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Abstract. We present an algorithm to factor multivariate polynomials over algebraic number fields that
is polynomial-time in the degrees of the polynomial to be factored. The algorithm is an immediate
generalization of the polynomial-time algorithm to factor univariate polynomials with rational coefficients.
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1. Introduction. We show that the algorithm from [9] to factor univariate poly-
nomials with rational coefficients can be generalized to multivariate polynomials with
coefficients in an algebraic number field. As a result we get an algorithm that is
polynomial-time in the degrees and the coefficient-size of the polynomial to be factored.

An outline of the algorithm is as follows. First the polynomial fe
Q(a)[X., X3, -+, Xi] is evaluated in a suitably chosen integer point (X;=s,, X3=
3, **, X, =s5,). Next, for some prime number p, a p-adic irreducible factor  of the
resultmg polynomial f e Q(a)[X,] is determined up to a certain precision. We then
show that the irreducible factor h, of f for which h is a p-adic factor of hy, belongs
to a certain integral lattice, and that h, is relatively short in this lattice. This enables
us to compute this factor h, by means of the so-called basis reduction algorithm (cf.
[9, §11).

As [9] is easily available, we do not consider it to be necessary to recall the basis
reduction algorithm here; we will assume the reader to be familiar with this algorithm
and its properties.

Although the algorithm presented in this paper is polynomial-time, we do not
think it is a useful method for practical purposes. Like the other generalizations of the
algorithm from [9], which can be found in [10]-[13], the algorithm will be slow,
because the basis reduction algorithm has to be applied to huge dimensional lattices
with large entries. In practice, a combination of the methods from [8], [17] and [18]
can be recommended (cf. [8]).

In [3] and [6] polynomial-time algorithms are given for similar multivariate
polynomial factoring problems. These papers make use of a completely different
approach. In [6] the multivariate factoring is reduced in polynomial time to univariate
factoring and the latter problem is solved by the algorithm from [9]. A polynomial-time
reduction to univariate factoring and multivariate factoring over finite fields is presented
in [3].

All papers referred to above, and also the present paper, assumed the polynomials
to be densely encoded. For algorithms which apply the more realistic sparse encoding
we refer to [16].

2. Preliminaries. In this section we introduce some notation, and we derive an
upper bound for the coefficients of factors of multivariate polynomials over algebraic
number fields.



Let the algebraic number field Q(a) be given as the field of rational numbers Q
extended by a root a of a prescribed minimal polynomial F e Z[T] with leading
coefficient equal to one, i.e., Q(a) = Q[ T]/(F). Similarly, we define Z[a]=Z[T]/(F)
as a ring of polynomials in a over Z of degree less than I, where I denotes the degree
éF of F,

Let fe Q(a)[X,, X,, - * +, X,] be the polynomial to be factored, with the number
of variables 1= 2. By §,f = n, we denote the degree of fin X, for 1=i=1t We often
use n instead of n,. We put N;=[[,_, (m,+1),and N = N,. Let Iey(f) =f, For 1= i=1
we define Ic,(f) € Q(a)[ Xi41, Xiv2,* + +, X,] as the leading coefficient with respect to
X of le;_,(f), and we put lc(f) =lc,(f). Finally, we define the content cont (fe
Q(a)[ X3, X5, + +, X,] of f as the greatest common divisor of the coefficients of f with
respect to X;. Without loss of generality we may assume that 2=, =n,,, for1Si< t,
that f is monic (i.e. Ic(f) =1), and that & cont (f) =0 for 2=i=1.

Let d e Z., be such that fe(1/d)Z[a][X,, Xa, - - -, X,], and let discr (F) denote
the discriminant of F. It is well known (cf. [18]) that if we take D = d|discr (F)|, then
all monic factors of f are in (1/D)Z[«][X,, X,, - - -, X,] (in fact it is sufficient to take
D=d: s, where s is the largest integer such that s* divides discr (F), but this integer
s might be too difficult to compute).

We now introduce some notation. Suppose that we are given a prime number p
such that

(2.1) p does not divide D.

For G=}, a,T'e Z[ T] we denote by G, or G mod p' the polynomial Y, (a,mod p")T'e
(Z/p'Z)[ T), for any positive integer I. Suppose furthermore that we are given some
positive integer k, and that p is chosen in such a way that a polynomial H € Z[ T] exists
such that

(2.2) H has leading coefficient equal to one,
(2.3) H, divides F, in (Z/p*Z)[T),

(2.4) H, is irreducible in (Z/pZ)[ T],

(25)  (H;)* does not divide F, in (Z/pZ)[T).

Clearly H, divides F, in (Z/pZ)[T], and 0< 8H = I. In the sequel we will assume that
conditions (2.1), (2.2), (2.3), (2.4) and (2.5) are satisfied.

By F, we denote the finite field containing g = p°" elements. From (2.4) we have
F,=(Z/p2)[T)/(H,)) ~(L;l;" aai: a,e Z/pZ}, where @, =T mod (H,) is a zero of
H,. Furthermore we put W (F,)=(Z/p*Z)[T)/(H,)={Z’"" aa’: a,€ Z/p 7},
where a; = T mod (H,) is a zero of H,. Notice that Wi(F,) is a ring containing ¢*
elements, and that W,(F,)=F,. For ac Z[a] we denote by a mod (p', H)e Wi(F,)
the result of the canonical mapping from Z[a]=Z[T)/(F) to W(F,)=
(Z/p'Z)[T)/(H,) applied to a, for I=1, k. For g=Y,(a/D)X{e(1/D)Z[a][X,] we
denote by gmod(p', H;) the polynomial ¥,(((D~'mod p')a,) mod (p, H))X'!e
Wi(Fg)[X,] (notice that D' mod p' exists due to (2.1)).

We derive an upper bound for the height of a monic factor g of f. As usual, for
8=, 2, L, L Gt X X7 - Xt € Qa)[ Xy, Xy, - - -, X,], the height g, is
defined as max |a;,,,...,di, and the length |g| as (T a},...,;)"”*. Similarly, for a polynomial
h with complex coefficients, we define its hei ght b« as the maximum of the absolute
values of its complex coefficients.



For any choice of a € {a;, ay, - -, a;}, where @,, ,,* -, a; are the conjugates
of a, we can regard g as a polynomial g, with complex coefficients. We define | g| as
MaX;siss (£a,)emax: From [4] we have

gl = e £]..
In [10, § 4] we have shown that this leads to
(2.6) 8max = 51" || ILI(T = 1)V F|"| discr (F)|™2

From [15] we know that the length |F| of F is an upper bound for the absolute value
of the conjugates of a, so that

I-1
915 S T I,
which yields, combined with (2.6),
-1
(2‘?) gmaxé ez=-!"3 mllI(I oy 1)(1“1};2|F|I_I! discr (F)I‘-_h{z E IFII'
i=0

The upper bound for the height of monic factors of /£, as given by the right-hand side
of (2.7), will be denoted by By. Because |discr (F)|= 1, we find

(2.8) log B,=O(i n+10g frnax+ I log (I|F|)).

3. Factoring multivariate polynomials over algebraic number fields. We describe
an algorithm to compute the irreducible factorization of fin Q(a)[X,, X5, - -, X,].
Let 5,85, ,5€Z., be a (t—1)-tuple of integers. For ge
Q(a)[X;, X5, -+, X,] we denote by & the polynomial g mod ((X5—s,), (X5~
$3), 0, (X —5)) e Q(a)[ X, Xiers Xjua, 0+, X,]; ie., § is g with s; substituted for
X, for 2=i=j. Notice that g, =g and that g;=g,_, mod (Xj—s;). We put g=3¢,.
Suppose that a polynomial h e Z[a][X,] is given such that

(3.1) i is monic,

(32)  hmod (p% Hy) divides f mod (p* H,) in Wi(F,)[X,],
(3.3)  hmod (p, H,) is irreducible in F,[X,],

(34)  (Amod (p, H,))? does not divide f mod ( p, H,) in F,[X,].

Weput =8, s00<I=n, By hye (l/D)Z[-_a][Xl » Xz, v, X, ] we denote the unique,
monic, irreducible factor of f such that h mod (p* H,) divides homod (p*, H,) in
Wi(F)[X1] (cf. (3.2), (3.3), (3.4)).

(3.5) Let m=m,, my, my,++-, m, be a t-tuple of integers satisfying /I=m<n and
0sm=éle,(f)for2=i=tandlet M=1+1 ¥ i1 MN,4y (Where of course N, = 1).
We define L< (Z/D)™ as the lattice of rank M, consisting of the polynomials ge
(1/D)Z[a][X,, X, - - -, X,] for which

(i) 8,g=m and 8,g=n, for 2=sisy;

(ii) If §lci_,(g) =m, for 1 =j=i, then Sile(g)=my, for1=i<y;

(iii) If 8lc;_,(g)=m, for 1=i=1, then le(g)eZ;

(iv) hmod (p*, H,) divides § mod (p*, H,) in Wi (F,)[X,].
Here M-dimensional vectors and polynomials satisfying conditions (i), (ii) and (iii)
are identified in the usual way (cf.[10, (2.6)] and [12.(3.5)1). Fornotational convenianma



we only give a basis for L in the case that m,=n, for 2=i=t; the general case can
easily be derived from this:

{%p"a‘X{:Oéj<8H,0§i<f]

U {-‘,13 oM H(a)X\:H=j<I0=i< 1}

U{%a’f?xi":()éjcf,fgfém}
(]
U{%aJX{' I[1(X,~—s5)"0sj<L0sijsm0=<i=n, for2sr=1,
r=2
(ig,f;,"‘,3.,)#(0,0."',0),

and (ils i, e fr)#(m; Ry, M3yttt ﬂ,)}

U{xr‘ I (x,—s,)"r}

r=3

(cf. [10, (2.6)], [12, (3.5)], (2.2), and (3.1)).
PROPOSITION 3.6. Let b be a nonzero element of L and let

" J n+m
(3.7) B) = frnaxbmax(n+m)! (DNz(l L O L iﬂz S?‘) ,

Jor 1=j=1, where {7, denotes (fin.)™
Suppose that

(3.8) §Z((n+m)n+1)"2B,_,
/] ] dl

Jor2=j=t and

(3.9) P = |F|"-Y(1'/2B,)".

Then ged(f, b)#1 in Q(a)[X,, X3, -+, X,].

Proof. Denote by R = R(Df, Db)e Z[«][ X, X3, * *+, X,] the resultant of Df and
Db (with respect to the variable X,). An outline of the proof is as follows. First we
prove that an upper bound for (R;)pay is given by B,. Combining this with (3.8), we
then see that X = s, cannot be a zero of R;_yif R;_, #0, for 2= j = t. This implies that
the assumption that R #0 (i.e., ged (£,6)=1) leads to R #0. We then apply a result
from [8], and we find with (3.9) that R mod (p*, Hy) #0. But this is a contradiction,
because h mod (p*, Hy) divides both f mod (p* H,) and b mod (p*, Hy) in W, (F,)
[X,]. We conclude that R =0, so that ged (£, 0) #1in Q(a)[X,, Xa,+* +, X,].

If a and b are two polynomials in any number of variables over Q(a), having I,
and I, terms, respectively, then

(3.10) (a- b)max = OmaxDmax min (I, bp)(1 + an:),_'-

From (3.10) we easily derive an upper bound for (R})m“, because R:,e
Z[a][ X4y, Xjs2, -+ -, X,] is the resultant of Df; and Db;:

(3.11)  (R)max = (Df))max( DB rsan(n+ m)INTI (14 Fppy) D m=1)



It follows from f, =f;#1 mod (X, —s;), that (ff,)m,,é (};_l),,,,m(irgf +1)s%, so that

- J
(3'12) (fj)max éfmnx ‘1-[2 (nf + I)S?'.
Combining (3.11), (3.12) and a similar bound for (Et})m“, we obtain

j n+m
(3.13)  (R)max<Smaxbimax(n+m)! (DN: Il sr=) (A Fg )Pt

i=2
for 1=j <t (Remark that (3.13) with “<” replaced by “=" holds for j=1.)

Now assume, for some j with 2=j =1, that R'J_. is unequal to zero. We prove that

R, #0. Because R;=R;_, mod (Xj—s;), the condition R;=0 would imply that all
polynomials in Z[ X]] that result from R;_, by grouping together all terms with identical
exponents in a and X, up to X,, have (X;—s;) as a factor. These polynomials have
degree (in X)) at most (n+m)n;, so that we get, with the result from [14], that

|"':f| = ((n + m)nJ - I)UZ(R-_}-—I}mnv

Combined with (3.13) and (3.7) this is a contradiction with (3.8). We conclude that
§j¢0 if ﬁj-I#Qfor any j with 2=j=1, so that the assumption ged (£, b)=1 (i.e.,
R #0) leads to R #0.

Assume that H,(T) divides R(T)e Z[T] in (Z/p*Z)[T), i.e., R mod (p*, H,)=0.
We show that this leads to a contradiction (cf. [8, proof of Thm. 2]). Consider the
polynomials T'p* for 0= i< 8H and T'~*"H, for 8H =j < I + 8R. These polynomials,
when regarded as (I + 5R)-dimensional integral vectors, form a basis for an integral
lattice Ly; in Z'**%, From (2.2) it follows that the determinant det (Ly;) of Ly equals
p*", and that L; can be considered as the set of polynomials in Z[ T] of degree less
than I+ &R which have H,(T) as a divisor when taken modulo p*. X

Because F is irreducible and SR<8F =1, we have that ged (F(T), R(T))=1.
This implies that the polynomials T'F for 0=i<6R and T'R for 0=j<I when
regarded as (I + 8R)-dimensional integral vectors, form a basis for an integral lattice
L in Z"™°". Applying Hadamard's inequality to this basis for Ly, we see that
det (Lr) =|F|* ((8R+1)"*Rpu)’.

Our assumption R mod (p*, H,) =0 combined with (2.3) leads to the conclusion
that all elements of Lr, when considered as polynomials in Z[ T], have H.(T) as a
divisor when taken modulo p*, so that Ly is a sublattice of Ly, and in particular

P =det (L) =det (Lg) =|F|" ' (I'?R )"
With the remark after (3.13) and (3.7) this is a contradiction with (3.9), so that

R mod ( pf, H,) # 0. As stated in the first paragrth of this proof, this is a contradiction
because h mod (p*, Hy) divides both f mod (p*, H,) and b mod (p* H,) in W,(F,)
[X1], so that our initial assumption ged (f, b) =1 must be wrong. This concludes the
proof of (3.6). O

PrROPOSITION 3.14. Let by, by, - + -, by, be a reduced basis for L (cf. [9, § 1]), where
L and M are as in (3.5), and let

(3.15) Bj=(n-i-m)l(MZM_l)"“(B;DN2(1+F,,,“)"’ f[ si")" m,
im2

Jor 2=j=t, where B, is as in § 2. Suppose that

(3.16) §=((n+m)n;+1)"?B;_,
Jor 2=j=1, that

(3.17) pkH = |plI=1( /2y



and that f does not contain multiple factors. Then
(318) (bl)maxé(MZM_‘)”zBf

and h, divides b,, if and only if hy€ L.

Proof. If h, divides b,, then hy€ L, because b, € L and 8,hy= 8,b,; this proves the
“if”" part,

To prove the “only if” part, suppose that h,e L. Because h, is a monic factor of
J, we have from (2.7) that (ho)max= By. With [9, (1.11)] and hoe L this gives |b,|=
(M2"7")"2B,, 50 that (3.18) holds, because (b;)mu=|b:|. Because of (3.18), (3.16),
(3.17), (3.15), and the definition of By, we can apply (3.6), which yields ged (f, b)) # 1.

Now suppose that h, does not divide b,. This implies that hy also does not divide
r=ged (f, by), where r can be assumed to be monic. But then A mod (p*, H,) divides
(f/7) mod (p*, Hy), so that Proposition 3.6 can be applied with f replaced by f/r.
Conditions (3.8) and (3.9) are satisfied because (f/r),,, = By (cf. (2.7)) and because
of (3.16), (3.17) and (3.15). It follows that ged (f/r, b,)# 1, which contradicts r=
ged (£, by) because f does not contain multiple factors. 0O

(3.19) We describe how to compute the irreducible factor h, of f. Suppose that f does
not contain multiple factors, and that the polynomial A, the (t—1)-tuple s,, 53, , 5,
and the prime power p* are chosen such that (3.1), (3.2), (3.3), (3.4), (3.16) and (3.17)
are satisfied with, for (3.16) and (3.17), m replaced by n—1. Remember that we also
have to take care that conditions (2.1), (2.2), (2.3), (2.4) and (2.5) on p and H are
satisfied.

We apply the basis reduction algorithm (cf. [9, §1]) to a sequence of M;-
dimensional lattices as in (3.5), where the M;=1+1%;_, mN,, run through the range
of admissible values for m,, m,, « - -, m, (cf. (3.5)), in such a way that M, < M,,,. (So,
for m=LI+1,---,n—1, and m, =0, Lo, 8l (f) for i=t,t—1,--+,2 in suc-
cession.) According to (3.14), the first vector b, that we find that satisfies (3.18) equals
*h, (remember that b, belongs to a basis for the lattice), so that we can stop if such
a vector is found. If for none of the lattices a vector satisfying (3.18) is found, then
ho is not contained in any of these lattices according to (3.14), so that hy=.

PROPOSITION 3.20. Assume that the conditions in (3.19) are satisfied. The polynomial
ho can be computed in O((6,hoIN,)%k log p) arithmetic operations on integers having
binary length O(INKk log p).

Proof. Observing that log (INp**) = O(k log p) (cf. (3.17), (3.15) and (2.8)), the
proof immediately follows from (3.19), (3.5) and [9, (1.26), (1.37)]. O

(3.21) We now show how s,, s;, - + - ,§ and p can be chosen in such a way that the
conditions in (3.19) can be satisfied. The algorithm to factor S then easily follows by
repeated application of (3.19).

We assume that f does not contain multiple factors, so that the resultant R =
R(df, df') of df and its derivative df’ with respect to X, is unequal to zero. First we
choose s;, 53, +, 5,€ Z. minimal such that (3.16) is satisfied with m replaced by
n —1. It follows from (3.16), (3.15), (2.8) and log D = O(log d + I log (I|F])) (because
D = d| discr (F)|), that

log s;= O(log ((n+ m)n;)+log B,_,)

J=1
=0 (InN+n (log Be+log D+1Tlog(1+ Fo)+ ¥ n log s,))
1==1



=0 (n (IN+log (@) + 1 log (f|F|)+:)::: 164 s,))
for 2=j={, so that
log s,=0 (n(INHog (dfmax) + I log (I|F))) :Ij: (1+mr;))
and
(3.22) ‘iz n log s;= O(n'"2N(IN +1og (dfius) + I log (I|F]))).

From the proof of (3.6) it follows that, for this choice of s,, 55, * *, 5, the resultant
ReZ[«a] of df and df’ is unequal to zero.
Next we choose p minimal such that p does not divide D or discr (F), and such
that R # 0 mod p. Clearly
[  g=d discr (F)R

q Prime,q<p
which yields, together with

I g>e*
q prime,g<p
for all p>2 and some constant A>0 (cf. [5, § 22.2]), that
(3.23) p=0(logd+1Ilog (I|F|)+log R,.,,).

Similar to (3.13) we obtain
, 2n—1
Runax = fimax n"(2n—1)! (sz I1 S?') (75 I s
(=2

so that we get, using (3.22)

10g Rnax = O(n* "' N(IN +log (df,nae) + I log (I|F]))).
Combining this with (3.23) we conclude that
(3.24) p=0(n"""N(IN +log (dfm.) + I log (I|F]))).

Notice that (2.1) is now satisfied. In order to compute a polynomial H € Z[ T] satisfying
(2.2), (2.4), (2.5) and (2.3) with k replaced by 1, we factor F mod p by means of
Berlekamp's algorithm [7, § 4.6.2] and we choose H as an irreducible factor of fmod p
for which R mod (p, H,) # 0; such a polynomial H exists because R mod p #0. Condi-
tions (2.4) and (2.3) with k replaced by 1 are clear from the construction of H, and
because we may assume that H has leading coefficient equal to one, (2.2) also holds.
The condition that discr (F) mod p #0, finally, guarantees that F mod p does not
contain multiple factors, so that (2.5) is satisfied.
We choose k minimal such that (3.17) holds, so that

klogp=0 (I (InN+n log (dfnay) + In log(I[F[)-i- n Y nlog s,) +logp)
i=2

(cf. (3.15) and (2.8)), which gives, with (3.22) and (3.24),

(3.25) klog p=O(In'""N(IN +10g (dfynax) + I log (I|F)))).

Now we apply Hensel’s lemma [7, Exer. 4.6.22] to modify H in such a way that (2.3)
holds for this value of k (this is possible because (2.3) already holds for k=1), and

finally we apply Berlekamp’s algorithm as described in [1, § 5] and Hensel’s lemma
as in [17] to compute the irreducible factorization of fmod (rk H.) in W (E \[Y 1



Condition (3.4) is satisfied for each irreducible factor h mod (p¥, Hy) of f mod (p*, H,)
because R mod (p, H,) #0, and (3.1), (3.2) and (3.3) are clear from the construction
of h.

We have shown how to choose s,,s;,"-+,s, and p, and how to satisfy the
conditions in (3.19). We are now ready for our theorem.

THEOREM 3.26. Let f be a monic polynomial in (1/d)Z[a][X,, X, -+, X,] with
t=2, of degree n;in X; and 2=n=n,=n,=---=n,. The irreducible factorization of f
can be found in O(n'~"(IN)*(IN +log (dfe) + I log (I|F|))) arithmetic operations on
infegers having binary length O(n'~'(IN)*(IN +log (dfax) + I log (I|F]))), where N =
H;-; ("i + l)'

Proof. If f does not contain multiple factors, then f can be factored by repeated
application of (3.19). In that case (3.26) follows from (3.21), (3.20), (3.25) and the
well-known estimates for the application of Berlekamp’s algorithm and Hensel’s lemma
(cf. [1], [7] and [19]).

If f contains multiple factors, then we first have to compute the monic ged g of
S and its derivative with respect to X,, and the factoring algorithm is then applied to
S/ 8. The cost of factoring f/ g satisfies the same estimates as above, because (f/g)max =
By (cf. (2.7)), and this dominates the costs of the computation of g, which can be done
by means of the subresultant algorithm (cf. [2]). O
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