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APPENDIX A: SOLVING THE MASTER
EQUATION IN THE PARTICLE NUMBER BASIS

In this section we give more detail on how we solved
Eqs. 1 and 2. Although, we focus on the two mode case,
the way to further extend to the three mode case (Eq. 6)
should be clear.
The density matrix for two bosonic quantum modes

can be expanded over a particle number (Fock) basis:

ρ = |n1, n2〉 〈n′
1, n

′
2| ρn1,n2,n′

1,n
′
2

(A.1)

where the state |n1, n2〉 represents the state with n1 par-
ticles in the first mode and n2 particles in the second.
The creation and annihilation operators fulfil the follow-
ing relations:

â1 |n1, n2〉 = √
n1 |n1 − 1, n2〉 (A.2)

â†1 |n1, n2〉 =
√
n1 + 1 |n1 + 1, n2〉 (A.3)

â2 |n1, n2〉 = √
n2 |n1, n2 − 1〉 (A.4)

â†2 |n1, n2〉 =
√
n1 + 2 |n1, n2 + 1〉 (A.5)

With these relations, substitution of Eq. A.1 into the
master equation (Eq. 2) with Hamiltonian (Eq. 1) yields:

i~
dρn1,n2,n′

1,n
′
2

dt
= {E1 (n1 − n′

1) + E2 (n2 − n′
2)

+ α (n1(n1 − 1)− n′
1(n

′
1 − 1) + n2(n2 − 1)

−n′
2(n

′
2 − 1))− iΓ

2
(n1 + n′

1 + n2 + n′
2)

}
ρn1,n2,n′

1,n
′
2

− J
√
n1(n2 + 1)ρn1−1,n2+1,n′

1,n
′
2

+ J
√
(n′

1 + 1)n′
2ρn1,n2,n′

1+1,n′
2−1

− J
√
n2(n1 + 1)ρn1+1,n2−1,n′

1,n
′
2

+ J
√
(n′

2 + 1)n′
1ρn1,n2,n′

1−1,n′
2+1

+ F
√
n1ρn1−1,n2,n′

1,n
′
2
+ F ∗√n1 + 1ρn1+1,n2,n′

1,n
′
2

− F
√
n′
1 + 1ρn1,n2,n′

1+1,n′
2
− F ∗√n′

1ρn1,n2,n′
1−1,n′

2

+ iΓ
√
(n1 + 1)(n′

1 + 1)ρn1+1,n2,n′
1+1,n′

2

+ iΓ
√
(n1 + 1)(n′

1 + 1)ρn1+1,n2,n′
1+1,n′

2
(A.6)

Assuming that the population remains small, one can
truncate at given values of n1 and n2 to yield a finite
set of differential equations. For an initial condition,
we take the population to be zero, that is, ρ1,1,1,1 = 1
with all other elements of the density matrix set to

zero. Eq. A.6 can then be solved numerically (we used
the Adams-Moulton-Bashforth procedure) until a steady
state is reached. Note that one should also check at each
time that there is negligible population in the truncated
states.

If the pure dephasing term (Eq. 7) is included an ad-
ditional term should be added to the right-hand side of
Eq. A.6:

i~
dρn1,n2,n′

1,n
′
2

dt

∣∣∣∣
deph

=

− iΓP

2

{
(n1 − n′

1)
2
+ (n2 − n′

2)
2
}
ρn1,n2,n′

1,n
′
2

(A.7)

Given the steady state density matrix, ρn1,n2,n1,n2
, the

mode populations are given by:

〈N1〉 =
〈
â†1â1

〉
=

∑
n1,n2

n1ρn1,n2,n1,n2 (A.8)

〈N2〉 =
〈
â†2â2

〉
=

∑
n1,n2

n2ρn1,n2,n1,n2 (A.9)

Equal time correlation functions are given by:

〈
â†1â

†
1â1â1

〉
=

∑
n1,n2

n1(n1 − 1)ρn1,n2,n1,n2 (A.10)

〈
â†2â

†
2â2â2

〉
=

∑
n1,n2

n2(n2 − 1)ρn1,n2,n1,n2 (A.11)

〈
â†1â

†
2â2â1

〉
=

∑
n1,n2

n1n2ρn1,n2,n1,n2 (A.12)

Unequal time correlation functions can be obtained from
[19,32]:

〈
â†1(t

′)â†1(t)â1(t)â1(t
′)
〉
=

∑
n1,n2

n1θ
{11}
n1,n2,n1,n2

(t, t′)

(A.13)〈
â†2(t

′)â†2(t)â2(t)â2(t
′)
〉
=

∑
n1,n2

n2θ
{22}
n1,n2,n1,n2

(t, t′)

(A.14)〈
â†1(t

′)â†2(t)â2(t)â1(t
′)
〉
=

∑
n1,n2

n2θ
{11}
n1,n2,n1,n2

(t, t′)

(A.15)
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where:

θ{11}(t, t′) = Ut,t′


 ∑

n1,n′
1

√
n1n′

1

∑

n2,n′
2

ρn1,n2,n′
1,n

′
2
(t′) |n1 − 1, n2〉 〈n′

1 − 1, n′
2|



(A.16)

θ{22}(t, t′) = Ut,t′


 ∑

n2,n′
2

√
n2n′

2

∑

n1,n′
1

ρn1,n2,n′
1,n

′
2
(t′) |n1, n2 − 1〉 〈n′

1, n
′
2 − 1|




(A.17)

Ut,t′ is the evolution superoperator associated with the
master equation (Eq. 2).

APPENDIX B: LINEARIZED FLUCTUATION
THEORY

In this section we show how to derive analytic expres-
sions for the second order correlators using linearized
fluctuation theory. Our method is a straightforward ex-
tension of the work of Refs. [29-31] in which a single
bosonic mode was considered. Using the positive-P rep-
resentation the Fokker-Planck equation can be derived
and transformed into a Langevin type equation. By ex-
panding to first order in fluctuations about the mean-field
one can then obtain the correlation matrix, yielding all
second order correlators.

1. Positive-P representation & the Fokker-Planck
equation

For the two mode problem, the density matrix can be
expanded on a basis of coherent state projection opera-
tors [30]:

ρ =

∫
P(α1, β1, α2, β2)Λ(α1, β1, α2, β2)dµ (B.1)

Λ(α1, β1, α2, β2) =
|α1, α2〉 〈β∗

1 , β
∗
2 |

〈β∗
1 , β

∗
2 |α1, α2〉 (B.2)

This is known as the positive-P representation, which
differs from the Glauber-Sudarshan representation as
it uses non-diagonal coherent state projectors. α1,
α2, β1, and β2 are independent variables covering the
whole complex plane. The integration measure, dµ =
d2α1d

2α2d
2β1d

2β2. For ease of notation, let ~α =
α1, β1, α2, β2.

Annihilation and creation operators fulfil the following
identities when acting on Λ(~α):

ânΛ(~α) = αnΛ(~α) (B.3)

â†nΛ(~α) =

(
βn +

∂

∂αn

)
Λ(~α) (B.4)

Λ(~α)â†n = βnΛ(~α) (B.5)

Λ(~α)ân =

(
αn +

∂

∂βn

)
Λ(~α) (B.6)

Using these relations one obtains the Fokker-Planck
equation from the master equation (Eq. 2):

∂P(~α)

∂t
=

i

~
∑
n=1,2

{
∂

∂αn

[(
En + 2ααnβn − iΓ

2

)
αnP(~α)

]

− ∂

∂βn

[(
En + 2ααnβn +

iΓ

2

)
βnP(~α)

]

−α

[
∂2

∂α2
n

(
α2
nP(~α)

)− ∂2

∂β2
n

(
β2
nP(~α)

)]}

− iJ

~

(
α1

∂P(~α)

∂α2
+ α2

∂P(~α)

∂α1

−β1
∂P(~α)

∂β2
− β2

∂P(~α)

∂β1

)
(B.7)

2. Linearized Langevin equation

According to the Ito calculus, a Fokker-Planck equa-
tion in the form:

∂P(~α)

∂t
= −∂ (fn(~α)P(~α))

∂αn
+

∂2 (Mnm(~α)P(~α))

∂αn∂αm
(B.8)

is equivalent to the Langevin type equation:

∂αn

∂t
= fn(~α) +

√
2Mnm(~α)ηm (B.9)

where ηm are stochastic Gaussian noise terms. In our
case:

f1 =
i

~

[(
−E1 − 2αα1β1 +

iΓ

2

)
α1 + Jα2

]
(B.10)

f2 =
i

~

[(
E1 + 2αα1β1 +

iΓ

2

)
β1 − Jβ2

]
(B.11)

f3 =
i

~

[(
−E2 − 2αα2β2 +

iΓ

2

)
α2 + Jα1

]
(B.12)

f4 =
i

~

[(
E2 + 2αα2β2 +

iΓ

2

)
β2 − Jβ1

]
(B.13)

and

M =
iα

~




−α2
1 0 0 0

0 β2
1 0 0

0 0 −α2
2 0

0 0 0 β2
2


 (B.14)
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By linearizing the equations to first order in fluctuations,
(α1 = ā1 + δα1, β1 = ā∗1 + δβ1,α2 = ā2 + δα2, β2 =
ā∗2 + δβ2), where āi is the mean-field solution, we obtain:

∂

∂t



δα1

δβ1

δα2

δβ2


 = −A



δα1

δβ1

δα2

δβ2


+D



η1
η2
η3
η4


 (B.15)

where the linearized drift matrix A is:

A = − i

~




−E′∗
1 −2αā21 J 0

2αā∗21 E′
1 0 −J

J 0 −E′∗
2 −2αā∗22

0 −J 2αā22 E′
2


 (B.16)

D is the square root of the diffusion array evaluated with
the mean-field:

D =

√√√√√√√
2iα

~




−ā21 0 0 0
0 ā∗21 0 0
0 0 −ā22 0
0 0 0 ā∗22


 (B.17)

and we have defined E′
n = En + 4α|ān|2 + iΓ

2 . The cal-
culation of the mean-field solution becomes a separate
problem and is dealt with in Ref. [27].

3. Correlation Matrix

Following the method of Ref.[31] we now define the
correlation matrix:

G =



〈δα1δα1〉 〈δα∗

1δα1〉 〈δα2δα1〉 〈δα∗
2δα1〉

〈δα1δα
∗
1〉 〈δα∗

1δα
∗
1〉 〈δα2δα

∗
1〉 〈δα∗

2δα
∗
1〉

〈δα1δα2〉 〈δα∗
1δα2〉 〈δα2δα2〉 〈δα∗

2δα2〉
〈δα1δα

∗
2〉 〈δα∗

1δα
∗
2〉 〈δα2δα

∗
2〉 〈δα∗

2δα
∗
2〉




(B.18)
The equal time second order correlation function for
mode 1 is then given by Eq. 4. Upon solving formally the
linearized Langevin equation, one obtains in the steady
state [31]:

G =

∫ ∞

0

e−AtD2e−AT tdt (B.19)

We now note that the characteristic equation for a 4× 4
matrix, A, is:

λ4 − λ3tr {A} − λ2

2

(
tr
{
A2

}− tr {A}2
)

− λ

6

(
2tr

{
A3

}− 3tr
{
A2

}
tr {A}+ tr {A}3

)

+Det {A} = 0 (B.20)

where Det denotes the determinant. Since this equation
contains powers up to order 4 and every matrix obeys

its own characteristic equation, e−At must be a polyno-
mial in A of degree 3; higher order terms can always be
reduced using the characteristic equation:

A4 = A3σ0 +
A2

2
σ1 +

A

6
σ2 − σ3 (B.21)

where

σ0 = tr {A} (B.22)

σ1 =
(
tr
{
A2

}− tr {A}2
)

(B.23)

σ2 =
(
2tr

{
A3

}− 3tr
{
A2

}
tr {A}+ tr {A}3

)
(B.24)

σ3 = Det {A} (B.25)

The correlation matrix can therefore be expanded in the
form:

G = c1D
2 + c2

(
AD2 +D2AT

)
+ c3

(
A2D2 +D2AT2

)

+ c4

(
A3D2 +D2AT3

)
+ c5

(
AD2AT

)

+ c6

(
A2D2AT +AD2AT2

)

+ c7

(
A3D2AT +AD2AT3

)

+ c8

(
A2D2AT2

)
+ c9

(
A3D2AT2 +A2D2AT3

)

+ c10

(
A3D2AT3

)
(B.26)

Note that in the limit α 7→ 0 the matrix D vanishes
and therefore the correlation matrix G also vanishes. In
such a case g2,11 must become equal to 1, so one sees
that nonlinearity is essential to observe g2,11 6= 1. From
Ref.[31] (Eq. 5) we can re-write D in terms of G and A:

AG+GAT = D2 (B.27)

This introduces terms of order 4 in A into Eq. B.26,
which can be reduced using Eq.B.21. Eq. B.26 then gives
a complete set of equations for the coefficients ci:

c1 = c7σ3 − c4
σ2

6

c2 = c9σ3 − c4
σ1

2
c3 = c10σ3 − c4σ0

c4 = − 1

2σ3

c5 = −c3 − c7
σ1

2
− c9

σ2

6

c6 = −c9
σ1

2

c7 = −6c2
σ2

c8 = −c7 − c9σ0 − c10σ1

2
c9 = −c10σ0

c10 = −6
c4 + c6 + c7σ0

σ2
(B.28)
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Solving this system of equations yields:

c1 =
1

12

(
σ2

σ3
− 18

(
σ1σ2 + 3σ0

(
σ2
1 − 4σ3

))

σ4

)

c2 =
σ1

4σ3
− 3σ0 (3σ0σ1 + σ2)

σ4

c3 =
σ0

2σ3
+

3 (3σ0σ1 + σ2)

σ4

c4 = − 1

2σ3

c5 =
3σ2

1 (3σ0σ1 + σ2)− 12
(
6σ0

(
σ2
0 + σ1

))
σ3

4σ3σ4

c6 =
3σ0σ1 (3σ0σ1 + σ2)

2σ3σ4

c7 = −3σ1σ2 + 9σ0

(
σ2
1 − 4σ3

)

2σ3σ4

c8 =
3σ0 (σ0 (3σ0σ1 + σ2)− 6σ3)

σ3σ4

c9 = −3σ0 (3σ0σ1 + σ2)

σ3σ4

c10 =
3 (3σ0σ1 + σ2)

σ3σ4
(B.29)

where

σ4 = 3σ0σ1σ2 + σ2
2 + 36σ2

0σ3 (B.30)

The linearized drift (Eq. B.16) and squared diffusion ar-
ray (Eq. B.17) are fully defined once the mean-field so-
lution is given. The coefficients in Eq.B.29 then give the
correlation matrix of the system using Eq. B.26.

APPENDIX C: DERIVATION OF EQ. 5

We have derived Eq. 5 to demonstrate that the cou-
pling of a well to a second well can have an effect on the
second order correlation function, g2,11. To derive Eq. 5,
we first note that the Heisenberg equation for an operator
Ô, including the Lindblad dissipation is:

i~
dÔ

dt
=

[
Ô,H

]
+ i

Γ

2

2∑
n=1

(
2â†Ôâ− â†âÔ − Ôâ†â

)

(C.1)
Using the Hamiltonian in Eq. 1, we obtain the following

equations for the field operators â1 and â†1:

i~
dâ1
dt

=

(
E1 − iΓ

2
+ 2αâ†1â1

)
â1 − Jâ2 + F (C.2)

i~
dâ†1
dt

=

(
E1 +

iΓ

2
+ 2αâ†1â1

)
â†1 − Jâ†2 + F ∗ (C.3)

Linearizing these equations (â1 = ā1 + δα̂1, â
†
1 = ā∗1 +

δα̂†
1), we obtain:

i~
dδâ1
dt

=

(
E1 − iΓ

2
+ 4α|ā1|2

)
δâ1 + 2αā21δâ

†
1 − Jδâ2

(C.4)

i~
dδâ†1
dt

=

(
E1 +

iΓ

2
+ 4α|ā1|2

)
δâ†1 + 2αā∗21 δâ1 − Jδâ†2

(C.5)

In the steady state, these equations yield a relationship
between different second order correlators:

(
E1 − iΓ

2
+ 4α|ā1|2

)
ā∗21

〈
δâ21

〉

+ α|ā1|4
(
2
〈
δâ†1δâ1

〉
+ 1

)
= Jā∗21 〈δâ1δâ2〉

(C.6)(
E1 +

iΓ

2
+ 4α|ā1|2

)
ā21

〈
δâ†21

〉

+ α|ā1|4
(
2
〈
δâ†1δâ1

〉
+ 1

)
= Jā21

〈
δâ†1δâ

†
2

〉

(C.7)

Defining ∆ = E1+
iΓ
2 +4α|ā1|2 we can recast these equa-

tions as:

|∆|2ā∗21
〈
δâ21

〉
+∆α|ā1|4 = ∆Jā∗21 〈δâ1δâ2〉 (C.8)

|∆|2ā21
〈
δâ†21

〉
+∆∗α|ā1|4 = ∆∗Jā21

〈
δâ†1δâ

†
2

〉
(C.9)

Therefore:

2|∆|2<e{ā∗21
〈
δâ21

〉}
+ 2α|ā1|4<e {∆}
= 2J<e{∆ā∗21 〈δâ1δâ2〉

}
(C.10)

Assuming that ā1 is real, we obtain after some algebra:

<e{〈δâ21
〉}

=
−αn1 + J<e {〈δâ1δâ2〉} − ζJ=m {〈δâ1δâ2〉}

(E1 + 4αn1) (1 + ζ2)
(C.11)

where ζ = Γ/ (2(E1 + 4αn1)). Using Eq. 4, we then ar-
rive at Eq. 5.

Figure Ia shows the value of g2,11 calculated within the
linear fluctuation theory (solid curve) and full density
matrix approach (dashed curve) for a range of values of
E2. Although the linear fluctuation theory is an approx-
imation, it captures the main behaviour of the second
order correlation function. Figure Ib shows a compari-
son of the terms in Eq. 5 that contribute to g2,11. Clearly,
for slightly positive values of E2, the last term in Eq. 5
makes the dominant contribution and results in the low
value of g2,11 seen in Fig. Ia. This correlated fluctuation
term is a result of the interplay between dissipation and
tunnelling.

Finally, we note that the slight detuning between the
pump energy and well energy levels is essential for our
observed effect. In the case of zero detuning we obtain
g2,11 close to 1, in agreement with Ref. [25].
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FIG. I: a) Dependence of g2,11 on E2 calculated with linearized
fluctuation theory (solid) and full density matrix approach
(dashed). b) Values of the different terms in Eq. 5: second
term, 2

n1
[〈δα∗

1δα1〉] (red); third term (green); fourth term

(cyan); last term (blue). F = 0.1meV, E1 = 0.07meV.


