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Abstract. In this note we consider a Landau Hamiltonian perturbed by a random magnetic potential
of Anderson type. For a given number of bands, we prove the existence of both strongly localized

states at the edges of the spectrum and dynamical delocalization near the center of the bands in the

sense that wave packets travel at least at a given minimum speed. We provide explicit examples of
magnetic perturbations that split the Landau levels into full intervals of spectrum.
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1. Introduction

Over the past two decades in the physics literature, a large attention has been allocated to random
magnetic fields in two dimensions, see e.g. [AHK, BSK, Fu, V] and the references therein. The
occurrence of localized states under the sole effect of a random magnetic field has been recurrently
predicted by the theory, or computed at the band edges. It has then been a challenging issue to provide
evidence of the existence of extended states in a 2D electron gas (2DEG) submitted to random magnetic
fields. It is commonly admitted that there are no such extended states in 2DEG with random electric
potentials in absence of a constant perpendicular magnetic field (but no mathematical proofs so far!).
As far as random magnetic fields are concerned, the issue is harder to settle for subtler effects seem to
play a role. For instance, while the computations of [AHK] were favorable to the occurrence of extended
states, the ones from [BSK] were indicating their non existence.
In quantum Hall systems, namely a 2DEG submitted to a transverse constant magnetic field, localized
states are responsible for the celebrated plateaux of the quantum Hall effect. In the case where the
Hall conductance is discontinuous, non trivial transport has been proved to take place in [GKS1] for
electric disorder (see also [BeES, GKS2, GKM]). In this note, we provide a similar picture but with
magnetic disorder. The random magnetic potential is shown to create both strongly localized states at
the edges of the spectrum and dynamical delocalization near the center of the band in the sense that
wave packets travel at least at a given minimum speed.
Mathematically, the proof of the occurrence of Anderson localization due to random magnetic potentials
only is not an easy task, mainly because of the lack of monotonicity of the eigenvalues as functions of
the random variables. Very few preliminary results are available: recently, Ghribi, Hislop, and Klopp
[GhHK] proved localization for random magnetic perturbations of a periodic magnetic potential in
dimension d ≥ 2 (see also [KNNY] for a particular discrete model). They exploit the Wegner estimate
obtained in [HK] together with results of Ghribi [Gh] in order to start a multiscale analysis. In [U], Ueki
extended [HK] to prove localization for some 2D-magnetic perturbation of the Landau Hamiltonian at
the very bottom of the spectrum (below the first Landau level).
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In this note we consider 2D-random magnetic perturbations of the Landau Hamiltonian and prove a
transition between dynamical localization and dynamical delocalization inside an arbitrary number of
bands. For our model, the phenomenon is thus similar to that arising for random electric potentials
[GKS1, GKS2, GKM]. The proof of localization exploits the Wegner estimate of Hislop and Klopp [HK],
revisited by Ghribi, Hislop, and Klopp [GhHK], together with a simple weak disorder argument to start
the multiscale analysis, provided some information on the location of the spectrum that we address in a
separate argument. Then dynamical localization follows from [GK1, GK2] together with the full set of
equivalent properties defining the region of complete localization [GK3, GK4]. Delocalization is proved
along the lines of [GKS1]; in particular the Hall conductance is quantized, constant in the region of
localization and jumps by one as a Landau level is crossed. To our best knowledge, this is the first
2D-random purely magnetic model for which such a transition has been established mathematically.
If the theory of Anderson localization developed over the past years for a continuum random Schrödinger
applies, it remains to prove that it does not lead to an empty result, namely that the interval where
states are shown to be localized does intersect the spectrum! Getting detailed enough information about
the location of the almost spectrum of the random Hamiltonian is again trickier with non monotonic
perturbations of order 1 such as the magnetic ones. In particular, in our setting, the issue reduces
to the proof that the Landau level does split as a periodic magnetic perturbation is turned on and
that the corresponding spectrum contains an open interval. In [DSS], Dinaburg, Sinai, and Soshnikhov
considered small periodic electric perturbations of the Landau Hamiltonian, and proved that the low
Landau levels split into a set of positive Lebesgue measure. Gruber addressed the same issue in [Gr]
but for magnetic perturbations. In this note, we exhibit an explicit family of small periodic magnetic
perturbations for which the splitting gives rise to a full interval of spectrum. This is achieved by a
direct computation using the translation invariance of our potential in one direction. Such examples
are then good enough to be randomized and used as random magnetic fields.
This note is organized as follows. In Section 2 we introduce the model and state the main results.
In Section 3 we construct explicit examples for which the low Landau levels split into intervals as the
magnetic perturbation is turned on. In Section 4 we prove our main result, Theorem 2.1, while the
Appendix, Section 5, contains some technical trace-class estimates used in this proof.

2. Main Results

Let A = (A1, A2) ∈ L2
loc(R2,R2) be a magnetic potential. Define the operator H(A) as the self-adjoint

operator generated in L2(R2) by the closure of the quadratic form∫
R2
|i∇u+ Au|2dx, u ∈ C∞0 (R2).

The magnetic field generated by A is

B :=
∂A2

∂x1
− ∂A1

∂x2
.

In the case of a constant magnetic field B > 0 introduce the magnetic potential A0 := (0, Bx1) which
generates B. It is well-known that the spectrum of H(A0) consists of the so-called Landau levels
(2j− 1)B, j ∈ N := {1, 2, . . .}, and each Landau level is an eigenvalue of H(A0) of infinite multiplicity.
Let us introduce the random magnetic potential

Aω(x) =
∑
γ∈Z2

ωγvγ(x), (2.1)

with vγ(x) = (v1(x− γ), v2(x− γ)), γ ∈ Z2, x ∈ R2, v1, v2 being two given C1(R2,R) compactly sup-
ported functions, normalized so that ‖

∑
γ∈Z2 vγ‖∞ = 1; the random variables (ωγ)γ∈Z2 are independent

and identically distributed, supported on [−1, 1], with common density

ρη(s)ds = Cηη
−1 exp(−|s|η−1)χ[−1,1](s), η > 0,
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and Cη such that
∫
ρηds = 1 (note that 1

2 ≤ Cη ≤ 1 for η ∈]0, 1]). The support of ρη is [−1, 1] for all
η > 0, but as η goes to zero, the disorder becomes weaker in the sense that for most γ the coupling ωγ
is small. We may speak of a diluted random model. We denote by

HB,λ,ω,η := H(A0 + λAω,η)

the corresponding magnetic random operator.
For bounded Borelian functions f , the maps ω → f(HB,λ,η,ω) are measurable. It follows from standard
ergodicity arguments that the spectrum is almost surely deterministic as well as its pp, sc and ac
components, e.g. [KM, CFKS, St]. It is easy to see that its almost sure spectrum ΣB,λ,η is contained in
a union of intervals Ij(B, λ) = [aj(B, λ), bj(B, λ)] 3 (2j − 1)B, j ∈ N. Moreover, if1 N 3 J . (Bλ2)−1,
then

ΣB,λ ∩ (−∞, (2J − 1)B +B] ⊂
J⋃
j=1

Ij(B, λ) ⊂
J⋃
j=1

[(2j − 1)B − Cλ
√
jB, (2j − 1)B + Cλ

√
jB], (2.2)

for some constant C < ∞ (see Lemma 4.4 below). As a consequence, for any integer J ∈ N, the first
J intervals Ij(B, λ), j = 1, . . . , J , are disjoint for λ small enough. More precisely, for any B ∈ (0,∞)
there exists λ∗ such that for any j ≤ J and any λ ∈ [0, λ∗) we have Ij(B, λ) ∩ Ij+1(B, λ) = ∅, that is
bj(B, λ) < aj+1(B, λ). We denote by Gj(B, λ) = (bj(B, λ); aj+1(B, λ)) the j-th gap of the spectrum.
We say that the couple (B, λ) respects the the disjoint band condition if we have

Gj(B, λ) 6= ∅ for any j ≤ J. (2.3)

It follows from (2.2) that the disjoint band condition is satisfied if λ .
√
B/J .

Theorem 2.1. Fix J ∈ N. Let HB,λ,ω,η be the Hamiltonian described above, satisfying the disjoint
band condition (2.3). Then there exists κJ > 0 (depending on B and J) and Λ = Λ(B, J) > 0, such that
for any λ ∈ (0,Λ] and η ∈ (0, cB,Jλ| log λ|−2], for all j = 1, · · · , J , the Hamiltonian HB,λ,η,ω exhibits
strong dynamical localization, namely for all p > 0, and for any interval I satisfying

I ⊂ ΣB,λ ∩ [aj(λ), (2j − 1)B − κJλ2), I ⊂ ΣB,λ ∩ ((2j − 1)B + κJλ
2, bj(λ)], (2.4)

we have

E
{

sup
t∈R

∥∥∥〈x〉 p2 e−itHB,λ,ωχI(HB,λ,ω)χ̃0

∥∥∥2

2

}
<∞ , (2.5)

where ‖ · ‖2 denotes the Hilbert-Schmidt norm, χI is the characteristic function of I, and χ̃0 is the
characteristic function of the unit square centered at the origin.
Moreover for all j = 1, · · · , J , there exists a dynamical Anderson transition Ẽj(B, λ) ∈ ΣB,λ ∩ [(2j −
1)B−κJλ2, (2j−1)B+κJλ

2]. More precisely, there exists at least one energy Ẽj(B, λ) ∈ ΣB,λ∩ [(2j−
1)B−κJλ2, (2j− 1)B+κJλ

2], such that for every non-negative X ∈ C∞0 (R) with X ≡ 1 on some open
interval containing Ẽj(B, λ), and for all p > 0, we have

1
T

∫ ∞
0

E
{∥∥∥〈x〉 p2 e−itHB,λ,ωX (HB,λ,ω)χ̃0

∥∥∥2

2

}
e−

t
T dt ≥ Cp,X T

p
4−6 , (2.6)

for all T ≥ 0 with Cp,X > 0.

We denote ΞSDL(B,λ) the region of strong dynamical localization for given (B, λ). Then, the first part of
Theorem 2.1, namely (2.5) and (2.4), reads

ΣB,λ ∩ [aj(λ), (2j − 1)B − κJλ2) ⊂ ΞSDL(B,λ), ΣB,λ ∩ ((2j − 1)B + κJλ
2, bj(λ)] ⊂ ΞSDL(B,λ). (2.7)

Remark 2.2. A priori, it is not obvious that there exist non empty intervals I satisfying (2.4). In
the proof of Theorem 3.1 below we construct a family of random potentials Aω and constant magnetic
fields B for which such intervals exist, and provide an estimate of their size.

1Here and in the sequel we write a . b if there exists a constant c such that a ≤ cb.
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3. Splitting of the Landau levels

Theorem 3.1. Fix J ∈ N. Then there exists random magnetic potentials Aω of the form (2.1) with
v = (v1, v2) described explicitly in (3.25), and κ̃J > 0 and λ̃J > 0, such that for any B in the set
MJ =MJ(Aω) ⊆ (0,∞) described explicitly in (3.23), we have

[(2j − 1)B − κ̃Jλ, (2j − 1)B + κ̃Jλ] ⊂ ΣB,λ, j = 1, · · · , J, (3.1)

provided λ ∈ (0, λ̃J ]. Here, as explained above, ΣB,λ denotes the almost sure spectrum of the operator
HB,λ,ω = H(A0 + λAω).

Remark 3.2. It follows from (2.2) and Theorem 3.1 that the edges of the almost sure spectrum satisfy

κ̃J(B)λ ≤ |aj(B, λ)− (2j − 1)B)|, |bj(B, λ)− (2j − 1)B)| ≤ C
√
jBλ

for all j = 1, · · · , J , all λ ∈ (0, λ̃J), and all η > 0.

Remark 3.3. The complement of the set MJ is always finite. Moreover, generically, we have just
MJ = (0,∞) (see below Remark 3.7), i.e. generically Theorem 3.1 is valid for any non-vanishing
magnetic field B.

Proof of Theorem 3.1: The main idea of the proof is to construct an appropriate periodic magnetic
potential Aper such that for every λ > 0 any given Landau level splits into an interval of positive length
of the spectrum σ(H(A0 + λAper)) of the operator H(A0 + λAper). After that, using ideas of [KM],
we show that

σ(H(A0 + λAper)) ⊂ ΣB,λ, (3.2)
which implies (3.1). First, we construct Aper. Let a ∈ C1(R; R) be a 1-periodic function which does
not vanish identically. Set

Aper(x) = (0, a(x1)), x = (x1, x2) ∈ R2. (3.3)

Let F be the partial Fourier transform with respect to x2, i.e.

(Fu)(x1, k) := (2π)−1/2

∫
R
e−ix2ku(x1, x2)dx2.

Then we have

FH(A0 + λAper)F∗ =
∫ ⊕

R
h̃λ(k)dk,

where

h̃λ(k) := − d2

dx2
1

+ (Bx1 + λa(x1)− k)2, k ∈ R, (3.4)

is the self-adjoint operator in L2(R), essentially self-adjoint on C∞0 (R). In (3.4) change the variable
x1 = t+ k/B, t ∈ R. Then the operator h̃λ(k) is unitarily equivalent to

hλ(k) := − d2

dt2
+ (Bt+ λa(t+ k/B))2, k ∈ R.

Note that we have
hλ(k) = h0 + vλ(k), (3.5)

where

h0 := − d2

dt2
+B2t2 (3.6)

and
vλ(t; k) := 2Btλa(t+ k/B) + λ2a(t+ k/B)2. (3.7)

Since B2t2 + vλ(t; k)→∞ as t→ ±∞, the spectrum of the operator hλ(k) is discrete and simple. Let
{Ej(k;λ)}∞j=1 be the increasing sequence of its eigenvalues. It is easy to check that for every λ > 0 the
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operator family {hλ(k)}k∈R is a Kato analytic family. Hence, the functions Ej(·;λ), j ∈ N, are real
analytic functions which evidently are B-periodic. It is well-known that

σ(H(A0 + λAper)) =
⋃
j∈N

Ej(R;λ). (3.8)

Further,
Ej(k; 0) = (2j − 1)B, j ∈ N, (3.9)

i.e. the eigenvalues Ej(k; 0) coincide with the Landau levels and are independent of k ∈ R. Let ϕj ,
j ∈ N, be the real eigenfunctions of the harmonic oscillator h0 which satisfy h0ϕj = (2j − 1)Bϕj and∫

R ϕj(t)
2dt = 1. We recall that

ϕj(t) = ϕj(t;B) =
B1/4√

(j − 1)!2j−1
√
π
Hj−1(

√
Bt)e−Bt

2/2, j ∈ N, t ∈ R, (3.10)

where

Hq(t) := et
2/2

(
d

dt
− t
)q

e−t
2/2, q ∈ Z+ := {0, 1 . . .}, (3.11)

are the Hermite polynomials. Fix j ∈ Z+. Now, the so-called Feynman-Hellmann formula implies

∂Ej(k; 0)
∂λ

= 2B
∫

R
a(t+ k/B)tϕj(t)2dt, k ∈ R, j ∈ N. (3.12)

Assume that for some k± ∈ [0, B) we have

∂Ej(k−; 0)
∂λ

< 0,
∂Ej(k+; 0)

∂λ
> 0. (3.13)

Taking into account relations (3.13) and (3.9), as well as the continuity of ∂Ej(k±;λ)
∂λ with respect to λ,

we find that there exist κj > 0 and λ∗j > 0 such that

Ej(k−;λ)− (2j − 1)B < −κjλ, Ej(k+;λ)− (2j − 1)B > κjλ, (3.14)

provided that λ ∈ (0, λ∗j ). Combining (3.12) and (3.13) with (3.14) and (3.8), we obtain the following

Lemma 3.4. Fix B > 0 and j ∈ N. Assume that for some k± ∈ [0, B) we have∫
R
a(t+ k−/B)tϕj(t)2dt < 0,

∫
R
a(t+ k+/B)tϕj(t)2dt > 0. (3.15)

Then there exist κj > 0 and λ∗j > 0 such that

[(2j − 1)B − κjλ, (2j − 1)B + κjλ] ⊂ σ(H(A0 + λAper)),

provided that λ ∈ (0, λ∗j ).

Next we establish criteria which guarantee the existence of k± for which inequalities (3.15) hold true.
Expand a into a Fourier series

a(t) =
∑
l∈Z

αle
i2πlt, t ∈ R (3.16)

with Fourier coefficients

αl = α−l :=
∫ 1

0

a(t)e−i2πltdt, l ∈ Z.

Note that a ∈ C1(R) implies {αl}l∈Z ∈ `1(Z). Then we have

Fj(k) = Fj(k;B) :=
∫

R
a(t+ k/B)tϕj(t;B)2dt =

−2
∞∑
l=1

|αl|Ij(2πl;B) sin
(

2πkl
B

+ argαl

)
, k ∈ R, j ∈ N, (3.17)
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where
Ij(s;B) :=

∫
R

sin (st)tϕj(t;B)2dt, s ∈ R.

Evidently, Fj is a B-periodic real analytic function of zero mean value. The existence of k± ∈ [0, B) for
which inequalities (3.15) hold true, is equivalent to the fact that Fj does not vanish identically, which
on its turn is equivalent to the existence of l ∈ N for which

αlIj(2πl;B) 6= 0. (3.18)

Remark 3.5. A condition which guarantees the splitting of the Landau levels into spectral bands of
positive length, similar to (3.18), was obtained in [Be, Chapter 4], Note, however, that in [Be] the
Landau Hamiltonian perturbed by a periodic electric potential, was considered.

Let us now make condition (3.18) more explicit. Fix j ∈ N. Simple calculations yield

Ij(s;B) = B−1/2Ij(sB−1/2; 1), s ∈ R, (3.19)

and
Ij(s; 1) =

1
(j − 1)!2j−1

√
π

d

ds

∫
R
eiste−t

2
Hj−1(t)2dt, s ∈ R. (3.20)

Applying [GrRy, Eq. (7.377)] (see also [Be, Lemma 2.2.2]), we get
1

q!2q
√
π

∫
R
eiste−t

2
Hq(t)2dt = Lj(s2/2)e−s

2/4, s ∈ R, q ∈ Z+ (3.21)

where
Lq(ξ) :=

1
q!
eξ
dq

dξq
(ξqe−ξ), ξ ∈ R, q ∈ Z+,

are the Laguerre polynomials. Therefore,

Ij(s; 1) = Pj(s)e−s
2/4, s ∈ R, (3.22)

where
Pj(s) := −s

2
(Lj−1(s2/2)− 2L′j−1(s2/2)),

and L′q(ξ) = dLq(ξ)
dξ , ξ ∈ R, q ∈ Z+.

Now for a ∈ C1(R; R), recalling (3.16), set

µj,l := {s ∈ (0,∞) | Pj(2πls) 6= 0} , l ∈ N,

Mj :=

β ∈ (0,∞) |β−1/2 ∈
⋃

l∈N:αl 6=0

µj,l

 .

Combining (3.18) – (3.22), we obtain the following

Lemma 3.6. Fix j ∈ N and let a ∈ C1(R; R) be given. Then inequalities (3.15) hold for some
k± ∈ [0, B) if and only if B ∈Mj.

Now we are in position to prove Theorem 3.1. Fix J ∈ N and set

λ̃J := min
j=1,...,J

λ∗j , κ̃J = min
j=1,...,J

κj ,

and

MJ :=
J⋂
j=1

Mj . (3.23)

Remark 3.7. Evidently, the complement of the set MJ in (0,∞) is always finite, and generically is
empty. A simple sufficient (but not necessary!) condition thatMJ = (0,∞), is that the function a has
at least J non vanishing Fourier coefficients αl with l ∈ N (see (3.16)).
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Then Lemmas 3.4 - 3.6 imply that

[(2j − 1)B − κ̃jλ, (2j − 1)B + κ̃jλ] ⊂ σ(H(A0 + λAper)), j = 0, . . . , J, (3.24)

provided that λ ∈ (0, λ̃J).
Let ζ ∈ C∞0 (R; R) satisfy 0 ≤ ζ(t) ≤ 1,

∑
m∈Z ζ(t−m) = 1, t ∈ R. Define Aω as in (2.1) with

v1 = 0, v2(x) = a(x1)ζ(x1)ζ(x2), x = (x1, x2) ∈ R2. (3.25)

Evidently, Aω ∈ C1(R2; R2), and

‖Aω‖L∞(R2) + ‖∇Aω‖L∞(R2) <∞,

for each realization of the random variables {wγ}γ∈Z2 . Note that if ω̃ is the periodic realization of the
random variables with ω̃γ = 1 for each γ ∈ Z2, then we have Aω̃ = Aper, the magnetic potential Aper

being defined in (3.3). Applying a magnetic version of [KM, Theorem 4], we find that (3.2) holds true.
Finally, the combination of (3.2) and (3.24) yields (3.1).

4. Proof of Theorem 2.1

4.1. First part: localization. To prove strong dynamical localization, we perform the bootstrap
multiscale analysis of [GK1]. As it is well-known, multiscale analysis in this context requires two main
ingredients: a Wegner estimate and an initial scale estimate. We shall play with small enough λ’s to
ensure these two ingredients. Since the spectrum of HB,λ,η,ω shrinks to the Landau levels as λ→ 0, the
constants appearing in the Wegner estimate as well as in the multiscale analysis will grow as λ → 0.
Since λ will have to be chosen small enough depending on those constants, precise versions of the
Wegner estimate and of the initial scale estimate are required.
A Wegner estimate for random magnetic perturbation has been proved in [HK, Thereom 6.1]. Because
of the above considerations, our analysis rather relies on the Wegner estimate obtained in [GhHK],
extended to the case of a random magnetic potential [HK, Theorem 1.2]. More precisely in our context
[GhHK, Theorem 4.1] reads

Theorem 4.1. [GhHK] Let E ∈ ((2j − 1)B, (2j + 1)B), j ∈ N, be given and set δ = dist(E, σ(HB)).
Then there exists λ0 > 0 and, for any q ∈ (0, 1), a constant Qq <∞ such that for any ε ∈ (0, δ/2], any
λ ≤ λ0 min{1, δ1/2}, and any η > 0, we have

P
{

dist(E, σ(HΛK
B,λ,η,ω)) ≤ ε

}
≤ QW εqLq, (4.1)

with QW = Qq(ηδ)−1.

Remark 4.2. The factor η−1 in (4.1) comes from the derivative of the probability distribution and
[HK, Eq. (3.16)] (see also [U, Theorem 1]).

For the initial scale estimate, we need an appropriate version of [GK2, Theorem 2.4]. For its formulation
we introduce the following notations. Let QL ⊂ R2 be the square of side L ∈ 6N, centered at the origin.
Let χL denote the characteristic function of QL, and ΓL denote the characteristic function of the set
QL−1 \ QL−3. Further, let HB,λ,ω,L be the operator (−i∇−A0 − λAω)2 with appropriate boundary
conditions, self-adjoint in L2(QL). For z ∈ C \ σ(HB,λ,ω,L) set Rω,L(z) := (HB,λ,ω,L − z)−1.

Theorem 4.3. [GK2, Theorem 2.4] Let E ∈ ((2j − 1)B, (2j + 1)B), j ∈ N, be given. Set δ :=
dist(E, σ(HB)). Given a Wegner estimate of the form (4.1), there exist Cd, Cd,q,j < ∞, so that if for
L ≥ Cdδ−

3
16q we have

P
(
Cd,q,jBQWL

16
3 ‖ΓLRω,L(E)χL/3‖ < 1

)
≥ 1− 2.10−5, (4.2)

then E belongs to the region of complete localization.
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In (4.2) we already took into account that the SLI constant γE that appears in [GK2, Theorem 2.4] is
bounded by Cd

√
(2j + 1)B. This can be seen from [GK3, Theorem A.1], since the magnetic perturba-

tion is relatively bounded with respect to HB with relative bound, say, 1
2 .

We shall take advantage of the following lemma which is a consequence of the resolvent identity (see
[DGR, Lemma 4.1]).

Lemma 4.4. Let HB be the Landau Hamiltonian with constant magnetic filed B. Let A ∈ C1(R2) be
such that ‖A‖∞ ≤ K1

√
B and ‖div A‖∞ ≤ K2B. Then there exists a constant 0 < K0 <∞ such that

σ(H(A0 + A))∩ [(2j − 1)B −B, (2j − 1)B +B] ⊂ [(2j − 1)B − dj(A, B), (2j − 1)B + dj(A, B)], (4.3)

for any j so that where dj(A, B) < B, where dj(A, B) = K0 max(‖div A‖∞, ‖A‖∞
√

(j + 1)B).
The same conclusions hold for the finite volume operators, with the same constants, independent of the
volume.

By the definition of the probability distribution, given η ∈]0, 1], we have P(|ω0| ≤ α) ≥ 1− exp(−αη−1)
(recall that the normalization constant of the probability distribution satisfies 1

2 ≤ Cη ≤ 1). Now, for
B given and λ ≤ λ0 (given by Theorem 4.1), we note that the spectrum of H(ΛL)

B,λ,ω, the restriction of
HB,λ,ω to the finite volume of size L, satisfies

P

σ(H(ΛL)
B,λ,ω) ⊂

J⋃
j=1

[
Bj − CjλB1/2α,Bj + CjλB

1/2α
] (4.4)

≥ P (|ωj | ≤ α, ∀j ∈ ΛL) (4.5)

≥ 1− exp(−αη−1)L2, (4.6)

with 0 < α < B1/2.
Since we are working in spectral gaps, we use the Combes-Thomas estimate of [BCH, Proposition 3.2]
(see also the proof of [KlK, Theorem 3.5] based on [BCH, Lemma 3.1]), adapted to a finite volume as
in [GK2, Section 3].
Let E ∈ Ij(B) and assume that |E − (2j − 1)B| ≥ 2δ. We write δ = κJλ

2, and choose κJ so that the
condition λ ≤ λ0

√
δ in Theorem 4.1 is satisfied, namely κJ ≥ λ−2

0 . We further use (4.6) with α such
that CJλ

√
Bα = δ, that is α = C(J,B)κJλ.

We pick q ∈ (0, 1) close to 1, and L such that L > λ−1 ≥ CJλ
−3/(8q) (hence, the assumption L ≥

CJδ
−3/(16q) in Theorem 4.1 is fulfilled).

Then, using (4.6) and the Combes-Thomas estimate, we conclude that condition (4.2) will be satisfied
at the energy E if

αη−1 ≥ C3 logL, (4.7)

CJ,BQq(ηδ)−1L
16
3 e−C4

√
δL < 1, (4.8)

where C3 < ∞ and C4 > 0. Recalling that δ = κJλ
2, we choose L/ logL ≥ CB,Jλ

−1 log(λη)−1

so that (4.8) holds, and η−1 ≥ CB,Jλ
−1 logL so that (4.7) is satisfied. Since for η small enough

η−1 >> log log η−1, these two conditions are compatible, and η ≤ cB,Jλ| log λ|−2 is sufficient.

4.2. Second part: delocalization. We finish the proof of Theorem 2.1 following the idea of [GKS1,
GKS2] which consists in using the Hall conductance in order to prove the existence of delocalization
energies. In [GKS1, GKS2], the authors considered a Landau Hamiltonian perturbed by a random
electric perturbation and proved various properties of the Hall conductance, including the fact it is
integer valued in delocalization gaps. While both [GKS1] and [GKS2] can be generalized to the case
of a random magnetic perturbation, we focus on [GKS1] for it provides a simpler proof which does not
require the more involved technology of [GKS2].
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Let Λ be the characteristic function of the interval [ 1
2 ,∞), and Λj be the multiplication operators given

by Λj(x) = Λ(xj), j = 1, 2. For any orthogonal projection P such that P [[P,Λ1], [P,Λ2]] is trace class,
we set

Θ(P ) := tr{P [[P,Λ1], [P,Λ2]]} = tr[PΛ1P, PΛ2P ]. (4.9)

Let P be an orthogonal projection on L2(R2), and φx be a smooth characteristic function of the unit
square centered at x ∈ R2. Assume that we have

‖φxPφy‖2 ≤ Kp〈x〉κ〈y〉κe−|x−y|
ζ

for any x, y ∈ Z2, (4.10)

with some ζ ∈]0, 1] , κ > 0, and KP <∞. By [GKS1, Lemma 3.1] we have

|Θ|(P ) := ‖P [[P,Λ1], [P,Λ2]]‖1 ≤ Cζ,κK2
P , (4.11)

where ‖ · ‖1 is the trace-class norm. Then the so-called Hall conductance is well-defined, and is given
by

σH,ω(B, λ,E) = −2πiΘ(PB,λ,E,ω). (4.12)

Applying the ergodic theorem (see e.g. [GKS1]), we obtain

σH(B, λ,E) = EσH,ω(B, λ,E) = σH,ω(B, λ,E) for P− a.e ω. (4.13)

We proceed as in [GKS1] to get the existence of a delocalization energy near each Landau levels using
a perturbative argument.

Lemma 4.5. Assume that λ .
√
B/J so that the disjoint band condition (2.3) holds. Then σH(B, λ,E)

is constant in each connected component of ΞSDL(B,λ). Moreover for any j ≤ J we have σH(B, λ,E) = j

whenever E ∈ ΞSDL(B,λ)∩](2j − 1)B, (2j + 1)B[.

Proof. That σH(B, λ,E) is constant in each connected component of ΞSDL(B,λ) is a consequence of the
strong localization properties of the eigenfunctions that hold in the region of strong dynamical local-
ization. The argument follows from Lemma 3.1 and Lemma 3.2 of [GKS1] which are general results,
independent of the particular form of the random perturbation.
The proof of the second assertion is standard and consists in starting with the zero disorder situation
and a energy E in the middle of a given gap Gj(B, 0), where the Hall conductance σH(B, 0, E) is known
to be equal to j (e.g. [AvSS, BeES]); then rise up the disorder parameter λ keeping E in Gj(B, λ) and
show that the conductance remains constant; at last, use the fact that the Hall conductance σH(B, λ,E)
is constant when moving the energy E inside a region of dynamical localization.
The first step, namely rising up the disorder, is a perturbative argument which is performed here for
magnetic perturbations along the lines of proof of [GKS1, Lemma 3.3].
Pick E = 2jB, the middle of the gap Gj(B, 0). Since the gap remains open for sufficiently small λ ≥ 0,
we can write Pλ = PB,λ,ω,E as an appropriate Riesz projection, apply the Combes-Thomas theory, and
obtain the estimate

‖φxPλφy‖2 ≤ K1e−K1|x−y| for all x, y ∈ Z2 and λ ∈ I,
with some K1 > 0 depending on η (cf. [GKS1, Eq. (3.16)]). In particular, (4.10) holds true. Suppose
now that the perturbation Aω has a compact support. By Lemma 5.1 the operator Qλ,λ′ := Pλ −
P0 − (Pλ′ − P0) is trace-class for all λ, λ′ ∈ I. Using the second form of Θ(Pλ) in (4.9) and expanding
the difference Θ(Pλ) − Θ(P ′λ) in four terms with Pλ = Pλ′ + Qλ,λ′ as in [GKS1, Eq. (3.35)] yields
Θ(Pλ) = Θ(Pλ′).
Next, we use an approximation argument considering ωL, ω>L given by ωLi = ωi if |i| ≤ L and ωLi = 0
otherwise, and ω>Li = ωi − ωLi for any L > 0. With the obvious notations, we set Qλ,>L := Pλ − Pλ,L
(cf. [GKS1, Eq. (3.36)]). Using an appropriate Combes-Thomas estimate (see e.g. [CG, Lemma A.3])
and a smooth partition of unity {φx}x∈Z2 , we find that

‖φxQλ,>Lφy‖ ≤ Ce−C(|x−y|+max{L−|x|,0}+max{L−|y|,0}). (4.14)
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Putting together (4.14) and (5.13), we obtain the estimate

‖φxQλ,>Lφy‖2 ≤ ‖φxQλ,>Lφy‖
1
2 ‖φxQλ,>Lφy‖

1
2
1 (4.15)

≤ C ′e−C
′(|x−y|+max{L−|x|,0}+max{L−|y|,0}), (4.16)

for all x, y ∈ Z2 and L > 0. Combining the fact that for any orthogonal projections Pα, Pβ , Pγ we have

‖Pα[[Pβ ,Λ1], [Pγ ,Λ2]]‖1 ≤
∑

x,y,z∈Z2

‖φx[Pβ ,Λ1]φy‖2‖φy[Pγ ,Λ1]φz‖2,

with (4.15), and the dominated convergence theorem, we get that Θ(Pλ)−Θ(Pλ,L) −−−−→
L→∞

0. This ends

the proof of the lemma. �

We now finish the proof of the Theorem 2.1. Let us fix the couple (B, λ) so that the disjoint band
condition (2.3) is valid. Pick j ≤ J . By virtue of Lemma 4.5, it is not possible that Ij(B, λ) ⊂ ΞSDL(B,λ).
As a consequence, there exists at least one energy Ẽj(B, λ) ∈ Ij(B, λ) such that Ẽj(B, λ) 6∈ ΞSDL(B,λ).
Finally, because of (2.4), we have Ẽj(B, λ) ∈ [(2j − 1)B − κJλ2, (2j − 1)B + κJλ

2].

5. Appendix: trace estimates

Let a = (a1, a2) ∈ L2
loc(R2; R2). Introduce the self-adjoint operator Hλ := (−i∇ −A0 − λa)2, λ ≥ 0,

where, as earlier, the magnetic potential A0 generates a constant magnetic field B > 0. Denote by
Pλ,E the spectral projection of the operator Hλ associated with the interval (−∞, E), E ∈ R. We will
say that E ∈ R is in a spectral gap of the family Hλ, λ ∈ [0, λ0], with some λ0 > 0, if there exist closed
disjoint intervals J− and J+ such that

(−∞, E) ∩
⋃

λ∈[0,λ0]

σ(Hλ) ⊆ J−, (E ,∞) ∩
⋃

λ∈[0,λ0]

σ(Hλ) ⊆ J+.

Lemma 5.1. Assume that a ∈ C1(R2; R2) has a compact support. Let E ∈ R is in a spectral gap of the
family Hλ, λ ∈ [0, λ0] with some λ0 > 0. Then the operator Pλ,E −P0,E is trace-class for all λ ∈ [0, λ0].

Proof. Evidently, there exists a bounded contour Γ such that J− is contained in its interior, J+ is
contained in its exterior, and there exists s > 0 such that dist (Γ, σ(Hλ)) > s for every λ ∈ [0, λ0]. For
z ∈ C \ σ(Hλ) write Rλ(z) = (Hλ − z)−1. Then we have

Pλ,E − P0,E =
1

2πi

∫
Γ

Rλ(z)WR0(z)dz (5.1)

where
W =Wλ := Hλ −H0 = 2λa · (−i∇−A0) + iλdiv a + λ2|a|2.

Let ζ0 ∈ C∞0 (R2; R) be a cut-off function, equal to one on the support of a. Then we have

Rλ(z)WR0(z) = ζ0Rλ(z)WR0(z)ζ0 +Rλ(z)ζ1SλRλ(z)Wζ0R0(z) + ζ0Rλ(z)WR0(z)S0ζ1R0(z) (5.2)

where
Sλ = [Hλ(z), ζ0] := 2i∇ζ0 · (−i∇−A0 − λa)−∆ζ0, λ ≥ 0,

and ζ1 ∈ C∞0 (R2; R) is a cut-off function, equal to one on the support of ζ0. Obviously,∥∥∥∥∫
Γ

Rλ(z)ζ1SλRλ(z)Wζ0R0(z)dz
∥∥∥∥

1

≤ |Γ| sup
z∈Γ

(‖Rλ(z)ζ1‖2‖SλRλ(z)W‖‖ζ0R0(z)‖2) , (5.3)∥∥∥∥∫
Γ

ζ0Rλ(z)WR0(z)S0ζ1R0(z)dz
∥∥∥∥

1

≤ |Γ| sup
z∈Γ

(‖ζ0Rλ(z)‖2‖WR0(z)S0‖‖ζ1R0(z)‖2) , (5.4)
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where ‖ · ‖1 denotes the trace-class norm, and |Γ| is the length of Γ. Applying the Hilbert-Schmidt
diamagnetic inequality (see e.g. [Si, Theorem 2.13]), to the operators ζjRλ(−1), we find that

‖ζjRλ(z)‖22 = ‖Rλ(z)ζj‖22 ≤
c20

(2π)2
‖ζj‖2L2(R2)

∫
R2

dξ

(|ξ|2 + 1)2
, j = 0, 1, z ∈ Γ, λ ∈ [0, λ0],

with

c0 := sup
z∈Γ

sup
λ∈[0,λ0]

sup
E∈σ(Hλ)

E + 1
|E − z|

.

Similarly,
sup
z∈Γ
‖SλRλ(z)W‖ <∞, sup

z∈Γ
‖WR0(z)S0‖ <∞.

Further, set Bj := B(2j − 1), j ∈ N, and write R0(z) =
∑
j∈N(Bj − z)−1Πj where Πj is the orthogonal

projection onto Ker (H0 −Bj). Put

R−λ (z) :=
∫

(−∞,E)

(E − z)−1dEPλ,E , z ∈ C \ (−∞, E),

R+
λ (z) :=

∫
(E,∞)

(E − z)−1dEPλ,E , z ∈ C \ (E ,∞).

By the Cauchy theorem,
1

2πi

∫
Γ

ζ0Rλ(z)WR0(z)ζ0dz =
∑

j∈N :Bj∈J+

ζ0R
−
λ (Bj)Wζ0Πjζ0 −

∑
j∈N :Bj∈J−

ζ0R
+
λ (Bj)Wζ0Πjζ0. (5.5)

Let us estimate the trace-class norm of the first (infinite) sum at the r.h.s. of (5.5). For each j ∈ N
such that Bj ∈ J+ we have

ζ0R
−
λ (Bj)Wζ0Πjζ0 =

ζ0R
−
λ (Bj)(Hλ + 1)2Rλ(−1)ζ0Rλ(−1)Wζ0Πjζ0 + ζ0R

−
λ (Bj)(Hλ + 1)2Rλ(−1)ζ1SλRλ(−1)2Wζ0Πjζ0.

Therefore, ∥∥∥∥∥∥
∑

j∈N :Bj∈J+

ζ0R
−
λ (Bj)Wζ0Πjζ0

∥∥∥∥∥∥
1

≤

(
‖Rλ(−1)ζ0‖2‖Rλ(−1)W‖+ ‖Rλ(−1)ζ1‖2‖SλRλ(−1)2W‖

) ∑
j∈N :Bj∈J+

‖ζ0R−λ (Bj)(Hλ+1)2‖‖ζ0Πjζ0‖2.

(5.6)
By the spectral theorem,

‖ζ0R−λ (Bj)(Hλ + 1)2‖ ≤ ‖ζ0‖L∞(R2) sup
E∈J−

(E + 1)2

|E −Bj |
≤ c1j−1 (5.7)

where c1 is independent of j. Next, [KoPu, Lemma 3.1] implies

‖ζ0Πjζ0‖2 ≤ c2j−1/4 (5.8)

with c2 independent of j. Putting together (5.6), (5.7), and (5.8), we conclude that there exists c3 such
that ∥∥∥∥∥∥

∑
j∈N :Bj∈J+

ζ0R
−
λ (Bj)Wζ0Πjζ0

∥∥∥∥∥∥
1

≤ c3
∑
j∈N

j−5/4 <∞. (5.9)

Finally, we estimate the trace-class norm of the second (finite) sum at the r.h.s. of (5.5). We have∥∥∥∥∥∥
∑

j∈N :Bj∈J−

ζ0R
+
λ (Bj)Wζ0Πjζ0

∥∥∥∥∥∥
1

≤ ‖ζ0‖L∞(R2)

∑
j∈N :Bj∈J−

∥∥R+
λ (Bj)W

∥∥ ‖ζ0Πjζ0‖1.
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Moreover,

‖ζ0Πjζ0‖1 = ‖Πjζ0‖22 =
B

2π
‖ζ0‖2L2(R2), j ∈ N, (5.10)

(see e.g. [FR, Lemma 3.1]). Since the number of the Landau levels Bj lying on J− is finite, and the
operators R+

λ (Bj)W are bounded provided that Bj ∈ J−, we get∥∥∥∥∥∥
∑

j∈N :Bj∈J−

ζ0R
+
λ (Bj)Wζ0Πjζ0

∥∥∥∥∥∥
1

<∞. (5.11)

Combining (5.1) – (5.3), (5.4), (5.9), and (5.11), we find that the operator Pλ,E−P0,E is trace-class. �

Lemma 5.2. Let a ∈ C1(R2; R2) with

‖a‖L∞(R2) + ‖∇a‖L∞(R2) ≤ K, (5.12)

with some K < ∞. Suppose that E ∈ R is in a spectral gap of the family Hλ, λ ∈ [0, λ0] with some
λ0 > 0. Let φx be a smooth characteristic function of the unit square centered at x ∈ R2. Then for any
x, y ∈ R2 the operator φxPλ,Eφy is trace-class, and we have

‖φxPλ,Eφy‖1 ≤ C, (5.13)

with C = C(K) independent of x, y ∈ R2, λ ∈ [0, λ0], and of a satisfying (5.12).

The proof of the proposition is quite similar to the previous one so that we omit the details, and only
note that the analogues of the bounds obtained in the proof of Lemma 5.1 remain uniform with respect
to a satisfying (5.12), and the norms ‖ζj‖Lp(R2) of the cut-off functions, as well as the constant c2 in
(5.8), are invariant under translations of the supports of ζj .
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