
Ensuring Privacy through Distributed Computation
in Multiple-Depot Vehicle Routing Problems
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Abstract. The Vehicle Routing Problem (VRP) has been exten-
sively studied over the last twenty years, because it is an abstrac-
tion of many real-life logistics problems. In its multiple-depot variant
(MDVRP), the routes of vehicles located at various depots must be
optimized to serve a number of customers. In this paper, we inves-
tigate how to protect the privacy of delivery companies, when each
depot is owned by a different company with a limited view of the
overall problem. Companies then need to exchange messages with
each other to coordinate the assignment of customers to depots. We
show how Distributed Constraint Optimization (DCOP) can be used
to solve the assignment problem using distributed computation, and
we study the guarantees that can be provided with respect to the pro-
tection of each company’s knowledge about the problem.

1 INTRODUCTION

Consider a delivery company that has subcontracted the delivery of
packets to several independent contractors. These contractors are all
interested in maximizing their own profit, while the global delivery
company wants to serve its customers as efficiently as possible. Us-
ing a centralized approach to assign customers to the different con-
tractors would involve the disclosure of sensitive information on the
side of these contractors, which in general is not something that they
are eager to accept. One could resort to the use of auctions to allo-
cate customers to different contractors, but auctions are, in general,
not able to give any guarantees on the quality of the solution found.

This paper proposes a distributed optimization approach that is
able to find an efficient allocation of customers, while retaining a
certain level of privacy for the different contractors. This approach
makes use of the fact that contractors are generally geographically
separated, meaning that not every contractor will be able to serve ev-
ery customer, i.e. a contractor will not have to coordinate with every
other contractor, greatly reducing the complexity of the problem.

The formalism used in the approach presented in this paper is the
Distributed Constraint Optimization (DCOP) framework [21]. The
DCOP framework is used to model loosely coupled multi-agent op-
timization problems, where the knowledge of the problem is dis-
tributed over different agents. Several algorithms exists that are able
to solve DCOP problems. These algorithms can be sub-divided into
two main families. One family of algorithms uses a form of dis-
tributed search to find an optimal solution (such as SynchBB [21],
ADOPT [31], or AFB [16]), while the other family of algorithms
is based on dynamic programming and uses inference to solve the
problem (like DPOP [34], O-DPOP [36], or ASO-DPOP [32]).
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We use the DCOP framework to address the problem of assigning
customers to depots in a distributed variant of the Multiple-Depot
Vehicle Routing Problem (MDVRP). The Vehicle Routing Problem
(VRP) and its numerous variants have been the subject of much re-
search in the past few decades [47, 15]. The main purpose of this pa-
per is to show the merits of distributed optimization in solving MD-
VRPs where each depot is controlled by a separate company. Special
emphasis is put on protecting the privacy of the different contractors.

The rest of the paper is structured as follows. Section 2 first
presents related work on the VRP and DCOPs. Section 3 then defines
the problem, shows how it can be formulated as a DCOP, and solved
using the DPOP algorithm. Section 4 discusses the privacy issues in
DCOPs, and describes the P-DPOP algorithm that was designed to
address these issues. Section 5 presents some other, asynchronous
DCOP algorithms, and Section 6 compares algorithm performances
based on benchmark problems. Section 7 finally concludes.

2 RELATED WORK
Section 2.1 first summarizes some of the previous work on solving
the Multiple-Depot Vehicle Routing Problem. Section 2.2 then re-
views the literature on Distributed Constraint Optimization.

2.1 The Multiple-Depot Vehicle Routing Problem
The Vehicle Routing Problem [47] is a well-known NP-hard problem
in Operations Research: optimal routes must be designed for a fleet of
vehicles so as to serve customers while satisfying certain constraints,
e.g. on capacity or on route length. Variants of the problem have been
proposed [15]; this paper focuses on the multiple-depot version.

Laporte et al. [23] proposed the first complete MDVRP algorithm,
based on integer linear programming. Most algorithms proposed later
are approximate heuristics that use a two-phase approach: 1) assign
customers to depots, and 2) solve the resulting VRP. One of the first
such heuristics was introduced by Chao et al. [6]. Other work pro-
posed to use tabu search [40, 8], genetic clustering [46], large neigh-
borhood search [39], or hybrid genetic algorithms [22].

Previous work also applied Multi-Agent Systems to solve various
flavors of the VRP [9]. Some of this work is not truly applicable to the
Distributed MDVRP we consider in this paper, because it uses virtual
agents, simulated on a central computer that knows the whole prob-
lem; this includes memetic algorithms [4], or ant colony optimiza-
tion [41]. A more relevant thread of research applied the Contract
Net Protocol [42, 13] to solve VRPs in a truly distributed manner.

This paper proposes a comparable approach, but uses Distributed
Constraint Optimization to solve the distributed problem of assigning
customers to depots, and focuses on privacy. For the VRP part of the
problem, we use an off-the-shelf, centralized algorithm.



2.2 Distributed Constraint Optimization
Distributed Constraint Optimization is used to model multi-agent op-
timization problems, in which problem knowledge is distributed: ini-
tially no agent has a global overview of the overall problem.

Definition 1 (DCOP) A discrete Distributed Constraint Optimiza-
tion Problem is defined as a tuple < A,X ,D, C >, where:

• A = {a1, . . . , a|A|} is a set of agents;
• X = {x1, . . . , xn} are variables, each owned by an agent;
• D = {D1, . . . , Dn} is a set of finite domains for the variables

such that xi takes values in Di;
• C = {c1, . . . , cm} is a set of soft constraints, where each con-

straint is a function ci : Di1 × . . .×Dil → R that defines a cost
for each combination of assignments to a subset of variables.

A solution to the DCOP is an assignment to all variables that min-
imizes the sum of all costs

P
i ci.

Hard constraints that allow or disallow specific variable assign-
ments can be modeled as soft constraints, using large positive costs.
Any agent knows all the constraints expressed over at least one of its
variables, but does not know any constraint that it is not involved in.

The DCOP formalism has been applied to a wide variety of prob-
lem domains, such as distributed meeting scheduling, sensor net-
works, or combinatorial auctions. Ottens et al. [32] also applied it
to a distributed vehicle pickup and delivery problem.

Most DCOP algorithms are complete and based on distributed
search. Some use a linear ordering of the variables (SynchBB [21],
OptAPO [30], AFB [16]). Others use a pseudo-tree ordering to bet-
ter exploit problem structure (ADOPT [31], DPOP [34], NCBB [7]).
DPOP (Section 3.2.2) is the only one based on dynamic program-
ming instead of search. Because DCOPs are NP-hard, approximate
algorithms have also been proposed (DSA [49], MGM-2 [29]).

Several metrics can be used to assess the performances of com-
plete DCOP algorithms. Since they are message-passing algorithms,
two important metrics are the number of messages exchanged, and
the total amount of information exchanged (as message sizes may
vary significantly from one algorithm to another). Runtime can be
estimated in terms of wall clock time (if each agent has a dedicated
processor), number of Non-Concurrent Constraint Checks [17], or
using simulated time [45].

Finally, the framework of DCOP under stochastic uncertainty [25]
was recently proposed to model multi-agent optimization problems
involving uncertain, stochastic problem data. This extended formal-
ism can be applied for instance to distributed VRPs in which cus-
tomer demands are stochastic.

3 PROBLEM DEFINITION
Section 3.1 first formally defines the problem; Section 3.2 then de-
scribes how it can be reformulated into a DCOP.

3.1 Distributed Multiple-Depot VRP
The Distributed Multiple-Depot VRP is simply a distributed version
of the Multiple-Depot VRP, in which each depot is controlled by a
specific company. The problem is defined more formally as follows.

Definition 2 (DisMDVRP) The Distributed, Multiple-Depot, Vehi-
cle Routing Problem consists of a set D = {d1, . . . , dnD} of de-
pots in the Euclidian plane, each controlled by a different delivery

company. Each company owns a common number nV of vehicles,
with a common maximum load Qmax and a common maximum route
length Lmax. 2 The companies must serve a set C = {c1, . . . , cnC}
of customers at known locations, so that each customer ci has a de-
mand qi ∈ N and must be served by exactly one vehicle. Each vehicle
must come back to its initial depot at the end of its route.

In addition to the usual MDVRP constraints, each company has a
common visibility radius R ≤ Lmax/2 that defines the boundaries
of its knowledge of the overall DisMDVRP. The company owning de-
pot di is only aware of the customers that are within distance R of di,
and only knows another company if their areas of visibility overlap.

The goal is for the companies to come to an agreement on who
should serve which customers, using which vehicle routes, so as to
serve all visible customers at minimal total route length.
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Figure 1. A simple DisMDVRP with four depots and four customers.

Figure 1 shows a DisMDVRP instance with 4 depots and 4 cus-
tomers. Each depot is at distance 1 of its two closest customers, and
owns nV = 2 vehicles, with Qmax = 1 and Lmax = 2.5, so that a
vehicle can only serve one customer, of common demand q = 1.

The visibility radius is R = 1.25, such that, for instance, depot d1

only knows customers c1 and c4, and ignores the existence of c2

and c3. It also knows the two companies d2 and d4, and will have to
coordinate with each of them to decide who serves c1 and c4, but d2

and d4 do not know about each other, and neither do d1 and d3.
The local nature of the agents’ problem knowledge adds a new

challenge to the traditional MDVRP. Any algorithm proposed to
solve such a distributed, multi-agent problem will necessarily involve
exchanging information between the agents, in order to efficiently as-
sign customers to depots. While the performances of traditional MD-
VRP algorithms are usually compared based on runtime and solution
quality, DisMDVRP algorithms should also be evaluated based on
the amount of information they require the agents to exchange.

A simplistic approach could consist in the companies electing a
leader, sharing with it all their respective information about the prob-
lem, and letting it solve the resulting MDVRP in a centralized fash-
ion. This approach would have a number of important drawbacks:

• The companies must be willing to disclose all of their problem
knowledge to an elected leader. This is unlikely to be the case
in real life: even if they work under the same franchise, delivery
companies would want to protect their trade secrets, such as the
exact nature of their fleets, or their internal costs.

• This would be computationally very inefficient, since the entire
computational burden would lie on the leader. An efficient Dis-
MDVRP algorithm should distribute the effort between the partic-
ipants in order to leverage their computational power.

2 These restrictions are only made for simplicity and could be removed with-
out making our approach invalid.



• This would also introduce a bottleneck in network bandwidth us-
age, since all agents must report their information to the leader.

• The algorithm would have a poor response time to changes in the
problem, since the information about the changes would first have
to propagate to the leader, which would have to find a new solu-
tion to the overall problem, and notify the other companies. A dis-
tributed approach should allow agents to directly react to changes,
particularly if they only have a local impact.

• The leader becomes a central point of failure of the algorithm.

To solve the distributed part of the DisMDVRP, namely the as-
signment of customers to depots, we propose to use the DCOP ap-
proach, which has been successful at solving such multi-agent opti-
mization problems. While we use a specific flavor of the VRP, this
approach also applies to other variants of the problem, as long as
they involve the necessity for multiple agents to coordinate their de-
cisions. In particular, the issue of protecting the companies’ private
knowledge about the problem can become more important in variants
of the VRP involving heterogeneous vehicle fleets.

3.2 Problem reformulation as a DCOP
Section 3.2.1 first presents how the DisMDVRP can be formulated
as a DCOP. Section 3.2.2 then presents the DPOP algorithm.

3.2.1 Formal DCOP model

A DisMDVRP can be reformulated as a DCOP, with one agent per
company/depot. Depot di owns one Boolean variable xj

i for each
visible customer cj , modeling its decision to serve the customer
(xj

i = 1) or not (xj
i = 0). The DCOP constraints are of two types:

1. For each customer cj , if the set Dj of depots within visible dis-
tance R of cj is non-empty, then the following |Dj |-ary hard con-
straint enforces that cj must be assigned to exactly one depot:X

di∈Dj

xj
i = 1 . (1)

2. For each depot di, if the set Ci = {cj1 , . . . , cjn} of visible cus-
tomers is non-empty, then the following |Ci|-ary soft constraint
represents the cost of the optimal solution to di’s own VRP, as a
function of whether it serves each customer in Ci:

vrpi(x
j1
i , . . . , xjn

i ) = optimal cost of di’s VRP ∈ [0,∞] . (2)

Notice that evaluating a constraint vrpi on a given assignment of
values to its variables requires solving a (centralized) single-depot
VRP. Such an evaluation can been seen as a call by agent di to a
local subroutine, which does not require exchanging additional in-
formation with other agents, and can be implemented using any ex-
isting VRP algorithm. This modeling approach decouples the dis-
tributed, master problem of assigning customers to agents, solved
using a DCOP algorithm, from the local, slave problem of routing a
given agent’s vehicles, solved using a traditional VRP algorithm.

The DCOP model for the DisMDVRP instance in Figure 1 is illus-
trated in Figure 2, in the form of a constraint graph. The nodes in the
graph correspond to the variables in the DCOP, and constraints are
represented by edges between the variables in the constraint scope.
In this example, each agent (represented by a dotted box) owns two
variables, whose respective values model whether or not the com-
pany is assigned each of the two customers in its area of visibility.
Internally, each agent has to solve a VRP problem, represented by a
vrpi constraint over its variables. Inter-agent sum constraints enforce
that each customer be served by exactly one company.
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Figure 2. The DCOP constraint graph corresponding to Figure 1.

3.2.2 The DPOP algorithm

DPOP [34] is an instance of the general bucket elimination scheme
from [10], adapted for the distributed case. It proceeds in four phases:
the first two construct a pseudo-tree ordering of the variables (i.e. a
tree allowing back edges between a variable and an ancestor), the
third propagates information bottom-up along the pseudo-tree, and
the last top-down phase infers optimal values for the variables.

Leader election: The agents first run a leader election algorithm to
choose one variable as the root of the pseudo-tree (x4

1 in Figure 3).
Each variable is initially assigned a score; the root is the one with
the maximum score, computed by viral propagation. Various scor-
ing heuristics have been proposed to generate pseudo-trees with
specific good properties; the one that elects the most connected
variable tends to produce low-width pseudo-trees.

DFS traversal: The root variable then initiates a depth-first traver-
sal of the constraint graph to compute a spanning tree, using a
token-passing algorithm described in [11]. The tree edges of the
resulting pseudo-tree correspond to the edges in the spanning tree,
and the back edges to the remaining edges in the constraint graph.
The pseudo-tree in Figure 3 consists of a single branch; how-
ever, in the more general case, the pseudo-tree may have multiple
branches, each executing the remaining two phases in parallel.

UTIL propagation: During this bottom-up phase, each variable
sends a UTIL message to its parent with the aggregated, optimal
cost achievable by its whole subtree, as a function of some an-
cestor variables. In Figure 3, the message UTIL3→2 sent by d3

contains the optimal cost of d4 and d3’s combined VRPs, as a
function of whether d2 serves c2 and whether d1 serves c4.

VALUE propagation: After adding the costs of its local VRP to
UTIL2→1, agent d1 can infer the optimal values for its variables
that minimize the overall objective function. In the example, due
to the symmetries in Figure 1, all combinations of decisions have
cost 8. Agent d1 can choose to serve both customers c1 and c4

(x1
1 = x4

1 = 1); these decisions are then sent downwards in a top-
down phase, after which all variables have been assigned optimal
values. For instance, agent d2 can infer from d1’s decisions and
from UTIL3→2 that its optimal decisions are x1

2 = 0 and x2
2 = 1.

DPOP’s computational bottleneck is in the sizes of the UTIL mes-
sages: they are exponential in the width of the pseudo-tree. [34]

4 PROVIDING PRIVACY GUARANTEES
In many real-life situations, companies want to keep their problem
knowledge private. While the DCOP approach does not require full
disclosure to one agent, agents can still make inferences based on re-
ceived messages. Section 4.1 presents the types of information that
can be leaked, and previous work on this issue. Section 4.2 then de-
scribes a recent variant of DPOP that improves the state of the art.
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Figure 3. A possible pseudo-tree for the constraint graph in Figure 2, with
the bottom-up UTIL messages exchanged by the agents in DPOP.

4.1 Privacy leaks in DCOP algorithms
Faltings et al. [11] defined semi-private information as the part of an
agent’s knowledge that might be considered private, but that can in-
evitably be leaked by the solution chosen to the DCOP. In Figure 2,
assume that, after running a DCOP algorithm, d1 chooses x1

1 = 0.
Although the algorithm might not explicitly reveal to d1 the value
that d2 chose for its variable x1

2, agent d1 can infer it from the con-
straint x1

1+x1
2 = 1. In other words, since c1 must be served by either

d1 or d2, if d1’s decision is to not serve c1, then d1 can infer the iden-
tity of the agent serving c1. However, if three companies can serve a
customer, the identity of the assigned agent is no longer semi-private
information, and may or may not be protected by the algorithm.

Putting aside semi-private information, Faltings et al. [11] also de-
fined four types of privacy that may be desirable, based on four cate-
gories of problem knowledge that agents may want to protect.

Agent privacy: No agent should discover the existence of agents it
does not share constraints with. In Figure 2, d1 and d3 should
not discover each other’s existence. Linear variable orderings
(SynchBB, AFB) violate agent privacy (Table 1): they can require
message exchanges between non-neighboring variables. Pseudo-
trees (DPOP, ADOPT, NCBB) do not, but some agent privacy can
still be leaked. For instance, the presence of variable x4

1 in the
message UTIL4→3 reveals to agent d3 the existence of agent d1.

Topology privacy: No agent should discover topological constructs
(variables, constraints, cycles...) it is not involved in. Agent d1

must not learn how many customers d2 can see. This can be leaked
by the variable ordering heuristic: the most connected heuristic
reveals to all agents the degrees of their neighboring variables.

Constraint privacy: No agent should discover the costs in any con-
straint it is not involved in. DPOP violates constraint privacy:
the message UTIL4→3 reveals to agent d3 the optimal costs of

agent d4 for serving customers c3 and c4.
Decision privacy: If no agent can learn the values taken by another

agent’s variables, then the algorithm protects full decision privacy.
Partial decision privacy allows agents to learn the values only of
neighboring variables. DPOP violates both, since, in Figure 3, the
VALUE propagation phase reveals to all agents the value of x4

1.

Most of the literature on privacy in DCOP focuses on constraint
privacy. Frameworks have been proposed to measure leaks of con-
straint privacy [14, 28, 19]. Methods have been developed to par-
tially protect constraint privacy in search-based algorithms [5] and in
DPOP [18]. Cryptography has also been applied to fully protect con-
straint privacy [48, 43], but the algorithms do not scale to realistic
problems. The following section describes a more recent algorithm
that scales better, while addressing all four types of privacy.

Table 1. The privacy guarantees of various complete DCOP algorithms.

agent topology constraint decision
SynchBB, OptAPO, AFB
DPOP, ADOPT, NCBB partial partial
P-DPOP full full partial partial
P2-DPOP full full full full

4.2 The P-DPOP algorithm
P-DPOP [11] is a variant of DPOP that guaranties all four types of
privacy defined in Section 4.1, through the following techniques:

Codenames: To protect agent privacy, P-DPOP obfuscates names
and values of back-edge variables using codenames (Table 3).

Anonymous leader election: To provide topology privacy, agents
are allowed to lie a random number of times during the viral prop-
agation of scores, to hide the position of the root. A randomized
scoring heuristic is used to avoid leaking topological information.

Cost obfuscation: Constraint privacy is leaked by the message
UTIL4→3, which reveals to d3 the dependency of d4’s optimal
cost function on x1

4. To obfuscate this dependency, d4 adds a se-
cret, large number to each column; for instance 1234 for x1

4 = 0,
and 2345 for x1

4 = 1 (Table 3). Agents d3 and d2 can then per-
form their operations on the obfuscated costs without decrypting
them; only d1 does so by subtracting the secret numbers.

Table 3. Obfuscated message UTIL4→3 in P-DPOP.

α = β α = γ
x3
3 = 0 1238 2347
x3
3 = 1 1236 2345

Silaghi et al. [44] showed that most DCOP algorithms also violate
constraint privacy through their runtime, because it depends on the
tightness of the constraints, i.e. how soft or hard they are. Since they
are based on dynamic programming instead of search, DPOP and
P-DPOP do not suffer from this flaw.

Finally, codenames also guarantee partial decision privacy. Full
decision privacy is however violated, since each variable learns the
value of its upper neighbors in the pseudo-tree. The P2-DPOP algo-
rithm [26] provides a patch to this privacy leak (Table 1), but this
comes at a high price in terms of memory and runtime complexity.



Table 2. Experimental results for various DCOP algorithms on some of the Cordeau instances from [2]. ADOPT timed out on all instances.

wall clock time (ms) information exchanged (bytes)
prob. |D| R |C| SynchBB DPOP O-DPOP ASO-DPOP P-DPOP SynchBB DPOP O-DPOP ASO-DPOP P-DPOP

p01 4
14 30 535 802 712 850 1 437 23 900 6 525 6 427 8 405 28 616
16 32 1 177 2 182 1 934 2 237 4 035 53 507 7 772 7 984 11 405 45 612
18 35 9 061 6 939 7 232 6 881 11 141 992 643 10 099 11 505 19 001 186 823
20 38 - 103 153 - - - - 22 249 - - -

p03 5
10 35 224 373 385 397 701 7 803 1 981 1 911 2 338 7 731
12 40 273 636 713 813 1 266 8 278 2 450 2 497 3 375 13 225
14 46 1 443 4 028 3 813 4 037 5 804 47 671 7 543 7 840 10 979 45 059
16 58 55 320 99 209 - - 268 804 10 192 397 12 824 - - 14 603 058

p11 5

22 45 323 846 985 975 1 437 8 171 1 981 1 911 2 338 7 867
24 53 338 5 763 6 753 6 996 8 932 9 133 2 450 2 497 3 232 95 051
26 60 449 19 186 45 370 43 872 33 513 9 365 2 450 2 497 3 435 13 055
28 68 751 91 185 - - 165 211 12 905 3 374 - - 59 348
30 72 875 197 478 - - 476 268 14 981 3 970 - - 352 032

P-DPOP has the same complexity as DPOP, i.e. it is exponential in
the width of the pseudo-tree used. However, because P-DPOP cannot
use elaborate heuristics to choose the pseudo-tree that would leak
private information, the pseudo-trees produced by P-DPOP have on
average a higher width than for DPOP.

5 ANY-TIME BEHAVIOR VIA ASYNCHRONY
Although DPOP is a very efficient algorithm in terms of the number
of messages that are exchanged, the sizes of the messages are expo-
nential in the width of the pseudo-tree. Faltings et al. [12] observed
that, in general, one does not need full knowledge of a constraint
problem to find the optimal solution. Although this observation was
made for centralized problems, it is also valid in a distributed setting.
Since DPOP sends information on all possible assignments, there
is obvious room for improvement. In Open-DPOP (O-DPOP) [36],
the UTIL propagation phase is replaced by a new phase in which an
agent reports the entries in its UTIL table one by one, and in a best
first order (i.e. lowest costs first), until its parent has enough informa-
tion to determine its own next best assignment. An optimal solution
to the DCOP is found when the root finds its first best assignment.

One disadvantage of both DPOP and O-DPOP is that they are not
any-time algorithms, i.e. there are no intermediate solutions and a
decision can only be made at termination. To mitigate this problem,
ASO-DPOP [32] was proposed. The difference between O-DPOP
and ASO-DPOP is twofold. First of all, the UTIL propagation phase
and the VALUE propagation phase run concurrently, allowing agents
to make decisions before the termination of the algorithm. Further-
more, agents are also allowed to report partial information, speeding
up the propagation of information through the network, enabling the
agents to make better informed intermediate decisions. The resulting
privacy properties are the same as for DPOP (Table 1).

6 EXPERIMENTAL RESULTS
Simulations were run with the FRODO platform [27], on the Cordeau
MDVRP benchmarks from [2]. To solve the local VRPs, we used
the OR-Objects library [1], with the best out of randomized versions
of the Clarke & Wright and the Gillett & Miller algorithms (5 it-
erations, strength 10) as construction algorithm, and the 3-Opt TSP
improvement algorithm [24, 3]. The simulations were carried out on
a 2.9 GHz, 16-core PC (i.e. one agent per core) with 2 GB of Java
heap, and a timeout of 15 min. The results are presented in Table 2.

One can first observe that SynchBB is almost always faster than
all other algorithms, except for two instances with large R, including
one that DPOP was the only algorithm to solve. This can be explained
by the fact that algorithms in FRODO are implemented at the vari-
able level, not at the agent level. This means that variables within the

same agent exchange virtual messages (not counted in the informa-
tion exchange metric), as if they were independent agents. Therefore,
DPOP-based algorithms perform Dynamic Programming (DP) also
inside each agent, while SynchBB performs Branch & Bound (B&B),
which is more efficient in the centralized setting.

At the inter-agent level, however, DP proves to be dramatically
more efficient than B&B to reduce network bandwidth usage: all
DPOP-based algorithms (except P-DPOP) send much less informa-
tion than SynchBB. On p03 and for R = 16, DPOP evens sends
three orders of magnitude less information than SynchBB, and is
only twice slower. This is due to the fact that, by sending few large
messages instead of many small messages, DPOP saves on the over-
head of sending a single message. Future work should investigate the
use of a DP/search hybrid such as PC-DPOP [37].

Also, note that in these simulations, agents exchanged messages
simply by accessing shared memory space. Therefore, the runtime
metric does not take into account the cost of sending messages. It
is very probable that, in a more realistic setting in which agents
would communicate over a network, SynchBB’s runtime perfor-
mance would be significantly degraded by the large amounts of in-
formation (and the large numbers of messages) it exchanges.

When it comes to the performance of O-DPOP in terms of infor-
mation exchange, O-DPOP actually sends just as much information
as DPOP. This is probably due to the fact that, while O-DPOP needs
to explore fewer combinations of assignments to the variables, and
does not report all the information contained in DPOP’s UTIL mes-
sages, it has to pay the overhead of sending a context in each of its
UTIL messages. As far as ASO-DPOP is concerned, it sends only
slightly more information; future work should study its convergence
properties compared to other any-time algorithms like SynchBB.

Finally, the price that P-DPOP has to pay compared to DPOP in or-
der to provide privacy guarantees is only moderate as far as runtime is
concerned. P-DPOP however sends significantly more information.

7 CONCLUSION AND FUTURE WORK

In this paper, we have introduced the Distributed, Multiple-Depot Ve-
hicle Routing Problem, in which each depot is controlled by a sep-
arate company with only partial information. We have proposed to
use Distributed Constraint Optimization to formalize the distributed
assignment of customers to depots. We have evaluated the perfor-
mances of various DCOP algorithms on distributed versions of exist-
ing MDVRP benchmarks, in terms of runtime, information exchange,
and any-time behavior. We have also put a special emphasis on the
guarantees that can be provided in terms of protecting the companies’
private information.

Future work should evaluate the DCOP approach against the ap-



proach based on the CNP. One could also investigate dynamic MD-
VRPs in which the companies must react to changes such as arrivals
of new customers; this could be done using S-DPOP [35]. Another
thread of research is designing incentives for the companies to hon-
estly report their true costs. Petcu et al. [38] already proposed the
M-DPOP algorithm as an incentive-compatible DCOP algorithm.
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[27] Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek,
‘FRODO 2.0: An open-source framework for distributed con-
straint optimization’, In Hirayama et al. [20], pp. 160–164.
http://liawww.epfl.ch/frodo/.

[28] Rajiv T. Maheswaran, Jonathan P. Pearce, Emma Bowring, Pradeep
Varakantham, and Milind Tambe, ‘Privacy loss in distributed constraint
reasoning: A quantitative framework for analysis and its applications’,
Autonom. Agents and Multi-Agent Systems, 13(1), 27–60, (July 2006).

[29] Rajiv T. Maheswaran, Jonathan P. Pearce, and Milind Tambe, ‘Dis-
tributed algorithms for DCOP: A graphical-game-based approach’, in
Proceedings of ISCA PDCS’04, pp. 432–439, (September 15–17 2004).

[30] Roger Mailler and Victor R. Lesser, ‘Solving distributed constraint op-
timization problems using cooperative mediation’, in Proceedings of
AAMAS’04, volume 1, pp. 438–445, (July 19–23 2004).

[31] Pragnesh J. Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo,
‘ADOPT: Asynchronous distributed constraint optimization with qual-
ity guarantees’, Artificial Intelligence, 161, 149–180, (2005).

[32] Brammert Ottens and Boi Faltings, ‘Coordinating agent plans through
distributed constraint optimization’, in Proceedings of the ICAPS’08
Multiagent Planning Workshop (MASPLAN’08), (September 14 2008).

[33] Jonathan P. Pearce, ed. Proceedings of the 9th Intl Workshop on Dis-
tributed Constraint Reasoning (CP-DCR’07), September 23 2007.

[34] Adrian Petcu and Boi Faltings, ‘DPOP: A Scalable Method for Multi-
agent Constraint Optimization’, in Proc. 19th Intl Joint Conf. on Artifi-
cial Intelligence (IJCAI’05), pp. 266–271, (July 31 – August 5 2005).

[35] Adrian Petcu and Boi Faltings, ‘S-DPOP: Superstabilizing, fault-
containing multiagent combinatorial optimization’, in Proc. of the 20th
National Conference on A.I. (AAAI’05), pp. 449–454, (July 9–13 2005).

[36] Adrian Petcu and Boi Faltings, ‘O-DPOP: An algorithm for
open/distributed constraint optimization’, in Proc. of the 21st National
Conf. on Artificial Intelligence (AAAI’06), pp. 703–708, (2006).

[37] Adrian Petcu, Boi Faltings, and Roger Mailler, ‘PC-DPOP: A new par-
tial centralization algorithm for distributed optimization’, in Proceed-
ings of IJCAI’07, pp. 167–172, (January 6–12 2007).

[38] Adrian Petcu, Boi Faltings, and David C. Parkes, ‘M-DPOP: Faithful
distributed implementation of efficient social choice problems’, Journal
of Artificial Intelligence Research (JAIR), 32, 705–755, (July 2008).

[39] David Pisinger and Stefan Ropkea, ‘A general heuristic for vehicle rout-
ing problems’, Computers and OR, 34(8), 2403–2435, (August 2007).

[40] Jacques Renaud, Gilbert Laporte, and Fayez F. Boctor, ‘A tabu search
heuristic for the multi-depot vehicle routing problem’, Computers and
Operations Research, 23(3), 229–235, (March 1996).

[41] A.E. Rizzoli, R. Montemanni, E. Lucibello, and L.M. Gambardella,
‘Ant colony optimization for real-world vehicle routing problems: From
theory to applications’, Swarm Intelligence, 1, 135–151, (Sept. 2007).

[42] Tuomas Sandholm, ‘An implementation of the contract net protocol
based on marginal cost calculations’, in AAAI’93, pp. 256–262, (1993).
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