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ABSTRACT
Byzantine fault tolerant (BFT) protocols are replication-based solu-
tions to the problem of tolerating the arbitrary failures ofsoftware
and hardware components. The essential assumption for replica-
tion is independence of failures. In this paper, we categorize four
different failure independence levels that could be obtained from
the cloud. Providing more level of independence comes with the
cost of more delays and less bandwidth, and not a single BFT pro-
tocol fits all these deployment setups. Using experimental results,
we discuss the possible appropriate BFT protocol for each category.

1. INTRODUCTION
A software system is logically created of multiple layers, where
each layer implements a particular functionality requiredby the
software. Choosing the right layer for implementing a feature is
a design decision, which could affect both correctness and per-
formance of the software. End-to-end argument principle [9] dis-
cusses that when a particular functionality is implementedat a lower
layer used by multiple upper-layer modules, some of them might
not ever use the functionality and yet have to pay for it. Further-
more, the feature, which is now implemented in a general way,
might not also correctly satisfy the requirements of the modules
which are actually using it. The design of applications in the cloud
environment could be re-thought by the help of end-to-end argu-
ment.

The cloud is a promising, growing business model that can help re-
duce the IT costs; the cloud provider takes the administrative load
of the IT infrastructures off the cloud clients. The availability and
the safety of the service provided by a third party, such as the cloud,
can be improved by replicating the service and launching Byzantine
fault tolerant (BFT) protocols [8, 3] on top of replicas.1 The soft-
ware will then be using BFT as a lower layer module. Alternatively,
the safety can be directly addressed by the upper-layer modules; for
example, Google file system [5] leaves the unexpected duplicated
records in the files to be dealt by each application. Once again,

1Note that launching BFT is a client-side decision and the cloud
vendor does not have to be involved in it.
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Figure 1: The spectrum of failures.

we have a design decision on which the end-to-end argument could
apply: when should we use a separate BFT layer to tolerate faults?
Of course, giving a definite answer to this question in general is
very hard and depends on various parameters. A recent study [11]
lists some practical faults that could not be avoided by a naive BFT
layer. In this paper, we distinguish the possible faults in the cloud
environment. Focused on the ones that BFT layer can correctly tol-
erate, we discuss that not one single BFT protocol can efficiently
cover all the faults.

The main assumption behind the replication-based techniques is
the independence of failures. Although the genuine independence
is not achievable in reality, depending on the kind of fault,the level
of independence can be improved by using some specific replica-
tion settings. The spectrum of faults that can risk the availability
and safety of a software system (Figure 1) can range from fail-
ure of a core inside the processing unit, to programming errors.
The more we move towards the programming errors direction, the
harder it is to provide failure independence, which is required by
BFT protocols; to have real failure independence for programming
errors we need multiple independent developing teams, which is
very expensive, whereas a simple replication over some servers in-
side a local area network (LAN) is enough to provide core failure
independence.

The failures in the cloud that a BFT protocol could help tolerate
can be categorized into the following groups: i) hardware fail-
ures, which include faulty core, power failure, storage failure, and
failure of connecting switches and routers; and ii) malicious at-
tacks, which include security attacks that compromise the virtual
machine (VM) or the entire server2, as well as Denial of Service
(DoS) attacks, which can make a server, switch, or router to sat-
urate and become unavailable. To tolerate hardware failures, the
service should be replicated on independent hardware components.
The cloud provider can increase the independence of the involved
hardware components by assigning the customer nodes to differ-
ent i) machines, ii) LANs, and iii) geographically distributed data
centers.

The attacker that compromises some replicas inside a cloud could

2A physical machine in the cloud is shared between multiple clients
via virtualization.



use them as agents of a distributed DoS attack. Therefore, replicas
located on the same cloud have a similar risk of failure by a DoS
attack. Besides, using multiple clouds could increase the indepen-
dency of software vulnerabilities if the cloud vendors use separate
software components, such as for the host operating system and
the virtualization technology. Nevertheless, after a replica is com-
promised, the replication factor as well as the address of the other
replicas can be obtained by the attacker who then can focus its at-
tacks on them, either by trying to compromise them or by directing
the DoS attacks towards them. To achieve more independence of
replica failures, the address of the other replicas must be unknown
to a (potentially compromised) replica. We refer to this technique
asoblivious clouds.

After a brief overview of BFT protocols in Section 2, we catego-
rize the replications setups into four groups: i) multiple machines
inside a LAN, ii) separate LANs (Multiple availability zones), iii)
separate cloud providers, and iv) oblivious clouds; the BFTpro-
tocols in each category are correct assuming existence onlya sub-
set of faults. Different system characteristics of replication setups,
such as latency and bandwidth, demand different BFT protocols
which can perform efficiently in them. Using experimental results
in bftsim [10], we propose the appropriate BFT protocol for each
category.

2. BACKGROUND
BFT protocols are replication-based solutions to the problem of
tolerating arbitrary failures of software and hardware components.
The protocol can ensure safety and progress of up tof of a partic-
ular faulty component, if more than3f replicas of that component
are used in replication. For example, if the application is repli-
cated on four separate machines, then the BFT protocol can toler-
ate at most one faulty hard disk [2]. In this section, we give abrief
overview of BFT protocols as well as different BFT setups. The
BFT protocols differ in the number of required phases to commit
(communication rounds), response latency, and throughput. In gen-
eral, there is a trade-off between latency and throughput; to have
high throughput, the contention between two competing client re-
quests must be avoided by using a primary. The primary ordersthe
client requests and then forwards the ordered requests to the other
replicas. Although this offers high throughput, the commitlatency
increases because of the extra phase of communicating through the
primary.

To tolerate malicious attacks, the messages must be authenticated
via some cryptographic techniques, such as Public Key Cryptog-
raphy (PKC), which authenticates a single message, and Message
Authentication Code (MAC), which authenticates a single chan-
nel (and its messages). PKC could make the BFT protocols much
simpler since it is verifiable even after the message is forwarded
multiple times, but it is around 100 times slower than MAC. The
throughput can be bounded by the number of MAC operations per
request performed by the bottleneck replica. This is mostlythe case
in 0/0 setup, whereq/p stands for requests and replies with payload
size ofq andp KB, respectively.

For large message sizes (4/4 benchmark), the throughput is bounded
by the output bandwidth of the bottleneck replica, i.e., thereplica
that sends/receives more messages per request. An example of such
a bottleneck is multicasting the request by the primary. Themulti-
cast cost can be remedied in setups such as LAN that support hard-
ware multicast. Nevertheless the cloud vendors might be reluctant
in offering the hardware multicast support due to its scalability is-

Figure 2: The LAN setup.

sues [12].

In PBFT protocol [3], the client sends the request to all the repli-
cas including the primary to get ordered. The primary forwards the
order to other replicas. To detect the faulty primary, all the repli-
cas broadcast the received order to make sure all the replicas have
received the same order for the request. Then all the replicas broad-
cast the ordered request and execute it. This phase is necessary to
detect the interference of two primaries, which might happen dur-
ing view change. The client accepts the replies if they match.

In Zyzzyva [7], the client sends the request only to the primary to
get ordered. However, after other replicas receive the requests from
the primary, they immediately execute it and send the reply to the
client. The client accepts the replies if they all match. Otherwise,
either the primary or some of the replicas are faulty. In thiscase, the
first correct client can detect that and demand changing the primary.

Chain [6] also uses a primary to avoid contention. All other repli-
cas are ordered as a chain and each one forwards the request to
the next. The last replica sends the reply to the client. Thistech-
nique increases the end-to-end delay, but the throughput improves
as the number of MAC operations by each replica is close to 1,
i.e. the theoretical lower bound. The key idea is to partition the
replicas into two groups, where one group only verifies the client
requests and the other only authenticates the reply. After detecting
the failure, the whole protocol aborts and the abort historyis used
to initialize another instance of BFT protocol. This technique is
calledAbortable BFT [6].

Protocols that use a primary can take advantage of a technique
namedbatching; the primary batchesN requests (mostlyN=10 [3,
7]) and performs the MAC operation only once on all of them. The
increased latency is negligible in high-throughput systems. Q/U [1]
does not use a primary and the clients directly communicate with
the replicas. If two clients are accessing the replicas at the same
time, the protocol requires more number of phases to resolvethe
contention. Although it has the advantage of optimal communi-
cation rounds in non-contention cases, it requires more number of
replicas to operate, i.e., 5f+1. Moreover, increasing the number
of clients could increase the contention. Quorum [6], an abortable
version of Q/U, also suffers from the contention problem.

3. MULTIPLE MACHINES
A LAN setup, in which the replicas are connected via a switch,
offers the best performance for replication because of the low la-



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  100  200  300  400  500  600  700  800

La
te

nc
y 

in
 s

ec

Throughput in op/s

QU
PBFT

Zyzzyva
PBFT-b10

Zyzzyva-b10

Figure 3: 0/0 benchmark, same LAN.

tency (1 ms) and high bandwidth (1 Gbps) between the replicas.
The clients of the cloud are always connected through a wide area
network (WAN), which implies 10-30 ms latency and higher packet
loss rate. The setup is depicted in Figure 2.

On the other hand, the LAN setup offers the lowest failure indepen-
dence among the possible setups. Upon the failure of a switchcon-
necting the replicas, the protocol cannot progress any more. Fur-
thermore, a LAN can spread only over a limited local area. It is
likely, therefore, that some failures, such as main power failure,
fire, and earthquake, affect all the replicas. In the particular case
that the VMs are placed inside the same physical machine or rack,
the failures are even more dependent since the failure of thephys-
ical machine or the rack power source, respectively, will affect all
the replicas.

In theory, the BFT protocols are usually compared based on the
required number of phases to commit a value. In practice, how-
ever, the low latency of the LAN makes the difference betweenthe
overall latency of the BFT protocols negligible. Instead, leverag-
ing the high available bandwidth of LAN becomes more appealing.
For small payloads (0/0 benchmark) where the bottleneck is the
CPU, Chain [6] is the best candidate since it performs only1 + ǫ

MAC operations; theǫ parameters gets closer to zero, by using
higher degree of batching. Figure 3 compares the throughputof
the state-of-the-art BFT protocols (excluding chain), using bftsim.
The batching factor is always 10 and is specified by a "b10" suffix.
The timeout values in bftsim are set to 0.204 s, 0.210 s, and 0.206
s for Q/U, PBFT, and Zyzzyva, respectively. The client-replica and
replica-replica latency is set to 60 ms and 0.08 ms, respectively. In
all the experiments the loss rate of client-replica communications is
set to 0.05%, client-replica bandwidth is 1 Mbps, and the number
of clients is 1, 10, and 50. As we expected, the low latency of LAN,
makes PBFT have the best performance. Since we did not have any
implementation of Chain inbftsim, we use the reported numbers
at [6], to compare Chain with the other protocols. Figure 4 shows
that Chain outperforms all the other protocols in high throughputs.
Because the Chain uses fewer client-replica messages compared to
PBFT and Zyzzyva, we expect that the same conclusion appliesto
the setup where the clients are behind a WAN.

Figure 5 presents the experimental results of 4/4 benchmark3. The

3The missing numbers in the figures imply that the corresponding
experiments never finished. This is either a liveness bug in the pro-
tocol or the bftsim implementation. In the case of Zyzzyva, we
observed the similar behavior in the experiments with the C++ im-
plementation released by its authors.
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Figure 4: 0/0 benchmark [6].
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Figure 5: 4/4 benchmark, same LAN.

change in the message size does change the performance, but PBFT
is still leading. Zyzzyva performs worse than PBFT, since itis more
sensitive to the replica-client message delay and loss; notreceiving
all the replies before timeout, makes Zyzzyva to fall into the two
phase recovery operation. We could not justify the appearedknee
in the performance of Q/U by increasing the number of clients.
The same pattern was observed in Figure 8 of bftsim simulation
results [10], but that also was left unexplained.

We also ran experiments having multicast enabled for both 0/0
and 4/4 benchmarks. Surprisingly, the throughput of the protocols
dropped after enabling multicast. Since the multicast feature in
bftsim is simulated by computing less delay for multicasting the
messages, we could not interpret the drop in the throughput.

4. MULTIPLE AVAILABILITY ZONES
Availability zones are distinct locations inside the same geographi-
cal region that are engineered to have independent failuresvia sepa-
rate power-lines, being isolated in separate rooms not to allow a fire
to propagate to them, and probably using separate gateway routers4.
The setup is depicted in Figure 6. Because they are located inthe
same region, the latency between them is still low (1-5 ms) and the
available bandwidth is still high (100-1000 Mbps). The higher la-
tency makes the BFT protocols with less number of required phases
more appealing. Multicast feature might be available (although less
likely) depending on the engineering of the zones.

Figures 7 and 8 compare the performance of the protocols in 0/0
and 4/4 benchmarks, respectively. The timeout values in bftsim are

4Since Amazon does not offer this information, we do not know
for sure how isolated the availability zones in EC2 [4] are.



Figure 6: The setup for multiple availability zones.
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Figure 7: 0/0 benchmark, multiple zones.

set to 0.212 s, 0.242 s, and 0.222 s for Q/U, PBFT, and Zyzzyva,
respectively. The client-replica and replica-replica latency is set to
60 ms and 10 ms, respectively. The replica-replica bandwidth is set
to 1 Gbps. Both the throughput and the latency of Zyzzyva-b10are
improved by increasing the number of clients from 10 to 50, per-
haps because the increase in number of requests makes the batching
technique more effective. Again, the sensitivity of Zyzzyva to the
WAN delays makes the PBFT to be still the best option. However,
for low number of clients in 4/4 benchmark, Zyzzyva outperforms
PBFT. It can be explained by the fact that in PBFT the clients have
to send the requests to all the replicas, while in Zyzzyva it is sent
to only the primary. For large messages, this overhead can have
a negative impact on PBFT’s performance. For larger number of
clients, Zyzzyva gets over-saturated and we observe a decrease in
throughput as well as an increase in latency. The over-saturation
had been observed in other experiments with bftsim [10].

5. MULTIPLE CLOUD PROVIDERS
To provide failure independence against regional power failures
and disasters, such as earthquake and tsunami, the replicasmust be
replicated over separate geographical regions. Geographical dis-
tribution of replicas also provides availability against tier-1 router
failures. Amazon already offers computing units distributed over
three separate regions. However, using separate cloud provider
also offers failure independence against vulnerabilitiesof a partic-
ular cloud provider. For example, if the replica maintainedby a
cloud provider is compromised because of vulnerability in the used
VM technology, the other replicas can still progress since the cor-
responding cloud providers probably use a different technology for
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Figure 8: 4/4 benchmark, multiple zones.

Figure 9: The setup for multiple clouds.

vitalization.

The setup is depicted in Figure 9. The WAN that connects the
clouds has high latency (10-30 ms) and low bandwidth (1-10 Mbps).
Moreover, the multicast feature is not available, which hasa neg-
ative impact on the performance of protocols such as PBFT and
Zyzzyva. Not existence of multicast increases the overheadon the
primary, which is in charge of sending the proposals to all replicas.

Figures 10 and 11 compare the performance of the protocols in0/0
and 4/4 benchmarks, respectively. The timeout values in bftsim are
set to 0.262 s, 0.442 s, and 0.322 s for Q/U, PBFT, and Zyzzyva,
respectively. The client-replica and replica-replica latencies are set
to 60 ms. The replica-replica bandwidth is set to 1 Mbps. The loss
rate of replica-replica communications is set to 0.05%. Thehigh
latency between the replicas, make the performance of PBFT and
Zyzzyva to drop very quickly. In contrary, the Q/U’s performance
surprisingly scales very well with the number of clients. This is
in contradiction with the intuition that more clients increases the
contention in the Q/U and hence lowers the throughput. We can
explain this as following: because of the high WAN delays, the
throughput is in general low anyway, and hence the interference
between the client’s requests occurs rarely in Q/U.

6. OBLIVIOUS CLOUDS
Although the distribution of the service over multiple could providers
offers a high availability against non-malicious attacks,the failure
of a compromised replica will still increase the odds of failure of
other replicas. In other words, the failures of replicas arenot com-
pletely independent. The reason is that after a replica is compro-
mised, the location of the other replicas can be obtained from the
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Figure 10: 0/0 benchmark, multiple clouds.
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Figure 11: 4/4 benchmark, multiple clouds.

compromised replica5. The attacker can then focuses its attacks on
other replicas. For example, it is very difficult to avoid a distributed
DoS attack when the attacker has enough motivation to do so and
also knows the location of the target victim.

To keep the address of the replicas anonymous, there should not
exist any replica-replica communication. Therefore, all the com-
munications must be performed through the clients. The setup is
depicted in Figure 12. In this scheme, the cloud providers (and
consequently the replicas) do not even know that we are running a
replication protocol. The BFT protocols that fall into thiscategory
are Q/U [1] and Quorum [6]. Quorum is basically an abortable
version of Q/U, which also uses less number of replicas (3f+1 <

5f+1). It is worth noting that Q/U specification allows replica-
replica communication for object synchronization. Hence,to be
able to use Q/U in the oblivious clouds setup, the corresponding
optimization in Q/U must be disabled.

7. CONCLUSION
In this paper, we have categorized the different levels of failure
independence that can be offered to the BFT protocols by differ-
ent setups in the cloud. Providing higher failure independence
comes with the performance penalty due to the increased latency
and the decreased bandwidth. Because the clients are connected
via a WAN, the protocols that are sensitive to the replica-client de-
lay and loss do not perform well. Chain achieves the best through-
put when the replicas are connected via a LAN. For availability
zones, where the latency between the replicas is higher, PBFT of-
fers the best performance. Q/U performed the best for the setup

5An attacker that is based inside the cloud can also obtain this in-
formation by monitoring the network traffic of a replica.

Figure 12: Oblivious clouds setup.

that the replicas are geographically distributed, becauseof using no
communication between the replicas. To achieve the highestfail-
ure independence in the oblivious clouds setting, the only available
options are Q/U and its abortable version, Quorum.
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