value. In blue, dash-dotted, libe= 2.5, jnhibit each other and another one where the neurons
the output raises but decrease after a while, showingigjiaterally inhibit each other, that is neuron 1 is for

adaptation effect. Finally in red, dotted lire= 10 and  jnstance only inhibited by neuron 2 and inhibits only
it can be seen that the firing rate almost returns to ze{8ron 3.

(which is the case wheln— ). In all cases, we used
T=1,0 =0 andr’ = 12b/2.5 (this value was selected

The model offered by Matsuoka is thus a powerful
to prevent damped oscillation, skatsuoka(1985) y b

tool to model different oscillatory behaviors. Note that

the model can be extended to a muscle command in-
In this model, the firing rate increases monotonicalltead of a firing rate as output; we will see an example

and converges to a stationary state, which is ngtthe model oDe Rugy and Sterna@003.

observed in ne_uronMatsuoka(lQSE) th_us extends the Interestingly in this model an oscillatory pattern

model to take in account the adaptatidr(also called emerges from the combination of non-cyclic units,

"Note that while we take a single valas the input to the sys- thl—_‘S reproducing the _emergent rhythms observed in the
tem, it can be the weighted sum of different inputs. spinal cord (see Sectidhfor more details).
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Two mutually inhibiting neurons
Three mutually inhibiting neurons

0 10 20 30 20 50 60 i ‘.'“-. f ' \..".
Figure 5:Mastuoka oscillator. The firing rate for two /\ /\ /\
neurons that inhibit each other, with a constant inp \ ‘ ‘ ‘ ‘

S = 1. Parameters were setdgy = ay1 = 2.5, 7 =1, 0 20 40 60 80 100
0 =0,b=25andr’ =12b/2.5

7.2 One/Two hypothesis AEARAE

In the One/Two hypothesis, a similar encodingis USt % = & o w a4 w4 & 4 = » =
for both discrete and rhythmic movements, that i |3/ 473787878 in iy
there exists a common basic representation for the t
types of movements. Such an hypothesis could refls
the analogy observed bidaiss and SchwarZ2005

between the representation of discrete and rhythn % 20 40
movements in whisker movements in rats (see Section
6). In this model, mutual influences of movements aMgure 6:Matsuoka oscillator. The firing rate for two
supposed to occur at the muscle level rather than at H‘é%works of three neurons for a constant in§ut 1. In
;Fc))ltr;]aelsligvel, as discussed above for the Two/Two h%‘e upper graph, the neurons are inhibiting each other,

i.e. aj=25Vi,j=1,23. In the second case, the
. We_present hgre the model l&y:h.aal et a(2000, neurons are only unilaterally inhibited, i@, = a3 =
in which both discrete and rhythmic movements are T
ded relativelv t diff tor- bet t o= 2.5 anda;3 = agg = ag1 = 0.0. Other parameters
encoded relatively to a difference vector: between (el o <o 1p — 2.5 tau= 1.6 = 0,b = 2.5 andt’ =
current and desired positions for the discrete movem(ih%/2 5
and between the current and desired amplitudes for the”’

rhythmic movement.

(resp. the positio and the amplitudé\) and the ac-
« Nonlinear dynamical systems as movementtual stat_g (respp an.d 0); the output of t.he system_ is
primitives. thg position of the .Ilmbcq = p+.9). This system is
S. Schaal, S. Kotosaka and D. Sternad, quite complgx, having many variables an.d parameters,
in the proc. of thdEEE International Conference S° that the final (_Jutput trajectory can be finely tuned to
on Humanoid Robotic2000 reproduce a desired movement.
The discrete system is a modified version of the
Schaal et a(2000 have developed a model base®ITE model that we have presented before. The
on the concept of programmable pattern generatonevement of the limb is controlled through the speed
(PPGs), that is generators of trajectories with somé contraction of a pair of agonist/antagonist muscles.
predefined characteristics and with some open, take difference vector represents the positive difference
specific control parameters. Both discrete and rhythndiey, between the desired target position of the lib
movements are triggered in a similar way, but they age T for the antagonist muscle) and its actual position
then generated through different processes. At the gmdAw is then transformed into an activation pattern
the discrete and the rhythmic output are linearly add#étht resembles what is observed in the primate cortex
to obtain the final trajectory. (see Figz, top panel).
In this model, discrete and rhythmic movements are
encoded by the difference between the desired stat&athematical model. The difference vector for muscle
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Auxiliary variables Mathematical model.

2f a-si ....._._,_‘____“_ R .

Rt S, ] fi =a (—ri+(1-ri)bv)
. — 7= —agz+(yi —2)(1-1i)Co

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
15 : : Muscle velocity : : wherea; andb control the shape of the signal and are chosen
0;_/—\ in order to obtain a bell-shaped velocity profila; controls

0 ‘ ‘ ‘ ‘ ‘ ‘ - the rate of convergence af

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Limb lrgjgclory i X )

| NP LT LE P 1 The velocity commands of the agonist and antagonist
2 e e muscles i( and j) are finally integrated to obtain the
% 61 62 63 o4 05 68 67  os limb movemenip (see Fig7, bottom panel).

Mathematical model.
Figure 7:Model by Schaal et al.A typical discrete tra-

jectory converging to the targ&t= 1. On the top panel, p=ap(max0,z) —max0,zj))c

the activation pattern is shown in red, dashed line, \%ﬁereap controls the rate of convergence of the system and

well as its smoothened version (in blue, dash-dottgodits speed
line). The auxiliary variable;, that ensures that the ve- '

locity profile is roughly a symmetric, bell-shaped curve, As for the rhythmic movement, it is triggered in a

is shown in black, plain line. The middle panel Showsﬁmilar way by a difference vectohey between the

the resulting speed for the muscle and the bottomactual amplitude and the desired amplitude Acy is

panel shows the resulting limb trajectory (in black, plaify - 1t an activity signdji (see Fig8, top panel).

line) and its speed (red, dashed-line). Haye-= 50.0,
ax=1a/=18a =50,a,=0.01,a,=0.08,b=10
andcy = 60.

Activity Signal
0.4 ‘ v

0.3

Aw;, is transformed into an activation signal 02 1 2 3 4 5 6 7 8 s 10

Aw; = max(0,T — p)
Vi = av(—Vi +Aw;)

whereay is a parameter controlling the rate of convergenc 1 2 3 4 5 6 7 8 8 10
of v;.

The activation signal is then transformed into Gigure 8:Model by Schaal et al. A typical rhythmic
velocity signaly; through a double smoothing. Thdrajectory of amplitudé=0.6. The top panel shows the
speed of the movement can be adjusted through @fdivation patterd;. The bottom panel shows the result-

parametecy. ing limb trajectory (in black, plain line) and its speed
(red, dashed line). Her@ = 50.0,ay = 1.0, 3 =25,
Mathematical model. w = 2.5 andc, = 20.

Mathematical model.

{ Aw = max0,A—6)
i =ag(—&i+Lw)

whereag is a parameter controlling the rate of convergence
Finally the velocityy; is integrated in order to obtainof &;.
the final desired velocity; for the muscle change (see
Fig.7, middle panel). An auxiliary variable isusedto  Then, a couple of mutually inhibiting Matsuoka
makez roughly symmetric and bell-shaped. oscillators are used to generate oscillatory velocity
signalsy; and ;. The oscillator is slightly modified

{ % = —axX + (Vi —%)Co
Vi = —ayyi + (X —Vi)Co

whereay anday control the rate of convergence of the system
andcg controls the speed of the movement.
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to take in account the fact thgt represents a velocity mutual influences observed during movements that are

and not a position. both discrete and rhythmic.
We first present a model that we developed
Mathematical model. (Degallier et al (2008), where discrete and rhyth-
mic movement are two particular cases of a larger

{ ?if:;fgr.:(g;;g/ﬁ)ﬁ_zigv&vmax(o,ij))cr class of movements. In the second model, by
i = 5 Gi il i)5

Schoner and Santq2007), discrete movements are a
whereay controls the convergence rate of the oscillators aqmirticular case of rhythmic ones, i.e. discrete move-
¢ the frequency of the oscillations: controls the strength of ments are considered as truncated rhythmic movements.
the inhibitory coupling.

Finally, the difference between the two oscillators ® A modular bio-inspired architecture for move-

(i, ) is integrated to obtain the desired trajectérisee ment generation for the infant-like robot iCub.
Fig.7, bottom panel). S. Degallier, L. Righetti, L. Natale, F. Nori, G.
Metta, A.J. ljspeert,
Mathematical model. in the proc. othe second IEEE RAS / EMBS Inter-
b= national Conference on Biomedical Robotics and
=W . .
{ 6 — ¢ (Max(0, 8) — max(0, 6))) Biomechatronics (BIOROB2008.
wherec; controls the frequency of the oscillations. Degallier et al(2009 present a system where both

discrete and rhythmic trajectories are generated through

The movement of each degree of freedom is then deunique set of differential equations, which is designed
fined by the linear combination of the output of botkp Produce complex movements modeled as periodic
signals @ = p+ ). This linearity allows for a sim- movements around time-varying offsets. More pre-
ple, independent control of both movements, but it faifésely, the solution of the system can switch between
to reproduce the mutual influence of the discrete aAdPoint attractor and a limit cycle (Hopf bifurcation) de-
rhythmic movements observed in humans. pending on one single parameter, so that a unique sys-

Note that the primitives can also be coupled togeth&m can be used for generating both discrete and rhyth-
in order to synchronize several degree of freedom d{fflC movements.
ing coordinated movement (s&ehaal et a(2000 for ~ Here the inputis a command specifying the tarfet
more details). of the discrete movement, and the amplitijeand fre-

The many variable of the model allow for the tunin§uéncya of the rhythmic movement. A zero (or neg-
of desired basic building blocks of movements, yéfive) amplitude generates a purely discrete movement
also makes the system quite complex. It manag@d a constant offset generates a purely rhythmic move-
to reproduce movements containing many featur@§nt. The output of the system is the trajectory of the
reminiscent of the human generation of movemeHhb.

such as a bell-shaped velocity profile for instance. ~ The first set of equations controls the discrete
movement and is inspired by the VITE model that was

presented above. The trajectory converges towards
a goalT; and the go comman@; is chosen in order
to ensure a bell-shaped velocity profile, as illustrated

The One/One hypothesis, that assumes that a unifudig-9. Similar to the VITE model, all the joints
motor representation and generator are used to pr8hverge synchronously to the target

duce movements, implies either that one of the move-

ment is a particular case of the other one (i.e. it cor- Mathematical model. The discrete primitive, which is in-

responds, more or less, to the concatenation and ﬁgf’fed from the VITE model, is modeled by the following sys-

cycle hypotheses mentioned before) or that discrete é%@ of equations

rhythmic movement are themselves particular cases of { g =d(p—Gi)

7.3 One/One hypothesis

a larger class of movements. The difficulty here is that Vi =Gl
the model should be designed in order to reproduce the v = p4fsz (yi—T)—bw

15



Go command
2 T T Frequency (w)

] N e N e Y e I e B

L L
0 05 1 15 L L L L L L L L L

Limb Trajectory 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4 T

PR
. .
e L 2
»* e
L -
2 . N

Limb Trajectory
T T

0 0.5 1 15

Figure 9: Model by _Degalller .et al._ T.he top pangl Figure 10: Model by Degallier et al. The top panel
shows the go function used in this implementation ;

. : . . shows the value of the frequenay that is modulated
that is, a trajectory asymptotically convergingpadg=2 hrouah the paramete and In red. dashed
here), instead of the step functions presented in the 9 P La;]p wi"?W” ’
VITE model. Such a go command turns the velo INe, aup = yown and the resulting movement (bot-

ity command into a symmetric, bell-shaped curve (rec(l)m panel) is a normal sinusoidal movement. In black,

dashed line). The black, plain line in the bottom gra;ﬁ{am line, CHown > Glp and the resulting trajectory s
- . . . a distorted sinusoidal. Note that ontyyown iS con-

shows the resulting limb trajectory converging to tht?olled being calculated so thaty is constant

targetT; = 2. Hered = 2 andb = 2.5. » Ghp g :

Here g = 21 and wyown = 47 for the red curve and
Wyown = 61T for the black curve. Other parameters are

The system is critically damped so that the outguton- settoa=100,m=1andf = 100.

verges asymptotically and monotonically to a g@alvith a
speed of convergence controlled bywhereas the speed wherer; = ,/x?+7%. a controls the rate of convergence to
converges to zerop andd are chosen in order to ensure ghe limit cycle, f the rapidity of the switching between swing
bell-shaped velocity profildy, converges t@ and is reset to gnd stance.
zero at the end of each movement.
The two primitives are then combined together by

The rhythmic primitive is modeled as a modifie@mbedding the discrete movemegninto the rhythmic
Hopf oscillator, which is a simple model that allowsne as an offset. The system outpgtis now an
for the generation of sinusoidal movements of amplscillatory movement around a time-varying offset.
tude ,/my and frequencyw (that is defined as a com-
bination of the ascending and descending frequencie$lathematical model. The oscillator is governed by the
wup and wyown S€€ below). These oscillations can bellowing set of equations
swit_ched on and _off easily through the parameters con- % =a(M —r2)(x —yi) — @z
trolling the amplitude, more precisely, by bifurcation { 7 =aM —12)z + @ (X —yi)
between a limit cycle behavior and a single point at-
tractor. where nowr = \/(x —yi)2 + 2.

In this model the expression for the frequenayis
slightly modified to allow an independent control of the Qualitatively, by simply modifying on the fly the
duration of the ascendingy) and descendingiowy) Parameter§; andM;, the system can switch between
part of the sinusoidal, as illustrated on Ri§. This purely discrete movement®i( < 0, T; # const), purely
feature is particularly useful for independent control shythmic movements\; > 0, Ti = const), and combi-

the swing and the stance duration in locomotion. nations of both i1, > 0, T; # const) as illustrated on
Fig. 11
Mathematical model. The oscillator is governed by the This system allows for a simple modeling of discrete
following set of equations and rhythmic movements. Both dynamics influence
each other and, when the movements co-occur, the dis-
% = a(Mi —rd)x — wz crete movement inhibits the rhythmic one, as observed
{ z =aM — 1)z + wX in humans (se&ternad et a(2000, and sectio).
W = o 4 o,
e a4l ' eld4l
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Control Parameters |t
...... e L e :

Al I A two-layer system is used, consisting of a layer
ok : | capable of generating both oscillations and stationary
o o5 1 a5 3 35 s 35 states ("timing layer”) and another layer controlling
Lmb Traieetor the switching between those states ("neural dynamics
N\ control”). The timing layer consists of three terms:
B NN N N the first one is an attractor towards the initial state
0 05 1 15 2 25 3 a5 4 xi, the second one is a Hopf oscillator of amplitude
1 and the third one is an attractor towards the target

Figure 11: Model by Degallier et al. The top panel pos_;it.ion X¢. All these terms are multiplied by the
shows the targéf; for the discrete movementand the reactivity level of three "neurons” that are never fully
sulting trajectory is shown in the bottom panel (in blu@ctive simultaneously.

dashed line). In red, dash-dotted line is shown the am- _ . o

plitude control parametev; (top panel) and the result- Ma}thematlcal model. The equations of the timing layer
ing trajectory (bottom panel). In the bottom panel, i 9Ven by:

black, plair_1 I?ne, the co_mbinefj trajectory_is al_so showr. x = —alu; | (x—%;) + |up | (b(1 — r?)x — cwy) — alug| (x— X¢)
N_ote that it is not a S|mple Imear combl_natlon of thg y= —aluj|ly+ |up|(b(1—r?)y— wx) —aluf|y

discrete and the rhythmic trajectory, which shows the

influence of the embedding of the two dynamics. He%hgrex'ztge OUtpUttOfltl,he Stftem agjnfaux'"ary Va”ablf'th
omega= 47_[, pi = 2, di _ 2, bi _ 2_5, a = 100 and anda an are controlling the speea or convergence O e

f —100 system. In this systemy;| (i=i, h, f) represents neurons
! ' which are never active (i.e; = 1) simultaneously.

e Control of movement time and sequential ac-  The sequence of movements is controlled by the
tion through attractor dynamics: A simulation heural layer, and more precisely through three neuron
study demonstrating object interception and activitiesu;, u, anduy activating the first attractor, the

coordination. Hopf oscillator and the target attractor respectively
G. Schoner and C. Santos, . At rest position only the first attractor is active
in the proc. of thedth Intelligent Symposium on(Ui = 1,up = O,us = 0), so that even if perturbations
Intelligent Robotic System2001. occur the limb stays at the same position. Then, when

a command is received, the Hopf oscillator is activated
The model developed b§choner and Sant@g007) (Un = 1) and the first attractor deactivateg ¢ 0), so
is built to generate discrete movements, but is basedtbat the trajectory follows the limit cycle until it is close
limit cycles, which makes it easy to extend to the gefhough to the final target. At this moment the Hopf
eration of rhythmic movements. Here the input is tHeeuron activityun is set to zero and the final attractor
target positiorT of the limb and the output s its trajecds activated ; = 1) so that the trajectory converges
tory. to the target positiorXs. This sequence of actions is
In this model, discrete and rhythmic movements aféustrated in Figl2.
both modeled using limit cycles, i.e. discrete move-
ments are interrupted rhythmic movements. More pre_Mathem.atical model. The timing of activation pf the 'Fhree
cisely, here the attractor is a whole trajectory goir;geurons" is contrqlled by the neuronal dynamics which are
from the initial position to the target position (contrar ven by the following equations:

ily for instance to the VITE model where the trajec- al; = puj — Wi|ui3*°(uﬁ+u]%)ui
tory is a transient phenomena and only the target posi- At = HpUp — | p U2 — c(U2 +12)up
tion is a stable attractor). This model can thus success- atg = ppug — | g3 c(ui2|+uﬁ)uf

fully explain the observation bRizzi et al (1984 and
Won and Hogar(1999 that when a limb is perturbedEach equation corresponds to the normal form of a degener-
during movement execution, it has a tendency to resufig Pitchfork bifurcation controlled by parametérs with an
the Origina_l_trajecmr)’: that is it seems f[hat not Only the 8That is the system has one stable solutian=(0) when i is
target position matters, but also the trajectory leadingrtegative and two stable onas & 1 andu; = —1) wheny; is positive.
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extra term to ensure that only one neuron is active, i.e thata/.4  Two/One hypothesis
solution with more than one neuron active is destabilizdte T

parameters; are given by In the Two/One hypothesis, two different motor

commands are sent to the same generator. An open

Ui = 1.5+ 2b; question is then how the two motor commands are
bn = 1.5+2(1—bi)(1-bs) combined. We present here a model developed by
pp = 1.5+ 2Dbg De Rugy and Sterna@2003, initially to explain the

pl)shase entrainment effect, where both commands are

whereb; = 1 is equals to 1 when no movement occurs and
simply summed.

set to 0 to activate the movement, and

by = 1—tanh(10(0.7Xs — X (i 1)/2. . . .
' (007X = (1)) +1)/ e Interaction between discrete and rhythmic

movements: reaction time and phase of discrete
movement initiation during oscillatory move-
Newrons ments.
A. de Rugy and D. Sternad,

1 P LT T T YRR VPP Y '.._‘!‘--.--...--u.-.-._-.m i )
o5l ..‘ 5 i in Brain Research2003
25

This model has originally been developed to ex-
plain the phase entrainment effect observed in humans
(please refer to Set.for more details). Here a mo-
tor commandS, composed of the sum of a discrete
S and a rhythmicS command inputs, is sent to a
two-neurons Matsuoka oscillator to generate two fir-
ing rates X;,Xj). These firing rates are then trans-
formed into muscle commandsy, .7;) for a pair of ag-
Figure 12:Model by Schoner and Santos.n the top onist/antagonist muscles and finally to a limb trajectory
panel, the activity of the three neurong (n black, g.
plain line, uy in red, dash-dotted line angk in blue,  The discrete command is modeled as a pulse fol-
dashed line) during a typical discrete movement can foved by an exponential decay, resulting in a damped
observed. Only one neuron is active at a time, corfgscillation which, with well-tuned parameters, will
sponding to three stages of the movement: rest at initigler generate a discrete movement. The rhythmic
position, move to the target and rest at the target posbmmand is simply a constant signal.
tion. In the bottom panel, the obtained trajectayys
shown (in black, plain line) as well as the auxiliary vari- Mathematical model. The input command is given by
abley;. Herea=5,b=1,w=2,c=2.1anda = 0.02.

S=5+%

I I I I
0 0.5 1 15 2

Timing variables
T

Movements can thus be shaped through the néhereS = constand
ronal dynamlcs that_ q_ualltatlvely change_the space & = Ts(— S + pg)
of solutions of the timing layer. The trajectory in
three parts produced by this model (i.e. discret@herepp is the peak value of the pulse angh time constant.
rhythmic, discrete) is analogous to the observation R
by van Mourik and Beek(2004 that the first and A network of two mutually inhibiting Matsuoka
last half cycles of a rhythmic movement resemble @scillators is then used to transform this neural com-
discrete movement. In systems with multiple degreg¥ndSinto the firing ratesx;,x;) of two motoneurons
of freedom, coordination can be obtained througi®ntrolling a pair of agonist-antagonist muscles.
the coupling of rhythmic parts of the system (see
Schoéner and Santg2007) for more details). Synchro- Mathematical model. The network is governed by the fol-
nized discrete movements can be obtained throd§iing equations (for one neuroj
coupling. % = T1(—X — BX + S— wmax(0,x;))

X = T'(—X +max(0,%))
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where T and T are two parameters controlling the time nputs
course of respectively the firing rate¢ and the fatigue (or  1f ‘ ‘ ‘
self-inhibition) x|, B is the gain of the fatigue component an Pl ‘ ‘ ‘ ‘ s ) ‘ ‘
X; is the output of the second neuron. 0 02 04 06 08 1 12416182

Firing rates
T

0.6 ' T
. 0.4r- .

The firing rates of the neuronsq(x;) are then °% AN ]
transformed into torquesZ%, .7}) exerted by a pair of ~°© 02 o4 os O eyl e
agonist/antagonist muscles. 120 —_———— /_

1101

100 L L L L L L L L L
o 02 04 06 08 1 12 14 16 18 2

Inputs
T

Figure 14:Model by De Rugy and Sternad.A purely
discrete comman®& = & of peakpp = 1 (top panel)
%0z o2 o8 o8 1 1z 14 16 18 2 leads to strongly damped oscillations of the neurons
Fiing rates (middle panel), resulting in a discrete movement of the
‘ ‘ ‘ ‘ ‘ ‘ limb (bottom panel). Hergz = 0.5,1 = 0.08, h=5,
1=0.051=0.1251=02,3=25andw=25.

Limb trajectory
T

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ — trajectory through the dynamics of the limb. In Hig,
\/\/\/\/ it is shown that a purely discrete movement can be ob-
NN N tained using a peak motor command. Finally, in Efg.
T the combination of both command signals and the re-
sulting, combined trajectories are shown.
In this model, there is an entrainment effect that

thythmic command = Sk = 1 (top panel) leads to os-merges from synchronization effects between the

cillations of the coupled neurons (middle panel) and th&° Matsuoka neurons.  The distribution_ of the
limb (bottom panel). Here/— 0.5, | — 0.08, h — 5, offset, as well as the phase lag observed in human

T=005,17 = 01251 = 0.2, 8 = 2.5 andw — 2.5. subjects were successfully reproduced by this model
S B (De Rugy and Sterna003). Note that this model
has been extended Wonsse et a(2009 to integrate

Mathematical model. The torques are obtained through . .
X o reafferent signals, and thus to capture bimanual fea-
the following equations:

Figure 13:Model by De Rugy and Sternad.A purely

tures.
i =hzmax0,x)
Jj = —hgzmax0,x;)
whereh is the gain of the torques. 7.5 Discussion of the models

Finally the action of the torques on the movement gfe have presented different mathematical models, the
the joint6 is deduced from the dynamics of the limb. principle characteristics of which are summarized in Ta-
ble 1. All these models are based on the concept of mo-

Mathematical model. The dynamics of the limb is gov- tor primitives, that is, simple, non patterned commands

erned by the following equation from the brain are turned into complex output trajecto-
16+y0—(F+7)) =0 ries governed by the dynamics of the system. So even
though the outputs of the models are not at the same

wherel is the inertia of the limb angt is its damping. representation level, they can easily be modified to ac-

count for another level of representation (for instance,
Fig.13illustrates the output of the model for a rhythbe Rugy and Sterna(®003 apply the model of firing
mic command (that is, a constant input). The oscillatimgtes of neurons dflatsuoka(1985 to limb control by
firing rates are transformed into a smooth, sinusoidattending the system to the muscles and the limbs dy-
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-— | Model | Category| Type [ Ctrl [ Var |  Param |
2F ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ] Bullocks et al. | Two/Two D 2 2 1
e ——— Matsuoka | Two/Two | R n | 3n [ 3n+n(n—1)
0 0.2 0.4 0.6 0.8 3 1 1.2 14 1.6 18 2 SChaaI et al OHE/TWO D+R 2 26 13
Fiing retes Degallier etal.| One/One| DR | 3 | 5 5
Schoner etal.| One/One| DCR 2 7 8
De Rugy etal.| Two/One | DR 1 5 6
Limb trajectory
150 T T T T T T T T T
W— —— " T Table 1: Main properties of the different models.

02 04 o8 08 1 12 14 16 18 2 Typerefers to the type of movements and their relation-
ship: D= discrete only,R=rhythmic only, D+R= dis-
. i crete and rhythmic as a linear combination of the gen-
E:gg;eciixgﬂi by;iggxi S}ng?Stein:ga,; coml erator outputsPR= discrete and rhythmic as a unique
pr— = D = - .
(top panel) leads to a perturbed oscillatory behavi engratoroutpchRz@screte as truncated rhythmic.
trl is the number of high level commands needed to

of the neurons (middle panel), resulting in a rhythmic__ . .
. sgeufy the movemenyar is the number of variables

movementaround a varying offset (bottom panel). Hezrind Paramis the number of parameters of the system

y=0.5,1 =0.08,h=5,7=0.051 =0.125,1s= 0.2, P Y '

B—25andw— 25 For the Matsuoka modeah,refers to the number of neu-
T T rons involved in the network.

namics). . . To rule out either the Two/Two-One/Two or the
All these models are successful in producing mo

; Gne/Two-One/One categories, an efficient way to pro-

tfor the models of Matsuoka and Bullock that rﬁé(éed would be to determine whether the mutual influ-
ceptior the models of Matsuoka a utlock thal OnYy, -6 hetween discrete and rhythmic movements appears
model one type of movement). However, in order 9

be plausible. th dels should also be able t t the spinal or at the muscular level, i.e. if the discrete
€ plausibie, these models should aiso be able 1o TepRy rhythmic dynamics are influencing each other
duce the interaction observed in humans between Sy

: . cause there is a unique spinal motor primitive gener-
F;rete and rhythmic movements that we have mentloqgtgng them or if it is an artifact due to overlaps during
in Secd4. As mentioned before, there are two mai

studies on the subject bydamovich et a1994 and the actual production of the movement. More precisely,
Sternad et a{2000, and they come to different conclu- o In both the Two/Two and One/Two hypotheses,

sions. While they both agree that

(a) the rhythmic movementis inhibited by the discrete
one;

(b) the phase of the rhythmic movement is reset after
the discrete one;

(c) the frequency tends to be higher after the dis-
crete movement (transient phenomenon according
to Sternad et a]2000);

Adamovich et a(1994) conclude that

(d1) the discrete trajectory is not influenced by the
rhythmic movement.

which is refuted bySternad et a{2000, since they ob-
serve that

(d2) the rhythmic movement influences the discrete
one, or more precisely lower frequencies of oscil-
lations lead to longer discrete movements.

20

the question of the combination of the two move-
ments is left open; more precisely, the interaction
has to happen at a lower level of the generation
process, that is at the muscular level, as proposed
for instance byAdamovich etal (1994 or by
Staude et a[2009. Adamovich et a{1994 pos-
tulate that discrete and rhythmic movement cannot
co-occur, i.e. that any movement can be seen as
a sequence of discrete or rhythmic movements.
According to them, the mutual influence observed
is due to the overlapping of the kinematic outcome
of the two movements: they postulate that the
kinematic outcome of a movement lasts longer
than its generation. Note that this view is not
shared bySternad et a(2000, as was discussed
before (see Sectiod). Staude etal2002, for
their part, propose that complex movements arise
from the summation of the two movements subject
to a threshold-linear mechanism; it is interesting



to note that this simple model manages to modalay lie at the spinal level rather than in the high level
the entrainment effect presented in Se(please commands used to encode them. Indeed, evidence has
refer toStaude et a[2002 for more details). been presented that both discrete and rhythmic move-
ments could result from spinal motor primitives elicited
. L by simple, non patterned brain commands, suggesting
o In the One/One hypothesis, the distinction bgr4t the two types of movements may simply emerge

tween discrete and rhythmic movements iS agqm 3 difference in the topologies (oscillatory or not)
sumed to be an artifact of movement categorizgs {0 spinal network underlying them.

tions, both movements being in fact generated

through the same process. In these models, the

notion of interaction of the two movements is aReferences
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