Multi-exponentiation

S.-M. Yen
C.-S. Laih
A.K. Lenstra

Indexing terms: Crypiographic protocols, Exponentiation

Abstract: In several cryptographic protocols the
product of a small number of exponentiations is
required, but the separate exponentiation results
are not needed. A simultaneous exponentiation
algorithm that takes advantage of this situation
and that is substantially faster than the ordinary
approach using separate exponentiations is pre-
sented,

1 Introduction

Many cryptographic protocols depend on modular expo-
nentiation: given positive integers n and e and an element
x in G = Z/nZ, compute x* € G. Efficient methods for
modular exponentiation can be found in References 1-5
and the references in these papers,

In this note we consider multi-exponentiation: given
some small integer p > 1, positive integers ey, €, ..., ¢,,
and x,, X3, ..., X,€G, compute y= f] 1 X' € G,
Cryptographic protocols using multi-cxponentiation with
p = 2 can be found in References 6-8 and with p =3 in
Reference 9. Evidently y can be determined by computing
xfeGfori=1,2,..., pusing p ordinary modular expo-
nentiations, followed by p — 1 multiplications in G. We
describe a simple algorithm that is on average, and for e;,
of about the same order of magnitude, substantially faster
than p separate exponentiations, at the expense of some
memory. Our algorithm combines an idea from Shamir
[Reference 9, Section V.B] with the ‘sliding window’
variant [1] of the ‘m-ary method’ [3, 10]. At the time of
writing this note we found that a slightly less cfficient
variant of our algorithm had been found independently
by Strauss [11].

Like other methods [1-5] our method attempts to
minimise the number of multiplications in G. It works for
any abelian group G, independent of its structurc. We do
not attempt to minimise the multiplication time in G.

2 Algorithm

Let r € Z be maximal such that 2" < max{e;}f., and let
{ed))j=o be the binary representation of e, fori=1,2,

© IEE, 1994

Paper 1271E (Cl, Cl4), first received 28th June 1993 and in revised
form 24th January 1994

S.-M. Yen is with the Department of Computer Science, Chung-Hua
Polytechnic Institute, 30, Tung Shiang, Hsin Chu, Taiwan, 30067,
Republic of China

. C-~S. Laih is with the Communication Laboratory, Department of Elec-
trical Engineering, National Cheng Kung University, Tainan, Taiwan,
Republic of China

AKX lenstra iz at Boom MRE-20311. Ballecore. 445 South Street. Mor-

ey Py e &= Yo ed)2! with e(j) € {0, 1}. Shamir’s
idea is to prepare a table with all 2° values []f., x{* ', to
put y= }E[f_l x#? using one table look-up, and to
replace, for j=r—1, r—2,..., 0 in succession, y by
y? [1f=1 x{“?, using one squaring and at most one table
look-up and multiplication per j.

This process takes 27 —p— 1 multiplications to
prepare the table, r squarings, and on average r(1 — 1/2)
multiplications, all in G. The term 1/2” is the probability
that efj) =0 for i = 1, 2, ..., p, for some j. In the worst
case this never happens and the number of multiplica-
tions becomes r.

Shamir’s method is very similar to the ordinary
‘square-multiply’ method (for p=1 it is actually the
same) except that it uses the combined bit pattern of all p
exponents to decide which clement from the table should
be multiplied in. It is well known that for large exponents
the square-multiply method for ordinary exponentiation
can be improved considerably on, at the expense of some
memory, by using sliding windows [1]: for some window
size w > 1 prepare a table of x* for all odd positive ds of
at most w bits, and use this table to compute x* by scan-
ning the bits of e at least w bits at a time, starting from
the w most significant bits. For w = 1 this is the same as
the square-multiply method. A more precise description
of this algorithm, and the analysis of its average run time,
can be obtained by taking p =1 in the following com-
bination of Shamir's idea and sliding windows.

2.1 Muiti-exponentiation
To compute y, perform steps (a)-(e) in succession, unless
indicated otherwise.

(a) Select an appropriate window size w<r + 1, and
precompute all elements of the form []f., x{* such that
0 < d, < 2" and at least one of the d, is odd.

()Lett=r—w+1andlet& =Y) eft +/)2' bea
span of w bits from the ith exponent, for i=1, 2, ..., p.
Determine the largest integer s = 0 such that 2° divides é,
fori=1,2, ..., p, and compute d, with & = 2*- d,. Note
that at least one of the d, is odd. Set y = ([Tf-, xf*
using one table look-up followed by s squarings in G.

(c) Stop if ¢ = 0. Otherwise, ifeft = 1) =Ofori=1,2,
..., p, then replace ¢ by ¢ — 1 and y by y* and repeat step

().
(d]lft;wlhenmplaoetbyt—w;o:hemise,mplwe
whbytandtby0.
() Compute &, s and d, as in step (b), and replace y by
2" 111 x#9* using a total of w squarings, one table
look-up and one multiplication. Go back to step (c).

The research of the first two authors is supported
by the National Science Council, Republic of
China under Grant NSC81-0408-E-006-02.

22 Run time analysis

In step (a) a total of 27 — (27)*~! — p elements have to
actually be computed. For w> 1 this can trivially be
achieved in 27 —(27)*~! — p multiplications in G after
computation of the p squares x7; for w = 1 no squarings
are needed and 2° — p — 1 multiplications suffice.

The total number of squarings in G in steps (b) and (e)
is at most r, where we assume the worst case of s = w — |
squarings in step (b). Averaging over the e;s, we find for
w > 1 that s in step (b) has the value 0 with the probabil-
ity (1 — 1/27), value 1 with the probability (1 — 1/27)/2%,
and, more generally, value v <w — 1 with probability
(1 — 1/27)/27°, and value w — | with probability 1/27*~ %),
This implies that the expected value for s in step (b) is
bounded by

ol — 1!2'} 1
L5 w0

For w > 1 we find that the average number of squarings
is bounded by r — w + L + 1/(27 — 1).

The total number of multiplications in G is at most
[r/w], where we assume that the e{t — 1) in step {(c) are
never simultaneously zero. If they are simultaneously
zero, the window size w until the next execution of step
(e) effectively increases by at least one, and maybe by
more than one if step (c) is repeated again. (This poss-
ibility of temporarily having a larger window size charac-
terises the sliding window method) The average
increment of the window size can be estimated as above
by 1/(2” — 1), and we find that the average number of
multiplications is approximately r/(w + 1/(2? — 1)).

From these estimates the best choice for w given r and
p can easily by derived. For instance, for r = 159 and
p = 2 as in the verification step of the NIST digital signa-
ture algorithm [7] we find that w =2 gives a 37.5%
speed-up compared to two separate ordinary sliding
window exponentiations [12]. This is noticeably better
than the Shamir method (i.e. w = 1) which leads for this
same r to a speed-up of 25% over the ordinary exponen-

tiations. For r = 511 and p =2 a good choice is w= 3.
The main difference between the proposed algorithm and
the one in Reference 11 is the adoption of ‘sliding
windows', which require less computation and memory
space in step (a) (i.e. the table preparation) and take fewer
multiplications in step (e). Although the effect of sliding
windows is asymptotically (for r — o0) negligible, in real-
istic examples the number of multiplications can be
expected to be considerably less than for the method
from [Reference 11]: for w = 2 and p = 2, for instance,
sliding windows need on average 14% fewer multiplica-
tions.

3 References

I BOS, J. and COSTER. M.: ‘Addition chain heiristics’, in "Advances
in cryptology, Crypto "89". Lecture Notes in Computer Science 435,
(Springer-Verlag, 1990), pp. 400407

2 DOWNEY, P, LEONY, B, and SETHI, R.: ‘Computing sequences
with addition chaing’, S[TAM J. Comput., 1981, 3, pp. 638-696

3 KNUTH, D.E.: ‘The art of computer programming. Vol. 2: semi-
numerical algorithms’ (Addison-Wesley, Reading, MA, 1981, 2nd
edn)

4 YACOBI, Y.: 'Exponentiating faster with addition chains’, in
‘Advances in cryplology, Eurocrypt "90". Lecture Notes in Compuler
Science, 473 (Springer-Verlag, 1991), pp. 222-229

5 YAO, A.: 'On the evaluation of powers’, SIAM J. Comput., 1976, 5,
pp. 100-103

6 BRICKELL, E.F., and McCURLEY, K.S.: 'Interactive identifica-
tion and digital dmuru AT&T Techd, 1991, pp. 73-86
7 "NIST: A proposed federal i ng standard for
digital signature standard (DSS). Fud:-n.l Reps(cr 1991, %6, pp.
42980-42982

8 SCHNORR, C.P.: ‘Efficient identification and signatures for smart
cards’, in ‘Advances in cryptology, Crypto '89". Lecture Notes in
Computer Science, 435 (Springer-Yerlag, 1990), pp. 239-252

9 GAMAL, T.E:: ‘A public key cryptosystem and a signature scheme
based on discrete logarithms’, IEEE Trans., 1985, IT-331, pp. 469
472

10 BRAUER, A.: ‘On addition chains’, Bull. Am. Math. Soc., 1939, 45,
pp. 736-739

11 STRAUS, EG.:
807-808

12 LENSTRA, AK.: Lip, a long integer package’. Available by anony-
mous fip from Aash. bellcore. com.

‘Addition chains of vectors’, AMM, 1964, 71, pp.

