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Abstract

This overview is an assessment of the gyrokinetic framework and simulations to compute turbulent transport in
fusion plasmas. It covers an introduction to the gyrokinetic theory, the principal numerical techniques which are
being used to solve the gyrokinetic equations, fundamentals in gyrokinetic turbulence and the main results which
have been brought by simulations with regard to transport in fusion devices and fluctuation measurements.
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1. Introduction

Understanding and predicting turbulent transport is a key
issue on the way towards commercially viable fusion reactors.
Indeed turbulence controls the confinement properties of
any magnetically confined plasma. The understanding of
turbulent transport has made tremendous progress thanks to
a wealth of analytical results, numerical simulations and
dedicated experiments. A decisive step has been made with
the development of the gyrokinetic framework for describing
turbulence, and also with the emergence of numerical codes
able to solve the set of gyrokinetic equations. These numerical
tools have played an important role in clarifying a number of
pending issues in turbulent transport. For previous reviews
of the subject, see, e.g., [1-3]. This overview presents an
assessment of the main advances in gyrokinetic theory and
computing of turbulence.

This grand tour starts with a presentation of some
basics in gyrokinetic theory. In principle, the description of
plasma turbulence requires to solve six dimensional Vlasov
(or Fokker-Planck) equations for each species, coupled to
Maxwell equations [4]. In essence, the gyrokinetic theory aims
at reducing the original 6D kinetic problem into a 5D problem
(typically three coordinates of gyro-centres, one parallel
velocity or energy coordinate and the adiabatic invariant
which is a motion invariant). This 5D problem is easier
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to solve than the full kinetic one, thanks to the elimination
of the fast cyclotron time scale. This transform, essentially
a change of coordinates, is licit when the frequency of
fluctuations is smaller than cyclotron frequencies, an ordering
which is well justified in most fusion devices. However,
this operation requires some care. This is due for one part
to the Hamiltonian character of trajectories, which must be
conserved in that transform, even if non-canonical coordinates
are used. Moreover, Maxwell equations must be written with
care. Indeed, particle charge and current densities, which
are the sources of the Maxwell equations, differ from their
gyro-centre counterparts. The differences are polarization
and magnetization terms which have to be accounted for in a
proper way. An extensive overview was published recently [5],
which describes this transform to all orders in the expansion
parameter (essentially the normalized gyroradius p,, which is
the ratio of the Larmor radius to the minor radius of the plasma).
This rather technical step is summarized in this overview, and
illustrated by a description of the equations at order one in p.

Once the equations to be solved are properly written, the
task is not over yet. Indeed, solving 5D gyrokinetic Vlasov (or
Fokker—Planck) equations for each species is a challenge. This
difficulty is made even harder due to the complex geometry
and boundary conditions that have to be implemented in
the modelling. Moreover, the high dimensionality of the
problem and its intrinsic nonlinear character imposes the use
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of a large number of grid points or markers. This in turn
implies that gyrokinetic codes require state-of-the-art high
performance computing (HPC) techniques and must run on
highly parallelized computers. Various numerical schemes
have been explored until now, which can be classified as
Lagrangian, Eulerian and semi-Lagrangian. Each approach
has its advantages and drawbacks, which are summarized in
this survey. The difficulty is not only about developing smart
numerical schemes but also code parallelization, data analysis
and visualization. Overall, it is certainly fair to say that
gyrokinetics has triggered activity in applied mathematics and
computer science that extends well beyond plasma physics.
Given the complexity of the problem, verification is an issue.
This is done by comparing simulations with exact analytical
results, typically linear stability, dynamics of poloidal flows
and other available tests. Also, conservation laws must
be satisfied, principally energy conservation and entropy
production balance. Finally, extensive code benchmarking
has been done in the past, in order to cross-check the various
numerical tools. Once this is done, a gyrokinetic code can
be considered as ‘verified’, and ready for validation, i.e.
comparison with experimental observations, and/or to explore
a given theoretical problem.

Obviously, gyrokinetic theory is intimately entangled
in the physics of turbulent transport in magnetized fusion
plasmas. Hence a survey of the fundamentals of plasma
turbulence is in order, in relation to the results brought by
gyrokinetic simulations. The present overview is focused on
core turbulence, since the kinetic simulation of edge plasma
turbulence is just commencing. Core turbulence is triggered
by microinstabilities, driven by density, temperature and
sometimes velocity gradients. Tradition is to separate between
electron and ion driven instabilities, and also to discriminate
the various players through their characteristic wavelengths,
usually compared with the ion and electron gyroradii,
respectively. This is the purpose of linear gyrokinetic stability
analysis, which is now well established. The nonlinear regime,
i.e. turbulence, is somewhat more demanding, since this is
still largely an open problem. Nevertheless, a picture of
magnetized plasma turbulence has emerged. In particular, it
is now well established that turbulence self-organizes via the
generation of structures which feed back on the turbulence
background. The most known are zonal flows, which are
connected to fluctuations of the flux-surface-averaged poloidal
velocity. Zonal flows are generated by turbulence and back
react on turbulence via vortex shearing and convection from
locally stable to unstable regions. Although this subject has
been covered by an extensive overview [6], some important
features specific to gyrokinetics are recalled and commented
on here. Streamers, which are elongated convective cells in
the radial direction, also play an important role in turbulence
self-organization. In the same category, avalanches (fronts)
participate in the relaxation of profiles, and contribute to profile
stiffness. Finally, as in neutral fluid turbulence, dimensionless
scaling laws turn out to be useful. In principle, there exists
a large number of dimensionless numbers in magnetized
plasmas. Nevertheless, three parameters appear to play a
prominent role, namely, the normalized gyroradius, plasma
B and collisionality. The dependence on these parameters
has been extensively studied with the help of gyrokinetics and

compared with the data coming from dedicated experiments.
Although many issues remain unresolved, impressive progress
has been made, and has, for instance, allowed the constraining
of scaling laws for the ITER project.

One important aim of gyrokinetic theory is to predict
turbulent transport in fusion plasmas. Hence validation is a
central issue. This is done mainly in two ways. This first one
is based on a comparison of calculated and measured turbulent
fluxes (or transport coefficients). The second approach consists
in confronting other statistically averaged quantities such as the
turbulence intensity, spectra or bicoherence to experimental
data, whenever available. Obviously the latter is more
demanding than the former, but not always possible as it
requires the implementation of synthetic diagnostics, and of
course appropriate fluctuation diagnostics in fusion devices.
Regarding the various transport channels, the understanding
of ion heat transport in low g plasmas can be considered as
mature. In fact, ion turbulent transport is now considered as
a reference for testing codes. The understanding of electron
heat transport has also made progress. The role of sub-ion
gyroradius instabilities has been debated for some time, in
particular regarding the effect of streamers and the relative
contributions of small and large scales to turbulent transport.
This issue has been settled with the recent achievements of
turbulence simulations covering a large range of spatial scales
and combining both ion and electron temperature gradient-
driven instabilities. Particle and impurity transport is another
important field of research. Theory and simulations of main
ion transport have now reached some maturity and a rather
clear picture, though incomplete, has emerged with time. The
situation is less clear for impurity transport, in particular
regarding the mass and charge number scaling, and also the
direction of pinch velocities. Finally, momentum transport
has started being addressed recently, and is less well assessed.
The results summarized in this review should be considered
as a snapshot of the present situation, and will certainly
evolve in the future. The question of improved confinement
and transport barriers is also of importance. It is now
well established that shear flows and the optimization of the
magnetic configuration, in particular via magnetic shear, can
reduce turbulent transport. Other mechanisms are possible, but
less generic. The stabilizing effect of shear flow is now well
documented. Still the mechanisms that determine the mean
shear flow dynamics, i.e. the radial electric field, are not fully
mastered. Regarding the effect of the magnetic configuration,
the situation is even less satisfactory. In particular, the puzzling
role of low order rational resonant surfaces at the onset of
transport barriers remains to be clarified. Several explanations
have been proposed for this behaviour, but remain to be
compared with experiment. This overview ends with a brief
summary of comparison with fluctuation measurements in
fusion devices. This subject started only recently. First results
are quite encouraging and will certainly trigger further work.

The reader will certainly notice that the majority of works
cited in this review deal with tokamaks. This reflects the
current situation where most of the fusion research worldwide
is devoted to that particular type of confinement. Another
reason is that the first generations of 3D systems were
dominated by single particle confinement and neoclassical
transport considerations. ~ With the advent of advanced
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concepts such as drift-optimized, pseudo- or quasi-symmetric
configurations, the neoclassical transport can be reduced to a
level comparable to that of tokamaks and therefore turbulence-
driven transport is also becoming a concern for such systems.
The physical model, the numerical methods and several of
the basic physics phenomena discussed in the paper are
quite generically applicable to any magnetic confinement
configuration. Certain specificities, related in particular to the
increased complexity posed by the breaking of symmetry in
3D systems, are nevertheless pointed out at several places in
the paper.

The paper is organized as follows. Section 2 presents the
physical model for gyrokinetic turbulence. Numerical issues
are addressed in section 3, while fundamentals of gyrokinetics
are commented on in section 4. Finally, the input brought
by gyrokinetic simulations into the understanding of turbulent
transport is addressed in section 5. A conclusion follows.

2. Physical model

2.1. Kinetic model

In principle, a plasma dynamics may be completely described
by the Newton-Maxwell system or the Klimontovich—
Maxwell system. However, a fusion plasma typically consists
of ~10%° m~—3 jons and electrons, and it is unrealistic to trace
all of them even with the most powerful computers in the
present day and any foreseeable future. Therefore, instead of
solving all the particle motion for each species, a statistical
approach is introduced to describe a plasma by a particle
distribution function. In a high temperature fusion plasma with
~10keV, the kinetic energy is much larger than the average
potential energy between particles, which means that particles
are weakly coupled. In a weakly coupled plasma, multiple
particle correlations involving three particles or more are
neglected, and two particle interaction is reduced to a collision
operator C( fy, fs) for a single particle distribution function
fs(qg, p) in six dimensional (6D) phase space Zcc = (q, p) [4],
where g and p are the position and momentum of a particle,
respectively. As a result, an evolution equation of f; is given
by the Boltzmann equation,

Dfs _ 9f _
Dr = 5 + {fv, H:} = C(f;’a f?)a (1)

where {-, -} is the Poisson bracket in the canonical coordinates

(P IF 3G OF 3G
r.G} = —————-—, 2)
dq; Op;
and H;(q, p) is the Hamiltonian of collisionless single particle
motion,

es |2
——A’ +esp. 3)
C

1
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2my

Here, e; and m; are the charge and mass of the particle species
s, ¢ is the velocity of light, ¢ is the electrostatic potential and
A is the vector potential for the magnetic field B = V x A.
In considering microturbulence, a collisionless model is often
used, because the collision frequency is much lower than
characteristic frequencies of turbulent fluctuations such as
drift waves and kinetic Alfvén waves (see figure 1). In the

I(m) .
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Figure 1. Enormous ranges of spatio-temporal scales in a fusion
plasma and applicability of Vlasov, gyrokinetic and MHD models.
Here, wy, is the plasma oscillation frequency, €2; is the cyclotron
frequency, w} is the diamagnetic rotation frequency, v, is the Alfvén
velocity, vy is the ion—ion collision frequency, Ap, is the Debye
length, p; is the Larmor radius, L, is the scale length of the
equilibrium density profile, a is the plasma size and s denotes the
particle species.

collisionless limit with C(fy, f;) = 0, equation (1) yields the
Vlasov equation or the collisionless Boltzmann equation,

Dfs _ dfs

Dr = ot

+{fy H) =0, @)

By taking the velocity moments of f;, the particle density n;
and the current density j; in the configuration space g are
obtained as

mzfﬁ@n (5)
xzﬁfwm%, (6)
where v = [p — (e;/c)A]/m,. The electromagnetic fields,

FE and B, are determined by substituting n; and j; to the
Maxwell equations,

19B
VxE=—-—, (7)
c 0t
4 10E
VxB=—Y ji+-—, 8
x ;J -y ®)
V- E=47) emns, ©)

(10)

The Vlasov—Maxwell system, equations (4)—(10), gives a basic
description of a high temperature collisionless plasma.

2.2. The gyrokinetic model

Although the Vlasov—Maxwell system is a reduced kinetic
description compared with the Newton—-Maxwell system, it
involves enormous ranges of spatio-temporal scales as shown
in figure 1. Therefore, it is still difficult to simulate low
frequency phenomena such as microturbulence and MHD
waves via the Vlasov—Maxwell system. To avoid a direct
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guiding-centre coordinates
6D phase space

Figure 2. By applying the gyro-centre transform, fast gyro-motion is eliminated, and the problem is reduced from 6D to 5D while keeping

kinetic effects such as the finite Larmor radius effect.

treatment of a multiple hierarchy of spatio-temporal scales,
a nonlinear gyrokinetic model [7, 8] has been developed by
eliminating high-frequency phenomena with v > €, while
keeping essential kinetic effects, where 2, = (e;By)/(mgc) is
the cyclotron frequency. While earlier gyrokinetic equations
were formulated by gyro-averaging the Vlasov equation
based on the recursive method [7], the modern gyrokinetic
theory [5] consists of the guiding-centre transform [9-12]
and the gyro-centre transform [13-16], which are based
on the Hamiltonian or Lagrangian formalism with the Lie
perturbation theory [17,18]. The latter approach enables
a rigorous treatment of collisionless turbulent dynamics
while keeping the first principles such as the symmetry
and conservation properties, which are important physics
ingredients for describing the underlying physics and are
useful for a nonlinear simulation. In this section, we review
the gyrokinetic Vlasov—Maxwell equations, which are valid
up to O(eg), without strong equilibrium flows, where ¢, is
a smallness parameter in the gyrokinetic ordering. This
approximation is widely used for gyrokinetic simulations of
core plasmas with subsonic flows. In analysing core and edge
plasmas with strong flows, extended gyrokinetic models in
the presence of toroidal rotation [19], static E, x B flows
[19-21] and dynamic E, x B flows [22-24] were proposed.
An extension of gyrokinetic equations including mean flows
was also addressed based on the recursive method [25, 26].

From experimental observations in core plasmas with
subsonic flows, tokamak microturbulence is considered to obey
the gyrokinetic ordering in €,

w k v on B
Lo U SNJN&NO(Eg)’

an
Qs kJ_ Uts no BO Ln

where @ is a characteristic frequency of microturbulence,
By = V x Ay is the equilibrium field, B; = V x A
is the perturbed field, b = By/By is the unit vector in the
direction of By, ky = k-b and k; = |k x b| are parallel
and perpendicular components of the wave vector k, vg is the
perturbed E x B drift velocity, vy, is the thermal velocity,
no is the equilibrium density, én; is the perturbed density,
ps = v/ is the Larmor radius, L, = |VInno|™! is a
characteristic scale length of ng. Here, vg /v ~ O(e,) leads
to es¢p/T; ~ O(eg) for microscopic fields with k1 o, ~ O(1),
while e;¢p/T; ~ O(1) is expected for macroscopic fields
with k; L, ~ O(1), where Ty is the temperature. For a
fusion plasma with finite but small 8 (typically 8 ~ 1%),
the perturbed field is given as By = V x A;b, and the parallel
component of Bj is often neglected compared with By, where

B = (noT; + noTe)/(Bg/&r) is the ratio of the plasma kinetic
pressure to the magnetic pressure. As shown in figure 2, the
single particle motion under strong ambient magnetic fields
consists of the superposition of a fast periodic gyro-motion and
a slow guiding-centre motion. Low frequency perturbations
satisfying this ordering mainly affect the latter motion, and the
magnetic moment, u = msvi /2By, becomes an approximate
adiabatic invariant. Although the gyrokinetic equation in
the canonical guiding-centre coordinates [27] may be useful
in linear stability analyses, for the purpose of a gyrokinetic
simulation, it is convenient to use the non-canonical guiding-
centre coordinates Zgc = (t; R, u, i, £), where approximate
configuration space variables R are separated from velocity-
space variables. Here, R = g — p is the guiding-centre
position, p = b x v/, is the gyroradius vector, u =
v +(es/cmy) A is the generalized parallel velocity, vy = v - b
and v; = |v x b| are parallel and perpendicular components
of the velocity, respectively, & = tan~'(v-e|/v-ey) is the
gyro-phase angle and e; and e, are orthogonal unit vectors
defined as e; x e; = b. The guiding-centre transform is
given by a near identity transformation using the Lie transform
method for non-canonical variables, and fast action-angle
variables of unperturbed particle orbits (i, §) are decoupled
from 6D phase space coordinates. Although the transformation
is systematically calculated up to arbitrary order in €5 =
ps /L g while keeping the Hamiltonian structure of unperturbed
particle orbits, a gyrokinetic simulation normally uses its
leading order expression. Here, Ly = |VInBy|™' is a
characteristic scale length of the equilibrium magnetic field.
In the guiding-centre coordinates, the perturbed Hamiltonian

is written as

e
N B
M 0 es¢ ’

1
I_Is = 5Ms

u — AH

s

= smgu® + 1By + e, W + O(€;), (12)

where W(R,u, u,§,t) = ¢ — uAy/c is the generalized
potential. In equation (12), the Coulomb gauge is used and
A or the parallel magnetic perturbation is neglected.

We then separate a fast gyro-phase dependent part of the
perturbation from the perturbed Hamiltonian (12) by applying
the gyro-centre transform, and find new coordinates, the
gyro-centre coordinates Zgy = (t; R, i, I, é), where an
approximate invariant p in the presence of low frequency
perturbations becomes an exact invariant & and its conjugate
variable £ is seen as an ignorable coordinate. The gyro-centre
transform valid up to O(e,) is given as

Zay = Zac +1{S, Zach + O(€}), 13)
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where {-,-} is the Poisson bracket in the gyro-centre
coordinates,

Q; (0F 0G 0F 0G
(F.G) =2 (0 - o=
By \ 0§ o op 0§
B* 0G OF c
+ | VF— - —VG ) - b-VF x VG,
mstf ou ou egBﬂ‘
(14)
and Bﬁ‘ = b-B* is a parallel component of B*(Zgc) =

By + (Boit/ 25)V xb. The generating function S is solved as

- -t
$(Zge, 1) = ;—/ [ — (w),] d&',

A

(15)

where the gyro-average is defined as () = f -d&/2m.
This transform is formulated based on the Lie-transform
perturbation theory, so that the transform keeps the area
preserving property of the Hamiltonian system up to arbitrary
order in € and the Poisson bracket becomes form invariant.
After the transform, £-dependent non-secular perturbations are
absorbed in the generating function S, and the Hamiltonian H,
becomes independent of £,

Hy = Ymgii> + LBy + e (W);.

3 (16)

It is noted that among several different choices of independent
variables, especially in the electromagnetic case, in this
section, we have chosen to use the generalized parallel velocity,
which is transformed as u = u + {S‘, u} + O(eé) [28]. In
this choice, functional forms of the Hamiltonian (12) and
the Poisson bracket (14) become the same as those in the
electrostatic limit, and we can easily find the electromagnetic
gyro-centre transform by replacing ¢ with W in the electrostatic
gyro-centre transform.

We then have a reduced kinetic equation or a gyrokinetic
equation, which describes the evolution of the particle
distribution function expressed in gyro-centre coordinates f;
in 5D phase space,

Df, _df,

= FoH.
br = 5 T A
_aﬁ+dR afs+dzzaﬁ
T 9t dt QR dr da’
=0, (17)

where the nonlinear characteristics, Zgy = {Zgy, H}, are
given as

dR  B* 9H, ¢

LA bx VH,
dr mXB‘T ou esBﬁ<
ab— a2
_ b B
cm HEBl"‘
+ Z*bx(eSV(\IJ)§+mSﬁ2b-Vb+;1VBO), (18)
C.
SE
di B*
R VA,
dt mSB‘T
B*
= — (e V(W) + AV By), 19
msB‘T(e (W) + itV By) (19)
i
o, (20)

dr

Since the gyrokinetic equation (17) is the Liouville equation,
f is conserved along the nonlinear characteristics. This leads
to the conservation of an arbitrary function of f;. Another
important property is the phase space conservation,

V- T @ + 9 J; i) _ 0
Sdt ) aa \Tdr) 7
where J;, = szﬁ‘ is the Jacobian of the gyro-centre

coordinates. From this property, the gyrokinetic equation (17)
can also be written in a conservative form

a$ﬁ+v <def>+8 22 ) =0 @
ot o) e\ Pt ) =0

@2y

The guiding-centre orbit (18) is determined by the parallel
motion and the perpendicular drift motion associated with the
electromagnetic perturbation and the curvature and gradient
of the magnetic field. In equation (19), the generalized
parallel velocity suffers from acceleration forces associated
with the electromagnetic perturbation and the gradient of the
magnetic field. The latter force works as the magnetic mirror
in the presence of two constants of motion in the unperturbed
orbit, the energy ¢ = myii?/2 + jiBy and the magnetic
moment . In figure 3, the unperturbed orbits in a tokamak
configuration show complicated trajectories depending on the
pitch angle ¢ = sin~!' (v, /v) at the outboard mid-plane, and
are classified mainly into passing and trapped particles. While
passing particles are characterized by the parallel motion and
the perpendicular magnetic drift, trapped particles follow a
bounce motion in the weak field side, and their magnetic drift
results in a toroidal precession motion. It is noted that in
a treatment of the bounce motion, in cases where it is fast
compared with other scales of interest, a similar approach as in
gyrokinetics can be applied to formulate the bounce-averaged
kinetic equation [29,30]. Projected onto the poloidal plane,
unperturbed particle orbits are closed, which correspond to
constant surfaces of the canonical toroidal angular momentum,
Dy Which is another constant of motion in the axisymmetric
tokamak configuration. Therefore, the equilibrium solution
of the collisionless gyrokinetic equation (17) is given as a
function of three constants of motion, fc;(py, €, it), where
Dy is an approximate flux label in the canonical coordinates.
It is noted that in non-axisymmetric configurations such as
3D helical systems and tokamaks with magnetic field ripple,
Py is not a constant of motion and the projected orbits of
ripple-trapped particles are not closed. The parallel and
perpendicular motion in the guiding-centre orbit is closely
related to microinstabilities, which are excited by the density
gradient, the ion temperature gradient (ITG) and the electron
temperature gradient (ETG) through various wave—particle
resonant interactions. Depending on the resonance condition,
microinstabilities are classified into slab modes, toroidal
modes and trapped particle modes, where the parallel motion
of passing particles, the magnetic drift of passing particles and
the toroidal precession of trapped particles are essential for the
wave—particle interaction, respectively. Detailed classification
of micro-instabilities can be found in the literature [31-34]
(also see section 4.1). On the other hand, these wave—particle
interactions also work as a damping mechanism for smaller
scale perturbations. In particular, high-k; components suffer
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Figure 3. Typical unperturbed guiding-centre orbits of passing and trapped particles in a tokamak configuration, and their projection on the
poloidal cross-section. The coordinates (y/, 6, ¢) show the radial direction, the poloidal angle and the toroidal angle.

from Landau damping due to the parallel motion of passing
particles, which restricts turbulent structures to so-called flute-
like structures with ko, < 1.

Finally, the equation system is closed by the Poisson—
Ampere laws. The pull back transform from the gyro-centre
distribution f; to the guiding-centre distribution fiis given as

fo=F+i8 f1+0(e)
~ f+ 15, fus) +0 (<)

where fy, is a local Maxwellian distribution defined at each
flux surface, and the second relation is obtained because § ﬂ =
fs = fus is small compared with fu, or 8 f;/fus ~ O(eg).
The particle density n; and the parallel current density j; are,
respectively, calculated as

(23)

n = / £(2)8 (R+ p,] — ) 7,d°Z

_ (|7 2080w —2) 7857 4 O
_/|:f5+BOa%_ au}a([Rms] ) J,d°Z + O(€))

esng
T

/ﬁaqmps]—w)m%— (6 —(D)e), (24

J = e, f 0 H(2)8 IR+ p] — @) J,d°Z

) , Q089
_ es/ ufi — €s A”st L fMs
cmy By 0E du

x 8 ([R+ p;] — x) Jd°Z + O(e;)

= esfufsé (R+p] — a) Jd°Z — 20
C.

s

(A))e. (25)

Here, the second term in the rhs of equation (24) shows the
polarization density due to the finite Larmor radius (FLR)
effect. In equation (25), a part of the magnetization current
(the third term in the second equation) is cancelled with the
second term in the second equation, which appears due to the
use of u.

By substituting equations (24) and (25), the Maxwell
equations yield the gyrokinetic Poisson—Ampere laws,

—V2qb =4 Z ey,

=> [4ne5/5fs5([fz+ o] — ) J,d°Z

5

1 -
0l 26)
Ds
4
~ViA, =7”Zfs
dreg I = _ 67
=Y . /uS.fSS([R+ps] —x)Jd°Z
S (t)2 -
- Cgs (Auk]’ @7

where Apy is the Debye length, w,, is the plasma
oscillation frequency, and () = f ()e fms6 (R + ps] —
)7, d°Z /no. The displacement current in equation (8) is
neglected for low frequency phenomena considered here. In
deriving equations (26) and (27), nonlinear polarization and
magnetization effects, which are higher order in €, and other
higher order terms are neglected, and final equations are
given in rather simple forms which are suitable for numerical
implementation. The gyrokinetic Vlasov—Maxwell system,
equations (17), (26) and (27), is a standard kinetic model to
describe micro-turbulence in the plasma core.

The most important feature of the gyrokinetic Vlasov—
Maxwell system is that high-frequency phenomena such as
the Langmuir wave and the cyclotron wave are eliminated
while keeping essential kinetic effects for low frequency
microturbulence. From the viewpoint of the simulation, the
limitations on the time step and the grid spacing are relaxed
from Atw,s < 1 and Ar < Apg to Atwy < 1 and Ar < py,
and the computational cost is dramatically reduced, where
w} is the diamagnetic rotation frequency. Another important
feature is the conservation properties. Since the transform
is designed to keep the Hamiltonian structure of the system,
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the gyrokinetic Vlasov—Maxwell system conserves the particle
number, momentum, energy and entropy as in the Vlasov—
Maxwell system. By calculating a relation, f H9, f,7,d°Z =
— [{H, f;, H)}J7,d°Z = 0 [35], equations (17), (26) and (27)
yield the total energy conservation,

_9f _ d
Z/Hf Lz = 5 (B Ba) =0, (28)
S at dr
E =) U (Imit® + jiBo) fsjsdﬁz} , (29)
E, = L |v¢|2d3x
¢ 8
1 1
ter YD 5 [1=ToG3pd)] 1wl (30)
7 )‘Ds
s k
1
Ey = g/ |VLAH|2d3x
2
+LZZ%F(1«2 DIA I 31)
8 o2 oL Ak
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where ¢ = ), ¢rexp(ik - @), p is the Larmor radius
estimated with the thermal velocity, Ay = >, A exp(ik -
x), To(b) = Iy(b)e™ and I, is the zeroth order modified
Bessel function. Although the energy conservation (28)
is derived straightforwardly for the present gyrokinetic
Vlasov—Maxwell equations with linear polarization and
magnetization effects, in general, it is difficult to find an exact
energy conservation when higher order nonlinear polarization
and magnetization effects are retained. In higher order
gyrokinetics, the gyrokinetic field theory with Lagrangian or
Eulerian approaches [28,36] was developed to formulate the
gyrokinetic Vlasov—Maxwell equations where an exact energy
conservation law is demonstrated based on Noether’s theorem.
An exact conservation property is important especially in
studying nonlinear problems, where an analytic solution can
hardly be found. The conservation of particles and energy
is normally checked as a stringent test of the quality of the
nonlinear simulation.

2.3. Extensions of gyrokinetic model for simulations

Although the gyrokinetic Vlasov—Maxwell system, equa-
tions (17), (26) and (27), gives a clear physics foundation for
studying low frequency phenomena in the collisionless limit,
one would often like to include collisional effects for practi-
cal simulations, as collisions are often experimentally relevant
and even weak collisions can sometimes be important for the
following reasons. Firstly, the gyrokinetic equation (17) con-
tinuously produces fine scale velocity-space structures due to
linear and nonlinear mixing effects. From the viewpoint of the
entropy balance relation [37-39], such a collisionless system
does not formally reach a statistically steady state in all possi-
ble quantities when turbulent transport is at a finite level [40].
If we consider stretching due to the parallel streaming, the
ballistic mode leads to fine scale structures in v, which, in
a collisionless system, will inevitably exceed the maximum
numerical resolution. In order to smear out such structures,
we need physical or numerical dissipation mechanisms both
in the pitch angle ¢ and in the energy . Secondly, a col-
lisionless gyrokinetic Vlasov equilibrium fc,(py, €, it) does

not satisfy the quasi-neutrality condition without equilibrium
electric fields, because constant p, surfaces or particle orbit
widths are different depending on the particle species s. This
means that a relevant kinetic equilibrium naturally involves
electric fields, which are subject to the force balance relation
involving the neoclassical viscosity [41,42]. The neoclassi-
cal physics strongly influences the parallel flow dynamics and
the bootstrap current, while the poloidal rotation sometimes
deviates from the neoclassical theory prediction. The boot-
strap current is an essential ingredient in advanced magnetic
fusion experiments. In addition, the neoclassical perpendicu-
lar transport gives a baseline of transport levels, when turbu-
lent transport is quenched, e.g., in transport barriers. Thirdly,
collisions are considered to play important roles also in the
turbulent transport. Ion—ion collisions enhance the damping
of zonal flows, which may lead to an increase in ion heat trans-
port near a nonlinear threshold [43, 44], and electron—ion col-
lisions affect the trapped electron mode (TEM) by effective
reduction in trapped electron drive [45]. For these reasons, we
need physically relevant collisional dissipation even in sim-
ulating high temperature fusion plasmas. A collision model
for a weakly coupled plasma is given by the Fokker—Planck
collision operator [46],

0
CU =Y 5 (<%>f)

s

R 3> (|AvAv f (32)

2 vdv At 7))
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where y,¢ = (477(3363 /mf) InA, InA is the Coulomb

logarithm, and the Rosenbluth potentials, Hy and Gy, are
given as

H, (v) = (1 + m>
my

Go(v) = / @)l — o] &

Basic properties of the Fokker—Planck collision operator are
the conservation of the particle number, the momentum and the
energy, the annihilation of a shifted Maxwellian distribution,
and Boltzmann’s H-theorem, which are physical constraints
used also in developing its reduced models. In studying
core plasmas, which are expected to be close to a local
thermodynamic equilibrium or a Maxwellian distribution, the
operator can be further simplified to its linear version,

d Av
il (v fi
> v At [,
1 92 AvAv
+— : s | + Py fums,
2 dvov << At >Of‘) v fa

where (Av/At)y and (AvAwv/At)y are evaluated using
a Maxwellian field particle distribution fy, and a field
particle operator Py fy; is determined by the conservation
of momentum and energy [47]. In calculating neoclassical
transport coefficients, the yet simpler Lorentz type collision
operator consisting of pitch angle scattering and a momentum

lff”v)q &3, (35)

(36)

C(fs) =

(37
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restoring term is often used as a good approximation [41,42].
A similar reduced collision operator with v scattering was
proposed as a minimum model to recover the neoclassical
physics for the purpose of a gyrokinetic simulation, which
often uses vj and u as velocity-space coordinates [48]. Since
the collisional dissipation violates the Hamiltonian structure
of the problem, we cannot construct the gyro-centre transform
including collisions. Therefore, after applying the guiding-
centre transform to obtain a guiding-centre collision operator,
we find its gyro-phase independent form using a multiple
time-scale expansion in €, = v,/ and gyro-averaging
procedures [49], and add it to the rhs of the gyrokinetic equation
(17). A general form of a gyro-centre collision operator Cgy
to lowest order in €3, €, may be written as [49-52]

Coy(fy) = Z ek R <eik'p“c (e_ik'p“ [ka +1S, st}k])>ég .
&

(38)

The FLR correction in equation (38) leads to spatial diffusion in
R, which may be significant for short wavelength perturbations
with k,p; > 1. Since the operator becomes non-
local, conservation properties of the collision operator are
complicated. However, when we simulate the neoclassical
physics in the presence of relatively long wavelength
perturbations with k; p; < 1, its drift-kinetic limit, Cgy ( ﬁ.) =
C(f,), may be a good approximation as in most neoclassical
simulations.

In the axisymmetric limit with macroscopic radial electric
fields, the gyrokinetic equation naturally converges to the
drift-kinetic equation which is a physical model used in the
neoclassical theory [41,42]. Therefore, collisional gyrokinetic
simulations are expected to recover the neoclassical transport.
The radial electric field can be determined by the gyrokinetic
Poisson equation (26), which reproduces geodesic acoustic
mode oscillations in the axisymmetric limit (see section 4.2.2).
By taking the time derivative and the flux-surface average,
equation (26) yields the equation for the radial electric field,
which was used to determine the neoclassical radial electric
field [53, 54],
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f
where i is the equilibrium magnetic poloidal flux, ()¢
denotes the flux-surface average, vp is magnetic drift term
in equation (18). In a quasi-steady state, equation (39) leads
to ambipolar particle transport, which is consistent with the
lowest order neoclassical theory and the radial electric field is
determined to satisfy the force balance relation [41,42],

(U”)f _ T;1 |:(k 1 din7;  dlnn; e 9(¢)s
m;S dyr dyr T dy
where U) is the parallel flow, I = RB,, R is the major
radius, B,, is the toroidal magnetic field and k is a coefficient
depending on the ion collisionality. In fact, recent collisional
gyrokinetic simulations [55-58] recovered this relation as well
as neoclassical ion heat transport in the axisymmetric limit. It
is noted that when a parallel flow profile is given, equation (40)
dictates the radial electric field, because it is adjusted on a

} . (40)

fast time scale compared with collisional momentum transport.
However, in [59], it was shown that the parallel flow itself (and
the corresponding radial electric field) cannot be determined
by the lowest order neoclassical theory, and that to estimate the
parallel flow within the framework of the neoclassical theory,
one needs to calculate the conservation of angular momentum
up to higher order. It is noted that this argument does not
apply to non-axisymmetric configurations, where the lowest
order neoclassical particle transport is not ambipolar. In [60],
it was pointed out that higher order gyrokinetic theory is
needed to determine the radial electric field consistent with
the neoclassical toroidal viscosity. However, in turbulent
tokamaks, parallel flow or toroidal rotation may be dominated
by the balance between turbulent momentum transport (see
section 5.1.4) and external torque, which are normally larger
than the neoclassical momentum transport. Therefore, for
practical turbulent simulations, the lowest order gyrokinetic
theory may be enough to determine the radial electric field.
This controversial issue is open to further investigation.
Another important physics ingredient is to model a fusion
plasma open system. While the gyrokinetic Vlasov—-Maxwell
system shown in section 2.2 is an isolated system, a fusion
plasma is essentially an open system with sources and sinks.
A straightforward approach may be to add a source term S
to the rhs of the gyrokinetic equation (17). We then have the
gyrokinetic equation for an open plasma system,
3 fs

ot {fs, Hy} = Coy(fy) + 5.

(41)

By substituting equation (41), equation (28) yields a power
balance relation in the open system,

- 0f o5 d d
> | A, tJsdZ:—(Ek+E¢+EAH):a(EC+ES),

0 dr
42)
dEc - z 65
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In the original Boltzmann equation, the system conserves
the total energy in the sourceless limit S — 0, i.e.
the collisional energy transfer dEc/dr = > | [msv%/2 +
esd (q@)1C(f;)d3g d° p vanishes because the collision operator
locally conserves particle and kinetic energy moments. In
the drift-kinetic limit k; p, — 0, Cgy(f;) = C(f;) and
thus it is easy to show that dEc/dt = Y, [[mu?/2 +
uBy + e_Y\II(R)]C(f_S).];d6Z = 0 is satisfied. However,
it is not so trivial to write a gyro-averaged collision
operator including FLR effects, which keeps relevant
conservation properties and a vanishing collisional energy
transfer. In [52], an operator, which globally conserves
particle, momentum and Kkinetic energy moments, was
given including FLR corrections. However, the collisional
power transfer does not trivially vanish because of non-
local features of these conservation properties and of the
gyro-averaged perturbation (W)z: we have dEc/dr =

Yo [Imsii®/2 + By + e(¥)e(R, WICoy(f)Td°Z =
>, [ es(W)i(R, ) Coy (f)Td®Z # 0. This issue is still
open to further investigations.
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Another traditional approach in modelling an open plasma
system is to introduce a multi-scale expansion with respect
to a smallness parameter €, = p;/L, [7]. In this approach,
we consider a quasi-steady plasma in a source free region,
and separate the gyro-centre Hamiltonian into its static and
perturbed parts,

I:Is = I:IOS + BFIS’ (45)
Hos = mgit” + LB + e, (¢o)z. (46)
8Hy = es (W), (47)

where ¢ is a static part of the electrostatic potential and
U = W —¢,. By substituting equation (45) and f; = fo;+9 fs,
the gyrokinetic equation (41) yields

{fOsa H_OS} = CGY(fOs)»
38 f _ - - _
af +{8 fs, Hos} + { fos, $Hs} + {8 fs, 6Hs} = Cav (8 f5),
49

where the nonlinearity is retained in equation (49). In solving
equation (48), the equilibrium distribution is further expanded
as fos = foos + fois + - - -, and from the lowest order equation,
V)b - V foos = Cay(foos), foos is given as a local Maxwellian
distribution fy;, while fo;, is determined by the neoclassical
theory [41,42]. It is noted that in equation (49) 8 is
defined with respect to a collisional equilibrium distribution
fos, and therefore, this approach is applicable also to non-
axisymmetric configurations which do not have an exact
collisionless equilibrium distribution in general. By writing
equation (49) in other gyro-centre coordinates (R, &, ", é)
and keeping the lowest order terms in €,, we obtain a familiar
expression of the local gyrokinetic equation [7],

(43)
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where § ﬂ =8H,9 fms/0€ + h,. A flux-tube simulation solves
equation (50) in field-aligned coordinates with radial periodic
boundary condition with phase-shift reflecting the magnetic
shear [61,62]. This model is an open system developed
to study local quasi-steady turbulent transport with fixed
background profiles. Although the conservation properties in
the original gyrokinetic equations are lost, the quality of the
nonlinear simulation is often tested using the entropy balance
relation.

3. Numerical models

3.1. Numerical schemes

Solving the set of gyrokinetic equations is a rather formidable
task. To summarize, we have an equation of evolution for the
distribution function f in a 5D phase space, equation (17),
a set of five coupled ordinary differential equations for
the orbits, equations (18)—(20), and 3D integral-differential
equations for the fields, Poisson’s—or quasi-neutrality—
equation, equation (26), and, if magnetic perturbations are also
considered, Ampere’s law, equation (27). This set of equations

is nonlinear, with nonlinearities essentially contained in the
E x B and E| terms in the rhs of equations (18) and (19),
respectively.  (The nonlinearities in the polarization and
magnetization are often neglected, which is probably justified
in the core as long as |6n|/ny < 1, but less so in the edge.)
Last but not least, the background geometry of the magnetic
confinement configuration is not trivial and introduces a
very strong anisotropy in the perturbations: more details on
this aspect will be presented in the following subsection.
Analytical methods to solve these equations are restricted to a
few limiting cases and will not be discussed here. However, it
should be recalled that these can serve as important verification
checkpoints for numerical codes.

There are three classes of numerical methods that have
been used so far to solve the set of GK equations. First, the
Lagrangian approach, figure 4, consists in sampling initial
positions in phase space (loading of markers), following
marker orbits in 5D (pushing) and obtaining the source terms
for the field equations at every timestep (charge and current
assignment). The Lagrangian approach is often referred to
as ‘particle-in-cell’ (PIC), in reference to the well-known
technique described in [63]. It was introduced very early
[8] in the context of gyrokinetics. Second, the Eulerian
approach, figure 5, consists in discretizing the phase space on a
fixed (usually structured) grid, and applying finite differences,
finite volume and/or Fourier transforms for the differential
and integral operators. The Eulerian approach is sometimes
referred to as “Vlasov’. Third, the semi-Lagrangian approach,
figure 6, which uses a fixed phase space grid and obtains the
values of f at the next timestep by tracing the orbits ending
at each grid point back in time and interpolating f at the foot
of the orbit. Common to all three is the need to solve for the
field equation(s) in 3D configuration space: finite differences,
Fourier or finite element methods have been applied.

The three classes of methods each have their own
advantages and drawbacks. Several codes are based on the
Lagrangian-PIC approach, e.g. GTC [64], GT3D [65], ORB5
[66], PG3EQ [67], GTS [68], as well as Parkers’ [69] and
Sydora’s [70] (the list is not exhaustive). Lagrangian methods
can be interpreted statistically [71]. The charge and current
assignment can be viewed as a Monte Carlo integration having
an error proportional to /V/N where N is the sample size,
i.e. the number of markers, and V is the variance of the
estimator. The main difficulty with such methods is the
accumulation of these sampling noise errors in the course of
a simulation [72], which can lead to either an overestimate
[66] or an underestimate [73] of the transport level, making
this issue particularly delicate. Diagnostics of signal/noise
ratio [73], as well as other physics based quantities such
as the entropy balance [74-76] and the energy conservation
property [66,77,78] are extremely useful tools to estimate
the quality of a simulation. (Empirically, it has been found
that a signal/noise ratio above 10 is necessary in order to
have credible simulation results. Typically, this requires of
the order of 100-200 markers per cell used for the numerical
representation of the fields. If a Fourier filter is applied then
it is the number of markers per Fourier mode retained in the
filter that matters.)

Reducing the error can be achieved by increasing the
number of markers N or decreasing the variance V of the
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D: solve fields
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Figure 4. In Lagrangian-PIC methods, marker initial positions are loaded pseudo- (or quasi-) randomly in phase space (A). Markers are
evolved along their orbits (B). Charge and current perturbations are assigned (projected) to real space (C). Field equations are solved (D),

e.g. on a fixed grid in real space.

D: solve fields
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Figure 5. In Eulerian methods, a fixed grid is defined in phase space (A). Finite difference expressions are used (B) in order to obtain the
value of f at grid points at the next time step (C). Field equations are then solved (D) after integration over velocity space.

estimator. Indefinitely increasing N is not possible due to
the cpu time limitation: nonlinear gyrokinetic simulations are
very demanding in computer resources. Thus, several control
variates methods to reduce V have been applied. First, instead
of discretizing the whole distribution function f using markers,
it is better to write f = fp + §f, with fy a given function
of phase space coordinates, and use markers to discretize
3f only. The fy contribution to the charge or current is
treated analytically and is usually considered as an equilibrium
distribution function fy = foq. The question of the choice of
feq Will be discussed in the next subsection. To obtain f,
an equation of evolution is integrated numerically along the
perturbed orbits: this is called the ‘6f scheme’ [69, 79-81].

10

More precisely, 6f is written as a weighted Klimontovitch
distribution, with the particle weights w, = §f/g, g being the
PDF of the distribution of markers in phase space. The quantity
1/g can be viewed as the phase space volume ‘represented’ by
the marker and is conserved along the marker motion (Liouville
theorem). Another approach is to obtain §f directly from the
constancy of f along orbits Z(¢): §f = f(Z(t)) — fo(Z(1))
[82]. For core turbulence, we have [5f]| < feq, and the
sampling error is thus reduced by the corresponding large
factor. Further improvements to the §f scheme have been
devised, in particular in order to treat electromagnetic (EM)
perturbations, such as split-weight schemes [83-85]. The idea
is to separate out the adiabatic response, f = fo+ foed/ T+8~f,
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Figure 6. In semi-Lagrangian methods, a fixed grid is defined in phase space (A). The orbits are integrated back in time from each grid point
(B). The value of f at grid points is obtained by interpolation at the foot of the orbit (C) and using the property f = const along orbits. Field

equations are then solved (D) after integration over velocity space.

for electrostatic perturbations, which has been generalized to
f = fo+ foeSV¥e/ T + 6f, with §¢egr = §¢p + f aA“/at dXH
for electromagnetic perturbations. A difficulty with EM
perturbations lies in the existence of two large terms in
Ampere’s equation that should cancel out: this is known as the
inaccuracy or the cancellation problem, which is particularly
severe for long wavelength modes and B, > me/mi. A
generalization of the split-weight scheme was shown in [85] to
overcome the problem. Another option is to use an enhanced,
adjustable control variates technique [86], in which the key idea
is to replace as much as possible of the Monte Carlo integration
for charge and current assignment with analytic calculations.
It was shown that the required number of markers could thus
be reduced by orders of magnitude for EM modes in the long
wavelength limit. For EM simulations, fluid-kinetic hybrid
electron models have been proposed, e.g. in [87], which have
the specific feature of removing the tearing mode analytically,
thus being less demanding for the numerical resolution and
improving the numerical properties.

Note, however, that Alfvén waves have been successfully
simulated with the Lagrangian-PIC approach and all plasma
species treated kinetically [88], i.e. without using the fluid-
hybrid model.

Another way to reduce marker noise is importance
sampling [71,77], afamous example of which is the Metropolis
algorithm [89] introduced more than 50 years ago for Monte
Carlo computations of equations of state. In our context, this
consists in choosing adequately the marker distribution g so
that it is large in regions of phase space which have large
perturbations. The simple way to prescribe g o fiq, known as
proportional loading, is far from being adequate: it is shown
in [78] that a substantial gain in the quality of the simulation
can be obtained by applying an optimized loading scheme.

Generally speaking, controlling noise is necessary in order
to preserve important physical properties such as zonal flow
structures. The relevant quantity is the number of markers per
numerical degree of freedom of the field representation. Thus,
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various filtering techniques have been applied in Lagrange-
PIC simulations; a striking example is a magnetic field-aligned
Fourier filter [66] that takes advantage of the strong anisotropy
of the perturbations.

Eulerian schemes are not subject to the issue of maker
sampling noise which is critical in Lagrangian-PIC methods.
On the other hand, when explicit time integration is applied,
they are subject to the Courant-Friedrichs—Lewy (CFL)
stability condition [90,91], which constrains the maximum
time step as a function of grid space resolution. Several
gyrokinetic codes use this approach, such as GS2 [92,93],
GYRO [94], GENE [95,96], GKV [97], GKW [98] and
GT5D [58,99]. Note that a way to circumvent the CFL
restriction is to use implicit or semi-implicit time integration
schemes [99]. The success of Eulerian schemes relies
in particular on an accurate and stable treatment of the
E x B nonlinearity. In flux-tube codes such as GS2 and
GKYV this is successfully resolved using spectral Fourier
methods and anti-aliasing procedures. Such methods are
applicable if the system has background symmetry and
periodic boundaries. However, global approaches cannot
use this approach and this is why different Eulerian (and
semi-Lagrangian) schemes have been explored. Another
issue is that finite difference schemes introduce numerical
dissipation, which has to be assessed by grid convergence
studies. Fortunately, this numerical dissipation is also what
makes steady-state simulations possible as will be discussed
in section 3.3. On the other hand, while one would like to keep
numerical dissipation as small as possible (in the sense that it
should have a benign effect on the physics of interest), there is,
generally speaking, a trade-off between this dissipation and the
overshoot problem: high order finite difference schemes can
result in unphysical oscillations. In particular, the positivity of
f is not guaranteed, unless special algorithms are devised to
this effect, such as the positive flux conserving method [100].
Conservative finite difference schemes [101] have also been
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introduced [58, 99] and their impact in helping to obtain long,
steady-state simulations is exposed in section 3.3.

Given the respective difficulties faced by Lagrangian-
PIC and Eulerian simulations, a third approach, called semi-
Lagrangian, has been pursued [102-104]. The idea is to
benefit from the best of two worlds, i.e. on the one hand
using characteristics so as to remove the CFL restriction
inherent in explicit Eulerian methods and, on the other hand,
using a regular Eulerian grid so as to avoid the statistical
noise problem inherent in Lagrange-PIC methods. The
technique of operator splitting is applied in order to avoid
multi-dimensional interpolations. The main difficulty lies in
finding an appropriate interpolation scheme, where a trade-
off between dissipation and overshoot has to be found. High
order interpolation schemes are less dissipative but can lead to
unphysical oscillations and negative f regions [105]. In order
to address this problem the ENO/WENO (weighted/essentially
non-oscillatory) schemes have been developed, which are
generalizable to arbitrary high order interpolation in smooth
regions while avoiding spurious oscillations in non-smooth
regions [106, 107]. Another delicate point to consider is the
issue of particle conservation which, even if only small errors
are made, can lead to large errors in the potential. Conservative
semi-Lagrangian schemes have, to our knowledge, not yet been
developed.

The implementation of collision operators is more
straightforward in Eulerian and semi-Lagrangian than in
Lagrangian-PIC or §f formulations, because the partial
derivatives in velocity space that these operators involve are
readily available from the phase space grid discretization.
Several Eulerian gyrokinetic codes include collision operators
[52,92,94,96,97] the technical difficulty residing in the
timestep limitation due to stability criterion in explicit
schemes, which can be circumvented by partly implicit
schemes.

In Lagrangian PIC, the information about velocity
dependence of the distribution function has to be reconstituted
through a binning process, which can be both time consuming
and subject to statistical sampling errors. The approach usually
followed is a Langevin—Monte Carlo formulation: collisions,
acting as a diffusion in velocity space, are modelled as a
random walk process [51,108]. The markers, on top of
their deterministic evolution, equations (18)—(20), are given
randomly chosen kicks at every time step. The distribution
of these kicks is chosen so as to describe, in a statistical
averaged sense, the time evolution of f due to collisions.
This has been applied to several situations, including electron—
ion collisions [37], neoclassical simulations [54, 109-111] and
ion—ion collisional damping of zonal flows [112]. The main
drawback of this technique is that it leads to an increase in
statistical noise, described in terms of ‘weight spreading’, for
which a solution is proposed in [113]. Indeed, the weights
must now be interpreted as a random variable field with a
finite variance as an additional dimension of phase space [114].
A low-noise collision operator scheme for PIC simulations is
introduced in [115] that does not invoke the Langevin—Monte
Carlo approach.

Gyrokinetic turbulence simulations are extremely demand-
ing in computer resources and require to be run on the most
performing platforms. These are massively parallel, involving
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thousands of processors. Thus, in order to take advantage of
the evolution of HPC (high performance computing), turbu-
lence gyrokinetic codes must be parallelized [64, 116]. Sev-
eral strategies can be pursued to this effect, for example domain
decomposition, in which different processors solve for a differ-
ent portion of the whole phase space domain. Domain decom-
position is in principle applicable to all three classes of schemes
(Lagrangian, Eulerian and semi-Lagrangian). In addition, a
domain cloning technique can be applied, which is useful in
particular for Lagrangain-PIC codes, in which all processors
of a clone family contain identical real space information (i.e.
field quantities) but different markers [117, 118]. In all these
algorithms, communications between processors are involved,
and it is crucial that these communications do not dominate the
computing time. The question of scalability is important, i.e.
on how the performance of the code improves when increasing
the number of processors. The scalability is measured in strong
scaling tests (a problem of fixed size is given to an increasing
number of processors) and weak scaling tests (problems whose
size increases with the number of processors). It must be noted
that the most demanding inter-processor communication type
is the one in which all processors have to exchange informa-
tion with all others (‘all-to-all’). This occurs typically when
data have to be transposed, e.g. when Fourier transforms are
computed in the direction of the domain decomposition, and
strategies have been developed to nevertheless allow for a good
parallel efficiency.

3.2. Geometry, locality, globality

A prominent feature of turbulence in magnetic fusion plasmas,
which distinguishes it from turbulence in neutral fluids, is
the importance of geometrical aspects brought about by the
presence of the background magnetic field. This introduces
a strong anisotropy of the low frequency perturbations. As
a result of the gyrokinetic ordering, these have very long
wavelengths in the parallel direction, kjp; ~ p, < 1, whereas
the perpendicular wavelength spectrum extends down to the
Larmor radius scale. Moreover, core plasmas are very weakly
collisional, with a mean free path larger than the system size.
Consequently, the geometry of the magnetic configuration
strongly affects microinstabilities and turbulence.

The anisotropy can be used to the advantage of numerical
schemes: the use of field-aligned coordinates brings an order
of magnitude improvement in all approaches (Lagrangian,
Eulerian and semi-Lagrangian) described in the previous
section. A further simplification is made in flux-tube codes,
in which the domain considered is a vicinity of a magnetic
field line. The equations are expanded in this vicinity such
that all coefficients are constant: for kinetic profiles, fy =
const, dfp/dx = const = T const, d7'/dx const,
dng/dx = const and for geometrical coefficients, all metric
tensor elements are assumed to be constant = g = const, § =
const. Typically, periodic boundary conditions are prescribed,
which is justifiable for the coordinates within a magnetic
surface, but less so in the radial direction. More precisely,
periodic radial boundary conditions are correct in the limit of
infinite system size (p, — 0) and infinite computational box
radial size. From a practical point of view, the radial extent of
the computational box should be chosen much larger than the
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radial turbulence correlation length. This can be challenging
in particular for ETG simulations in which very elongated
perturbations (streamers) are generated. Profile variations and
large scale relaxations are not described in flux-tube codes. In
other words, the radially averaged gradients are frozen in such
simulations. Moreover, the shearing of equilibrium profiles is
absent. Equilibrium density and temperature gradient profile
shearing was shown to have an important incidence when
studying finite size effects (p, scaling) [119]. Global codes, on
the other hand, take the geometry of the whole plasma domain
into account. Unlike flux-tube codes they do not make use of
radial periodic boundary conditions. In truly global models,
the profiles are left to evolve without a priori constraint, and
thus can describe phenomena such as profile shearing, profile
relaxation and avalanche propagation [120] in a consistent
manner. Flux-tube codes are still very useful. In particular,
they can serve as a valuable cross-check of global codes, the
results of which have been shown to agree for sufficiently small
P [119].

Another issue is related to the treatment of the regions near
to the boundaries of the computational domain. Some codes
use ‘buffer zones’ at both inner and outer sides of the radial
domain so as to dampen the perturbations of the distribution
function and of the fields. This results in simulations with fixed
average radial gradients. Other codes do not make use of buffer
zones and let the distribution function and the fields evolve
freely with, on magnetic axis, only a regularity condition
(unicity condition) [66]. While there is, physically speaking,
no true boundary on the inner side, the question of the outer
boundary is more delicate. Most gyrokinetic codes focused on
core turbulence circumvent this problem by assuming a region
of small enough (sub-critical) gradients in the vicinity of the
‘edge’, so that turbulent perturbations die out before reaching
the boundary of the computational domain. Coupling of core
gyrokinetic turbulence codes with edge turbulence codes is still
largely an open field of research. Not only is the physics in
the SOL different but also the topology of magnetic field lines
changes from closed to open with, in addition, the complication
due to the presence of the magnetic separatrix in diverted
discharges.

The geometrical complexity of the magnetic configuration
is taken into account to various degrees in the different
gyrokinetic codes. Essential geometrical features include
the magnetic curvature, safety factor and shear. Simplified
equilibrium models, e.g. the so-called s—o model, which
assumes circular shifted magnetic surfaces, have been used in
gyrokinetic computations, including the well-known Cyclone
benchmark [121]. Other models consider more shaping
effects and rely on a local equilibrium model [122] that takes
into account finite aspect ratio, elongation and triangularity.
Some codes use ideal MHD axisymmetric toroidal equilibria
without further approximation directly obtained from Grad-
Shafranov solvers [123]. Most of the existing codes assume an
axisymmetric toroidal configuration applicable to tokamaks.
There has recently also been an effort for gyrokinetic
simulations in 3D stellarator configurations both for flux-tube
[124-126] and for global [127, 128] codes.

Geometrical aspects also affect the equilibrium distribu-
tion function f.q. In global collisionless gyrokinetics, fqq
is a function of the unperturbed constants of motion. In
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axisymmetric systems, these are ¢, i and the canonical angular
momentum p,. The latter is proportional to v+
(g/m)(1/B)vy, where  is the equilibrium magnetic poloidal
flux and I = I(¥) = RBy,. In some formulations of the §f
scheme (f = fo +df) the choice fo = feq is assumed but the
local approximation vy ~ v is made for the functional depen-
dence of feq and the time variation of f, along unperturbed
orbits is neglected. The error made in neglecting the variation
of fy along unperturbed orbits is proportional to the equilib-
rium variation over an orbit width, and thus is more pronounced
in small systems (large p,) and regions of large gradients (e.g.
transport barriers). Most importantly, this choice is not consis-
tent and can lead to the spurious growth of zonal E x B flows
in the early stages of the simulation [129] or to spurious oscil-
lations in the late nonlinear phase [65]. Similar problems are
found in full- f algorithms when the simulations are initialized
with finix = fo a function of v instead of fiyix = feq a func-
tion of ¥y [130]. The solution is to choose a canonical initial
distribution function [65, 129, 130]. Note that if the flux-tube
approach is adopted or if another similar local approximation
is made, the radial variation of f.q is neglected (while its radial
gradient is kept, which means there is an inconsistency between
feq and its gradient) and therefore the variation of f;, along
unperturbed orbits is anyway neglected (which is correct only
in the 1/p, — oo limit). This should be kept in mind when
comparing flux-tube and global codes. Finally, we recall that
a physically relevant equilibrium distribution function in the
presence of gradients naturally involves radial electric fields
and implies the inclusion of collisional effects as discussed in
section 2.3. Moreover, for non-axisymmetric (or non-helically
symmetric) configurations there exists no collisionless f.q with
radial gradients, because of the lack of conservation of p,,, and
a consistent description with collisions and electric fields is a
conceptual necessity. Other differences exist in the geometri-
cal treatment, such as for the flux-surface-averaged potential
(¢)¢ (which appears in the expression of the electron Boltz-
mann term in the quasi-neutrality equation when adiabatic
electrons are assumed). For example, the poloidal dependence
of equilibrium coefficients appearing in the quasi-neutrality
equation is sometimes neglected so as to obtain a decoupled
equation for (¢);. Neglecting this toroidal linear coupling for
the zonal flow term can resultin a change on its dynamics [3]. It
should be noted that the correct expression for (¢); implies that
the quasi-neutrality equation is a differential-integral form. In
axisymmetric systems this means a non-local operator in the
poloidal coordinate. In 3D configurations, the non-locality is
for both poloidal and toroidal coordinates, which poses techni-
cal difficulties due to the large computer memory requirement
for the field solver.

3.3. Conservation properties and statistical convergence

The system of gyrokinetic equations satisfies a number of
conservation properties such as particle, momentum and
energy. In addition, the evolution of entropy should satisfy
a balance equation. Simulations based on this theory should
verify these properties as a part of the determination of
their numerical accuracy. Turbulent processes responsible for
transport are chaotic in nature, and thus the predictions made by
direct numerical simulations have a statistical aspect. The aim
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is thus to obtain long enough, statistically converged, ‘steady-
state’ simulations.

The issue of energy conservation is intimately related to
the formulation of the gyrokinetic equations and to the presence
of the parallel velocity nonlinearity (PVN), resulting from
the first term on the right-hand side of equation (19) and the
perturbed part of the distribution function. More precisely,
writing formally f; = fo, + 8 f;, with fo, a time-independent
(equilibrium) distribution function, the PVN is a contribution
to equation (17) which can be written as
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From the gyrokinetic ordering point of view, it can be
shown that this term is an order smaller than the £ x B
nonlinearity, resulting from the third term of the right-hand
side of equation (18) and the perturbed part of the distribution
function, in other words a contribution to equation (17) which
can be written as
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On the basis of this argument, the PVN has been neglected in
several gyrokinetic codes.

After careful checking of the numerical convergence
properties, using both Eulerian and Lagrangian-PIC codes
in both straight and toroidal geometries, the smallness of
the physical effect of the PVN on ITG turbulence and zonal
flow dynamics has been confirmed [75, 131, 132]. However,
verifying the energy conservation property (which is violated
if the PVN is neglected) is a very useful check of the accuracy
of the numerical simulation [77]. Moreover, retaining the
conservative nature of the original gyrokinetic equations and
reflecting this nature as faithfully as possible in the numerical
formulation has been shown to be beneficial: a non-dissipative
conservative finite difference scheme [101] has been used in
the Eulerian code GT5D [75,99] resulting in a stabilizing
influence, especially for long-time simulations.

In [38, 133] it was shown that some dissipation must be
present in the system in order to get a statistical steady state for
all quantities in the simulation. Whereas in Eulerian methods
numerical dissipation of the distribution function is present
due to the discretization, this is not the case for Lagrange-
PIC methods for which the filamentation of phase space (see
below) can lead to a statistical sampling noise problem (rather
than dissipation). Consequently, for collisionless cases the
fluctuation entropy indefinitely increases in time, even though
lower order moments of f like the energy flux may seem
to have reached steady state [74]. This has been known
as the entropy paradox. A generalized thermostat (W-stat)
was proposed in [133] as a way to resolve the problem. In
PIC methods the entropy increase is also accompanied by
an indefinite increase in particle noise, due to the fact that
the mean-square marker weights, (wlzj), grow secularly: this
quantity is approximately proportional to both the sampling
noise and to the numerical entropy. In [134], a noise-control
algorithm based on a W-stat has been successfully applied
using modified Krook operators, allowing for long, steady-
state simulations. In [76] the entropy balance relation is
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verified using this noise control operator and it is shown for
the first time that statistical steady-state turbulence simulations
can be reached with the Lagrangian-PIC approach, thus ending
a longstanding controversy. Another technique successfully
applied is coarse graining, which consists in periodically
smoothing the particle weights in small regions of phase
space [135].

For Eulerian codes the issue of statistical steady state
is also important. Collisionless gyrokinetics leads to an
indefinitely thin filamentation of phase space [97] that is sooner
or later missed by the finite size grid. In Eulerian schemes there
is usually, in addition to physical dissipation, a finite numerical
dissipation related to the finite difference algorithms used. This
numerical dissipation can in fact help the simulation to reach
steady state. For example, using the GYRO code [94], it is
shown in [136] that the entropy production by filamentation is
balanced by entropy dissipation by the upwind scheme, thus
simulations can reach a statistically converged steady state.
Sometimes a numerical hyperdiffusion term has to be added to
the equations in order to stabilize the scheme. Weak collisions
also lead to a statistical steady-state, which can be understood
as a result of entropy generation, transfer and dissipation at
small scales in phase space [40, 97]. Another approach, based
on physical dissipation with pitch angle and energy scattering
effects, has been pursued in the GKV [97], GYSELA [55],
TEMPEST [56] and GT5D [58] codes.

The extent to which simulation results such as the turbulent
transport fluxes depend on the used dissipation mechanism is
still an open question. Detailed comparisons, e.g. of the zonal
flow saturation level, should be made between the different
models.

3.4. Benchmarking

Given the fact that gyrokinetic nonlinear turbulence
simulations are extremely demanding in computing resources,
these simulations are often run at the limit of the available
power and, consequently, the various limitations of each
numerical scheme are often put to the test. Moreover, as should
be clear from the above subsections, there are substantial
differences in the actual implementation of the gyrokinetic
equations in the various codes, relative e.g. to the geometrical
model used, the type of nonlinearity retained, the electrostatic
or electromagnetic nature of perturbations, the way sources are
implemented, the locality (flux tube) or globality, etc. Thus it
is very important that the various approaches and codes be
compared with each other in their common domain of validity.
This is part of a more general validation and verification
exercise for which best practices are exposed in [137].

For ITG instability and turbulence in tokamak plasmas, an
important benchmarking exercise was undertaken in [121], for
which a set of parameters, known as the ‘cyclone’ base case,
was defined inspired from DIII-D H-mode experiments [138].
Interestingly, these were aiming at investigating the effects of
plasma shaping, in particular elongation, on the confinement
performance. However, the cyclone base case was run using a
simplified geometrical model of circular concentric magnetic
surfaces cross-section and local flux-tube codes, with the
notable exception of the global code from Sydora [70].

Linear tests imply a comparison of the spectra of real
frequencies and growth rates of the most unstable modes,
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Figure 7. Zonal flow and geodesic acoustic mode (GAM) damping
test, showing the time evolution of the E x B velocity from an
initial perturbation. The continuous black line is the global
gyrokinetic simulation result obtained with the ORBS5 code [66], the
dashed line is the analytical estimate of amplitude taking into
account GAM damping [204, 205] and the horizontal line is the
undamped residual as predicted in [139].

for which good agreement was reported between global
and flux-tube gyrokinetic and gyrofluid codes (see figure 1
of [121]). This agreement extends also to the predicted
value of the critical gradient, (R/L7)qie ~ 4.0. Another
important linear test is on the undamped residual zonal flow
(ZF) level resulting from an initial perturbation, as predicted
analytically by Rosenbluth and Hinton [139] (see figure 2
of [121]). This test was essential in explaining the origin of
the discrepancy between gyrokinetic and gyrofluid models,
which overestimated the ZF damping and thus predicted a
higher estimate of ITG transport. However, it is still unclear
whether a correct treatment of the undamped residual zonal
flow is enough to remove all discrepancies: there is, generally
speaking, a more complex interaction of turbulence with zonal
flows, e.g. ‘geodesic transfer’ [140]. Therefore nowadays tests
also include the transient excitation of geodesic acoustic modes
(GAMs) and a measure of their frequency and damping rate.
An example with the ORBS5 code [66] is shown in figure 7.
Thus, a verification of the proper treatment of axisymmetric
modes can be made.

Nonlinear cyclone predictions of heat diffusivity (see
figure 8, from [121]) have shown important differences
between gyrofluid and gyrokinetic codes. Due to the
incomplete physics related to the treatment of the zonal flows
in gyrofluid models, the predicted level of transport was
overestimated (various modifications of the radial drift closure
and FLR terms [141, 142] can help to improve the comparison
between gyrofluid and gyrokinetic simulations). Gyrokinetic
models predict a vanishingly small transport just above the
linear critical gradient, interpreted as turbulence suppression
by zonal flows, and resulting in an upshifted value of the
temperature gradient above which transport takes off (the
so-called ‘Dimits shift’), (R/L7)er ~ 6.0. The fastincrease in
transport above this upshifted effective critical gradient implies
profile stiffness: as a consequence, a large increase in input
power results in only a small increase in temperature gradient.
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Figure 8. Normalized ion heat diffusivity as predicted by gyrofluid
codes using different closures (crosses and filled diamonds),
flux-tube gyrokinetic codes (open diamonds and stars), a global
gyrokinetic code (X) and a quasi-linear multi-mode model
(triangles). All models assume adiabatic electrons. For more details
see [121].

Incidentally, this stiffness makes true predictions and
comparisons (between codes and with experiments) difficult
for gradient-driven simulations, and can result in substantial
differences.  For example, for the cyclone base case
parameters, the predicted transport level by gyrofluid codes
is a factor at least 2 higher than gyrokinetic codes [121].

Geometrical aspects are also crucial. Already for the
cyclone benchmark [121] differences were noted between the
simple circular concentric approximation (s—« model) and a
realistic MHD equilibrium, even in linear calculations. These
aspects were recently revisited [143] and the conclusion is that
the main part of the discrepancy stems from inconsistencies
of first order in inverse aspect ratio ¢ in the s—« model (even
at low ), whereas very little is due to physical finite aspect
ratio effects (e.g. low B Shafranov shift). The importance of
having a sound basis for studying further geometrical effects
(elongation, triangularity, etc) cannot be underestimated. But
this is true also for finite size effects (p, scaling). This has led
to some controversy in the community because of apparently
conflicting results as to the local limit of global simulations
[119, 144], while it was shown in [143] that the discrepancy
originates essentially from the s—« inconsistencies mentioned
above.

Toroidal ITG benchmarking has been extended to other
codes [145]: the 6f Lagrangian-PIC code ORBS5 [66], the
full- f Lagrangian-PIC code ELMFIRE [57] and the semi-
Lagrangian code GYSELA [104], all global, and the Eulerian
flux-tube codes GENE [95,96] and GKW [98, 146]. The
comparisons also involve the time evolution of turbulence
spectra and reasonably good agreement has been achieved.

There have been so far many fewer benchmarks of the
trapped electron mode (TEM) and ITG modes with non-
adiabatic trapped electron response. This is probably the most
difficult electrostatic case, from the numerical point of view,
because both ion and electron dynamics have to be solved
simultaneously. A linear comparison of GTC [64], GT3D [65]
and FULL [147] codes can be found in [148], which includes
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interesting ITG to TEM transitions at short wavelengths and
at small n; values.

Simulations of ETG turbulence in tokamaks have led
to some controversy, with a prediction, made with Eulerian
flux-tube codes, of a high transport level [93,95] which was
attributed to the predominance of radially elongated streamers
that persist in the nonlinear stage, whereas simulations made
with a global Lagrangian-PIC code resulted in much lower
levels of transport [149]. This has prompted a check of the
impact of noise in Lagrangian-PIC simulations [72]. An
ETG benchmark point was defined [150] and the origin of the
discrepancy found [151] after numerical convergence studies
[152] using a flux-tube Lagrangian-PIC code [67]. A further
confirmation of the high level transport result was made with
the global ORBS5 code in a series of low-noise Lagrange-PIC
simulations [73].

There has been so far no systematic code benchmarking
and cross-comparison similar to the ‘cyclone’ case for other
types of confinement than tokamaks. Nevertheless, progress
has been made recently in gyrokinetic simulations of non-
axisymmetric systems [124-128]. We note that defining a
‘cyclone’ case for 3D systems is a difficult task given the
enormous parameter space characterizing the geometry of such
configurations.

As a summary of this section, we conclude that having
several completely different methods for the numerical
resolution of gyrokinetic equations is not a luxury, but a
necessity. We consider that each major code development
has objectively contributed to the progression of research in
the field of gyrokinetic turbulence of magnetically confined
plasmas.  Cross-comparisons have permitted to resolve
important physical and numerical issues, and it is hoped
that such comparisons will continue in the future. As
the few examples mentioned above show, it is crucial that
these comparisons consider the differences, sometimes only
apparently benign, between the details of the implementation
of gyrokinetic equations into the codes.

4. Fundamentals in gyrokinetic turbulence and
transport

Fundamental ingredients of plasma turbulent transport and
important concepts associated with the gyrokinetic simulations
of the microturbulence in magnetic fusion plasmas are
described in this section, that is, microinstabilities, zonal flows,
geodesic acoustic modes (GAMs), transport scaling, etc. More
detailed explanations for turbulent transport will be given in
the next section.

4.1. Microinstabilities

Magnetically confined fusion plasmas with high ion and
electron temperatures are filled with a variety of fluctuations
observed in a wide range of spatial and temporal scales. Plasma
turbulence causing the anomalous transport of particles,
momentum and energy is considered to be driven by
microinstabilities whose scale lengths related to ion or electron
gyroradii are much shorter than equilibrium scales. Drift
waves [33,34] are destabilized by density and temperature
gradients above thresholds, even if the plasma equilibrium
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configuration is stable to the magnetohydrodynamic (MHD)
instabilities. Since the first gyrokinetic simulations of drift
waves in the early 1980s [8], the application area has been
widely expanded as described below.

4.1.1. Ion temperature gradient mode. The ion temperature
gradient (ITG) mode is believed to be responsible for the
anomalous ion heat transport in magnetized plasmas with
low B, where B p/(B*/8m) for the plasma pressure
p and the magnetic field strength B. No particle flux
nor electron heat transport is, however, caused by the ITG
turbulence with adiabatic electron response. Spatial scales
of the ITG turbulence perpendicular to the confinement field
is characterized by k, p, ~ 0.1-1 where the ion acoustic
gyroradius p, = C,/; and the ion acoustic speed C, =
«/T./m;. Here, m; and Ty represent the mass and temperature
of the sth species. The perpendicular phase velocity is
related to the ion diamagnetic drift motion. The gyrokinetic
simulations of ITG driven turbulence were first applied to a
simple slab geometry [37, 153].

The toroidal ITG mode is destabilized by coupling of
toroidal magnetic drift and E x B convection, and its linear
eigenfunction has the typical ballooning structure, where the
parallel scale length is characterized by the connection length
gR. Here, g and R mean the safety factor and the major
radius, respectively. Because of the strong anisotropy in
the mode structure, the microturbulence generally exhibits a
two-dimensional nature. The first gyrokinetic simulation of
ITG turbulence in a global tokamak configuration was carried
out in the early 1990s [154]. Theoretical and numerical
models of ITG turbulence simulations were established in
the early days. Specifically, the importance of turbulent-
generated sheared £ x B flows (zonal flows) and a proper
treatment of the adiabatic electron response have been widely
recognized through local flux-tube simulations using gyrofluid
and gyrokinetic models [67, 155—-158] (see also section 4.2.1
for more detailed discussions). Then, intensive simulation
studies have confirmed the saturation mechanism of the
toroidal ITG instability due to the turbulent-generated zonal
flows which lead to a reduction in the ion heat transport and
the resultant up shift of the critical temperature gradient (that
is, the so-called Dimits shift) [121]. Reasonable agreement of
various gyrokinetic simulations in ion heat transport flux has
also been confirmed for a limited parameter space [121], which
will be described in detail in section 5.1.1.

4.1.2. Trapped electron mode. 1f a kinetic electron response
is included, the trapped electron modes (TEM) can be
destabilized in a wavenumber range overlapping that of the
ITG mode. The collisionless TEM mode has lower stability
thresholds than those for the toroidal ITG instability, but its
growth rate is decreased by increasing the collision frequency
due to de-trapping of particles [45]. As a potential candidate
for causing the anomalous particle and electron heat transport,
the TEM turbulence is also actively investigated by means of
gyrokinetic simulations [159-164], the present status of which
will be described in section 5.1.2.
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4.1.3. Electron temperature gradient mode. The electron
temperature gradient (ETG) mode is the counterpart of the ITG
mode. When the adiabatic ion/electron response is assumed
and the Laplacian term is neglected in the gyrokinetic Poisson
equation, the linear ETG mode is completely isomorphic to
the ITG mode, while there is a difference in the adiabatic
response to the zonal flow potential (see section 4.2.1). It
means that the normalized gyrokinetic equation in a local
flux-tube configuration has exactly the same form for the two
modes except for the sign of the electric charge, where the
wavenumbers and frequencies are scaled with the electron and
ion gyroradii and their parallel transit time. The local ITG
and ETG turbulence cause the heat transport normalized in
the gyro-Bohm unit, ,otzsvts /L, where vy, py, and L denote
the thermal speed (=+/7s/m;) and the thermal gyroradius
(=v/ Q) of the sth species and an equilibrium scale length,
respectively. According to the gyro-Bohm scaling, for 7, =
T;, the electron heat transport caused by ETG turbulence
is expected to be smaller by a factor of /m./m; in real
units than the ion heat transport driven by the ITG mode.
This is, however, in contradiction to many observations
of the strong anomaly in the electron heat transport. To
explain this point, gyrokinetic simulations of the toroidal ETG
turbulence have been carried out (see, e.g., [95, 165]), and their
current achievements and remaining issues will be reviewed in
section 5.1.2.

4.14. Miscellaneous. ~The ITG and TEM modes are
stabilized as the plasma § increases. Instead, electromagnetic
modes, such as the kinetic ballooning mode (KBM) or
the Alfvén ITG mode [147,166,167], are destabilized. A
transition threshold from the ITG-TEM to KBM is, typically,
local B ~ 1% (see, e.g., [147]). Gyrokinetic simulations
including the electromagnetic and kinetic electron effects
have been applied to the linear KBM [78, 88, 168] as well
as the KBM turbulence [169] that may be important for the
anomalous transport in the high B regime.

In addition to the drift wave turbulence described above,
gyrokinetic simulations are employed for other subjects such
as the internal kink mode [170], the collisionless tearing
mode [171], the shear Alfvén waves [88,172] and the
energetic particle transport due to microturbulence [173-175].
Application of gyrokinetics to a short-wavelength regime of
the MHD turbulence in space and astrophysical plasmas is
also considered in [176-178].

Several different types of microinstabilities have been
briefly described above. While spatio-temporal scales of
the ITG and ETG modes are different by a factor of p;/pe,
there are overlaps in frequency and wavenumber spectra
through those of the TEM mode. Thus, the interactions of
microinstabilities of different types may play a non-negligible
role in determining the whole properties of turbulent plasma
transport. This problem has recently been addressed by direct
gyrokinetic simulations that cover the ITG/TEM/ETG regimes
simultaneously (see section 5.1.2). Cross-scale coupling of the
ITG mode and the microscale zonal flows associated with the
ETG turbulence was also discussed in an earlier work [179].
More quantitative understandings on this issue demand the
use of larger computer resources as well as theoretical and/or
numerical modellings relevant to simulations for the wide
spatio-temporal scales.
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4.2. Zonal flows and GAMs

In section 4.2.1, we describe some basic aspects of zonal flows
(the turbulent-generated sheared E x B flows withm = n = 0)
in ITG or ETG turbulence. An oscillating component of
E x B flows with n = 0 referred to the geodesic acoustic
mode (GAM), which is coupled to the zonal flows through
the toroidicity, is explained in section 4.2.2. Kinetic response
theory and simulations of zonal flows and GAMs in toroidal
systems are also summarized in section 4.2.3.

4.2.1.  Basic aspects of zonal flows. As mentioned in
section4.1.1, one of the most important findings resulting from
gyrokinetic simulations of toroidal ITG turbulence is effective
regulation of turbulent transport by zonal flows [6, 180]. The
zonal flow is a sheared E x B plasma flow with poloidal
and toroidal mode numbers m = n = 0, and is generated
through the Reynolds stress in the drift wave turbulence. The
radial scale length of the zonal flow shear is associated with
a typical wave number range of turbulence. The zonal flow
being parallel to flux surfaces causes no perpendicular heat nor
particle transport. Nevertheless, it plays quite an important
role in regulating turbulent transport, since sheared plasma
flows can effectively suppress the microturbulence [181-183].
Thus, the self-generated zonal flow in the plasma turbulence is
now recognized as a key constituent of a drift wave-zonal flow
system.

The zonal flows are also found in nature. The most
famous example is the strong longitudinal winds in the Jovian
atmosphere. Early evidence of zonal flows in 2D turbulence
fluid simulations was found in [184]. The zonal flow was
also found by a computer simulation of resistive drift wave
turbulence [185]. In simulations of ITG turbulence, the zonal
flow was identified by means of local flux-tube models in the
early 1990s [67,155-158]. The increase in computer power
enabled one to perform global gyrokinetic simulations of zonal
flow generation in ITG turbulence at a later time [64, 70] where
the proper treatment of adiabatic electron response [186, 187],
dne/ng = e(¢p — (¢p)r)/ T, was also implemented.

A typical result of the global ITG turbulence simulation
with self-generated zonal flows is shown in figure 9(left). The
ion heat transport significantly increases for the case without
zonal flows (figure 9 (right)). Because of the strong reduction
in the ion heat transport in the ITG turbulence, the zonal
flow has attracted many researchers’ attention not only in
numerical simulations but also in laboratory experiments. The
first identification of zonal flows in fusion plasma experiments
was made by utilizing a set of heavy ion beam probes in the
Compact Helical System [188]. Recent progress of zonal flow
experiments is reviewed in [189].

Mechanisms of zonal flow generation have been
considered as resulting from a parametric nonlinear instability
through coupling of a zonal flow and coherent drift waves
[190], modulational instability of a drift wave spectrum
[191] and the Kelvin—Helmholtz (K-H) instability of radially
elongated vortices [192]. For the saturation of zonal flow
growth in turbulence, several mechanisms have been discussed,
and are summarized in [6]. Generalized K-H instability is
one of the candidates for a saturation mechanism of zonal
flows in the ITG [192, 193] and the ETG [194, 195] turbulence.
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Figure 9. Colour contours of potential fluctuations found in the
steady state of nonlinear global gyrokinetic simulations (a) with and
(b) without zonal flows [64]. To highlight differences in the
turbulent eddy size, the zonal flow component is filtered out in the
plots.
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Moreover, the importance of parallel flows and viscosity in the
zonal flow saturation is pointed out [196].

The zonal flows are more strongly generated in the ITG
turbulence than in the ETG turbulence. In the former, since the
electron gyroradius is negligibly small, the adiabatic electrons
cannot respond across the zonal flow potential that is constant
on a flux surface. No electron density perturbation, thus,
arises for the zonal flow components of m n 0,
since the parallel and perpendicular motions are on the flux
surface. Therefore, in the ITG regime, the electron density
is modelled as dn./ng = e(¢p — (¢)¢)/ 1. [186, 187] where
(¢)r means the electrostatic potential averaged on the flux
surface (that is, the zonal flow potential). Hence, in the quasi-
neutrality condition given by neglecting the —V?¢ term in
the gyrokinetic Poisson equation in equation (26), the ion
density perturbation vanishes for the zonal flow component.
This means that the ion gyro-centre density perturbation (§7;)
for zonal flows balances the ion polarization (they correspond
to the first and second terms in square brackets for s = i in
the right-hand side of equation (26)). In a long wavelength
limit k1 p; < 1, thus, edzr/Ti o 8iti/ k2 p?no, where ¢zr
means the electrostatic potential of a zonal flow. For other
perturbations with m # 0 or n # 0 such as the ITG mode, in
contrast, e¢/T; o 8it;/(Ti/ T, + k3 p?)ny because of the non-
vanishing electron response. This is referred to as small inertia
of zonal flows in the ITG regime [6], and leads to the zonal flow
dominant state of turbulence. In the ETG regime, the adiabatic
ion response given in the large k, p; limit can balance the zonal
fluctuations of the electron density. Thus, both for the ETG
mode and zonal flows, e¢p/ T,  dn./(T./T; + kipg)no, where
dn. means the gyro-centre density perturbation for electrons.
The different responses of the background species result in
weaker generation of zonal flows and higher heat conductivity
normalized in the gyro-Bohm unit for the ETG turbulence than
that for the ITG case.

Zonal flows associated with the ETG mode are, therefore,
less important for transport reduction than those in the ITG
turbulence, but exhibit more variety, such as sensitivity to the
magnetic shear [194, 195] and transition to a vortex-dominant
state with the density-gradient dependence [197]. In addition,
the weak zonal flow resulting in higher saturation levels of ETG
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turbulence causes difficulties in numerical simulations, which
induces arguments on the soundness of gyrokinetic simulations
of ETG modes [72, 151, 198].

4.2.2. Geodesic acoustic modes. In toroidal systems, the
zonal flow is coupled to a perturbation with m # 0 and
n = 0 which is referred to as the geodesic acoustic mode
(GAM) [199]. An E x B plasma flow withm = n = 0
causes a density perturbation with m 1 because of the
compressibility of E x B flow in the non-uniform magnetic
field. The ion diamagnetic current due to the m = 1 density
perturbation transports charge across the magnetic surface, and
acts to reverse the electric field [199]. Then, an oscillating
component of the zonal flow potential is generated, that is,
the GAM, of which real frequency wgam is approximated by
wam == /7/2 +2(T./T,) v/ R for vy = «/T;/m;. The GAM
oscillations have been observed in many tokamak and helical
experiments [189].

In collisionless plasmas, the GAMs are Landau damped
by passing ion motions. The collisionless damping becomes
ineffective for a large safety factor, as the damping rate
Yoam 1is roughly in proportion to exp[—(waGAM)z/Zvlzi]
[200]. This is because the resonance velocity shifts to a
tail region of the distribution function as g increases. Thus,
the GAM can be prominent in edge plasmas [201]. A
detailed gyrokinetic analysis of GAMs with a finite radial
wavenumber effect has been made for tokamak and helical
configurations [202-206] and is utilized in benchmarking of
various gyrokinetic simulation codes. Plasma shaping effects
on GAMs have also been investigated for a non-circular and
finite aspect ratio torus [207].

The time-varying E x B plasma flow has been considered
to be less effective in turbulence regulation than the stationary
zonal flows [208]. The influence of the GAM on turbulent
transport as well as its excitation process is discussed in terms
of a fluid model [209]. It has also been shown that the transport
suppression by zonal flows is weakened in a region where
GAMs are dominant [210,211]. In a more recent study, it
is argued that the GAMs are only somewhat less effective than
the residual zonal flows in providing the nonlinear saturation of
turbulence [212]. Therole of GAM in the turbulence regulation
demands further investigations.

The GAM oscillations also appear in the neoclassical
transport analysis of spontaneous formation of the radial
electric field, and are studied by means of drift-kinetic
equations for tokamak and helical systems [54,200, 213, 214].

4.2.3. Zonal flow response. The generation of zonal flows
and its feedback to turbulence and transport are essentially
nonlinear processes. Nevertheless, it is also important to
understand the linear response of zonal flows to a given
turbulence. From the gyrokinetic equations, Rosenbluth and
Hinton derived the zonal flow response function (kernel) which
describes how strongly a zonal flow is generated by a given
source term with a Maxwellian distribution [139].

The zonal flow potential is given by the response kernel
KC(1), such that

Pr, (1) = K1), (0), (33)
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Figure 10. Velocity-space profiles of real part of the perturbed
distribution functions for (a) the analytical solution of the residual
zonal flow component and (b) the gyrokinetic simulation of the
collisionless zonal flow damping [97]. The ion gyro-centre
distribution function in (b) observed during the collisionless
damping of zonal flows consists of the coherent structure shown in
(a) and ballistic-mode fluctuations.

where
K@) = Keam(®[1 — KL(®)] + KL(2).

The short-time response function Kgam(f) represents the
collisionless damping of GAM,

(54)

Kgam(t) = cos(wgamt) exp(—ycamt). (GR))

The long-time response kernel Kp (f) describes the residual
zonal flow. For the ITG turbulence in a tokamak, it is given
by [139]

(or, ),
(b, 0 = 0));

1
T 1+ 1.6g%/€l/?’

Kp = lim

t—00

(56)

where € denotes the inverse aspect ratio. The second term
in the denominator in equation (56) shows effects of the
neoclassical polarization on shielding of zonal flows. Velocity-
space structures of distribution functions for the residual zonal
flow and for the ballistic perturbations associated with the
collisionless GAM damping are revealed by gyrokinetic theory
and simulations [97] (see figure 10). The residual zonal
flow in the collisionless ITG turbulence is also considered
to provide a key for understanding the discrepancy [121] of
ion heat transport flux between the gyrofluid and gyrokinetic
simulations [139, 141]. Then, the zonal flow response has been
regarded as a good benchmark test for gyrokinetic simulation
codes (see the previous section).

In the case of finite collisionality, the residual zonal flow
is slowly damped on a collisional time scale [215], while it
keeps a constant value in the collisionless case as shown in
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Figure 11. Elongated vortices (streamers) are found in contours of
electrostatic potential fluctuations of toroidal ETG turbulence in a
poloidal plane [95]. The horizontal axis is in the radial direction.

equation (56). Effects of plasma shaping [216-218], kinetic
electron response [219] and the zonal flow response in a wide
wavenumber range including the ETG regime [220-223] have
also been studied for tokamak configurations.

The Rosenbluth—Hinton theory has been generalized for
helical systems by taking into account helical components
of the confinement field and finite wavenumber effects
[204, 205, 224-226] where, in contrast to the tokamak case, Ky,
has time dependence and involves an additional shielding term
due to radial drift motion of helical-ripple-trapped particles.
Being based on the response analysis, zonal flow enhancement
by reducing the neoclassical ripple transport [126,227] or by
introducing the equilibrium radial electric field [228-230] has
been studied by both the gyrokinetic theory and simulations.
The obtained results suggest that a coupling of anomalous and
neoclassical transport appears through zonal flows in helical
systems.

4.3. Radial flow and propagation

4.3.1. Streamers. Streamers, which are radially elongated
vortices of the E x B plasma flows, are regarded as a
counterpart of the zonal flows. In contrast to the latter, the
former enhances the transport across the confinement field (for
example see figure 9(b)). The linear eigenfunction of drift
waves in a torus has the ballooning-type mode structure, of
which the poloidal flow pattern for high (m, n) values consists
of radially elongated eddies (k, ~ 0). The mode structure is
regarded as a linear streamer, and its stability to the K-H mode
is investigated as one of possible mechanisms for zonal flow
generation [192].

Streamers surviving in turbulence have more impact on
the theory and simulations of anomalous transport. Because
of the relatively weak generation of zonal flows, the streamers
are expected to dominate in the ETG turbulence. The ETG
streamers found in a flux-tube gyrokinetic simulation are
shown in figure 11 [95]. Since the radially elongated structure
suggests a long correlation length of turbulence, a strong
electron heat transport is expected according to the mixing
length estimate. This is why the ETG streamers have been
intensively studied (see section 5.1.2).

4.3.2. Avalanches and turbulence spreading. The streamers
explained above are characterized by radially elongated vortex
structures. On the other hand, avalanches in density and/or
temperature profiles propagate in the radial direction, where
fluctuations are successively destabilized at the propagation
front with steep gradients. A physical model of the avalanche
is based on the self-organized criticality (SOC) of dynamical
systems [231,232], where local perturbations propagate over
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Figure 12. Heat flux avalanches with (lower) and without (upper)
toroidal rotation [240]. When sheared rotation is included,
avalanches of outward heat flux propagate towards the core.

all length scales surviving over long-time scales, and cause
sub-critical transport. Then, noise propagation due to the
domino effect generates 1/f noise in space and time with
the scale invariance and the self-similarity. Avalanches in
the plasma turbulent transport have been investigated by
the use of reduced or low-dimensional models [233-236]
or by means of direct numerical simulations [237-239],
showing some analogies to the SOC model.  Recent
gyrokinetic simulations [58, 120, 240] also suggest avalanches
of flux-surface-averaged fluctuations and/or transport flux
(see figure 12). The flux driven boundary condition [238]
and non-local modelling are essential to self-organization of
density and temperature profiles with avalanches. The self-
organized profiles found in the plasma turbulence simulations
often show super-critical gradients in contrast to the original
SOC model.

Turbulence spreading observed in gyrokinetic simulations
[241-243] is also related to the radial propagation of
perturbations [244,245], where the turbulent fluctuations
generated by the unstable drift waves enter stable regions.
Because of the turbulence spreading, the averaged intensity
of fluctuations is decreased in comparison with the local flux-
tube model where the instability grows over the whole radial
extent. Various theories have been proposed for the turbulence
spreading and the front propagation [236, 242,243,246, 247].
These recent activities are partly motivated by a conjecture
that turbulence spreading is responsible for the deviation of
transport scaling from gyro-Bohm to Bohm for relatively small
sized tokamaks [144]. If the radial width of spreading is
independent of the device size or p, (= py/a where a denotes
the minor radius), contribution of spreading to the global
confinement is weakened by decreasing p,. In the limit of
px — 0, thus, one finds the gyro-Bohm scaling (see section
4.5). Itis pointed out by recent gyrokinetic simulations that the
radial extent of the spreading is influenced by an equilibrium
E x B shear flow as well as zonal flows [68], and that non-
diffusive processes are observed in turbulent transport across
sheared zonal flows [248].
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4.4. Fluctuations of distribution function

Microturbulence in collisionless or weakly collisional plasmas
causes fluctuations of the particle distribution function in the
multi-dimensional phase space. In addition to the zonal flow
generation (section 4.2.1), the nonlinear E x B advection (or
interactions among vortices) leads to the normal and/or inverse
cascade of energy or enstrophy. The turbulent fluctuations
are spontaneously generated not only in real space but also
in velocity space through the parallel advection, the toroidal
magnetic drift and the mirror force terms in the gyrokinetic
equation as well as the £ x B advection term with finite-
gyroradius effect. All these terms are formally represented as

Af (Zi, Zj, ...

)
Uz, .. 7
J

) (57)

’

where Z; and Z; are a pair of phase space coordinates. The
linear or nonlinear shear operator defined in equation (57)
stretches the distribution function f in phase space and
generates fine structures of f. Phase mixing of the fine
scale fluctuations of f causes collisionless damping of coarse-
grained quantities (that is, Landau damping). In the weakly
collisional case, the small scale fluctuations in the velocity
space are finally dissipated by collisions, and the irreversibility
appears in the turbulent transport.

The generation processes of fine structures of f in the
parallel [74,40] and the perpendicular [249-251] velocity
space have been investigated, where the production of entropy
and its transfer in phase space are discussed. In a flux-tube
model of ITG turbulence under fixed gradients of density and
temperature, the entropy balance equation (normalized) can be
simply represented as [97]

d

5(5S+ W) =niQi + Di, (58)
where 65, W, Q; and D; denote the entropy variable, potential
energy, ion heat transport flux and collisional dissipation,
respectively. Itisimportant to note that 6 defined by means of
aphase space integral of § ff /2 fui reflects growth of fine scale
fluctuations of the distribution function. In the collisionless
or weakly collisional turbulence simulations, the generation
of fine scale fluctuations of f demands fine velocity-space
resolution [97] or use of numerical filters [136]. Thus, the
entropy balance is regarded as one of the important benchmark
tests of the gyrokinetic simulation codes. Also, the entropy
transfer towards small scales in velocity space is closely
associated with the closure problem of fluid equations in the
collisionless regime [186,252-256].

4.5. Dimensionless scaling laws

The scaling property of turbulent transport is one of the most
important topics that attract many researchers’ attention in
predicting the performance of fusion plasmas in future devices
such as ITER. It is considered that turbulent transport is mostly
related to three dimensionless parameters, the normalized ion
gyroradius (p,), collisionality (v,) and plasma pressure ().
Scaling laws for the three parameters and other dimensionless
quantities have been elaborated from numerous experimental
results [257].
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Figure 13. Dependence of ion heat conductivity on tokamak minor
radius resulting from global gyrokinetic simulation of ITG
turbulence [144].

For predicting the performance of ITER, the scaling for
px 1s crucial, since the present tokamak experiments cannot
achieve the expected p, values of p, >~ 2 x 1073 or less. If we
assume the correlation length and time of turbulence to be py
and a /vy, respectively, the thermal conductivity is estimated as

xc = pg/(a/vi) = puTi/eB. (59)
which is known as the gyro-Bohm diffusion. In contrast, one
finds the Bohm diffusion of

X8 = api/(a/vs) = Ti/eB (60)
if the radial correlation length of turbulence scales as ,/ap;;.

In flux-tube simulations the physical system size does not
enter the formulation. More precisely, the flux-tube model
is an approximation valid in the infinite system size limit,
o« — 0. Therefore gyro-Bohm scaling is naturally obtained
in such simulations, where the perpendicular wavelength and
the time are normalized by pg and a /vy (or L /vy with a typical
equilibrium scale L), respectively. Since the normalized
xi resulting from flux-tube simulations is independent of
the system size, then a gyro-Bohm scaling is derived [67].
Deviation from the gyro-Bohm scaling, however, has been
observed in global gyrokinetic simulations with moderate
values of p,. The transition from Bohm to gyro-Bohm
scaling with decreasing p, is confirmed by recent gyrokinetic
simulations (see figure 13) [104, 119, 144]. The mechanism
of the scaling transition is explained by non-local effects on
turbulence, that is, the diamagnetic rotation shear (or w,-
shear in short) due to inhomogeneous equilibrium gradients
[258,259] and the turbulence spreading (see section 4.3.2).

Finite collisionality has multiple effects on turbulent
transport. The zonal flows are slowly damped by ion-
ion collisions [215]. Gyrokinetic simulations indicate that
collisional zonal flow damping leads to an enhancement of
ITG turbulent transport even in a regime where the instability is
almost collisionless [43]. A similar effect of collisions on zonal
flows and transport has been confirmed by fluid simulations
[44]. In contrast, collisions contribute to the stabilization of
the TEM by particle de-trapping [45]. The resulting influence
of the two contrasted roles of collisions on turbulent transport
remains to be resolved.
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Collisions are also indispensable to the realization of
statistically steady states of kinetic plasma turbulence [40].
Small scale fluctuations of the distribution function generated
in phase space can only be damped by collisions. It has been
confirmed by slab ITG simulations scanning a wide range of
collision frequencies that, in the limit of v, — 0, the turbulent
transport with finite collisionality asymptotically approaches
the collisionless result [40]. For a discussion on the numerical
aspects of realizing statistically converged steady states, see
section 3.3.

A scaling law for B reflects electromagnetic effects on
turbulence as well as changes in equilibrium profiles (that is,
the Shafranov shift of the magnetic axis position). Since a finite
value of g reduces linear growth rates of the ITG instability as
described in section 4.1.4, the ion heat diffusivity x; decreases
with B below the stability limit of the KBM [219, 260, 261].
The scaling for higher 8 values than the KBM threshold would
be more realistic to recent experiments in large tokamaks, and
has recently been investigated using the GENE code, where
x; increases above the threshold (but below the ideal MHD
stability limit) [169].

Another important topic in transport scaling concerns the
ion mass. A variety of isotope effects have been reported in
experiments but remain to be resolved [257]. According to
the gyro-Bohm scaling, x; should be proportional to A!/2,
where A denotes the ion atomic mass number, while the
energy confinement in experiments is sometimes improved in
deuterium discharges as compared with hydrogen. (Here, it
should be noted that the core transport in H-mode plasmas
in JET slightly degrades with A while an improvement
is observed in the edge region [262].) The influence of
equilibrium E x B flows for different ion species may
yield isotope effects through the Mach number dependence
[229,263,264]. More elaborate simulation studies on the
isotope effects should be pursued towards the prediction of
turbulent transport in burning plasmas.

Other dimensionless parameters, such as the safety factor
or the charge number, also play important roles in transport.
The improvement of confinement with plasma current, which
translates into a diffusivity that increases with the safety factor,
has received several explanations based on the downshift of
wave number spectra due to Landau damping [160, 265, 266],
damping of GAMs [211] and finite orbit effects. The effect
of charge number can be understood essentially from linear
theory, and can be either stabilizing or destabilizing. Above
the threshold, the stabilizing effect is dominant, and is a
consequence of the dilution effect on the interchange drive
[267-270].

5. Understanding turbulent transport with
gyrokinetic simulations

5.1. Transport channels.

5.1.1. lon heat transport.  lon heat transport was historically
the first to be addressed by numerical simulations and can
be considered mature. In fact, the computation of ion heat
diffusivity has become a way of comparing codes, as discussed
in section 3.4. This was done within the frame of the Cyclone
project [121] and the TF-ITM IMP4 project [145]. The later
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work also made a comparison of fluctuation and flux spectra.
Several results came out of these exercises. First, the actual
threshold was found to be larger than the linear stability
threshold (Dimits shift). Second, the heat diffusivity was found
to match the approximate relation x; = 12.3x;.gs (1 —6LTi/R)
(‘LLNL fit’), where Lr; is the temperature gradient length.
This expression illustrates the concept of profile stiffness:
since transport becomes quite large above the threshold, the
temperature gradient length tends to stay close to the threshold,
leading to a resilience of the temperature profile. Also, heat
diffusivities calculated by gyrokinetic simulations were found
to be lower than the fluid values in the Cyclone exercise. In the
TF-ITM project, some of the diffusivities are below the LLNL
fit. Nevertheless, the same trend remains qualitatively true.
Comparison with experimental data appears to be challenging.
This is believed to be due to stiffness: a slight change in the
gradients leads to large variations of the heat diffusivity. It is
expected that the next generation of gyrokinetic codes, which
will be flux driven instead of running at fixed gradient, will
allow direct comparison between codes and experiments.

5.1.2. Electron heat transport. ~ Electron heat transport is still
subject to discussion. First, it is stressed that dominant ITG
turbulence does lead to some amount of electron transport,
which agrees with the quasi-linear prediction. Nevertheless,
it is found that the corresponding contribution is too small
to explain the measured diffusivity when electron heating is
dominant. Hence it is expected that trapped electron modes
(TEM) and/or electron temperature gradient (ETG) driven
modes play some role. Gyrokinetic simulations show indeed
that TEM modes contribute to electron transport above the
stability threshold. The diffusivity can be fit by a formula of
the LLNL type. A nonlinear upshift of the critical density
gradient has been computed [159], reminiscent of the Dimits
shift of the ion temperature gradient for ITG turbulence [121]
(note that TEMs can be driven unstable by both density and
electron temperature gradients). Nevertheless, measurements
of the electron temperature gradient agree well with the linear
threshold for the TEM, without any evidence of a Dimits type
shift [161]. The saturation mechanism of TEM seems different
from ITG modes. Whereas zonal flows are found to play
a prominent role for ITG turbulence, it appears that mode
coupling to small scale fluctuations, which act as diffusion,
is a key ingredient for TEM turbulence. This behaviour
provides some ground for applying the quasi-linear theory
[162]. However, the question of saturation is not fully settled,
since zonal flows, and also profile relaxation play a role in
some cases [163, 164].

The question of ETG driven turbulence has been, and
still is, a very active subject. If one assumes an homothetic
behaviour to ITG turbulence, a gyro-Bohm estimate predicts
an electron diffusion coefficient that is (m./m;)'/> smaller
than the ion heat diffusivity. Since the measured electron
diffusion coefficient is of the same order as the ion value,
it appears that the expected value for ETG turbulence is too
small by an order of magnitude. However, it was realized
in [93,95] that zonal flows are less efficiently generated in
ETG than in ITG turbulence, because the adiabatic responses
of ions (in ETG) and electrons (in ITG) are different. A
smaller intensity of zonal flows in ETG turbulence favours the
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Figure 14. Contour plots of the electric potential in ETG turbulence
for simulations with (a) positive magnetic shear, dominated by
streamers and () reversed magnetic shear dominated by zonal flows
(from [271]).

emergence of streamers, which may boost the heat transport.
It was found indeed that zonal flows play little role in
the saturation of ETG modes, rather due to wave—particle
decorrelation [165]. Because of their central importance in
that matter, streamers have been studied intensively. Although
there is agreement on their existence, the enhancement factor
associated with streamers varies somewhat in the literature
[149,195]. Certainly the magnetic shear plays an important
role in that matter: streamers tend to be dominant for
high magnetic shear, while zonal flows are dominant at low
shear [95,197,271] (see figure 14). Also, it turns out that
numerical issues make the exercise difficult, as was discussed
in section 3.4. It was also mentioned that ETG turbulence
with adiabatic ions is sometimes an ill-posed problem due to
the interaction with TEMs at low wave numbers [150,272].
A similar large-saturation problem was reported also for
ITG with kinetic electrons [273]. A key step was reached
with simulations done with the GYRO code covering the
whole spectrum of instabilities (ITG, TEM, ETG). In these
simulations, it was found that the contribution of large wave
numbers k, p; > 1 to the electron diffusivity is less than 15%
in a typical case where electron and ion temperature gradient
lengths are equal [272] (see figure 15, upper panel). This
was confirmed by a recent simulation with the GENE code
where a comparable figure was found in similar conditions
[273]. However, it was also mentioned in the latter work
that the parameters that were chosen correspond to a very
large, and unrealistic, ion heat transport. In the same work,
it is also shown that when the electron temperature gradient
length is smaller than the ion temperature gradient length (and
also for a vanishing density gradient), small scales contribute
significantly to electron turbulent transport, while the ion heat
diffusivity gets closer to experimental values (see figure 15,
lower panel).

5.1.3. Particle transport.  Particle transport is obviously an
important question for a fusion reactor. On the one hand, one
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Figure 15. Upper panel: simulations of ITG/TEM/ETG turbulence with the GYRO code for equal electron and ion temperature gradient
length R/Ly;, = R/Ly, =6.89 and R/L,, = 2.22 [272]. Lower panel: simulations with the GENE code of ITG/ETG/TEM turbulence for
electron temperature gradient length smaller than the ion gradient length, i.e. R/Ly;, = 5.5, R/Ly, = 6.9 and R/L,, = 0—ion heat

diffusivity on the left, electron heat diffusivity on the right [273].

would like the density to be as high as possible to enhance the
fusion power. Since the edge density must remain low enough
to avoid a disruption (Greenwald limit), peaked density profiles
are desirable. On the other hand, peaked density profiles might
lead to neoclassical impurity accumulation in the core. One
key characteristic of the particle flux is that it is not correctly
described by a pure diffusion. Indeed it is well known that
density profiles are peaked, even when the ionization source is
localized in the edge. To account for this behaviour, the particle
flux is traditionally written as ' = —DVn + Vn [274-276],
where V is the pinch velocity and D is the particle diffusion
coefficient. Fluid and gyrokinetic simulations (quasi-linear
and fully nonlinear) indeed show that a finite pinch velocity
is driven by turbulence. This velocity contains ‘curvature’
(or ‘compressional’) and thermodiffusion contributions, i.e.
schematically Y2 = Coy + CyrRYE [277-279].  The
coefficient Cyyy is related to compressional effects and is well
described by turbulence equipartition theory [280, 281]. It can
be shown that when trapped electrons behave as trace particles
in a dominant ITG turbulence, one gets Ceyy = 1/2 +4s/3
(s = dIng/dInr is the magnetic shear). Hence the curvature
pinch introduces a link between the density and safety factor
profiles. However, it was also shown that passing electrons also
participate in the pinch process [282]. The thermodiffusion
coefficient Cyr can be shown to change sign with the phase
velocity of fluctuations, i.e. when moving for instance from
ITG to TEM turbulence [278,279]. Typically, the thermal
pinch velocity is directed outwards (Cyr < 0) for ITG
turbulence. Collisionality plays an important role in that
matter. Indeed the ratio VR/D, which is representative of
the peaking factor of the density, decreases as 1/v, [283].

A related question is the issue of impurity transport. Inthat
case again, a pinch velocity is driven by turbulence. Here it is
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found that the thermodiffusion coefficient is directed outwards
for ITG turbulence, which is favourable (thermal screening).
Unfortunately the coefficient of the thermodiffusion term
decreases as 1/Z, where Z is the charge number [284, 285].
Hence it is negligible for heavy impurities. The compressional
term contains two contributions due to perpendicular and
parallel compressibility [284]. The pinch velocity associated
with perpendicular compressibility is constant and directed
inwards, while the one associated with parallel compressibility
scales as Z/A, and its sign depends on the phase velocity of
the fluctuations. It is outward for dominant TEM turbulence.
Gyrokinetic simulations are roughly in agreement with the
quasi-linear picture [286], although a more quantitative
assessment of the dependence on charge and mass numbers is
needed. This global picture of particle transport predicts non-
flat density profiles in ITER, without impurity accumulation
[287]. Let us also mention that the transport of alpha particles
also belongs to this category. Large orbit widths are known to
have a detrimental impact on the collisional transport of fast
ions. On the other hand, finite orbit widths are favorable with
respect to turbulent transport since fast particles ‘see’ an orbit-
averaged electromagnetic field that gets smaller when the orbit
size becomes larger than a typical correlation length. However,
theoretical considerations suggest that fast ion fluxes might be
larger than expected on the basis of this simple picture [288].
Gyrokinetic simulations indicate that though significant, losses
remain reasonable [175,289-291], and probably acceptable in
ITER plasmas.

5.1.4. Toroidal momentum transport. Toroidal momentum
transport has been investigated in detail only quite recently.
These studies were motivated by the discovery of plasma
‘spontaneous’ spin-up, i.e. situations where a significant
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toroidal rotation was measured, in the absence of any external
torque (see [292] for an overview). Moreover, in many
cases co-rotation was observed (toroidal velocity in the same
direction as the current), which cannot be explained by simple
effects such as ripple losses or direct losses of ions at the
edge. The theoretical question of momentum transport is
quite difficult to address. One first obstacle is actually
to define properly ‘momentum transport’. One would be
tempted to look into the conservation of angular momentum
density. However, the latter depends on particle density,
which was seen to be subject to various pinch effects. In
order to decouple particle and ‘true’ momentum pinches, it
is common to investigate the transport of parallel velocity
U). The quasi-linear theory predicts a radial flux of parallel
velocity I'y /nim; = —xy VU + VyU) + Sy [146,293-299].
When compared with the expression for particle transport, an
extra term Sy appears, called residual stress, proportional to
the £ x B shearing rate [293-295,300] or due to up—down
asymmetries of the equilibrium [301]. The angular momentum
density can be expressed as a function of the parallel velocity,
density and temperature derivatives when using the force
balance equation. There exist two ways of deriving the various
contributions. One solution consists in writing the equations in
the frame of reference of the plasma, which requires accounting
for the Coriolis and centrifugal forces (the centrifugal force
is in practice negligible) [146]. The second way consists
in writing the gyrokinetic equations in the laboratory frame,
accounting for the fact that the distribution function is shifted
in the parallel direction by an inhomogeneous mean velocity
[302]. The normalized pinch velocity RVy/xy contains
two contributions: a constant term (this scaling is similar
to the curvature pinch for particle transport) and a term
proportional to the density (possibly temperature) gradient
[146,297]. The part of the pinch velocity related to curvature
that is calculated in the frame of the quasi-linear theory is
consistent with the turbulence equipartition theory [303,304].
Gyrokinetic simulations did find evidence of a momentum
pinch velocity and residual stress [300,304,305]. Another
important parameter is the Prandtl number (ratio of viscosity
xu to heat diffusivity ;). This ratio is usually found to be
of the order 0.7 [296]. Recent simulations indicate that it can
be as low as 0.2 in some cases [306]. In other words, it is
found that high peaking factors RVy / xy are due to both finite
values of the pinch velocity Vi and low values of the viscosity
Xu- Work is actively being done to determine the relative
weights of the various mechanisms at play. We note that
the standard gyrokinetic ordering addresses toroidal velocities
of the order of p,vy; (toroidal diamagnetic velocities), i.e.
cannot address sonic flows, for which an extended gyrokinetic
theory is needed. Obviously, this is related to the question
of calculating the mean radial electric field and its shear
rate, addressed in section 2.3. Diamagnetic toroidal flows
correspond to values of the shear rate of the order of p,v;/Lt.
However turbulence quench requires larger shear rates, of the
order of vy/Ly. Solving this question would also call for an
extended gyrokinetic theory.

5.2. Improved confinement

The physics of transport barriers is a broad subject that
is already covered by several overview papers for external
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[307-310] and internal transport barriers [311-313]. Two
generic key parameters are known to play a stabilizing role:
flow shear and magnetic shear. Other ingredients may be
involved (density gradient, ratio of electron to ion temperature,
impurity content, etc), but are less generic.

5.2.1. Shear flow stabilization. The physics of turbulent
transport reduction due to E x B shear flow is well
documented. The interested reader might consult overviews on
theory [183] and experiments related to shear flow stabilization
[314]. Stabilization is obtained above a critical value of the
shear flow rate. Several criteria have been proposed and tested
[156,181,182,315], which confirm the stabilizing effect of
shear flows except in a few well identified cases [316]. The
radial electric field is constrained by the ion force balance
equationne(E+V x B) — Vp = 0. Once a barrier is formed,
a positive loop takes place where density and ion temperature
gradients increase, thus boosting the velocity shear rate. The
transition to improved confinement bears some similarity to
first order phase transition [317-320]. Shear flow stabilization
has been tested with fluid and gyrokinetic simulations. One
difficulty, however, is that most gyrokinetic codes do not
calculate self-consistently the mean radial electric field. A new
generation of codes is emerging, which aim at this objective
[57,134,321-323]. These codes are global, and calculate
the full distribution function. This is a demanding task as it
requires the calculation of the full neoclassical equilibrium as
well as the turbulent generation of flow. A related question is
the generation of a strong poloidal shear flow when an internal
transport barrier is produced.

5.2.2. Effect of the magnetic topology. Negative magnetic
shear and high values of B are known to decrease the
interchange drive [324]. The effect of B is related to the
Shafranov shift of magnetic surfaces (also called the « effect,
o —g?>RdB/dr is a measure of the Shafranov shift)
[325-327]. In fact this effect has long been known in
the context of MHD stability [324,328,329]). For trapped
electron modes, stabilization occurs when s < —3/8, while for
ITG modes the exact value depends on the poloidal structure
of modes. This stabilization scheme has been tested both in
fluid and kinetic simulations. An electron transport barrier
appears when the magnetic shear is negative [330]. This effect
is amplified for values of « the order of unity. For trapped
electron modes, theory predicts stability when s < 3«/5—3/8.
A similar effect exists for ITG modes, which comes from
the shear dependence of the ion curvature averaged over the
mode structure. However, it is important to note that slab ITG
modes are not sensitive to these effects, and remain unstable at
negative magnetic shear. One intriguing mystery is the reason
why the onset of internal transport barriers appears to be easier
when the magnetic shear is zero and the minimum value of the
safety factor is a low order rational number. Three types of
explanations have been proposed:

(i) the onset of a large scale coherent structure which acts on
turbulence. This can be an MHD mode located at a rational
value of ¢ that generates a localized velocity shear [331].
An alternative explanation is based on a loss of fast ions
due to MHD that leads to a shear flow [332]. More
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recently, it has been proposed that a coherent electrostatic
convective cell is generated and reduces transport by
tapping energy on turbulence [333].

(ii) generation of zonal flows [334, 335] or GAMs [336] close
to rational ¢ values.

(iii) the existence of gaps in the density of magnetic resonant
surfaces at low magnetic shear, which are wider when gin
is close to a low order rational number [335,337-341].

It is stressed, however, that only a few of the aforementioned
works were done with gyrokinetic simulations (mainly [335,
338]). No clear special role of s = 0 was found in simulations
of ITG turbulence with adiabatic electrons [342], which means
that more physics might have to be accounted for to describe
configurations with s = 0, e.g. non-adiabatic electrons. Indeed
the response of passing electrons is highly non-adiabatic in
the vicinity of resonant surfaces [78, 168,343]. This feature
is likely a key element in the development of transport
barriers. Hence this subject remains largely open to further
investigation.

Shaping effects also play a role via a direct effect on
the growth rate, or by affecting the dynamics of zonal
flows and GAMs. Indeed the GAM frequency decreases
with the elongation. Hence the damping rate of GAMs,
which should lead to less active GAMs when elongation
increases [344]. Also it is found that the residual Rosenbluth—
Hinton flow increases with elongation [221,344]. One
might infer that in the nonlinear regime, this will lead to
a higher level of zonal flows and a better confinement.
Recent gyrokinetic simulations confirm this behaviour
[217,218].

5.3. Comparison with fluctuation measurements

The direct comparison of gyrokinetic simulations with
fluctuation measurements is still in its infancy. One difficulty
is that very few diagnostics provide turbulent fluxes, since the
latter require both the advected field fluctuations (density for
particle flux and temperature for heat flux), the E x B velocity
fluctuations and their cross-correlation. So the emphasis has
been put on the role of flows (zonal flows and GAMs) and
turbulence, and also on the statistical properties of density,
potential or temperature fluctuations. Regarding the role of
zonal flows and GAMs, it turns out that theory was ahead
of experiments. An early theoretical work emphasized the
particular frequency signature of these modes, and also the
distinction between the quasi-steady zonal flows and finite
frequency GAMs [345]. Indeed zonal flows and GAMs were
identified experimentally first via their frequency spectrum and
then via their characteristic wave numbers n = 0 [188, 346—
349] (see also the cluster issue on ‘Experimental studies of
zonal flow and turbulence’ [350]). An important step was
also the use of a cross bicoherence method to evidence zonal
flows driven by turbulence via nonlinear mode coupling [351].
This technique was recently extended to assess the role of
GAMs in the energy transfer between different scales, which
was evidenced by comparing the bicoherence spectrum of
beam emission spectroscopy (BES) fluctuations with GYRO
simulations [352]. It was shown that GAMs are responsible
for a transfer of energy from low- to high-frequency density
fluctuations in the edge. A similar study remains to be done
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in the core. Regarding the level of density fluctuations, one of
the first attempts with the GS2 code found that the predicted
density fluctuation amplitude 6n/ny was 3 times larger than
the measured value with BES in DIII-D, and the simulation
ion transport power was also about 2 times too large. These
discrepancies would be eliminated if the temperature gradient
was reduced by ~20-33%, though it was concluded that this
was outside the error bars [353]. Subsequent attempts were
more encouraging. A fair agreement was found in the plasma
core between measurements and simulations, whenever the
measurements were done with BES in DIII-D [354], phase
contrast imaging on Alcator C-Mod [355], or reflectometry on
Tore Supra [356]. However, simulations tend to overestimate
the level of electron temperature fluctuations when compared
with correlation ECE measurements in DIII-D [357]. The
situation is less satisfactory in the edge, where discrepancies
between simulations and measurements are usually found
[354,357]. Comparing absolute levels of fluctuations is
instructive, but the analysis of the spatio-temporal properties
of fluctuations is even more interesting. Spectra have been
calculated with the GENE code [358] for ITG/TEM/ETG
turbulence and compared with measurements made on Tore
Supra with a CO; laser scattering diagnostic [359]. Although
encouraging, this comparison is not conclusive yet. More
recently, GYRO simulations have been compared with an
extensive set of measurements on TORE SUPRA based on
fast-sweeping and Doppler reflectometry. A fair agreement
is found for both the poloidal and radial spectra of density
fluctuations [356].

6. Conclusion

Hopefully this overview has convinced the reader that the
theory of turbulent transport has made enormous progress.
These findings owe a lot to state-of-the-art gyrokinetic
simulations which incorporate a large number of ingredients, in
particular effects such as particle trapping, Landau resonances
and finite orbit effects. An important step was the derivation
of conservative gyrokinetic equations, which can be written
at all orders in the small expansion parameter (normalized
gyroradius). This effort, which involves many theoreticians
and code developers, has allowed the clarification of a number
of issues, such as dimensionless scaling laws, parametric
dependences of the various transport channels, and improved
confinement. The predicted turbulence intensities and fluxes
are now getting close to the observed values. Also the
processes leading to self-organization are better understood.
Still several issues remain open. In particular, no first principle
simulation has been able to reproduce a transition to a transport
barrier, external or internal. Moreover, the comparison of
simulations with experiments suffers from the sensitivity of
transport to the distance of gradients to stability thresholds
(stiffness). A slight mismatch in the gradients leads to a
large change in fluxes, which makes this comparison very
difficult. Finally, transport transients (pulses, heat modulation)
have not been simulated yet, whereas these experiments are
known to find puzzling results. Solving this class of problems
requires simulation times of the order of the confinement time,
which has not been done yet for ITER-size plasmas with
gyrokinetic codes. This requirement is consistent with the long
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simulations times which are necessary to reach a statistical
steady state that accounts for the bursty nature of turbulent
transport.

These limitations naturally lead to a discussion of the
future developments. To simulate transitions to transport
barriers, the next generation of gyrokinetic codes, which is
emerging now, will have to calculate the full distribution
function over the whole torus. This is a very difficult task,
as it requires calculating both the equilibrium quantities and
fluctuations, which are tiny. Also the implementation of
boundary conditions is a formidable task, in particular in the
edge plasmas if one wants to describe correctly the scrape-
off layer and the pre-sheath and sheath close to the divertor
target plates. Regarding the comparison with experiments, it
also appears that the new code generation will have to be flux
driven, instead of freezing gradients. This should, in principle,
solve the problem of stiffness. The question of simulating
both steady state and transients is even trickier. Indeed it is
not foreseen at the moment to run routinely gyrokinetic codes
over a confinement time and for plasmas of the ITER size—
the requested computing time is indeed enormous. Presently
the strategy relies on the use of reduced models [265,277,
360, 361]. This methodology will probably remain unchanged
for some time. The development of reduced transport models
has made progress, in parallel with the increasing accuracy
of gyrokinetic simulations. Still most models are far from
being accurate enough. Although the further improvement
of these models is certainly an option, one might hope that
the progress in massively parallelized computation will one
day allow a direct gyrokinetic calculation turbulent transport
over times longer than a confinement time. An intermediate
solution, recently attempted [362,363], consists in coupling
a transport code to a local gyrokinetic turbulence code,
which computes the transport coefficients at several radius.
Hence the coming years will certainly prove to be very
interesting regarding the various challenges which remain to
be solved.
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