FACTORING MULTIVARIATE POLYNOMIALS OVER ALGEBRAIC NUMBER FIELDS*

ARJEN K. LENSTRA†

Abstract. We present an algorithm to factor multivariate polynomials over algebraic number fields that is polynomial-time in the degrees of the polynomial to be factored. The algorithm is an immediate generalization of the polynomial-time algorithm to factor univariate polynomials with rational coefficients.

Key words. polynomial factorization

AMS(MOS) subject classifications. 12A20, 68C25

1. Introduction. We show that the algorithm from [9] to factor univariate polynomials with rational coefficients can be generalized to multivariate polynomials with coefficients in an algebraic number field. As a result we get an algorithm that is polynomial-time in the degrees and the coefficient-size of the polynomial to be factored.

An outline of the algorithm is as follows. First the polynomial $f \in \mathbf{Q}(\alpha)[X_1, X_2, \dots, X_t]$ is evaluated in a suitably chosen integer point $(X_2 = s_2, X_3 = s_3, \dots, X_t = s_t)$. Next, for some prime number p, a p-adic irreducible factor \tilde{h} of the resulting polynomial $\tilde{f} \in \mathbf{Q}(\alpha)[X_1]$ is determined up to a certain precision. We then show that the irreducible factor h_0 of f for which \tilde{h} is a p-adic factor of \tilde{h}_0 , belongs to a certain integral lattice, and that h_0 is relatively short in this lattice. This enables us to compute this factor h_0 by means of the so-called basis reduction algorithm (cf. $[9, \S 1]$).

As [9] is easily available, we do not consider it to be necessary to recall the basis reduction algorithm here; we will assume the reader to be familiar with this algorithm and its properties.

Although the algorithm presented in this paper is polynomial-time, we do not think it is a useful method for practical purposes. Like the other generalizations of the algorithm from [9], which can be found in [10]-[13], the algorithm will be slow, because the basis reduction algorithm has to be applied to huge dimensional lattices with large entries. In practice, a combination of the methods from [8], [17] and [18] can be recommended (cf. [8]).

In [3] and [6] polynomial-time algorithms are given for similar multivariate polynomial factoring problems. These papers make use of a completely different approach. In [6] the multivariate factoring is reduced in polynomial time to univariate factoring and the latter problem is solved by the algorithm from [9]. A polynomial-time reduction to univariate factoring and multivariate factoring over finite fields is presented in [3].

All papers referred to above, and also the present paper, assumed the polynomials to be *densely* encoded. For algorithms which apply the more realistic *sparse* encoding we refer to [16].

Preliminaries. In this section we introduce some notation, and we derive an upper bound for the coefficients of factors of multivariate polynomials over algebraic number fields. Let the algebraic number field $Q(\alpha)$ be given as the field of rational numbers Q extended by a root α of a prescribed minimal polynomial $F \in \mathbb{Z}[T]$ with leading coefficient equal to one, i.e., $Q(\alpha) \simeq Q[T]/(F)$. Similarly, we define $\mathbb{Z}[\alpha] = \mathbb{Z}[T]/(F)$ as a ring of polynomials in α over \mathbb{Z} of degree less than I, where I denotes the degree δF of F.

Let $f \in Q(\alpha)[X_1, X_2, \dots, X_t]$ be the polynomial to be factored, with the number of variables $t \ge 2$. By $\delta_i f = n_i$ we denote the degree of f in X_i , for $1 \le i \le t$. We often use n instead of n_1 . We put $N_i = \prod_{k=i}^t (n_k + 1)$, and $N = N_1$. Let $lc_0(f) = f$. For $1 \le i \le t$ we define $lc_i(f) \in Q(\alpha)[X_{i+1}, X_{i+2}, \dots, X_t]$ as the leading coefficient with respect to X_i of $lc_{i-1}(f)$, and we put $lc(f) = lc_i(f)$. Finally, we define the content cont $(f) \in Q(\alpha)[X_2, X_3, \dots, X_t]$ of f as the greatest common divisor of the coefficients of f with respect to X_1 . Without loss of generality we may assume that $2 \le n_i \le n_{i+1}$ for $1 \le i < t$, that f is monic (i.e. lc(f) = 1), and that δ_i cont (f) = 0 for $2 \le i \le t$. Let $d \in \mathbb{Z}_{>0}$ be such that $f \in (1/d)\mathbb{Z}[\alpha][X_1, X_2, \dots, X_t]$ and let discr (F) denote

Let $d \in \mathbb{Z}_{>0}$ be such that $f \in (1/d)\mathbb{Z}[\alpha][X_1, X_2, \dots, X_t]$, and let discr (F) denote the discriminant of F. It is well known (cf. [18]) that if we take $D = d|\operatorname{discr}(F)|$, then all monic factors of f are in $(1/D)\mathbb{Z}[\alpha][X_1, X_2, \dots, X_t]$ (in fact it is sufficient to take $D = d \cdot s$, where s is the largest integer such that s^2 divides discr (F), but this integer s might be too difficult to compute).

We now introduce some notation. Suppose that we are given a prime number p such that

$$(2.1) p does not divide D.$$

For $G = \sum_i a_i T^i \in \mathbb{Z}[T]$ we denote by G_i or $G \mod p^l$ the polynomial $\sum_i (a_i \mod p^l) T^i \in (\mathbb{Z}/p^l\mathbb{Z})[T]$, for any positive integer l. Suppose furthermore that we are given some positive integer k, and that p is chosen in such a way that a polynomial $H \in \mathbb{Z}[T]$ exists such that

- (2.2) H has leading coefficient equal to one,
- (2.3) H_k divides F_k in $(\mathbb{Z}/p^k\mathbb{Z})[T]$,
- (2.4) H_1 is irreducible in $(\mathbb{Z}/p\mathbb{Z})[T]$,
- (2.5) $(H_1)^2$ does not divide F_1 in $(\mathbb{Z}/p\mathbb{Z})[T]$.

 $W_l(\mathbf{F}_a)[X_1]$ (notice that $D^{-1} \mod p^l$ exists due to (2.1)).

Clearly H_1 divides F_1 in $(\mathbb{Z}/p\mathbb{Z})[T]$, and $0 < \delta H \le I$. In the sequel we will assume that conditions (2.1), (2.2), (2.3), (2.4) and (2.5) are satisfied.

By \mathbf{F}_q we denote the finite field containing $q = p^{\delta H}$ elements. From (2.4) we have $\mathbf{F}_q \simeq (\mathbf{Z}/p\mathbf{Z})[T]/(H_1) \simeq \{\sum_{i=0}^{\delta H-1} a_i \alpha_1^i \colon a_i \in \mathbf{Z}/p\mathbf{Z}\}$, where $\alpha_1 = T \mod (H_1)$ is a zero of H_1 . Furthermore we put $W_k(\mathbf{F}_q) = (\mathbf{Z}/p^k\mathbf{Z})[T]/(H_k) = \{\sum_{i=0}^{\delta H-1} a_i \alpha_k^i \colon a_i \in \mathbf{Z}/p^k\mathbf{Z}\}$, where $\alpha_k = T \mod (H_k)$ is a zero of H_k . Notice that $W_k(\mathbf{F}_q)$ is a ring containing q^k elements, and that $W_1(\mathbf{F}_q) \simeq \mathbf{F}_q$. For $a \in \mathbf{Z}[\alpha]$ we denote by $a \mod (p^l, H_l) \in W_l(\mathbf{F}_q)$ the result of the canonical mapping from $\mathbf{Z}[\alpha] = \mathbf{Z}[T]/(F)$ to $W_l(\mathbf{F}_q) = (\mathbf{Z}/p^l\mathbf{Z})[T]/(H_l)$ applied to a, for l = 1, k. For $\tilde{g} = \sum_i (a_i/D)X_1^i \in (1/D)\mathbf{Z}[\alpha][X_1]$ we denote by $\tilde{g} \mod (p^l, H_l)$ the polynomial $\sum_i (((D^{-1} \mod p^l)a_i) \mod (p^l, H_l))X_1^i \in (D^{-1} \mod p^l)a_i$

We derive an upper bound for the height of a monic factor g of f. As usual, for $g = \sum_{i_1} \sum_{i_2} \cdots \sum_{i_t} \sum_{j} a_{i_1 i_2 \cdots i_t j} \alpha^j X_1^{i_1} X_2^{i_2} \cdots X_t^{i_t} \in \mathbb{Q}(\alpha)[X_1, X_2, \cdots, X_t]$, the height g_{\max} is defined as $\max |a_{i_1 i_2 \cdots i_t j}|$, and the length |g| as $(\sum a_{i_1 i_2 \cdots i_t j}^2)^{1/2}$. Similarly, for a polynomial h with complex coefficients, we define its height h_{cmax} as the maximum of the absolute values of its complex coefficients.

For any choice of $\alpha \in \{\alpha_1, \alpha_2, \dots, \alpha_I\}$, where $\alpha_1, \alpha_2, \dots, \alpha_I$ are the conjugates of α , we can regard g as a polynomial g_{α} with complex coefficients. We define $\|g\|$ as $\max_{1 \le i \le I} (g_{\alpha_i})_{cmax}$. From [4] we have

$$\|g\| \leq e^{\sum_{i=1}^{r} n_i} \|f\|.$$

In [10, § 4] we have shown that this leads to

(2.6)
$$g_{\max} \le e^{\sum_{l=1}^{I} n_l} ||f|| I (I-1)^{(I-1)/2} |F|^{I-1} |\operatorname{discr}(F)|^{-1/2}.$$

From [15] we know that the length |F| of F is an upper bound for the absolute value of the conjugates of α , so that

$$||f|| \leq f_{\max} \sum_{i=0}^{I-1} |F|^i,$$

which yields, combined with (2.6),

(3.1)

(2.7)
$$g_{\max} \le e^{\sum_{i=1}^{l} n_i} f_{\max} I(I-1)^{(I-1)/2} |F|^{I-1} |\operatorname{discr}(F)|^{-1/2} \sum_{i=0}^{l-1} |F|^i.$$

The upper bound for the height of monic factors of f, as given by the right-hand side of (2.7), will be denoted by B_f . Because $|\operatorname{discr}(F)| \ge 1$, we find

an algorithm to compute the irreducible factorization of f in $Q(\alpha)[X_1, X_2, \dots, X_t]$.

 $s_2, s_3, \dots, s_t \in \mathbb{Z}_{>0}$ be a (t-1)-tuple of integers. For $g \in$

(2.8)
$$\log B_f = O\left(\sum_{i=1}^t n_i + \log f_{\max} + I\log(I|F|)\right).$$

3. Factoring multivariate polynomials over algebraic number fields. We describe

 $Q(\alpha)[X_1, X_2, \cdots, X_t]$ we denote by \tilde{g}_j the polynomial $g \mod ((X_2 - s_2), (X_3 - s_2))$ $(s_3), \cdots, (X_j - s_j) \in \mathbb{Q}(\alpha)[X_1, X_{j+1}, X_{j+2}, \cdots, X_t]; \text{ i.e., } \tilde{g}_j \text{ is } g \text{ with } s_i \text{ substituted for } s_j \in \mathbb{Q}(\alpha)[X_1, X_{j+1}, X_{j+2}, \cdots, X_t]$ X_i , for $2 \le i \le j$. Notice that $\tilde{g}_1 = g$ and that $\tilde{g}_j = \tilde{g}_{j-1} \mod (X_j - s_j)$. We put $\tilde{g} = \tilde{g}_i$. Suppose that a polynomial $h \in \mathbb{Z}[\alpha][X_1]$ is given such that

 \tilde{h} is monic.

- $\tilde{h} \mod (p^k, H_k)$ divides $\tilde{f} \mod (p^k, H_k)$ in $W_k(\mathbb{F}_q)[X_1]$, (3.2)
- $\tilde{h} \mod (p, H_1)$ is irreducible in $\mathbf{F}_a[X_1]$, (3.3)
- $(\tilde{h} \mod (p, H_1))^2$ does not divide $\tilde{f} \mod (p, H_1)$ in $F_q[X_1]$. (3.4)

We put $l = \delta_1 \tilde{h}$, so $0 < l \le n$. By $h_0 \in (1/D) \mathbb{Z}[\alpha][X_1, X_2, \dots, X_t]$ we denote the unique,

monic, irreducible factor of f such that $\tilde{h} \mod (p^k, H_k)$ divides $\tilde{h}_0 \mod (p^k, H_k)$ in $W_k(\mathbf{F}_q)[X_1]$ (cf. (3.2), (3.3), (3.4)). (3.5) Let $m = m_1, m_2, m_3, \dots, m_t$ be a t-tuple of integers satisfying $l \le m < n$ and $0 \le m_i \le \delta_i lc_{i-1}(f)$ for $2 \le i \le t$, and let $M = 1 + I \sum_{i=1}^t m_i N_{i+1}$ (where of course $N_{i+1} = 1$).

We define $L \subset (\mathbf{Z}/D)^M$ as the lattice of rank M, consisting of the polynomials $g \in$

- $(1/D)\mathbf{Z}[\alpha][X_1, X_2, \cdots, X_t]$ for which (i) $\delta_1 g \leq m$ and $\delta_i g \leq n_i$ for $2 \leq i \leq t$;

 - (ii) If $\delta_i lc_{i-1}(g) = m_i$ for $1 \le j \le i$, then $\delta_{i+1} lc_i(g) \le m_{i+1}$ for $1 \le i < t$; (iii) If $\delta_i lc_{i-1}(g) = m_i$ for $1 \le i \le t$, then $lc(g) \in \mathbb{Z}$;
 - (iv) $\tilde{h} \mod (p^k, H_k)$ divides $\tilde{g} \mod (p^k, H_k)$ in $W_k(\mathbb{F}_q)[X_1]$.

Here M-dimensional vectors and polynomials satisfying conditions (i), (ii) and (iii) are identified in the usual way (cf. [10, (2.6)] and [12, (3.5)]). For notational convenience we only give a basis for L in the case that $m_i = n_i$ for $2 \le i \le t$; the general case can easily be derived from this:

$$\left\{ \frac{1}{D} p^{k} \alpha^{j} X_{1}^{i} : 0 \leq j < \delta H, 0 \leq i < l \right\}$$

$$\cup \left\{ \frac{1}{D} \alpha^{j-\delta H} H(\alpha) X_{1}^{i} : \delta H \leq j < l, 0 \leq i < l \right\}$$

$$\cup \left\{ \frac{1}{D} \alpha^{j} \tilde{h} X_{1}^{i-l} : 0 \leq j < l, l \leq i \leq m \right\}$$

$$\bigcup \left\{ \frac{1}{D} \alpha^{j} \tilde{K}_{1}^{i-l} : 0 \leq j < I, \, l \leq i \leq m \right\} \\
\bigcup \left\{ \frac{1}{D} \alpha^{j} X_{1}^{i_{1}} \prod_{r=2}^{l} (X_{r} - s_{r})^{i_{r}} : 0 \leq j < I, \, 0 \leq i_{1} \leq m, \, 0 \leq i_{r} \leq n_{r} \text{ for } 2 \leq r \leq t, \\
(i_{2}, i_{3}, \dots, i_{t}) \neq (0, 0, \dots, 0), \\$$

and $(i_1, i_2, i_3, \dots, i_t) \neq (m, n_2, n_3, \dots, n_t)$

$$\bigcup \left\{ X_1^m \prod_{r=2}^t (X_r - s_r)^{n_r} \right\}$$
(cf. [10, (2.6)], [12, (3.5)], (2.2), and (3.1)).

PROPOSITION 3.6. Let b be a nonzero element of L and let

(3.7)
$$\tilde{B}_{j} = f_{\max}^{m} b_{\max}^{n} (n+m)! \left(DN_{2} (1+F_{\max})^{l-1} \prod_{i=2}^{j} s_{i}^{n_{i}} \right)^{n+m},$$
for $1 \leq j \leq t$, where f_{\max}^{m} denotes $(f_{\max})^{m}$.

Suppose that

(3.7)

$$j \leq t$$
, as

$$2 \le j \le t$$
, as

for
$$2 \le j \le t$$
, and

 $p^{k\delta H} \ge |F|^{I-1} (I^{1/2} \tilde{B}_{\cdot})^{I}$ (3.9)

(3.9)
$$p^{k\delta H} \ge |F|^{I-1} (I^{1/2} \tilde{B}_t)^I.$$
Then $\gcd(f, b) \ne 1$ in $\mathbf{O}(\alpha)[X_1, X_2, \dots, X_n]$

Then $gcd(f, b) \neq 1$ in $Q(\alpha)[X_1, X_2, \dots, X_t]$. *Proof.* Denote by $R = R(Df, Db) \in \mathbb{Z}[\alpha][X_2, X_3, \dots, X_t]$ the resultant of Df and

because $\tilde{h} \mod (p^k, H_k)$ divides both $\tilde{f} \mod (p^k, H_k)$ and $\tilde{b} \mod (p^k, H_k)$ in $W_k(\mathbb{F}_q)$ $[X_1]$. We conclude that R = 0, so that $gcd(f, b) \neq 1$ in $Q(\alpha)[X_1, X_2, \dots, X_t]$.

If a and b are two polynomials in any number of variables over $Q(\alpha)$, having l_a and l_b terms, respectively, then

(3.10)
$$(a \cdot b)_{\max} \le a_{\max} b_{\max} \min (l_a, l_b) (1 + F_{\max})^{I-1}$$

From (3.10) we easily derive an upper bound for $(\tilde{R}_j)_{\max}$, because $\tilde{R}_j \in \mathbf{Z}[\alpha][X_{j+1}, X_{j+2}, \cdots, X_t]$ is the resultant of $D\tilde{f}_j$ and $D\tilde{b}_j$:

 $s_i \ge ((n+m)n_i+1)^{1/2}\tilde{B}_{i-1}$

Db (with respect to the variable X_1). An outline of the proof is as follows. First we prove that an upper bound for $(\tilde{R}_j)_{\text{max}}$ is given by \tilde{B}_j . Combining this with (3.8), we then see that $X_j = s_j$ cannot be a zero of \tilde{R}_{j-1} if $\tilde{R}_{j-1} \neq 0$, for $2 \leq j \leq t$. This implies that the assumption that $R \neq 0$ (i.e., gcd(f, b) = 1) leads to $\tilde{R} \neq 0$. We then apply a result from [8], and we find with (3.9) that $\tilde{R} \mod (p^k, H_k) \neq 0$. But this is a contradiction,

 $(\tilde{R}_{j})_{\max} \leq (D\tilde{f}_{j})_{\max}^{m} (D\tilde{b}_{j})_{\max}^{n} (n+m)! N_{j+1}^{n+m-1} (1+F_{\max})^{(I-1)(n+m-1)}.$ (3.11)

It follows from $\tilde{f}_i = \tilde{f}_{i-1} \mod (X_i - s_i)$, that $(\tilde{f}_i)_{\max} \leq (\tilde{f}_{i-1})_{\max} (n_i + 1) s_i^n$, so that

(3.12)
$$(\tilde{f}_j)_{\max} \leq f_{\max} \prod_{i=2}^{j} (n_i + 1) s_i^{n_i}.$$

Combining (3.11), (3.12) and a similar bound for $(\tilde{b_i})_{max}$, we obtain

$$(3.13) \qquad (\tilde{R}_j)_{\max} < f_{\max}^m b_{\max}^n (n+m)! \left(DN_2 \prod_{i=2}^j s_i^{n_i} \right)^{n+m} (1+F_{\max})^{(I-1)(n+m-1)},$$

for $1 \le j < t$. (Remark that (3.13) with "<" replaced by " \le " holds for j = t.)

Now assume, for some j with $2 \le j \le t$, that \tilde{R}_{i-1} is unequal to zero. We prove that $\tilde{R}_i \neq 0$. Because $\tilde{R}_i = \tilde{R}_{i-1} \mod (X_i - s_i)$, the condition $\tilde{R}_i = 0$ would imply that all polynomials in $\mathbb{Z}[X_i]$ that result from \tilde{R}_{i-1} by grouping together all terms with identical exponents in α and X_{i+1} up to X_i , have $(X_i - s_i)$ as a factor. These polynomials have degree (in X_i) at most $(n+m)n_i$, so that we get, with the result from [14], that

$$|s_j| \le ((n+m)n_j+1)^{1/2} (\tilde{R}_{j-1})_{\text{max}}.$$

Combined with (3.13) and (3.7) this is a contradiction with (3.8). We conclude that

 $\tilde{R}_i \neq 0$ if $\tilde{R}_{i-1} \neq 0$ for any j with $2 \leq j \leq t$, so that the assumption $\gcd(f, b) = 1$ (i.e., $R \neq 0$) leads to $\tilde{R} \neq 0$.

Assume that $H_k(T)$ divides $\tilde{R}(T) \in \mathbb{Z}[T]$ in $(\mathbb{Z}/p^k\mathbb{Z})[T]$, i.e., $\tilde{R} \mod (p^k, H_k) = 0$. We show that this leads to a contradiction (cf. [8, proof of Thm. 2]). Consider the polynomials $T^i p^k$ for $0 \le i < \delta H$ and $T^{j-\delta H} H_k$ for $\delta H \le j < I + \delta \tilde{R}$. These polynomials, when regarded as $(I + \delta \tilde{R})$ -dimensional integral vectors, form a basis for an integral lattice L_H in $\mathbb{Z}^{I+\delta R}$. From (2.2) it follows that the determinant det (L_H) of L_H equals $p^{k\delta H}$, and that L_H can be considered as the set of polynomials in $\mathbb{Z}[T]$ of degree less than $I + \delta \tilde{R}$ which have $H_k(T)$ as a divisor when taken modulo p^k .

Because F is irreducible and $\delta \tilde{R} < \delta F = I$, we have that $gcd(F(T), \tilde{R}(T)) = 1$. This implies that the polynomials T^iF for $0 \le i < \delta \tilde{R}$ and $T^j\tilde{R}$ for $0 \le j < I$, when regarded as $(I + \delta \tilde{R})$ -dimensional integral vectors, form a basis for an integral lattice L_F in $\mathbf{Z}^{I+\delta R}$. Applying Hadamard's inequality to this basis for L_F , we see that $\det(L_F) \leq |F|^{\delta \tilde{R}} ((\delta \tilde{R} + 1)^{1/2} \tilde{R}_{\max})^I.$

Our assumption $\tilde{R} \mod (p^k, H_k) = 0$ combined with (2.3) leads to the conclusion that all elements of L_F , when considered as polynomials in $\mathbb{Z}[T]$, have $H_k(T)$ as a

divisor when taken modulo p^k , so that L_F is a sublattice of L_H , and in particular

$$p^{k\delta H} = \det(L_H) \le \det(L_F) \le |F|^{I-1} (I^{1/2} \tilde{R}_{\max})^I$$
. With the remark after (3.13) and (3.7) this is a contradiction with (3.9), so that $\tilde{R} \mod(p^k, H_k) \ne 0$. As stated in the first paragraph of this proof, this is a contradiction because $\tilde{h} \mod(p^k, H_k)$ divides both $\tilde{f} \mod(p^k, H_k)$ and $\tilde{b} \mod(p^k, H_k)$ in $W_k(\mathbf{F}_q)$

 $[X_1]$, so that our initial assumption gcd(f, b) = 1 must be wrong. This concludes the proof of (3.6). PROPOSITION 3.14. Let b_1, b_2, \dots, b_M be a reduced basis for L (cf. [9, § 1]), where L and M are as in (3.5), and let

(3.15)
$$B_{j} = (n+m)! (M2^{M-1})^{n/2} \left(B_{f} D N_{2} (1+F_{\text{max}})^{I-1} \prod_{i=1}^{j} s_{i}^{n_{i}} \right)^{n+m},$$

for $2 \le j \le t$, where B_f is as in § 2. Suppose that

(3.16)
$$s_j \ge ((n+m)n_j+1)^{1/2}B_{j-1}$$

for
$$2 \le j \le t$$
, that
$$(3.17) p^{k\delta H} \ge |F|^{I-1} (I^{1/2}B_i)^{I}.$$

and that f does not contain multiple factors. Then

$$(3.18) (b_1)_{\text{max}} \leq (M2^{M-1})^{1/2} B_{\ell}$$

and h_0 divides b_1 , if and only if $h_0 \in L$.

Proof. If h_0 divides b_1 , then $h_0 \in L$, because $b_1 \in L$ and $\delta_1 h_0 \le \delta_1 b_1$; this proves the "if" part.

To prove the "only if" part, suppose that $h_0 \in L$. Because h_0 is a monic factor of f, we have from (2.7) that $(h_0)_{\max} \le B_f$. With [9, (1.11)] and $h_0 \in L$ this gives $|b_1| \le (M2^{M-1})^{1/2}B_f$, so that (3.18) holds, because $(b_1)_{\max} \le |b_1|$. Because of (3.18), (3.16), (3.17), (3.15), and the definition of B_f , we can apply (3.6), which yields $\gcd(f, b_1) \ne 1$.

Now suppose that h_0 does not divide b_1 . This implies that h_0 also does not divide $r = \gcd(f, b_1)$, where r can be assumed to be monic. But then \tilde{h} mod (p^k, H_k) divides $(\tilde{f}/\tilde{r}) \mod (p^k, H_k)$, so that Proposition 3.6 can be applied with f replaced by f/r. Conditions (3.8) and (3.9) are satisfied because $(f/r)_{\max} \leq B_f$ (cf. (2.7)) and because of (3.16), (3.17) and (3.15). It follows that $\gcd(f/r, b_1) \neq 1$, which contradicts $r = \gcd(f, b_1)$ because f does not contain multiple factors. \square

(3.19) We describe how to compute the irreducible factor h_0 of f. Suppose that f does not contain multiple factors, and that the polynomial \tilde{h} , the (t-1)-tuple s_2, s_3, \dots, s_t , and the prime power p^k are chosen such that (3.1), (3.2), (3.3), (3.4), (3.16) and (3.17) are satisfied with, for (3.16) and (3.17), m replaced by n-1. Remember that we also have to take care that conditions (2.1), (2.2), (2.3), (2.4) and (2.5) on p and p are satisfied.

We apply the basis reduction algorithm (cf. [9, § 1]) to a sequence of M_j -dimensional lattices as in (3.5), where the $M_j = 1 + I \sum_{i=1}^{t} m_i N_{i+1}$ run through the range of admissible values for m_1, m_2, \dots, m_t (cf. (3.5)), in such a way that $M_j < M_{j+1}$. (So, for $m = l, l+1, \dots, n-1$, and $m_i = 0, 1, \dots, \delta_i l c_{i-1}(f)$ for $i = t, t-1, \dots, 2$ in succession.) According to (3.14), the first vector b_1 that we find that satisfies (3.18) equals $\pm h_0$ (remember that b_1 belongs to a basis for the lattice), so that we can stop if such a vector is found. If for none of the lattices a vector satisfying (3.18) is found, then h_0 is not contained in any of these lattices according to (3.14), so that $h_0 = f$.

PROPOSITION 3.20. Assume that the conditions in (3.19) are satisfied. The polynomial h_0 can be computed in $O((\delta_1 h_0 I N_2)^4 k \log p)$ arithmetic operations on integers having binary length $O(INk \log p)$.

Proof. Observing that $\log(INp^{2k}) = O(k \log p)$ (cf. (3.17), (3.15) and (2.8)), the proof immediately follows from (3.19), (3.5) and [9, (1.26), (1.37)]. \Box

(3.21) We now show how s_2, s_3, \dots, s_t and p can be chosen in such a way that the conditions in (3.19) can be satisfied. The algorithm to factor f then easily follows by repeated application of (3.19).

We assume that f does not contain multiple factors, so that the resultant R = R(df, df') of df and its derivative df' with respect to X_1 is unequal to zero. First we choose $s_2, s_3, \dots, s_t \in \mathbb{Z}_{>0}$ minimal such that (3.16) is satisfied with m replaced by n-1. It follows from (3.16), (3.15), (2.8) and $\log D = O(\log d + I \log (I|F|))$ (because $D = d | \operatorname{discr}(F)|$), that

$$\log s_{j} = O(\log ((n+m)n_{j}) + \log B_{j-1})$$

$$= O\left(InN + n\left(\log B_{f} + \log D + I\log (1 + F_{\max}) + \sum_{i=1}^{j-1} n_{i} \log s_{i}\right)\right)$$

$$= O\left(n\left(IN + \log\left(df_{\max}\right) + I\log\left(I|F|\right) + \sum_{i=1}^{j-1} n_i \log s_i\right)\right)$$

for $2 \le i \le t$, so that

$$\log s_{j} = O\left(n(IN + \log(df_{\max}) + I\log(I|F|))\prod_{i=1}^{j-1}(1 + nn_{i})\right)$$

and

(3.22)
$$\sum_{i=2}^{t} n_i \log s_i = O(n^{t-2}N(IN + \log(df_{\max}) + I\log(I|F|))).$$

From the proof of (3.6) it follows that, for this choice of s_2, s_3, \dots, s_t the resultant $R \in \mathbb{Z}[\alpha]$ of $d\tilde{f}$ and $d\tilde{f}'$ is unequal to zero.

Next we choose p minimal such that p does not divide D or discr (F), and such that $\tilde{R} \not\equiv 0 \mod p$. Clearly $\prod_{q \text{ Prime, } q \leq p} q \leq d \text{ discr } (F) \tilde{R}_{\text{max}}$

 $\prod_{q \text{ prime}, q < p} q > e^{Ap}$

 $p = O(\log d + I \log (I|F|) + \log \tilde{R}_{\max}).$

which yields, together with

(3.23)

 $\tilde{R}_{\max} \le f_{\max}^{2n-1} n^n (2n-1)! \left(dN_2 \prod_{i=1}^t s_i^{n_i} \right)^{2n-1} (1+F_{\max})^{(I-1)(2n-2)},$

so that we get, using (3.22)
$$\log \tilde{R}_{\max} = O(n^{t-1}N(IN + \log(df_{\max}) + I\log(I|F|))).$$

(3.24)

(3.24)
$$p = O(n^{t-1}N(IN + \log(df_{max}) + I\log(I|F|))).$$

Notice that (2.1) is now satisfied. In order to compute a polynomial $H \in \mathbb{Z}[T]$ satisfying (2.2), (2.4), (2.5) and (2.3) with k replaced by 1, we factor $F \mod p$ by means of

for all p > 2 and some constant A > 0 (cf. [5, § 22.21), that

for which $\tilde{R} \mod (p, H_1) \neq 0$; such a polynomial H exists because $\tilde{R} \mod p \neq 0$. Conditions (2.4) and (2.3) with k replaced by 1 are clear from the construction of H, and because we may assume that H has leading coefficient equal to one, (2.2) also holds. The condition that $\operatorname{discr}(F) \mod p \neq 0$, finally, guarantees that $F \mod p$ does not

contain multiple factors, so that (2.5) is satisfied.

We choose
$$k$$
 minimal such that (3.17) holds, so that
$$k \log p = O\left(I\left(InN + n \log \left(df_{\max}\right) + In \log \left(I|F|\right) + n \sum_{i=2}^{l} n_i \log s_i\right) + \log p\right)$$

Berlekamp's algorithm [7, § 4.6.2] and we choose H as an irreducible factor of $f \mod p$

(cf. (3.15) and (2.8)), which gives, with (3.22) and (3.24),

(3.25)
$$k \log p = O(In^{t-1}N(IN + \log(df_{\text{max}}) + I\log(I|F|))).$$

Now we apply Hensel's lemma [7, Exer. 4.6.22] to modify H in such a way that (2.3) holds for this value of k (this is possible because (2.3) already holds for k = 1), and

finally we apply Berlekamp's algorithm as described in [1, § 5] and Hensel's lemma as in [17] to compute the irreducible factorization of $\tilde{f} \mod (p^k, H_k)$ in $W_k(\mathbf{F}_k)[X_k]$

Condition (3.4) is satisfied for each irreducible factor $\tilde{h} \mod (p^k, H_k)$ of $\tilde{f} \mod (p^k, H_k)$ because $\tilde{R} \mod (p, H_1) \neq 0$, and (3.1), (3.2) and (3.3) are clear from the construction of h.

We have shown how to choose s_2, s_3, \dots, s_t and p, and how to satisfy the conditions in (3.19). We are now ready for our theorem.

THEOREM 3.26. Let f be a monic polynomial in $(1/d)\mathbb{Z}[\alpha][X_1, X_2, \dots, X_t]$ with $t \ge 2$, of degree n_i in X_i and $2 \le n = n_1 \le n_2 \le \cdots \le n_i$. The irreducible factorization of fcan be found in $O(n^{t-1}(IN)^5(IN + \log(df_{max}) + I\log(I|F|)))$ arithmetic operations on integers having binary length $O(n^{t-1}(IN)^2(IN + \log(df_{max}) + I\log(I|F|)))$, where N = $\prod_{i=1}^{r} (n_i+1).$

Proof. If f does not contain multiple factors, then f can be factored by repeated application of (3.19). In that case (3.26) follows from (3.21), (3.20), (3.25) and the well-known estimates for the application of Berlekamp's algorithm and Hensel's lemma (cf. [1], [7] and [19]).

If f contains multiple factors, then we first have to compute the monic gcd g of f and its derivative with respect to X_1 , and the factoring algorithm is then applied to f/g. The cost of factoring f/g satisfies the same estimates as above, because $(f/g)_{\text{max}} \le$ B_f (cf. (2.7)), and this dominates the costs of the computation of g, which can be done by means of the subresultant algorithm (cf. [2]).

REFERENCES [1] E. R. BERLEKAMP, Factoring polynomials over large finite fields, Math. Comp., 24 (1970), pp. 713-735.

- [2] W. S. BROWN, The subresultant PRS algorithm, ACM Trans. Math. Software, 4 (1978), pp. 237-249. [3] A. L. CHISTOV AND D. YU. GRIGORYEV, Polynomial-time factoring of the multivariable polynomials over a global field, LOMI preprint E-5-82, Leningrad, 1982.
- [4] A. O. GEL'FOND, Transcendental and Algebraic Numbers, Dover, New York, 1960.
- [5] G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory of Numbers, Oxford University
- Press, London, 1979. [6] E. KALTOFEN, Polynomial-time reductions from multivariate to bi- and univariate integral polynomial
- factorization, this Journal, 14 (1985), pp. 469-489. [7] D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, sec. ed., Addison-Wesley, Reading, MA, 1981.
- [8] A. K. LENSTRA, Lattices and factorization of polynomials over algebraic number fields, Proc. Eurocam 82, LNCS, 144 (1982), pp. 32-39.
- [9] A. K. LENSTRA, H. W. LENSTRA, JR AND L. LOVÁSZ, Factoring polynomials with rational coefficients,
- Math. Ann., 261 (1982), pp. 515-534. [10] A. K. LENSTRA, Factoring polynomials over algebraic number fields, Report IW 213/82, Mathematisch
- Centrum, Amsterdam, 1982.
- -, Factoring multivariate polynomials over finite fields, J. Comput. System Sci., 30 (1985), pp. 235-248; Proc. 15th Annual ACM Symp. on the Theory of Computing, pp. 189-192.
- [12] _____, Factoring multivariate integral polynomials, Theoretical Computer Science, 34 (1984), pp. 207-213; Proc. 10th ICALP, LNCS 154, pp. 458-465.
- -, Factoring multivariate integral polynomials, II, Report IW 230/83, Mathematisch Centrum, Amsterdam, 1983.
- [14] M. MIGNOTTE, An inequality about factors of polynomials, Math. Comp., 28 (1974), pp. 1153-1157. [15] J. Stoer, Einführung in die numerische Mathematik I, Springer, Berlin, 1972.
- [16] J. VON ZUR GATHEN, Factoring sparse multivariate polynomials, Proc. 24th Annual Symposium on Foundations of Computer Science (1983), pp. 172-179.
- [17] P. S. WANG, Factoring multivariate polynomials over algebraic number fields, Math. Comp., 30 (1976), pp. 324-336.
- [18] P. J. WEINBERGER AND L. P. ROTHSCHILD, Factoring polynomials over algebraic number fields, ACM Trans. Math. Software, 2 (1976), pp. 335-350.
- [19] D. Y. Y. YUN, The Hensel Lemma in Algebraic Manipulation, MIT, Cambridge, MA, 1974; reprint: Garland, New York, 1980.