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ABSTRACT
Byzantine fault tolerant (BFT) protocols are replication-
based solutions to the problem of tolerating the arbitrary
failures of software and hardware components. The essen-
tial assumption for replication is independence of failures. In
this paper, we categorize four different failure independence
levels that could be obtained from the cloud. Not surpris-
ingly, providing more level of independence comes with the
cost of more delays and less bandwidth. We report on our
experiments to identifying the most appropriate BFT pro-
tocol for each level.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—cloud computing ; C.4 [Performance of Systems]:
Fault tolerance

General Terms
Performance, Reliability, Security, Experimentation

Keywords
Byzantine fault tolerance, BFT, cloud computing, fault in-
dependence, consensus

1. INTRODUCTION
A software system is logically created of multiple layers,

each layer implementing a particular functionality. Choosing
the right layer for implementing a feature is a design deci-
sion, which could affect both the correctness and the perfor-
mance of the software. End-to-end argument [10] highlights
the drawbacks of an unnecessary implementation of a feature
at lower layers: (i) not all the upper-layer modules might
need the feature and yet have to pay for it; and (ii) the
general implementation of the feature might not correctly
satisfy the specific requirements of the upper-layer modules
that are actually using it.
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Figure 1: The spectrum of failures.

Having end-to-end argument in mind, we can rethink the
tolerance of Byzantine faults by BFT protocols [9, 3]: when
should we use a separate BFT layer to tolerate faults? A
recent study [12] lists some practical faults that could not
be avoided by a naive BFT layer. Alternatively, the safety
can be directly addressed by the application, e.g., Google
file system [5] leaves the unexpected duplicate records in the
files to be dealt by upper-layer applications separately. BFT
protocols target tolerating arbitrary, independent faults. In
other words, as long as occurrences of a given fault are in-
dependent, a BFT protocol can tolerate them. Otherwise
multiple manifestations of the fault at the same time could
violate the service correctness. Plainly, a BFT protocol can-
not tolerate unknown, arbitrary faults since it is impossible
to ensure independence of a fault that it is still unknown.
Therefore in practice, to correctly tolerate faults with BFT
(i) the set of faults must be specified, and (ii) the deploy-
ment setup must be engineered to provide independence for
those faults.

The spectrum of faults, as depicted in Figure 1, can range
from the failure of a core inside the processing unit, to pro-
gramming errors. Although the genuine independence is not
achievable in reality, depending on the kind of fault, the
level of independence can be improved by using some spe-
cific replication settings. The more we move towards the
programming errors direction, the harder it is to provide
failure independence. To have real failure independence for
programming errors we need multiple independent develop-
ing teams, which is very expensive, whereas a simple replica-
tion over some servers inside a local area network (LAN) is
enough to provide core failure independence. In other words,
the independence of manifestations of a fault comes with a
price, and not all the application, hence, might be willing to
pay for that cost. Following end-to-end argument, we should
verify whether (i) the deployment setup can correctly deliver
independence of the faults, and (ii) the particular applica-
tions of interest can afford the expenses of independence.

As a first step of the pragmatic approach in using BFT,
this paper categorizes the range of faults, for which the in-
dependence can be cheaply delivered by the current state
of technology. For each category, which provides indepen-
dence for only a particular set of faults, we then reevaluate
the state-of-the-art BFT protocols. For cheap fault indepen-



dence we, in particular, consider the cloud, as a promising,
growing business model that can help reduce the IT costs. 1

Two general groups of failures are considered: (i) hard-
ware failures, which include faulty core, power failure, stor-
age failure, and failure of intermediate switches and routers;
and ii) malicious attacks, which include security attacks that
compromise the virtual machine (VM) or the entire server, 2

as well as Denial of Service (DoS) attacks that can make a
server, switch, or router to saturate and become unavail-
able. To tolerate hardware failures, the service should be
replicated on independent hardware components. The cloud
provider can increase the independence of the involved hard-
ware components by assigning customer nodes to different
(i) machines, (ii) LANs, and (iii) geographically distributed
data centers.

The attacker that compromises some replicas inside a cloud
could use them as agents of a distributed DoS attack. There-
fore, replicas located on the same cloud have a similar risk
of failure by a DoS attack. Besides, using multiple clouds
could increase the independence of software vulnerabilities
if the cloud vendors use separate software components, e.g.,
the host operating system and the virtualization technology.
Nevertheless, after a replica is compromised, the replication
factor as well as the address of the other replicas can be
obtained by the attacker who then can focus its attacks on
them, either by trying to compromise them or by directing
DoS attacks towards them. To achieve more independence
of replica failures, the address of the other replicas must be
unknown to a (potentially compromised) replica. We refer
to this technique as oblivious clouds.

After a brief overview of BFT protocols in Section 2, we
categorize the replication setups into four groups: (i) mul-
tiple machines inside a LAN, (ii) separate LANs (multiple
availability zones), (iii) separate cloud providers, and (iv)
oblivious clouds; the Byzantine faults in each category will
be correctly tolerated, assuming existence of only a subset of
faults. Different system characteristics of the replication se-
tups, such as latency and bandwidth, demand different BFT
protocols. Using experimental results from bftsim [11], we
highlight the appropriate BFT protocol for each category.

2. BACKGROUND
BFT protocols are replication-based solutions to the prob-

lem of tolerating arbitrary failures of software and hardware
components. A BFT protocol can ensure safety and progress
of up to f of a particular faulty components, if more than
3f replicas of that component are used in replication. For
example, if the application is replicated on four separate
machines, then the BFT protocol can tolerate at most one
faulty hard disk [2]. In this section, we give a brief overview
of BFT protocols as well as different BFT setups. The BFT
protocols differ in the number of required phases to commit
(communication rounds), response latency, and throughput.
In general, there is a trade-off between latency and through-
put; to have high throughput, the contention between two
competing client requests must be avoided by using a pri-
mary. The primary orders the client requests and then for-
wards the ordered requests to the other replicas. Although

1Note that launching BFT protocols is a client-side decision
and the cloud vendor does not have to be involved in it.
2A physical machine in the cloud is shared between multiple
clients via virtualization.

this offers high throughput, the commit latency increases
because of the extra phase of communicating through the
primary.

To tolerate malicious attacks, the messages must be au-
thenticated via some cryptographic techniques, such as Pub-
lic Key Cryptography (PKC), which authenticates a single
message, and Message Authentication Code (MAC), which
authenticates a single channel (and its messages). PKC
could make the BFT protocols much simpler since it is ver-
ifiable even after the message is forwarded multiple times,
but it is around 100 times slower than MAC. The through-
put could be bounded by the number of MAC operations per
request performed by the bottleneck replica. This is mostly
the case in 0/0 setup, where q/p stands for requests and
replies with payload size of q and p KB, respectively.

For large message sizes (4/4 benchmark), the throughput
is bounded by the input/output bandwidth of the bottleneck
replica, i.e., the replica that sends/receives more messages
per request. An example of such a bottleneck is multicast-
ing the request by the primary. The multicast cost can be
remedied in setups such as LAN that support hardware mul-
ticast. Nevertheless the cloud vendors might be reluctant in
offering the hardware multicast support due to its scalability
issues [13].

In PBFT [3], the client sends the request to all the replicas
including the primary. The primary determines a sequence
number and forwards the order to other replicas. To detect
the faulty primary, all the replicas broadcast the received
order to ensure that other replicas have received the same
order for the request. Then all the replicas broadcast the
ordered request and execute it. This phase is necessary to
detect the interference of two primaries, which might happen
during view change. The client accepts the replies if they
match.

In Zyzzyva [8], the client sends the request only to the
primary. However, after other replicas receive the request
as well as its sequence number from the primary, they im-
mediately execute it and send the reply to the client. The
client accepts the replies if they all match. Otherwise, either
the primary or some of the replicas are faulty. In this case,
the first correct client can detect that and demand changing
the primary.

Chain [6] also uses a primary to avoid contention. All
other replicas are ordered as a chain and each one forwards
the request to the next. The last replica sends the reply
to the client. This technique increases the end-to-end de-
lay, but the throughput improves as the number of MAC
operations by each replica is close to 1, i.e. the theoretical
lower bound. The key idea is to partition the replicas into
two groups, where one group only verifies the client requests
and the other only authenticates the reply. After detecting
the failure, the whole protocol aborts and the abort history
is used to initialize another instance of BFT protocol. This
technique is called Abortable BFT [6].

Protocols that use a primary can take advantage of a
technique named batching ; the primary batches N requests
(mostly N=10 [3, 8]) and performs the MAC operation only
once on all of them. The increased latency is negligible in
high-throughput systems. Q/U [1] does not use a primary
and the clients directly communicate with the replicas. If
two clients are accessing the replicas at the same time, the
protocol requires more number of phases to resolve the con-
tention. Although it has the advantage of optimal communi-



Figure 2: The LAN setup.

cation rounds in non-contention cases, it requires more num-
ber of replicas to operate, i.e., 5f+1. Moreover, increasing
the number of clients could increase the contention. Quo-
rum [6], an abortable version of Q/U that uses less number
of replicas (3f+1 < 5f+1), also suffers from the contention
problem.

3. MULTIPLE MACHINES
A LAN setup, in which the replicas are connected by a

switch, offers the best performance for replication because
of the low latency (1 ms) and high bandwidth (1 Gbps) be-
tween the replicas. The clients of the cloud are always con-
nected through a wide area network (WAN), which implies
10-30 ms latency and higher packet loss rate. The setup is
depicted in Figure 2.

On the other hand, the LAN setup offers the lowest failure
independence among the possible setups we consider. Upon
failure of the switch connecting the replicas, the protocol
cannot progress any more. Furthermore, a LAN can spread
only over a limited local area. It is likely, therefore, that
some failures, such as the main power failure, a fire, and
an earthquake, affect all the replicas. In the particular case
that the VMs are placed inside the same physical machine or
rack, the failures are even more dependent since the failure of
the physical machine or the rack power source, respectively,
will affect all the replicas.

In theory, the BFT protocols are usually compared based
on the required number of phases to commit a value. In
practice, however, the low latency of the LAN makes the
difference between the overall latency of the BFT protocols
negligible. Instead, leveraging the high available bandwidth
of LAN becomes more appealing. For small payloads (0/0
benchmark) where the bottleneck is the CPU, Chain [6] is
the best candidate since it performs only 1 + ǫ MAC opera-
tions; the ǫ parameters gets closer to zero, by using higher
degree of batching.

Figure 3 compares the throughput of the state-of-the-art
BFT protocols (excluding chain), using bftsim. The batch-
ing factor is always 10 and is specified by a ”b10” suffix.
The timeout values in bftsim are set to 0.204 s, 0.210 s,
and 0.206 s for Q/U, PBFT, and Zyzzyva, respectively. The
client-replica and replica-replica latency is set to 60 ms and
0.08 ms, respectively. In all the experiments, the loss rate of
client-replica communications is set to 0.05%, client-replica
bandwidth is 1 Mbps, and the number of clients is chosen
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Figure 3: 0/0 benchmark, same LAN.
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Figure 4: 0/0 benchmark [6].

among 1, 10, and 50. As we expected, the low latency of
LAN, makes PBFT have the best performance. Even for a
few clients that probability of contention is low, Q/U has
higher commit latency than PBFT. This is counter-intuitive
since PBFT requires some more replica-replica transmissions
to commit a value. This can be explained by the fact that
Q/U requires receiving multiple client messages by separate
replicas, whereas PBFT requires delivering only one client
message to the primary for order assignment. It is shown
that in high variance of WAN, waiting for more messages
increases the overall latency [7].

Since we did not have any implementation of Chain in
bftsim, we use the reported numbers at the related work [6],
to compare Chain with the other protocols. Figure 4 shows
that Chain outperforms all the other protocols in high through-
puts. Because the Chain uses fewer client-replica messages
compared to PBFT and Zyzzyva, we expect that the same
conclusion applies to the setup where the clients are behind
a WAN.

Figure 5 presents the experimental results of 4/4 bench-
mark. 3 The change in the message size does change the
performance, but PBFT is still leading. Zyzzyva performs
worse than PBFT, since it is more sensitive to the replica-
client message delay and loss; not receiving all the replies
before timeout, makes Zyzzyva to fall into a two phase re-
covery operation. We could not justify the appeared knee in

3The missing numbers in the figures imply that the corre-
sponding experiments never finished. This is either a live-
ness bug in the protocol or a problem in the bftsim imple-
mentation. In the case of Zyzzyva, we observed a similar
behavior in the experiments with the C++ implementation
released by its authors.
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Figure 5: 4/4 benchmark, same LAN.

Figure 6: The setup for multiple availability zones.

the performance of Q/U by increasing the number of clients.
The same pattern was observed in Figure 8 of bftsim simu-
lation results [11], but that also was left unexplained.

We also ran experiments having multicast enabled for
both 0/0 and 4/4 benchmarks. Surprisingly, the through-
put of the protocols dropped after enabling multicast. Since
the multicast feature in bftsim is simulated by computing
less transferring delay, we could not interpret the drop in
the throughput.

4. MULTIPLE AVAILABILITY ZONES
Availability zones are distinct locations inside the same

geographical region that are engineered to have independent
failures via separate power-lines, being isolated in separate
rooms not to allow a fire to propagate to them, and proba-
bly using separate gateway routers.4 The setup is depicted
in Figure 6. Because they are located in the same region,
the latency between them is still low (1-5 ms) and the avail-
able bandwidth is still high (100-1000 Mbps). The higher
latency makes the BFT protocols with less number of re-
quired phases more appealing. Multicast feature might be
available (although less likely) depending on the engineering
of the zones.

Figures 7 and 8 compare the performance of the proto-
cols in 0/0 and 4/4 benchmarks, respectively. The timeout
values in bftsim are set to 0.212 s, 0.242 s, and 0.222 s for

4Since Amazon does not offer this information, we do not
know how isolated the availability zones in EC2 [4] really
are.
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Figure 7: 0/0 benchmark, multiple zones.
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Figure 8: 4/4 benchmark, multiple zones.

Q/U, PBFT, and Zyzzyva, respectively. The client-replica
and replica-replica latency is set to 60 ms and 10 ms, re-
spectively. The replica-replica bandwidth is set to 1 Gbps.
Both the throughput and the latency of Zyzzyva-b10 are
improved by increasing the number of clients from 10 to 50,
perhaps because the increase in number of requests makes
the batching technique more effective. Again, the sensitiv-
ity of Zyzzyva to the WAN delays makes the PBFT to be
still the best option. However, for low number of clients in
4/4 benchmark, Zyzzyva outperforms PBFT. It can be ex-
plained by the fact that in PBFT the clients have to send
the requests to all the replicas, while in Zyzzyva it is sent
to only the primary. For large messages, this overhead can
have a negative impact on PBFT’s performance. For larger
number of clients, Zyzzyva becomes over-saturated and we
observe a decrease in throughput as well as an increase in la-
tency. The over-saturation had also been observed in other
experiments with bftsim [11].

5. MULTIPLE CLOUD PROVIDERS
To provide failure independence against regional power

failures and disasters, such as an earthquake or a tsunami,
the replicas must be placed over separate geographical re-
gions. Geographical distribution of replicas also provides
availability against tier-1 router failures. Amazon already
offers computing units distributed over three separate re-
gions. However, separating cloud providers also offers failure
independence against vulnerabilities of a particular cloud
provider. For example, if the replica maintained by a cloud
provider is compromised because of vulnerability in the used
VM technology, the other replicas can still progress since the



Figure 9: The setup for multiple clouds.
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Figure 10: 0/0 benchmark, multiple clouds.

corresponding cloud providers probably use a different tech-
nology for vitalization.

The setup is depicted in Figure 9. The WAN that con-
nects the clouds has high latency (10-30 ms) and low band-
width (1-10 Mbps). Moreover, the multicast feature is not
available, which has a negative impact on the performance
of protocols such as PBFT and Zyzzyva. Not existence of
multicast increases the overhead on the primary, which is in
charge of sending the proposals to all replicas.

Figures 10 and 11 compare the performance of the pro-
tocols in 0/0 and 4/4 benchmarks, respectively. The time-
out values in bftsim are set to 0.262 s, 0.442 s, and 0.322
s for Q/U, PBFT, and Zyzzyva, respectively. The client-
replica and replica-replica latencies are set to 60 ms. The
replica-replica bandwidth is set to 1 Mbps. The loss rate of
replica-replica communications is set to 0.05%. The high la-
tency between the replicas, make the performance of PBFT
and Zyzzyva to drop very quickly. In contrary, the Q/U’s
performance surprisingly scales very well with the number
of clients. This is in contradiction with the intuition that
more clients increases the contention in the Q/U and hence
lowers the throughput. We can explain this as following: be-
cause of the high WAN delays, the throughput is in general
low anyway, and hence the interference between the client’s
requests occurs rarely in Q/U.

6. OBLIVIOUS CLOUDS
Although the distribution of the service over multiple could

providers offers a high availability against non-malicious at-
tacks, the failure of a compromised replica will still increase
the odds of failure of other replicas. In other words, the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

La
te

nc
y 

in
 s

ec

Throughput in op/s

QU
PBFT

PBFT-b10

Figure 11: 4/4 benchmark, multiple clouds.

Figure 12: Oblivious clouds setup.

failures of replicas are not completely independent. The
reason is that after a replica is compromised, the location
of the other replicas can be obtained from the compromised
replica. 5 The attacker can then focus its attacks on other
replicas. For example, it is very difficult to avoid a dis-
tributed DoS attack when the attacker has enough moti-
vation to do so and also knows the location of the target
victim.

To keep the address of the replicas anonymous, there should
not exist any replica-replica communication. Therefore, all
communications must be performed through the clients. The
setup is depicted in Figure 12. In this scheme, the cloud
providers (and consequently the replicas) do not even know
that they are running a replication protocol. The BFT pro-
tocols that fall into this category are Q/U [1] and Quo-
rum [6]. It is worth noting that Q/U specification allows
replica-replica communication for object synchronization. Hence,
to be able to use Q/U in the oblivious clouds setup, the cor-
responding optimization in Q/U must be disabled.

7. CONCLUSION
This paper, categorizes the different levels of failure inde-

pendence that can be offered to BFT protocols by different
setups in the cloud. Providing higher failure independence
comes with the performance penalty due to the increased
latency and the decreased bandwidth. Because the clients
are typically connected via a WAN, the protocols that are
sensitive to the replica-client delay and loss do not perform

5An attacker that is based inside the cloud can also ob-
tain this information by monitoring the network traffic of a
replica.



well. Chain achieves the best throughput when the replicas
are connected via a LAN. For availability zones, where the
latency between the replicas is higher, PBFT offers the best
performance. Q/U performed the best for the setup that the
replicas are geographically distributed, because of using no
communication between the replicas. To achieve the highest
failure independence in the oblivious clouds setting, the only
available options are Q/U and Quorum.
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