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ABSTRACT

Byzantine fault tolerant (BFT) protocols are replicatioased solu-
tions to the problem of tolerating the arbitrary failuressoftware
and hardware components. The essential assumption focaepl
tion is independence of failures. In this paper, we categorize four
different failure independence levels that could be ole@ifrom
the cloud. Providing more level of independence comes Wi¢h t
cost of more delays and less bandwidth, and not a single B&T pr
tocol fits all these deployment setups. Using experimesallts,
we discuss the possible appropriate BFT protocol for eatggoay.

1. INTRODUCTION

A software system is logically created of multiple layerdene
each layer implements a particular functionality requibgdthe
software. Choosing the right layer for implementing a featis

a design decision, which could affect both correctness are p
formance of the software. End-to-end argument princip]el[$-
cusses that when a particular functionality is implemeatedower
layer used by multiple upper-layer modules, some of therrhnig
not ever use the functionality and yet have to pay for it. ket
more, the feature, which is now implemented in a general way,
might not also correctly satisfy the requirements of the uhesl
which are actually using it. The design of applications ia ¢ttoud
environment could be re-thought by the help of end-to-eigdi-ar
ment.

The cloud is a promising, growing business model that cap ifeel
duce the IT costs; the cloud provider takes the administdtiad

of the IT infrastructures off the cloud clients. The availi&p and
the safety of the service provided by a third party, such aslitud,
can be improved by replicating the service and launchingBtine
fault tolerant (BFT) protocols [8, 3] on top of replicdsThe soft-
ware will then be using BFT as a lower layer module. Altenlj,
the safety can be directly addressed by the upper-layer iesidar
example, Google file system [5] leaves the unexpected daiplic
records in the files to be dealt by each application. Oncenagai

INote that launching BFT is a client-side decision and theidlo
vendor does not have to be involved in it.
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Figure 1: The spectrum of failures.

we have a design decision on which the end-to-end argumeid co
apply: when should we use a separate BFT layer to toleralis?au
Of course, giving a definite answer to this question in gdrisra
very hard and depends on various parameters. A recent stagly [
lists some practical faults that could not be avoided by eenBFT
layer. In this paper, we distinguish the possible faultshia ¢loud
environment. Focused on the ones that BFT layer can coyttedt!
erate, we discuss that not one single BFT protocol can effigie
cover all the faults.

The main assumption behind the replication-based tecksidg!
the independence of failures. Although the genuine indépece

is not achievable in reality, depending on the kind of faihi, level

of independence can be improved by using some specific aplic
tion settings. The spectrum of faults that can risk the abdity
and safety of a software system (Figure 1) can range from fail
ure of a core inside the processing unit, to programmingrgrro
The more we move towards the programming errors directfom, t
harder it is to provide failure independence, which is resgliiby
BFT protocols; to have real failure independence for progning
errors we need multiple independent developing teams, hwisic
very expensive, whereas a simple replication over somesein-
side a local area network (LAN) is enough to provide coreufail
independence.

The failures in the cloud that a BFT protocol could help tater
can be categorized into the following groups: i) hardwaiié fa
ures, which include faulty core, power failure, storagéufa, and
failure of connecting switches and routers; and ii) malisiat-
tacks, which include security attacks that compromise ihteal
machine (VM) or the entire servér as well as Denial of Service
(DoS) attacks, which can make a server, switch, or routeato s
urate and become unavailable. To tolerate hardware failihe
service should be replicated on independent hardware coemps.
The cloud provider can increase the independence of théveno
hardware components by assigning the customer nodes &-diff
ent i) machines, ii) LANs, and iii) geographically distried data
centers.

The attacker that compromises some replicas inside a clouid c

2A physical machine in the cloud is shared between multipéts
via virtualization.



use them as agents of a distributed DoS attack. Therefqicas
located on the same cloud have a similar risk of failure by & Do
attack. Besides, using multiple clouds could increaseritiepen-
dency of software vulnerabilities if the cloud vendors uspasate
software components, such as for the host operating system a
the virtualization technology. Nevertheless, after aiogpis com-
promised, the replication factor as well as the addresseobther
replicas can be obtained by the attacker who then can fogag-it
tacks on them, either by trying to compromise them or by diingc

the DoS attacks towards them. To achieve more independénce o

replica failures, the address of the other replicas mushkeawn
to a (potentially compromised) replica. We refer to thisht@que
asoblivious clouds.

After a brief overview of BFT protocols in Section 2, we caieg
rize the replications setups into four groups: i) multiplaghines
inside a LAN, ii) separate LANs (Multiple availability zosk iii)
separate cloud providers, and iv) oblivious clouds; the BFG-
tocols in each category are correct assuming existenceaosiyp-
set of faults. Different system characteristics of refl@asetups,
such as latency and bandwidth, demand different BFT prégoco
which can perform efficiently in them. Using experimentaiuiés

in bftsim [10], we propose the appropriate BFT protocol for each
category.

2. BACKGROUND

BFT protocols are replication-based solutions to the gnobbf
tolerating arbitrary failures of software and hardware ponents.
The protocol can ensure safety and progress of updba partic-
ular faulty component, if more thad) replicas of that component
are used in replication. For example, if the applicationeplir
cated on four separate machines, then the BFT protocol ¢an to
ate at most one faulty hard disk [2]. In this section, we giliaf
overview of BFT protocols as well as different BFT setups.eTh
BFT protocols differ in the number of required phases to cdimm
(communication rounds), response latency, and througlpgen-
eral, there is a trade-off between latency and throughpubate
high throughput, the contention between two competingitiie-
guests must be avoided by using a primary. The primary otters
client requests and then forwards the ordered requeste totltier
replicas. Although this offers high throughput, the comiaiency
increases because of the extra phase of communicatinggtintba
primary.

To tolerate malicious attacks, the messages must be aictieal
via some cryptographic techniques, such as Public Key Ggypt
raphy (PKC), which authenticates a single message, andddess
Authentication Code (MAC), which authenticates a singlarch

Figure2: The LAN setup.

sues [12].

In PBFT protocol [3], the client sends the request to all gair

cas including the primary to get ordered. The primary fodsahe

order to other replicas. To detect the faulty primary, adl thpli-

cas broadcast the received order to make sure all the replaze
received the same order for the request. Then all the redticsad-
cast the ordered request and execute it. This phase is aegcéss
detect the interference of two primaries, which might hapger-

ing view change. The client accepts the replies if they match

In Zyzzyva [7], the client sends the request only to the prima
get ordered. However, after other replicas receive theastgirom
the primary, they immediately execute it and send the repihe
client. The client accepts the replies if they all match. édibise,
either the primary or some of the replicas are faulty. Inthise, the
first correct client can detect that and demand changingthmeapy.

Chain [6] also uses a primary to avoid contention. All otregli
cas are ordered as a chain and each one forwards the request to
the next. The last replica sends the reply to the client. Téthk-
nique increases the end-to-end delay, but the throughproives

as the number of MAC operations by each replica is close to 1,
i.e. the theoretical lower bound. The key idea is to partitioe
replicas into two groups, where one group only verifies tlentl
requests and the other only authenticates the reply. Aétecting

the failure, the whole protocol aborts and the abort hisierysed

to initialize another instance of BFT protocol. This tedue is
calledAbortable BFT [6].

Protocols that use a primary can take advantage of a teahniqu

nel (and its messages). PKC could make the BFT protocols much amedbatching; the primary batches/ requests (mostiy=10 [3,

simpler since it is verifiable even after the message is foled
multiple times, but it is around 100 times slower than MACeTh

7]) and performs the MAC operation only once on all of themeTh
increased latency is negligible in high-throughput syste@v/U [1]

throughput can be bounded by the number of MAC operations per does not use a primary and the clients directly communicitte w

request performed by the bottleneck replica. This is maktycase
in 0/0 setup, whereg/p stands for requests and replies with payload
size ofq andp KB, respectively.

For large message sizes (4/4 benchmark), the throughpatisled
by the output bandwidth of the bottleneck replica, i.e., iyalica
that sends/receives more messages per request. An exdraptdo

a bottleneck is multicasting the request by the primary. miogti-
cast cost can be remedied in setups such as LAN that suppd¥t ha
ware multicast. Nevertheless the cloud vendors might hetaht

in offering the hardware multicast support due to its sdtgts-

the replicas. If two clients are accessing the replicas atsdme
time, the protocol requires more number of phases to reshkve
contention. Although it has the advantage of optimal comimun
cation rounds in non-contention cases, it requires morebeurof
replicas to operate, i.e.,f51. Moreover, increasing the number
of clients could increase the contention. Quorum [6], arriaxe
version of Q/U, also suffers from the contention problem.

3. MULTIPLE MACHINES

A LAN setup, in which the replicas are connected via a switch,
offers the best performance for replication because ofdtel4-
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Figure 3: 0/0 benchmark, same LAN.

tency (1 ms) and high bandwidth (1 Gbps) between the replicas
The clients of the cloud are always connected through a wiele a
network (WAN), which implies 10-30 ms latency and higherkggc
loss rate. The setup is depicted in Figure 2.

On the other hand, the LAN setup offers the lowest failurepeh-
dence among the possible setups. Upon the failure of a sadtch
necting the replicas, the protocol cannot progress any nieue-
thermore, a LAN can spread only over a limited local areas It i
likely, therefore, that some failures, such as main powdgurkg,
fire, and earthquake, affect all the replicas. In the padiccase
that the VMs are placed inside the same physical machinecky ra
the failures are even more dependent since the failure gftiis-
ical machine or the rack power source, respectively, widcfall
the replicas.

In theory, the BFT protocols are usually compared based en th
required number of phases to commit a value. In practice,-how
ever, the low latency of the LAN makes the difference betwtaen
overall latency of the BFT protocols negligible. Insteasldrag-
ing the high available bandwidth of LAN becomes more appeali
For small payloads (0/0 benchmark) where the bottleneckes t
CPU, Chain [6] is the best candidate since it performs dnly e
MAC operations; the: parameters gets closer to zero, by using
higher degree of batching. Figure 3 compares the througbiput
the state-of-the-art BFT protocols (excluding chain)nggiftsim.
The batching factor is always 10 and is specified by a "b1dbsuf
The timeout values in bftsim are set to 0.204 s, 0.210 s, &@60.

s for Q/U, PBFT, and Zyzzyva, respectively. The client-iegphnd
replica-replica latency is set to 60 ms and 0.08 ms, resytin

all the experiments the loss rate of client-replica comroatidns is
set to 0.05%, client-replica bandwidth is 1 Mbps, and the lpemm
of clientsis 1, 10, and 50. As we expected, the low latencyAlL
makes PBFT have the best performance. Since we did not hgive an
implementation of Chain ifbftsim, we use the reported numbers
at [6], to compare Chain with the other protocols. Figure dvgh
that Chain outperforms all the other protocols in high tlyfgouts.
Because the Chain uses fewer client-replica messages cedoa
PBFT and Zyzzyva, we expect that the same conclusion applies
the setup where the clients are behind a WAN.

Figure 5 presents the experimental results of 4/4 benchinaitke

3The missing numbers in the figures imply that the correspandi
experiments never finished. This is either a liveness buigdpto-
tocol or the bftsim implementation. In the case of Zyzzyva w
observed the similar behavior in the experiments with the ©+
plementation released by its authors.
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Figure5: 4/4 benchmark, same LAN.

change in the message size does change the performanc8Hiut P
is still leading. Zyzzyva performs worse than PBFT, sinégiihore
sensitive to the replica-client message delay and lossgeeiving

all the replies before timeout, makes Zyzzyva to fall inte ttvo
phase recovery operation. We could not justify the appelanee

in the performance of Q/U by increasing the number of clients
The same pattern was observed in Figure 8 of bftsim simulatio
results [10], but that also was left unexplained.

We also ran experiments having multicast enabled for both 0/
and 4/4 benchmarks. Surprisingly, the throughput of théquads
dropped after enabling multicast. Since the multicastuieatn
bftsim is simulated by computing less delay for multicagtthe
messages, we could not interpret the drop in the throughput.

4. MULTIPLE AVAILABILITY ZONES

Availability zones are distinct locations inside the saraegraphi-
cal region that are engineered to have independent faNiaespa-
rate power-lines, being isolated in separate rooms notdw al fire
to propagate to them, and probably using separate gatewtsr$o
The setup is depicted in Figure 6. Because they are locatdatin
same region, the latency between them is still low (1-5 md)tha
available bandwidth is still high (100-1000 Mbps). The tegla-
tency makes the BFT protocols with less number of requiredes
more appealing. Multicast feature might be available @lth less
likely) depending on the engineering of the zones.

Figures 7 and 8 compare the performance of the protocolsOin 0/
and 4/4 benchmarks, respectively. The timeout values girbfare

4Since Amazon does not offer this information, we do not know
for sure how isolated the availability zones in EC2 [4] are.
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Figure 6: The setup for multiple availability zones.
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Figure 7: 0/0 benchmark, multiple zones.

setto 0.212 s, 0.242 s, and 0.222 s for Q/U, PBFT, and Zyzzyva,
respectively. The client-replica and replica-replicaiaty is set to

60 ms and 10 ms, respectively. The replica-replica bandvisdset

to 1 Gbps. Both the throughput and the latency of Zyzzyvadr&0
improved by increasing the number of clients from 10 to 50; pe
haps because the increase in number of requests makeschmbat
technique more effective. Again, the sensitivity of Zyzaywe the
WAN delays makes the PBFT to be still the best option. However
for low number of clients in 4/4 benchmark, Zyzzyva outparie
PBFT. It can be explained by the fact that in PBFT the clieatgch

to send the requests to all the replicas, while in Zyzzyva #ent

to only the primary. For large messages, this overhead cem ha
a negative impact on PBFT's performance. For larger number o
clients, Zyzzyva gets over-saturated and we observe aakeia
throughput as well as an increase in latency. The overat@uar
had been observed in other experiments with bftsim [10].

5. MULTIPLE CLOUD PROVIDERS

To provide failure independence against regional powedurizs
and disasters, such as earthquake and tsunami, the replisibe
replicated over separate geographical regions. Geograpthis-
tribution of replicas also provides availability againsril router
failures. Amazon already offers computing units distrdalibver
three separate regions. However, using separate clouddprov
also offers failure independence against vulnerabilibfes partic-
ular cloud provider. For example, if the replica maintairmgda
cloud provider is compromised because of vulnerabilithedsed
VM technology, the other replicas can still progress sifedor-
responding cloud providers probably use a different teldgyofor
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Figure 8: 4/4 benchmark, multiple zones.

Figure9: The setup for multiple clouds.

vitalization.

The setup is depicted in Figure 9. The WAN that connects the
clouds has high latency (10-30 ms) and low bandwidth (1-19$)lb
Moreover, the multicast feature is not available, which aameg-
ative impact on the performance of protocols such as PBFT and
Zyzzyva. Not existence of multicast increases the overloedtie
primary, which is in charge of sending the proposals to agllicas.

Figures 10 and 11 compare the performance of the protoc6i€in
and 4/4 benchmarks, respectively. The timeout values girbfare
setto 0.262 s, 0.442 s, and 0.322 s for Q/U, PBFT, and Zyzzyva,
respectively. The client-replica and replica-replicaraties are set

to 60 ms. The replica-replica bandwidth is set to 1 Mbps. Biss |
rate of replica-replica communications is set to 0.05%. High
latency between the replicas, make the performance of PBET a
Zyzzyva to drop very quickly. In contrary, the Q/U’s perfante
surprisingly scales very well with the number of clients.isTts

in contradiction with the intuition that more clients inases the
contention in the Q/U and hence lowers the throughput. We can
explain this as following: because of the high WAN delay® th
throughput is in general low anyway, and hence the intenfare
between the client’s requests occurs rarely in Q/U.

6. OBLIVIOUSCLOUDS

Although the distribution of the service over multiple coproviders
offers a high availability against non-malicious attackes failure
of a compromised replica will still increase the odds ofifedl of
other replicas. In other words, the failures of replicasrarecom-
pletely independent. The reason is that after a replicarspco-
mised, the location of the other replicas can be obtained tiee



—
=

T QU —
Y

11

0.9 -
0.8 -

0.7 -
0.6 -

Latency in sec

30 40 50 60
Throughput in op/s

20

70

Figure 10: 0/0 benchmark, multiple clouds.
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Figure 11: 4/4 benchmark, multiple clouds.

compromised replicd The attacker can then focuses its attacks on
other replicas. For example, itis very difficult to avoid atdbuted
DoS attack when the attacker has enough motivation to do@do an
also knows the location of the target victim.

To keep the address of the replicas anonymous, there shotild n
exist any replica-replica communication. Therefore, ladl tom-
munications must be performed through the clients. Thepsistu
depicted in Figure 12. In this scheme, the cloud providensl (a
consequently the replicas) do not even know that we are ngreni
replication protocol. The BFT protocols that fall into tleiategory
are Q/U [1] and Quorum [6]. Quorum is basically an abortable
version of Q/U, which also uses less number of replicg&{3<
5f+1). It is worth noting that Q/U specification allows replica
replica communication for object synchronization. Hertcebe
able to use Q/U in the oblivious clouds setup, the corresipgnd
optimization in Q/U must be disabled.

7. CONCLUSION

In this paper, we have categorized the different levels bfira
independence that can be offered to the BFT protocols bgreliff
ent setups in the cloud. Providing higher failure indepecde
comes with the performance penalty due to the increasedchate
and the decreased bandwidth. Because the clients are ¢ednec
via a WAN, the protocols that are sensitive to the repli¢antide-

lay and loss do not perform well. Chain achieves the besttiro
put when the replicas are connected via a LAN. For availgbili
zones, where the latency between the replicas is higherT RBF
fers the best performance. Q/U performed the best for thepset

°An attacker that is based inside the cloud can also obtasrirthi
formation by monitoring the network traffic of a replica.

Figure 12: Oblivious clouds setup.

that the replicas are geographically distributed, becatigsing no
communication between the replicas. To achieve the high#ést
ure independence in the oblivious clouds setting, the orajlable
options are Q/U and its abortable version, Quorum.
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