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ABSTRACT. The field of signal processing has known tremendous progress with the de-
velopment of digital signal processing. The first foundation of digital signal processing is
due to Shannon’s sampling theorem which shows that any bandlimited analog signal can
be reduced to a discrete-time signal. However, digital signals assume a second digitization
operation in amplitude. While this operation, called quantization, is as deterministic as
time sampling, it appears from the literature that no strong theory supports its analysis.
By tradition, quantization is only approximately modeled as an additive source of uniformly
distributed and independent white noise.

We propose a theoretical framework which genuinely treats quantization as a determin-
istic process, is based on Hilbert space analysis and overcomes some of the limitations of
Fourier analysis. While, by tradition, a digital signal is considered as the representation of
an approximate signal (the quantized signal), we show that it is in fact the representation
of a deterministic convex set of analog signals in a Hilbert space. We call the elements
of the set the analog estimates consistent with the digital signal. This view leads to a
new framework of signal processing which is non-linear and based on convex projections in
Hilbert spaces.

This approach has already proved effective in the field of high resolution A/D conversion
(oversampling, Sigma-Delta modulation), by showing that the traditional approach only
extracts partial information from the digital signal (3dB of SNR are “missed” for every
octave of oversampling).
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The more general motivation of this paper is to show that any discretization operation,
including A/D conversion but also signal compression, amounts to encoding sets of signals,
that is, associating digital signals with sets of analog signals. With this view and the
framework presented in this paper, directions of research for the design of new types of
high resolution A/D converters and new signal compression schemes can be proposed.

KEYWORDS. A/D conversion, digital representation, oversampling, quantization, Sigma-
Delta modulation, consistent estimates, convex projections, set theoretic estimation, coding.

1 INTRODUCTION

Although numbers are usually thought of real continuous numbers in theory, signal process-
ing is nowadays mostly performed digitally. Traditionally, digital signals are considered as
the encoded version of an approximated analog signal. In many cases, the approximation
error is considered negligible and digital numbers are thought of quasi-continuous. How-
ever, this assumption starts to be critical in more and more emerging fields such as high
resolution data conversion (oversampled A /D conversion) and signal compression.

In this paper, we ask the basic question of the exact correspondence which exists between
analog signals and there encoded digital signals. This starts by reviewing the existing
foundations of analog-to-digital (A /D) conversion. It is known that A /D conversion consists
of two discretization operations, that is, one in time and one in amplitude. While a strong
theory (Shannon’s sampling theorem) describes the operation of time discretization, we
will see in Section 2 that the analysis of the amplitude discretization, or quantization, is
only approximate and statistical. This approach turns out to be insufficient in fields such
as oversampled A/D conversion. To find out what the exact analog information contained
in a digital signal is, it is necessary to have a more precise description of the whole A/D
conversion chain.

In Section 3 we define a theoretical framework which permits a more precise description
of A/D conversion. To do this, we go back to the basic description of an analog signal as
an element of a Hilbert space (or Euclidean space in finite dimension), and we describe any
signal transformation geometrically in this space, instead of using the traditional Fourier
analysis which is limited to time-invariant and linear transformations. In this framework,
we show that the precise meaning of a digital signal is the representation of a determin-
istic convex set of analog signals. The elements of the set are called the analog estimates
consistent with the digital signal. Because of the convexity property, we show that, given
a digital signal, a consistent estimate must be picked as a necessary condition for optimal
reconstruction.

With this new interpretation, digital signal processing implies a new framework of (non-
linear) signal processing based on convex projections in Hilbert spaces and presented in
Section 4.

In fact, the case of A/D conversion which is thoroughly considered in this paper is only
a particular case of digitization system. The more general motivation of this paper is to
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show that the basic function of any digitization system, including high resolution data
acquisition systems (Section 5) but also signal compression systems, is to associate digital
representations with sets of analog signals, or, to encode sets of analog signals. Not only
does this view give a genuine description of their functions, but it indicates new directions
of research for the design of A/D converters and signal compression systems.

2 CLASSICAL PRESENTATION OF A/D CONVERSION

The term of “digital signal processing” often designates what should be actually be called
“discrete-time signal processing” [1]. Thanks to Shannon’s sampling theorem, it is known
that any bandlimited analog signal can be reduced to a discrete-time signal, provided that
the sampling rate is larger than or equal to the Nyquist rate, that is, twice the maximum
frequency of the input signal. Mathematically speaking, there exists a invertible map-
ping between bandlimited continuous-time signals z(t) and sequences (zj)rez such that
zp = a(kT,), provided that 4 = f, > 2fn, where f is the maximum frequency of
z(t). Therefore, any processing of the continuous-time signal z(t) can be performed in the
discrete-time domain. This constitutes the foundation of discrete-time processing.

However, digital signal processing assumes that a second discretization in amplitude, or
quantization, is performed on the samples, as indicated by Figure 1. The digital output

bandlimited real real integer
X ( I J Xk Cp d k
———~{sampler quantizer coder
time amplitude linear
discretization discretization scaling

Figure 1: Analog-to-digital (A/D) conversion

sample dj of an A/D converter is an integer representation of ¢x which is a quantized version
of the continuous-amplitude sample z;. The transformation from zj to ¢y is known to
introduce an error €x = ¢ — &, called the quantization error. While the time discretization
process is supported by a solid theory, it appears from the literature that there only exists an
approximate analysis of the quantization process. Either the quantization error is neglected
and the quantization operation is considered as “transparent”, or, when some close analysis
is needed, it is commonly modeled as a uniformly distributed and independent white noise
[2, 1]. This leads to the classical mean squared quantization error of {% where ¢ is the
quantization step size. However, this model, which is in fact only accurate under certain
conditions [3, 4], does not take into account the deterministic nature of the quantization
operation.

This is particularly critical when dealing with oversampled A/D conversion. Oversam-
pling is commonly used in modern data conversion systems to increase the resolution of
conversion while using coarse quantization. While the independent white noise model va-
lidity conditions become less and less valid with oversampling [4], it is still used as basic
model to recover a high resolution estimate of the source signal from the oversampled and
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coarsely quantized signal. With this model, a frequency analysis of the quantized signal
shows in the frequency domain that only a portion of the quantization error energy lies in
the input baseband region. Thus, the total energy of quantization noise can be reduced
by the oversampling factor R = E'?.;’ by using a linear lowpass filter at cut off frequency
fm (see Figure 2). In practice, the lowpass filtering is performed digitally on the encoded

lowpass filter
cutoff = f,,
x (1) x, c; &,
———={sampler quantizer | | | ——
(a)
C(w)
X(w)
in-band
E(®) error
\
E =0

B 2n/R %
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Figure 2: Oversampled A/D conversion. (a) Principle: the sampling is performed at the
frequency f, > 2fm. (b) Power spectrum of the quantized signal (cx)rez with the white
quantization noise model.

version (di)iez of (¢x)rez. On Figure 2(a), only the equivalent discrete-time operation is
represented.

Although this noise reduction can be observed in practice under certain conditions, this
does not tell us how much exactly we know about the analog source signal from the over-
sampled and quantized signal. We can already give a certain number of hints which tell us
that a linear and statistical approach of the quantization process is not sufficient to give a
full analysis of the signal content process.

First, it is not clear whether the in-band noise which cannot be canceled by the lowpass
filter is definitely irreversible. Because quantization is a deterministic process, there does
exist some correlation between the input signal and the quantization error signal, even after
filtering. Second, with the linear filtering approach, it appears that the quantization mean
squared error (MSE) has a non-homogeneous dependence with the time resolution and the
amplitude resolution. Indeed, the MSE is divided by 4 when the amplitude resolution is
multiplied by 2 (that is, ¢ is divided by 2), whereas it is divided by 2 only when the time
resolution is multiplied by 2 (that is, R is multiplied by 2). This is a little disappointing
when thinking of A/D conversion as the two dimensional discretization of a continuous
graph.

In fact, an example can already be given which shows by some straightforward mecha-
nisms that the in-band noise is indeed not irreversible. Figure 3 shows a numerical example
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Figure 3: Example of oversampling and quantization of a bandlimited signal with recon-
struction by linear filtering.

of a bandlimited signal z(t), shown by a solid line, which is oversampled by 4 and quantized,
giving a sequence of values (ci)rez represented by black dots. The classical discrete-time
reconstruction (éx)rez obtained by lowpass filtering (¢x)rez is shown by the sequence of
crosses. Some error represented by grey shades can be observed between the signal recon-
struction (é;)xrez and the samples of the input signal. We know that this error forms a
signal located in the frequency domain in the baseband region. However, some anomalies
can be observed in the time domain. At instants 11 and 12, it can be seen that the values of
(éx)kez are larger than g, while the given values of the quantized signal (ck)xez tell us that
the input signal’s samples necessarily belong to the interval [0, ¢]. Not only is the sequence
(ér)kez not consistent with the knowledge we actually have about the source input signal,
but this knowledge also gives us a deterministic way to improve the reconstruction estimate
(k)kez. Indeed, although we don’t know where exactly the samples of the input signal are
located within the interval [0,¢] at instants 11 and 12, we know that projecting the two
respective samples of (& )rez on the level ¢ leads to a necessary reduction of the error (see
Figure 3). This shows that the in-band error is not irreversible.

These hints show that a new framework of analysis is necessary.

3 NEW ANALYSIS OF A/D CONVERSION

3.1 SIGNAL ANALYSIS FRAMEWORK

The goal is to define a framework where quantization can be analyzed in a deterministic
way with the given definition of an error measure.

Bandlimited analog signals are usually formalized as elements of the space L2(R) of
square summable functions, where Fourier decomposition is applicable. Thanks to Shan-
non’s sampling theorem, the analog signals =(t) bandlimited by a maximum frequency f
can be studied as elements of the space £?(Z) of square summable sequences, thanks to the
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invertible mapping
z(t) — (2k)jez € L*(Z) where z = z(kT,),

under the condition that f, = 51-‘- > 2fm. Errors between the bandlimited analog signals are
measured using the canonical norm of £2(R) and can also be evaluated in the discrete-time
space £2(Z) using its own canonical norm, thanks to the relation:

1 S 2

7 e PO = el

Unfortunately, this framework cannot be used to study quantization because the quantized
version (cx)rez of an element (z4)rez of L2(Z) is not necessarily an element of £2(Z) (or,
is not necessarily square summable). For example, using the quantization configuration of
Figure 3, although a sequence (2} )rcz may be decaying towards 0 when k goes to infinity,
its quantized version (cy)rez never goes below £ in absolute value. On the other hand,
while the MSE type of error measure can be applied for the analysis of quantized signals, it
cannot be applied to the elements of £2(Z), since it would systematically lead to the value
0.

Therefore, we propose to confine ourselves to another space of bandlimited signals which
can be entirely defined on a finite time window [0,T;]. Precisely, we assume that the
sinusoidal components of the Fourier series expansion of z(t) on [0,7y] are zero as soon
as the corresponding frequencies are larger than f,,. This is equivalent to saying that the
Ty-periodized version of z(t) defined on [0, Tp] is bandlimited by the maximum frequency
fm. Under this assumption, we have a finite time version of Shannon’s sampling theorem.
It can be easily shown that, under the condition -‘\7}.;—1 > 2fn equivalent to the Nyquist
condition, there is an invertible mapping between z(t) and its discrete-time version X =
(zx)1<k<n € RN where 2y, = z(kZp) for k = 1,...., N [5, 6]. In this context, we can evaluate
the error between two bandlimited input signals using the mean squared sum:

Ty
MSEGe(®),2'() = 7 [ 1¢'0) - a(0)ar

This error can be in fact evaluated in the discrete-time domain using the mean squared
sum

152K
_ 2 _ 2
MSEX,X)=|X'-X|*= ¥ ;;:1 |2k — zx|?,
thanks to the relation, easy to show [3, 6]:

L 1% 0 - st = L 3 o - i
Tnt=u$ # _Nk=1k Bl

Now, the quantized version of the discrete-time signal X = (z1)1<k<n is an element C' =
(ck)1<k<n of the same space RN, where ¢, =Q[z] for k = 1,..., N, and Q is the scalar
quantizer function. Note that the MSE function can be applied to any element of RV
whether it is a continuous-amplitude signal or a quantized signal.
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3.2 QUANTIZATION ANALYSIS

The quantization operation can be deterministically defined as a mapping Q from RV to
RY. But unlike the sampling operation, this is a many-to-one mapping. While, under the
Nyquist condition, a discrete-time signal is characteristic of a unique analog bandlimited
signal, a quantized signal C is characteristic of a whole set of possible continuous-amplitude
and discrete-time signals. Mathematically, this set is simply the inverse image of C' through
the mapping Q, usually denoted by Q~1[C] ¢ RV. If a sequence X is only known by its
quantized version C, the exact knowledge about X available from C is that X belongs to
the set of signals Q~![C]. We call the elements of the set C =Q~1[C] the estimates of RV
consistent with the quantized signal C.

Figures 4(a) and (b) show the form of the set C of consistent estimates in the cases N = 1

X3
Xi

I

() (b)

Figure 4: Quantization as a many-to-one mapping of RY. (a) Case N = 1. (b) Case N > 1.

and N > 1 respectively. In the case N = 1, C is equal to the whole quantization interval
which contains the given quantized value e¢. Using the classical configuration of uniform
quantization, the value ¢ appears to be the particular consistent estimate located at the
mid-point of the interval C. In the traditional view point, the digital output d of a quantizer
is a binary encoded version of the quantized value ¢. In our approach, we consider that d
is a digital representation of the complete set C. In the case N > 1, C is obviously the N
dimensional cross-product of real intervals and therefore forms geometrically a hypercube
of RY parallel to the canonical axes. As a generalization of the case N = 1, the quantized
signal C appears to be the particular consistent estimate located at the geometric center of
C. As in the case N = 1, we consider that the digital output D is the encoded version of
the whole set C, not of the signal C.

In the case of oversampled A/D conversion, the quantization operation is performed, not
on any element of RV, but on the sampled version of bandlimited signals only. Indeed,
it is easy to see from the assumption of Section 3.1 that the bandlimited signals have a
finite Fourier series expansion containing not more than 2f,Ty + 1 components. As a
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consequence, they belong to a space of finite dimension equal to W = [2f,,To + 1], where
[y] designates the smallest integer greater than or equal to y. As a second consequence,
their sampled version also belongs to a W dimensional space, since the sampling operation
applied on bandlimited signals is a linear and invertible mapping. Because of the Nyquist
rate condition "—"ﬁl > 2f, note that we necessarily have W < N. Therefore, the sampled
versions of the bandlimited signals belong to a W dimensional subspace S of RV. By abuse
of language, we call S the space of bandlimited discrete-time signals. It can be shown that
the dimensional ratio -a',i coincides approximately with the oversampling ratio R.

To recapitulate, in the oversampling context, the inputs to the quantizer are elements of
the subspace & C RY. Once X € S is quantized into C, the complete knowledge which
is available about X is that X belongs to the set S NC where C =bf Q~Y[C]. We will say
that S N C is the set of estimates consistent with C. This set is geometrically represented

in Figure 5.

out-of-band
componant

Figure 5: Geometric representation of oversampled A /D conversion.

3.3 NECESSITY FOR CONSISTENT RECONSTRUCTION

In the previous section, it was shown that when an input signal is quantized, the exact
information which remains available to us is that it belongs to the set of consistent estimates.
However, nothing tells us until now that we must pick a consistent estimate if we want to
estimate the input signal from its quantized version. We show in this section that this is in
fact the case in a certain sense.

It can be easily shown from the previous section that sets of consistent estimates are
convex. We recall that A is a convex set if and only if for any couple of elements X,Y € A,
the segment [X,Y] is entirely included in A. Because the considered norm |-l in RV is
a euclidean norm, the convexity property will appear to play an important role thanks to
the following lemmas:

Lemma 3.1 [7] Let X be an element of RN and A C RN be a conver set. There exists a

unique element X' of the closure A of A such that for alY € A, || X' =Y| £ ||X > Y|l
The transformation from X to X' is then a mapping of RN called the convex projection on
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A.

Lemma 3.2 [8] If X' is the convez projection of X on a convez set A C RN and X ¢ A,
then for all Xg € A, || X' — Xo|| < || X — Xo.

These lemmas are illustrated by Figure 6. They lead to the following proposition.

Figure 6: Geometric representation of convex projection.

Proposition 3.3 Let Xg € RV be the input of a quantizer, Cy the oulput of the quantizer
and X an element of R™ which does not belong to the set A of estimates consistent with Cy.
Then, although we don’t know where the input Xg is located within the set A, the distance
between X and Xo can be deterministically reduced' by a conver projection of X on A.

We recall that A is equal to Q~1[C] without oversampling, and SNQ~1[Cp] with oversam-
pling. In any case, the operation of convex projection on A is uniquely determined by the
knowledge of Cj.

As a conclusion, when reconstructing a discrete-time signal from its quantized version
Cp, any non-consistent estimate is by necessity non-optimal and can be deterministically
improved using the knowledge of Cy.

3.4 DETERMINISTIC ANALYSIS OF OVERSAMPLED A/D CONVERSION

We have already seen from Figure 3 an example where the reconstruction estimate ¢ =
(ék)1<k<n proposed by the classical and linear approach of oversampled A/D conversion is
not necessarily consistent with the quantized signal information and can be improved. The
previous section gave the formal reason why in general a non-consistent estimate can always
be improved. Now the reason why the estimate €' is not necessarily consistent can be seen
geometrically in the euclidean space RY as shown in Figure 5. The sequence ¢ = (x)icken
defined as the lowpass filtered version of C' = (ex)1<k<n is more precisely the bandlimited
discrete-time signal which coincides in the frequency domain with C' = (cg)i<k<n in the
baseband region. As a consequence C is the element of the space A of bandlimited discrete-
time signals which is closest to C' in the MSE sense, or equivalently, in the sense of the
euclidean norm of R, According to Lemma 3.1, €' is in fact the convex projection of C'
on 8. As shown in Figure 5, while C' is the geometric center of the hypercube C, there is
no reason for its convex projection ¢ on S to remain necessarily in &, and therefore, to be
consistent.

!The reduction of distance is strict if X does not belong to the closure of A, according to Lemma 3.2.
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The second important question is now to know what the performance yielded by consis-
tent estimates is in terms of MSE. The following result was recently shown in [5, 9]:

Theorem 3.4 Let z(t) be a bandlimited and Ty-periodic signal which has a time density of
quantization threshold crossings larger than or equal to the Nyquist rate. At the oversam-
pling ratio R = %, let X € RN be the sampled version of (t), C the quantized version
of X and X' € RN any estimate consistent with C. Then, there ezists a constant a > 0
which only depends on z(t) and the definition of the quantizer, such that
a
MSE(X,X") < 7

Qualitatively speaking, this theorem implies that under a certain condition on the input’s
quantization threshold crossings, signals chosen in the set of consistent estimates yield an
MSE which asymptotically decreases with R in O(R~?), instead of O(R™?) as it is the case
with the classical linear reconstruction. This represents a faster decrease of MSE over the
classical method by 3dB per octave of R. With this new result, the symmetry of the MSE
dependence with the amplitude and the time resolutions is recovered.

4 CONVEX PROJECTION BASED SIGNAL PROCESSING

We have seen that a digital signal is not the representation of a single estimate, but of
a complete set of estimates called the consistent estimates. Although the convex set cor-
responding to a given digital signal is deterministically known, the problem of using this
knowledge to retrieve a consistent estimate or at least partially improve a non-consistent
estimate, is not trivial. Although the space of analysis RV is of finite dimension, N may be
“infinitely” large compared to the finite time window of operation of the working proces-
sor. For this reason, the existing algorithms derived from the field of non-linear and linear
programming [10] to retrieve an estimate satisfying convex constraints, may be not feasible.

More feasible algorithms may be derived from the field of set theoretic estimation [11]
in euclidean spaces or, for the case of infinite dimension, in Hilbert spaces. The basic idea
is that a convex set .A can be often decomposed as intersection of a certain number p of
convex sets C;, i = 1,...,p with simple structure and on which the convex projections are
implementable. For example, in oversampled A/D conversion, the convex set of consistent
estimates is the intersection & NC, where S and C are two convex sets of relatively simple
structure. While it is difficult to find directly an estimate in § NC, the convex projections
on S and C respectively are easily defined. The hypercube C of RV can be itself seen as
the intersection of 2N convex sets which are half-spaces of R, The projection on each
of these convex sets is trivial and only implies local operations in time. Figure 7 shows in
general how polygonal sets can be decomposed as intersection of half-spaces.

Assuming that the set of consistent estimates has the following decomposition A = NE_,C;
and that the convex projection on each set C; is implementable, we already have a way to
partially improve any non-consistent estimate. Indeed, if X ¢ A, there exists by necessity
i € {1,...,p} such that X ¢ C;. The projection of X on C; will reduce the distance of X with
any element of C;, and therefore any element of A, since A.C C;. This is exactly what was
performed in the example of Figure 3. After noticing that C' does not belong to Q~1[C], it
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Figure 7: Decomposition of a polygon into half-spaces and representation of the parallel
projection algorithm.

can be easily shown that the time domain operation indicated in Figure 3 is the projection
of C on the convex set C =Q~'[C] and leads to a necessary improvement since C includes
SNC. This process can be in general reiterated as long as the current estimate X does not
belong to A (see Figure 8).

X

n

s
Figure 8: Geometric representation of the alternating projection algorithm.

It was in fact proved in [8] that by applying convex projections onto Cy,Cs, ..y Cp alter-
nately and periodically, one converges to an element of the intersection?. We formalize this
property as follows:

Thf:or.em 4.1 Let Cy,...,Cp be p convez sets in a Hilbert space H, Py,...,P, be the convez
projections on Cy, ...,C, respectively, and (Xn)nen be a sequence in H such that

Xﬂ‘l—l == Pﬂ mod p+1[Xn]1 fo’" n € N.

Then the sequence (Xy,),cN converges to an element of A = NE_,C; in the sense of the
Hilbert norm of H.

This is often called the algorithm of alternating projections or the POCS algorithm (Pro-

Jection Onto Convex Sets). This algorithm became popular in signal processing with the
work by Youla [12].

?Rigorously, one converges to an element of the intersection of €1,Cz, ..., Cpyin the case where i, C, ...,C
have not been specified as closed sets. i
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There exists a more general version of this algorithm including relaxation coefficients

(an)nen and based on the following operation:

Xnri=an'P, nod p+1{Xn] + (1 - ap) - Xn.

Note that the choice @, = 1 brings us back to the simple case of alternating projections.
For the general case a, # 1, it is shown that this single operation reduces the distance® of
the current estimate X, with any element of A. It is also shown that the infinite iteration
converges to an element of A if there exists € > 0 such that ¥n € N, a, € [,2—¢]. In
practice, the speed of convergence can be often accelerated by empirical adjustments of the
coefficients o, in ]1,2[.

One drawback of the alternating projection algorithm is that it does not permit parallel
processing. A new algorithm involving parallel projections was recently introduced by
Combettes [13] and based on the following operation

Xagar = Z wip - Pi[Xx], where wiyn 20 and Z Wi, =1,
icls i€ln

and where I, is a subset of indices of {1, .., p}. Qualitatively speaking, at each step n,
a certain number of sets among Ci, ...,Cp is selected (the set of the indices of the selected
sets is called I,) and the convex projections of X,, on these selected sets are applied. This
forms a set of points {P;[X,] /1 € I,} and Xny s chosen in the convex envelop of this
set. These operations are illustrated in Figure 7. The distance of the estimate X, with any
element of A is shown to be reduced by this transformation [14] and the infinite iteration
is proved to converge to an element of A under certain conditions on the sequence (I1),en
(13]. The admissible choices of (/n),en include two particular cases:

(i) I, = {1,...,p}: This is the case where all convex projections are performed in parallel
at each step.
(ii) I, = {n mod p+ 1}: This falls back to the case of alternating projections.
A version with relaxation coefficients is also introduced in [13] as:
Xﬂ+1 = Oy * 2 w;lnPg[Xn] + (1 - O:ﬂ) X
i€l
The convergence to an element of A is shown to be guaranteed if 3¢ > 0, ¥n € N, a, €
[e,2L, — €] where
o Z:'EI" Win ﬂPx[Xn] o X‘I‘l||2
ISser, win - PilXa) = Xal*

Ly

5 APPLICATION TO HIGH RESOLUTION DATA CONVERSION

Although the deterministic approach was introduced on the simple version of oversampled
A/D conversion in Section 3, it is also applicable to modern techniques of high resolution
data conversion such as oversampled TA [15, 16]. The conversion scheme is similar to
that of Figure 2, but the quantizer is replaced by a more sophisticated circuit called a TA

3The reduction of distance is strict when Xn € 8 10d p41 and @, € [0,2].
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modulator, including an integrator, a quantizer and a feedback loop (see Figure 9). This

)C(I) X, Cy Ek
——{sampler = 2A —lj:l-.- EREESE S
(a)
xk Ck

(b)
Figure 9: A modulation. (a) Overall principle. (b) Detail of the EA modulator.

type of data conversion allows the use of very coarse quantization (down to one bit), and
- - . - - - - ?
thus simple circuitry, while reproducing a high resolution estimate after lowpass filtering.

Although the conditions of validity of the white quantization noise model are not really
ap.pIica,ble here [4], ZA modulation is still classically analyzed using this model [16]. In
this context, it is shown that a ©A behaves like an additive source of independent I;Oise
whose spectrum is “shaped” as shown in Figure 10. Then, it is easy to show that the
in-band

error

2R

Figure 10: Power spectrum of the output of a ZA modulator with the assumption of white
quantization noise.

portion of noise energy contained in the baseband of the quantized signal decreases with
the oversampling ratio R in R™2, which represents a decrease of 9dB per octave of R
In spite of the limited validity of the assumed model, this result is observed in pra.ctice:
M(:.xre sophisticated architectures of XA modulation exist, which include a higher number
f)f integrators [17]. In general, for an n** order A modulator, the noise energy remainin

in the baseband of the quantized signal depends on R in R~(2*+1), i

Now, the same kind of question as in Section 3 can be raised here. What do we know

exactly about a bandlimited signal after it is oversampled and processed through a LA
modulator ?

}F.ike a single quantizer, a A modulator can also be studied as a many-to-one mapping of
RY. The set C of estimates consistent with the output of a ©A modulator can be obtained
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by inversion of this mapping. It is shown in [5, 6] that the set is no longer a hypercube, but
a parallelepiped (the edges are no longer perpendicular). However, this is still a convex set,
and it is shown that the quantized signal C = (cn)i1gkgn is still located at its geometric
center. As in Section 3, the set of consistent estimates isSnCcC. .This is geometrically
represented in Figure 11. Although the distance between X and C, due to the in-band

Figure 11: Geometric represetation of oversampled ZA modulation.

error remaining in the quantized signal C, decreases with R faster than in the case of
simple quantization, it appears that (' is still not necessarily a consistent estimate. In fact,
numerical experiments performed on bandlimited and Ty-periodic signals [5, 6] show that
the MSE yielded by consistent estimates decreases in average with E in O(R™*) instead of
O(R™?). In general, for an nt* order LA modulator, it was shown that the average MSE
of consistent estimates behaves in O(R~(%+2)) instead of O(R~(>"*+1)), implying, as in the
case of simple quantization, a faster decrease of MSE by 3dB per octave of R, regardless of
the order n.

With a deterministic approach, these experiments show that the output of a TA modula-
tor contains more information about the input signal than that recovered with the classical
approach of A/D conversion.

6 CONCLUSION AND RELATED RESEARCH

The full meaning of a digital signal is obtained by a deterministic analysis of the digitization
process as a many-to-one mapping. Thus, a digital signal is the representation of, not a
single estimate, but a whole set of analog signals, called the set of consistent estimates.
This set plays two roles:

(i) it gives the exact knowledge of the possible locations of the original analog signal,
(i) it is the set where a signal should be picked when estimating the original signal from

its digital version.

The second item is due to the convexity of the set, as observed on classical quantization
schemes. With this approach, not only is a more precise analysis of the A/D conversion

process given, but, in the context of oversampling and £A modulation, it also leads to the
conclusion that a digital output signal contains more analog information about the input
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signal than that traditionally recovered by the classical analysis of A/D conversion. Namely,
the MSE of consistent estimates decreases with the oversampling ratio R fastest than that
of the classical linear reconstruction estimate by 3dB per octave. This new approach of
digital signals implies a new framework of signal processing based on convex projections in
Hilbert spaces, derived from the field of set theoretic estimation.

This past research leads to the new idea that the intrinsic function of an A/D converter is
to split the space of analog input signals into convex sets, and assign a digital representation
to each of them. For this reason, we say that an A/D converter is a convez coder. The
intrinsic performance of a convex coder can be evaluated by its ability to split the input
space into small sets with respect to the considered error measure. Recent research has
been done to measure the intrinsic performance of an oversampled A/D converter or a
LA modulator [18, 19, 20]. Figures 12 and 13 show that the evolution of the intrinsic
performance of a ZA modulator with the oversampling ratio R or with the order n of the
modulator can be graphically observed by the set partition it defines in the input space.
The intrinsic performance of the encoder can be measured by the average MSE of optimal
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Figure 12: Partition defined by a first order ZA modulator in the 2 dimensional space of
Ty- periodic sinusoids with arbitrary amplitude and phase: (a) Case of oversampling ratio
R =4. (b) Case R =6.

reconstruction which consists of picking for each cell of the input space partition its centroid.
It was shown in [19, 20] that optimal reconstruction yields the same MSE behavior in R as
consistent reconstruction. This input space view can be a new direction for the design of
high resolution data converters, traditionally designed using the noise shaping approach.

The convex coding approach can also be applied to signal compression [21]. Although
this field implies a digital to digital transformation, the input signal is usually considered
as quasi-continuous in amplitude. In this context, it is shown in [21] that classical signal
compression schemes such as block DCT coding can be analyzed as convex coding schemes.
An example of new signal compression scheme is proposed by a direct and active control of
the encoded sets.
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Figure 13: Partition defined by a ZA modulator in the 2 dimensional space of Tp-periodic
sinusoids with arbitrary amplitude and phase at oversampling ratio R = 4. (a) Single-loop
case. (b) Double-loop case.
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