
Analysis and Optimization of

the TWINKLE Factoring Device

Arjen K. Lenstra1 and Adi Shamir2

1 Citibank, N.A., 1 North Gate Road, Mendham, NJ 07945-3104, U.S.A.

arjen.lenstra@citicorp.com
2 Computer Science Department, The Weizmann Institute, Rehovot 76100, Israel

shamir@wisdom.weizmann.ac.il

Abstract. We describe an enhanced version of the TWINKLE factoring

device and analyse to what extent it can be expected to speed up the

sieving step of the Quadratic Sieve and Number Field Sieve factoring al-

gorithms. The bottom line of our analysis is that the TWINKLE-assisted

factorization of 768-bit numbers is difficult but doable in about 9 months

(including the sieving and matrix parts) by a large organization which

can use 80,000 standard Pentium II PC’s and 5,000 TWINKLE devices.

1 Introduction

The TWINKLE device is an optoelectronic device which is designed to speed up
the sieving operation in the Quadratic Sieve (QS) and Number Field Sieve (NFS)
integer factoring algorithms by using arrays of light emitting diodes (LED’s)
which blink at various rates (cf. [7]). The main purpose of this paper is to carry
out a detailed and realistic analysis of the expected behavior of a TWINKLE-
assisted factoring attempt on inputs whose binary sizes are 384, 512, and 768
bits. In particular, we describe the optimal choice of the many parameters in-
volved in such factoring attempts, and identify several areas in which the orig-
inal TWINKLE design leads to computational bottlenecks. We then propose
enhanced hardware and algorithmic designs which eliminate these bottlenecks,
and make such factorizations more feasible.

This paper is organized as follows. In Section 2 we briefly review the origi-
nal TWINKLE design from [7]. In Section 3 we discuss the applicability of the
original TWINKLE design to 384-bit numbers using the QS algorithm. In the
remainder of the paper we concentrate on how TWINKLE may be used for the
sieving step of the NFS for the factorization of 512-bit and 768-bit numbers.
In Section 4 we briefly sketch the required NFS background, and in Section 5
we discuss the sieving step of the NFS in more detail. In Section 6 we present a
number of hardware enhancements of the TWINKLE device. In Section 7 we de-
scribe how the NFS sieving step may be carried out on the modified TWINKLE
device and we analyse its running time. In Section 8 we address the question
what it is about TWINKLE that makes LED’s necessary and comment upon the
proposals to build a TWINKLE-like device using ordinary electronic circuitry.

B. Preneel (Ed.): EUROCRYPT 2000, LNCS 1807, pp. 35–52, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

36 Arjen K. Lenstra and Adi Shamir

All PC running times referred to in this paper are actual measurements rather
than asymptotic or conjectured running times. They are based on optimized
implementations of the various algorithms on a 450MHz Pentium II PC with
192 megabytes of RAM. However, the TWINKLE device itself has not been
built so far, and thus its feasibility, performance, and cost are open to debate.

2 The Original TWINKLE Design

We recall the basics of the TWINKLE device as described in [7]. The most time
consuming step of most modern factoring algorithm is the ‘sieving step’: for
many pairs of integers (p, r) in succession add an approximation of log(p) to
location r + kp of a sieve interval (initialized as zeros) for all integers k such
that r + kp is in the interval, and report all j for which location j exceeds a
certain threshold. Standard implementations use space (memory) to represent
the interval, and time (clock cycles) to loop over the (p, r) pairs. The TWINKLE
device reverses the roles of space and time: it uses space to represent the (p, r)
pairs, and time to loop over the sieve interval. This goes as follows.

The TWINKLE device is a cylinder of 6 inch diameter and 10 inch height.
The bottom consists of a single wafer of GaAs, containing one ‘cell’ for each
different p. Each cell contains an LED, a photodetector, an A register repre-
senting the value of p, for each r corresponding to that p a B register initially
loaded with a representation of r, and wiring. The top of the cylinder contains
a summing photodetector that measures the total light intensity emitted by the
bottom LED’s and a clocking LED that distributes the clock signal by flashing
at a fixed clock rate. As clock signal j is received by a cell’s photodetector, the
values of the B registers are decremented by one, if a resulting value represents
zero the cell’s LED flashes with intensity proportional to log(p), and the A reg-
ister is copied to the B register representing zero. If the total light intensity
detected by the top photodetector exceeds a certain threshold the value of j is
reported. Further details of the original TWINKLE design, such as how integers
are represented and decremented and how the optical delays are handled, can
be found in [7].

The bottom wafer as proposed in [7] contains 105 cells with one A and two
B registers each, and is clocked at 10 GHz. Since it takes a single clock cycle
to sum the values corresponding to a sieve location and to report the location
if necessary, this would correspond to a QS implementation that takes 10 mil-
liseconds to inspect 108 integers for smoothness with respect to the primes up
to 3 ∗ 106.

3 Analysis of TWINKLE-Assisted 384-Bit QS
Factorizations

The original description of the TWINKLE device in [7] is geared towards the
QS factoring algorithm (cf. [6]). In this section we analyse the effectiveness of

Analysis and Optimization of the TWINKLE Factoring Device 37

the original TWINKLE device for the factorization of 384-bit numbers using the
QS.

Although 384-bit numbers are unlikely to be the moduli in RSA cryptosys-
tems, their quick factorization may be useful in various number theoretic sub-
routines (e.g., when we try to complete the factorization of a large number of
randomly generated values after we eliminate their smooth parts). The factor-
ization of such numbers is not particularly difficult - it can be carried out in a
few months on a single PC. Our goal is simply to find out the improvement ratio
between TWINKLE-assisted factorizations and PC-based factorizations. There
are two reasons why such an analysis can be interesting:

– There is a great deal of experimental data on the optimal choice of param-
eters and the actual running time when factoring numbers of this size, and
thus the comparison can be based on harder data.

– It enables us to examine the specific issues related to the implementation of
the QS algorithm on the TWINKLE device. The QS and NFS algorithms
exhibit quite different properties when implemented on the TWINKLE de-
vice, but for larger input sizes the QS algorithm is simply not competitive
with the NFS algorithm.

We assume that the reader is familiar with the general outline of the QS algo-
rithm (see, e.g. [7]). A sequence of quadratic polynomials f1, f2, . . . is generated
that depends on the number to be factored and the length 2 ∗A of the sieve in-
terval. For i = 1, 2, . . . in succession the roots of the fi modulo the primes in the
factor base are computed and the values fi(x) for −A ≤ x < A are sieved to test
them for smoothness. The resulting smooth values have to be post-processed,
which consists of trial division possibly followed by the computation of the de-
composition of the resulting cofactor. For the QS algorithm the post-processing
step is negligible compared to the polynomial generation and root computation.
When doing the actual sieving on the TWINKLE device, polynomial generation,
root finding, and post-processing have to be carried out by one or more auxiliary
PC’s. The sequence of polynomials can be generated using the ordinary Multiple
Polynomial variant (MPQS) or using the Self Initializing variant (SIQS).

Based on actual data, the factorization of a 384-bit number with the QS
algorithm on a single 450 MHz Pentium II requires:

– About 9 months when running the QS algorithm with optimal parame-
ters: 186,000 primes in the factor base and 2 ∗ A ≈1,600,000 (SIQS) or
2 ∗ A ≈16,000,000 (MPQS).

– About 14 months when running the QS algorithm with the suboptimal
choices used in the original TWINKLE design (cf. [7]): 100,000 primes in
the factor base and a sieving interval of length 2 ∗ A = 100,000,000.

For 384-bit inputs, there is little difference between the running times of MPQS
and SIQS, but SIQS can compute the roots of the fi faster, which is a signifi-
cant advantage in TWINKLE-assisted factorizations. For the optimal choice of
parameters, a PC implementation spends about 25% of the time on polynomial

38 Arjen K. Lenstra and Adi Shamir

selection and root finding, but for the original choice (which we shall assume
from now on) this fraction drops to 0.6% (about 0.09 seconds per polynomial on
a PC). We consider two possible scenarios:

1. A TWINKLE device running at the maximum possible speed of 10 GHz.
Each sieving interval of length 100,000,000 can be scanned in 0.01 seconds
(cf. [7]). The total running time of the TWINKLE device is about 11 hours,
and 9 (= 0.09/0.01) PC’s are needed to generate the polynomials and to
compute their roots. These 9 PC’s can execute a conventional QS factor-
ization with optimal parameters in about a month, and thus the achievable
improvement ratio is approximately 30 ∗ 24/11 ≈ 65.

2. A TWINKLE device running at the minimum recommended speed of 1 GHz
(cf. 6.1). Scanning a single interval takes 0.1 seconds, and the whole scanning
phase takes 110 hours or about 4.5 days. However, in this case we need only
one PC to support the TWINKLE device. Thus we have to compare this
execution time to the 9 months required by a single PC implementation of
QS with optimal parameters. The relevant improvement ratio is thus 9∗ 30 ∗
24/110 ≈ 59.

The surprising conclusion is that we get about the same improvement ratio
regardless of whether we run the TWINKLE device at 10 GHz or at 1 GHz,
since the computational bottleneck is in the supporting PC’s. As described in
6.1, a 1 GHz TWINKLE is much easier to design and operate, and can make
the whole idea much more practical.

The improvement ratio of about 60 refers only to application of the QS
because a 384-bit number can be factored in about 2 months on a PC using the
NFS (this figure is based on extrapolation of the results from [1]).

We next consider the problem of factoring 512-bit numbers, which are typical
RSA keys in E-commerce applications. For this size the QS is not competitive
with the asymptotically faster NFS so we concentrate on the NFS in the remain-
der of this article.

4 Number Field Sieve

The Number Field Sieve integer factorization algorithm consists of four main
steps:

– Polynomial selection;
– Sieving;
– Matrix processing;
– Algebraic square root computation.

We briefly describe these steps as far as relevant for the description of the TWIN-
KLE device. Let n be the number to be factored. For ease of exposition we assume
that n is a 512-bit number.

Analysis and Optimization of the TWINKLE Factoring Device 39

4.1 Polynomial Selection

In the first step of the NFS factorization of n two polynomials of degrees 5 and
1 with a common root modulo n are selected:

f1(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 ∈ Z[x]

and

f2(x) = x − m ∈ Z[x] ,

where f1(m) ≡ 0 mod n. It is advantageous if the ai and m are small in absolute
value and if f1 has relatively many roots modulo small primes. The best known
method to find such polynomials (cf. [5]) produces an m that is of the same order
of magnitude as n1/6 and a polynomial f1 that is skew, i.e., |a5| � |a4| � |a3| �
|a2| � |a1| � |a0|. The skewness ratio s of f1 approximates the average ratio
|ai|/|ai+1|. A realistic value for s is 104. The bivariate, homogeneous, integral
polynomials F1 and F2 are defined as

F1(x, y) = y5 ∗ f1(x/y) and F2(x, y) = y ∗ f2(x/y) .

Everything related to f1 or F1 is referred to as the algebraic side, as opposed to
the rational side for f2 or F2.

4.2 Sieving

In the second step, the sieving step, relations are sought. These are coprime
pairs of integers (a, b) such that b > 0 and both F1(a, b) and F2(a, b) are smooth,
where smoothness of F1(a, b) and F2(a, b) is defined as follows:

– F1(a, b) factors over the primes < 224, except for possibly three primes < 109;
– F2(a, b) factors over the primes < 224, except for possibly two primes < 109.

Thus, three large primes are allowed on the algebraic side, but only two large
primes are allowed on the rational side. There are about one million primes
< 224, more precisely π(224) =1,077,871.

Candidate pairs (a, b) are located by twice sieving with the primes < 224 over
the rectangular region −A ≤ a < A, 0 < b ≤ A/s, for a large A that is specified
in 5.5. The sieving region is skew with skewness ratio s. The resulting candidate
pairs are trial divided to inspect if they indeed lead to relations. How the sieving
and the trial division may be carried out is addressed in the next section. It is
the most time consuming step of the NFS, and it is the step for which we want
to use the TWINKLE device.

4.3 Matrix Processing

Each relation a, b gives rise to a vector of exponents corresponding to the mul-
tiplicities of the primes in the factorizations of F1(a, b) and F2(a, b). It may
be expected that there are many linear dependencies among these vectors af-
ter about 80 to 100 million relations have been found. Dependencies modulo 2
among the vectors are determined in the matrix processing step. How the matrix
step is carried out is described in the literature referred to in [1].

40 Arjen K. Lenstra and Adi Shamir

4.4 Algebraic Square Root Computation

Each dependency modulo 2 leads with probability at least one half to the factor-
ization of n in the last step of the NFS. References describing how this is done
can be found in [1].

5 Sieving

So far two distinct sieving methods have been used in NFS implementations: line
sieving and special q sieving. Line sieving works by sieving over the a-interval
[−A, A) for each b = 1, 2, 3, . . . consecutively, until enough relations have been
found. Special q sieving works by repeatedly picking an appropriate prime q
between 224 and, approximately, 5 ∗ 108, and by restricting the sieving to the
pairs (a, b) for which q divides F1(a, b), until enough unique relations have been
found. Note that a relation is found at most once by line sieving but that it may
be found up to three times by special q sieving because each of the at most three
algebraic large primes may be used as special q. Both sieving methods may
be used, simultaneously or separately, for a single factorization. We describe
both methods in more detail, paying special attention to a property of special q
sieving that is not generally appreciated and that turns out to be beneficial for
TWINKLE-assisted NFS sieving.

5.1 Factor Bases and Sieving Thresholds

Let for i = 1, 2

Pi = {(p, r) : fi(r) ≡ 0 mod p, p prime, p < 224, 0 ≤ r < p} .

The set P2, the rational factor base, consists of the pairs (p, m mod p) for all
primes p < 224 and is trivial to compute. For the computation of P1, the algebraic
factor base, the roots of f1 mod p have to be determined for all primes p < 224.
The number of times a particular prime p < 224 occurs in a (p, r) pair in P1 may
be 0, 1, 2, 3, 4, or 5. The sets P1 and P2 are computed once. Let T1 and T2 be
two threshold values.

5.2 Line Sieving

For b = 1, 2, 3, . . . in succession do the following.

For i = 1, 2 in succession, initialize the sieve locations Si(a) to zero
for −A ≤ a < A, and next for all (p, r) in Pi replace Si(br + kp) by
Si(br + kp) + log(p) for all integers k such that br + kp ∈ [−A, A).
Finally, for all a such that gcd(a, b) = 1, S1(a) > T1, and S2(a) > T2

inspect if both F1(a, b) and F2(a, b) are smooth.

For a fixed b-value the a-interval −A ≤ a < A is referred to as a line. Note that
line sieving uses #P1 + #P2 arithmetic progressions per line, i.e., per b-value.

Analysis and Optimization of the TWINKLE Factoring Device 41

5.3 Special Sieving

For pairs (q, rq) with f1(rq) ≡ 0 mod q, q prime, and 224 < q < 109 do the
following.

Let Lq be the lattice spanned by the two 2-dimensional vectors (q, 0)T

and (rq , 1)T . Sieving over Lq∩{(a, b)T : −A ≤ a < A, 0 < b ≤ A/s}, i.e.,
‘small’ (a, b) pairs for which q divides F1(a, b), is approximated as follows.
Find a basis (x1, y1)T , (x2, y2)T for Lq for which |xi| ≈ |s∗ yi|. Let Vq be
the subset of Lq consisting of the vectors d ∗ (x1, y1)T + e ∗ (x2, y2)T for
integers d, e with −A/(s∗q)1/2 ≤ d < A/(s∗q)1/2, 0 < e ≤ A/(s∗q)1/2

(although in practice one sieves over the same d, e values for all pairs
(q, rq)). For i = 1, 2 in succession, initialize the sieve locations Si(v)
to zero for all v in Vq, and next for all (p, r) in Pi replace Si(v) by
Si(v) + log(p) for all v in Vq that can be written as an integer linear
combination of (p, 0)T and (r, 1)T . Finally, for all v = (a, b)T in Vq for
which gcd(a, b) = 1, S1(v) > T1 − log(q), and S2(v) > T2 inspect if both
F1(a, b) and F2(a, b) are smooth.

In this case a line is the d-interval for a fixed e-value. It follows from the asymp-
totic values of A and p (cf. [3]) that a particular line (e-value) is not hit (in the
d-interval) by the majority of pairs (p, r). Using arithmetic progressions for all
(p, r) pairs per e-value would therefore increase the asymptotic running time of
NFS, i.e., it is too expensive to visit all A/(s∗q)1/2 e-values for all (p, r) ∈ P1∪P2.
Instead, per (p, r) only O(A2/(s ∗ q ∗ p)) steps may be performed for the siev-
ing over Vq . In [2] this problem is adequately solved by lattice sieving for each
(p, r) pair, as proposed by Pollard (cf. his second article in [3]). Although the
TWINKLE device may appear to solve the problem by processing all (p, r) pairs
simultaneously for each sieve location, per line the initial B registers still have
to be loaded for each (p, r) pair, which is obviously too expensive. This problem
and its consequences are discussed in more detail in 7.2.

5.4 Trial Divisions

For reasonable choices of T1 and T2 the number of pairs (a, b) for which F1(a, b)
and F2(a, b) have to be inspected for smoothness is so large that straightforward
trial division with the primes in P1 and P2 would take considerably more time
than the sieving. Trial division is therefore too time consuming. Instead, in PC
implementations the primes dividing F1(a, b) and F2(a, b) are found by first re-
peating the sieving step in a somewhat altered fashion, next performing divisions
of F1(a, b) and F2(a, b) by the primes found by this resieving, and finally factor-
ing the resulting cofactors if they are composite and sufficiently small. For line
sieving the F1-cofactor may have to be factored into three factors, whereas for
special q sieving two factors suffice. Cofactor factorization is thus substantially
easier for special q sieving than for line sieving. For the line sieving in [1] this
problem was avoided by using a substantially larger algebraic factor base and
by allowing only two additional (large) primes in the factorization of F1(a, b).

42 Arjen K. Lenstra and Adi Shamir

This is illustrated by the following actual timings. For smoothness as defined
here, the divisions and cofactor factorizations for line sieving cost about 0.7
seconds on a PC per resulting relation, including the time spent on the false
reports but not including the time spent on the resieving. For special q sieving
it goes more than 6 times faster, i.e., about 0.1 seconds per resulting relation,
due to the easier factorizations and considerably smaller number of false reports.
Between 80 to 100 million relations are needed (cf. 4.3), so that with line sieving
only one may expect to spend more than two years on a single PC to process
the reports resulting from sieving and resieving. For special q sieving this can
be reduced to about 5 months.

Therefore, a line sieving TWINKLE device needs to be supported by about
7 ∗ 107 seconds on a PC to perform the divisions by the primes found by the
resieving plus the cofactor factorizations. That is about 12.5% of the total PC
sieving time reported in [1]. For a special q sieving TWINKLE device other
considerations come into play, as shown in 7.2.

5.5 Sieving Regions

For a 512-bit n sufficiently many good pairs (a, b) can be expected if special q
sieving is done for −212 ≤ d < 212 and 0 < e ≤5,000, for all (q, rq) pairs with
224 < q < 5∗108. A gross over-estimate for the required line sieving effort follows
by taking q = 5 ∗ 108 and A = 212 ∗ (s∗ q)1/2. Thus A = 9 ∗ 109, i.e., 9 ∗ 105 lines
of length 1.8 ∗ 1010 each, should suffice for line sieving. The number of points
sieved would be about 17∗1015 for line sieving, but only about 1015 for special q
sieving (where we use that π(5 ∗ 108) = 26,355,867). PC implementations of the
NFS exclude the ‘even, even’ locations from the sieve, so on PC’s the numbers
of points sieved are 25% lower.

6 Hardware Enhancements

In this section we address most of the potential problems in the original TWIN-
KLE paper which were pointed out by hardware designers and factoring experts.
The result is a simpler, better, and more practical factoring device. More par-
ticularly, we address the following issues:

1. Clock rate;
2. Power consumption;
3. Avoiding trial division;
4. Using separate algebraic and rational LED’s;
5. Geometric considerations.

The type of sieving is left unspecified (cf. Section 7). We assume familiarity with
the design from [7] as reviewed in Section 2: cells with A registers for the primes,
B registers for the counters, a photodetector for the clock signal, and LED’s for
the flashing.

Analysis and Optimization of the TWINKLE Factoring Device 43

6.1 Clock Rate

In [7] Shamir assumed that a TWINKLE device can be designed to run at 10
GHz. This speed represents the limit to which currently available GaAs tech-
nology can be pushed. However, it is not clear that our ability to produce at
great cost a single laser diode which can switch at such speeds can be duplicated
in mass produced wafer scale designs. Such a clock rate should thus be viewed
as ambitious and speculative, but not as revolutionary as the construction of a
quantum factoring computer.

On the other hand, devices made with the slower CMOS technology already
run at clock rates exceeding 700 MHz. We can thus reasonably assume that
a TWINKLE device built today can run at clock rates exceeding 1 GHz, and
that a TWINKLE device built 5 to 10 years from now can run at clock rates
approaching 10 GHz. However, as demonstrated in Section 3 the speed issue can
be irrelevant since the achievable speedup ratio can be independent of the actual
speed of the TWINKLE device.

6.2 Power Consumption

Several experienced hardware designers objected to the original TWINKLE de-
sign, claiming that it would consume too much power, which could lead to a
wafer meltdown. Since the power consumption grows linearly with the clock
rate, a 10-fold reduction of the recommended clock rate can greatly reduce this
problem.

Even greater power reduction can be obtained by using a different cell design.
The total power consumption of all the LED’s is negligible, since at most a few
hundred out of the 100,000 LED’s can flash at any given time. The total power
consumption of all A registers is also negligible, since they change their state
only once per sieving interval. Almost all the power consumed by the wafer is
used to change the state of the bits in the B registers which count the number of
clock cycles. The original TWINKLE design implemented the counters as linear
feedback shift registers. Such a counter design eliminates the carry propagation
problem and makes the flashes highly synchronized, but it consumes a lot of
power since each bit in the counter changes state every second clock cycle on
average.

To reduce the power consumption, we now propose a different design. It is
based on an asynchronous ripple counter in which the clock signal is fed only to
the least significant bit, and the ith bit changes state only once every 2i clock
cycles. As a result, most of the bits in the counter can operate at slow speed,
and the average power consumption is a small constant which is independent of
the length of the counter.

The LED can be flashed when the most significant bit changes state from 0
to 1. This eliminates the tree of AND’s in the original design, but it can take a
long time (several clock cycles) for the clock to ripple through the register when
state “0111. . .111” changes to “1000. . .000”. A 10% difference in the switching
speeds of two counters can lead to flashes which are almost a full clock cycle

44 Arjen K. Lenstra and Adi Shamir

apart, leading to incorrect results. A simple solution to this problem is based
on the observation that the timing of the least significant bits is likely to be
much more precise than the timing of the most significant bits. Assume that the
maximum propagation delay across the register is between 0 and 15 clock cycles.
We derive the flashing signal by AND’ing the most significant bit and the fifth
least significant bit. Regardless of when the former bit turns to “1”, the flash
will occur when the latter is turned to “1”. Since we reload the B register (in
parallel) shortly afterwards, this AND condition will not reoccur until the end
of the next cycle.

6.3 Avoiding Trial Division

The analog nature of the TWINKLE device implies that each reported smooth-
ness event has to be confirmed and turned into an actual vector of prime ex-
ponents. The original TWINKLE design assumed that such events will be so
rare that the host PC will use trial division with 100,000 possible primes to
accomplish this. For the QS algorithm this assumption is correct, as mentioned
in Section 3. However, as mentioned in 5.4 this is a potential bottleneck for the
NFS.

In this section we describe a small modification of the TWINKLE design
which can greatly simplify this task. The basic idea is to use the optical pho-
todetector in order to detect that a large number of primes seem to divide the
current value, and to use the parallel electronic I/O lines on the wafer to report
their identities with a proper encoding technique. The PC only has to perform
trial division by about 50 known primes rather than trial division by all primes
in the factor bases. The I/O lines are used to load the A and B registers for the
new sieving interval, and are idle during the actual sieving. However, these are
long high capacitance wires which cannot continuously report the identity of the
flashing LED’s at each clock cycle. The solution is to make sure that reports will
be generated only when the photodetector senses a possible smoothness event,
and only by the approximately 50 relevant cells.

To achieve this, we add an optical feedback path from the photodetector to
the cells. When the light measured by the photodetector exceeds the threshold,
it flashes a query LED placed next to it (and opposite the wafer). Each cell has
an additional photodetector for the query LED. When this query LED is sensed,
each cell checks whether it flashed its own LED a certain number of clock cycles
ago (depending on the total delay along the optical path), and if so, reports its
identity on the I/O lines.

The simplest way of implementing this idea is to separate the flashing of the
LED and the reloading of the counter in each cell. Assume for example that
each B register is a ripple counter which flashes its LED when it reaches state
“10. . .010000” (cf. 6.2). It continues to count upwards, reports its identity if the
query LED is sensed AND its state is “10. . .011000”, and reloads itself from
register A when its state reaches “10. . .011001”. The value of the A register has
to be augmented to compensate for this delay, and different wavelengths have

Analysis and Optimization of the TWINKLE Factoring Device 45

to be used for the various LED’s and photodetectors to avoid confusion between
the various optical functions.

6.4 Using Separate Algebraic and Rational LED’s

In the QS about half the primes up to a bound B do not yield arithmetic
progressions, and the other half generate two distinct arithmetic progressions.
This implies that in the original TWINKLE design a single cell contains one
A register for a prime, two B registers for the arithmetic progressions, and one
LED that flashes if either B register enters a special state. For QS with factor
base bound B one may therefore expect π(B) arithmetic progressions generated
by π(B)/2 cells with 3 registers (a single A and two B), and one LED per cell.

NFS requires a different cell design. If distinct cells are feasible we show that
the same average number of registers per cell (namely 3) can be achieved as
in QS. Let B = 224 (cf. 4.2). All primes less than B are potential divisors of
F2(a, b). Thus, at least π(B) different cells, each with at least an A register, a
B register, and an LED, are needed for the resulting π(B) rational arithmetic
progressions. For F1(a, b) the number of arithmetic progressions required for a
certain prime p < B depends on the number of distinct roots of f1 mod p. On
average one may expect that for

– 11/30 of the primes f1 mod p does not have a root;
– 3/8 of the primes f1 mod p has a single root;
– 1/6 of the primes f1 mod p has two distinct roots;
– 1/12 of the primes f1 mod p has three distinct roots; and
– 1/120 of the primes f1 mod p has five distinct roots.

(Note that 11/30+3/8+1/6+1/12+1/120 = (44+45+20+10+1)/120 = 1.) Let
p < B be a prime for which f1 mod p has d distinct roots. This p requires
d+1 distinct arithmetic progressions which can be taken care of by a single cell
with d+2 registers: a single A register for p, a single B register for the rational
arithmetic progression, and d different B registers for the d distinct algebraic
arithmetic progressions. Here we use that unless n has a small factor, p cannot
divide both F1(a, b) and F2(a, b), so that the rational arithmetic progression is
different from the algebraic ones. This leads to a total of π(B) cells: 11∗π(B)/30
with 2 registers, 3 ∗ π(B)/8 with 3 registers, π(B)/6 with 4 registers, π(B)/12
with 5 registers, and π(B)/120 with 7 registers. The total number of registers is
(2 ∗ 11/30 + 3 ∗ 3/8 + 4/6 + 5/12 + 7/120) ∗ π(B) = (88 + 135 + 80 + 50 + 7) ∗
π(B)/120 = 3 ∗ π(B). The expected number of arithmetic progressions equals
π(B)+ (3/8 +2/6 +3/12 +5/120) ∗ π(B) = 2 ∗ π(B). Thus, for NFS with factor
base bounds B one may expect 2 ∗ π(B) arithmetic progressions generated by
π(B) cells with on average 3 registers, which is not much different from QS. The
numbers of LED’s per cell is discussed below.

The simplest approach to simultaneous algebraic and rational sieving would
be to let the rational B register and the algebraic B registers in a particular cell
share the same LED. In the terminology of 5.2 and 5.3 this would mean that the

46 Arjen K. Lenstra and Adi Shamir

dual condition “S1(x) > T1(− log(q)) and S2(x) > T2” is replaced by the single
condition “S1(x) + S2(x) > T1(− log(q)) + T2”. Extensive software experiments
using this simplification were not encouraging, as it leads to too many false
reports (with the original Ti’s) or too many missed pairs (with adapted Ti’s).
Nevertheless, for TWINKLE it may be worth trying this approach. It would lead
to a single LED per cell.

A more promising approach would be to have the algebraic flashes on the
odd beat and the rational flashes on the even beat. This can easily be realized
by storing 2p instead of p in the A registers and by changing the values initially
stored in the B registers in the obvious way. If the photodetector detects a pair
of consecutive odd and even high intensities a report occurs, i.e., a good pair may
have been found. This approach still requires a single LED per cell, but it has
the disadvantage that it takes two clock cycles to process a single sieve location.

Another approach would be to use LED’s of different colours for algebraic and
rational flashes. The algebraic LED flashes if either of the algebraic B registers
is in a special state, and the rational LED flashes if the rational B register is
in a special state. A report occurs if two photodetectors for the two different
frequencies simultaneously detect a high intensity. In this approach all cells have
a rational LED and 19/30 of the cells have an algebraic LED as well, for a total
of 49 ∗ π(B)/30 LED’s, which is almost 5/3 LED’s per cell on average. The
advantage of this approach, which we assume in the sequel, is that processing
a single sieve location takes a single clock cycle, as in the original TWINKLE
design. Note that it requires yet another different wavelength to avoid confusion
with other optical signals.

6.5 Geometric Considerations

The geometry of the TWINKLE design described in [7] was based on the op-
erational requirement that the time delay along the optical paths (from the
clocking LED to all the cells on the flat wafer, and from these cells back to the
summing photodetector) should be as uniform as possible. The recommended
design placed the wafer at one face of a cylindrical tube, the photodetector at
the center of the opposite face, and several synchronized clocking LED’s around
the perimeter of this face. This physical design reduced but did not eliminate
the time difference between various optical paths in the tube. As a result, the
tube had to be quite long, and thus the LED’s on the wafer had to be made
stronger, bigger, and more power consuming.

A greatly improved design (which was independently discovered by several
researchers in private communication) places both the clocking LED and the
photodetector at the center of one face of the cylinder, and at the focal point
of a convex lens placed inside the cylinder between its two faces. Since all the
relevant light rays (in both directions) between the lens and the wafer are parallel
along the cylinder, all the wave fronts (which are perpendicular to the light rays)
are flat and parallel to the wafer, and thus the time delay from the clocking LED
to any point in the wafer and from there back to the photodetector is exactly
the same. In addition, all the light gathered by the lens is concentrated on the

Analysis and Optimization of the TWINKLE Factoring Device 47

small face of the photodetector, and thus the LED’s on the wafer can be made
smaller and weaker.

7 Analysis of TWINKLE-Assisted NFS Factorizations

7.1 Line Sieving for 512-Bit Numbers

To simplify the analysis, we assume for the moment that the factor base size
is irrelevant. Under this assumption, the device as described in [7] and with
the modifications from Section 6, can straightforwardly be used to perform line
sieving for an NFS 512-bit factorization. The primes p for the (p, r) in P2 are
loaded once in the A registers, with the exact distribution over the different
types of cells determined by the number of roots of f1 mod p, as implied by the
description in 6.4. For the first line (b = 1) the B register corresponding to a
pair (p, r) ∈ P1 ∪ P2 is initialized as r + A− p ∗ [(r + A)/p], where A = 9 ∗ 109.
The initial B-value for the next line follows by adding r to the initial value for
the current line and taking the result modulo p. Thus, computation of the two
million initial B register values for the next line can be done on an ordinary PC
in less time than it takes TWINKLE to sieve the current line (see below). As
shown in 5.5, a total of A/s = 9 ∗ 105 lines of length 2 ∗ A = 1.8 ∗ 1010 each
should suffice. As in Section 3 we consider two possible scenarios:

1. A modified TWINKLE device running at the maximum possible speed of
10 GHz. Each sieving interval of length 1.8 ∗ 1010 can be scanned in 1.8
seconds. Reloading the B registers can be done in 0.02 seconds (cf. [7]) when
done sequentially for all registers, or in 0.002 seconds when done in 10-fold
parallelism, and can thus be neglected. All 9 ∗ 105 lines can be processed in
approximately 1.8 ∗ 9 ∗ 105 seconds, which is less than 3 weeks. A speed-up
by 25% can be obtained by excluding ‘even, even’ locations from the sieve
(cf. 5.5). This improvement is not reflected in our TWINKLE running time
estimates but is included in the running times from [1]. The 3 week estimate
includes the time for reloading and resieving, but does not include the time
to do the actual divisions and cofactor factorizations. The latter can be done
in 1.8∗9∗105 seconds by about 43 loosely coupled PC’s, as estimated in 5.4,
and one additional PC is needed to compute the root updates. A total of 44
PC’s would be able to do the sieving step in about 21 weeks (using special
q sieving, cf. [1]). The improvement ratio is about a factor 8.

2. A modified TWINKLE device running at the minimum recommended speed
of 1 GHz (cf. 6.1). Each sieving interval of length 1.8∗1010 can be scanned in
18 seconds and all 9∗105 lines can be processed in approximately 18∗9∗105

seconds, which is less than 27 weeks. It follows from 5.4 that 5 auxiliary PC’s
suffice for all auxiliary computations (divisions, cofactor decompositions, and
root updates). A total of 5 PC’s would be able to do the sieving step in about
186 weeks, and the improvement ratio we obtain is about a factor 7.

Thus, as in Section 3, we get about the same improvement ratio regardless
of the clock rate of the TWINKLE device. This is due to the fact that the

48 Arjen K. Lenstra and Adi Shamir

computational bottleneck is in the supporting PC’s. Note that the improvement
ratio is close to the maximum attainable ratio implied by the last paragraph
of 5.4.

The factor base sizes specified in 4.2 imply that the TWINKLE device, using
the cell design as in 6.4, would contain about 10 wafers of more or less the same
size as the wafers described in [7]. For that reason we now concentrate on how
special q sieving may be used for TWINKLE-assisted factorizations of 512-bit
and 768-bit numbers.

7.2 Special Sieving for 512-Bit Numbers

Näıve implementation of special q sieving on a modified TWINKLE device is
not promising. Despite the fact that a total of only 1015 sieve locations (cf. 5.5)
have to be processed (which can, at 10 GHz, be done in less than 28 hours,
including the resieving), the B registers have to be reloaded every 2 ∗ 212 =
8,192 sieve locations (cf. 5.5). Even with 10-fold parallelized reloading this adds
0.002∗ (1015/8,192) = 2.4 ∗ 108 seconds, i.e., almost 8 years, to the sieving time,
without even considering how a PC is supposed to prepare the required data in
0.8 microseconds (the sieving time per line). As noted in 5.3, this problem is due
to the fact that in special q sieving one cannot touch all factor base elements for
all lines without violating the NFS running time.

A much better solution is obtained by radically changing the approach, and to
make use of the fact that the majority of the factor base elements does not hit a
particular line. Of the 2 million (p, r) pairs with p > 2∗212 on average only about
104 hit a particular line, and if it hits, it hits just once. It follows that on average
2 ∗ π(8,192) + 104 pairs must be considered per line, and that roughly 2 ∗ 104

cells suffice if the same cell is associated with different p’s (of approximately the
same size) for different lines. Of these cells 2 ∗ π(8,192) are as usual with fixed
A registers, variable B registers, and proper arithmetic progressions. The other
cells, however, need B registers only, assuming that their (variable) primes can
be derived from their location if a report occurs. This follows from the fact that
there is just a single hit, which implies that there is no true arithmetic progression
to sieve with, and that the step size p is not needed. A clear advantage is that
it simplifies the design of the TWINKLE device considerably, because only a
single wafer with about 2 ∗ 104 cells would suffice. And most cells are even
simpler than usual since they contain just one B register, two photodetectors,
and a single rational or algebraic LED (split evenly among the cells). Note that
the TWINKLE device would not actually be sieving for the primes > 8,192
but act as an accumulator of logarithms of primes corresponding to identical B
values.

We analyze the resulting speed for this modified and simplified TWINKLE
device running at the maximum possible speed of 10 GHz. The number of sieve
locations per special q is 8, 192∗5, 000 which can be scanned in 4 milliseconds. Per
line about 2∗π(8,192)+104 values have to be reloaded. This can be done in 0.12
milliseconds. Thus, the auxiliary PC’s have 5,000∗0.00012+0.004 = 0.6 seconds
to prepare the list of register values ordered according to the lines where they

Analysis and Optimization of the TWINKLE Factoring Device 49

should be used. Obviously, the PC’s should also not touch each line per (p, r) pair,
so they will have to use some type of lattice technique to process each (p, r) pair.
The lattice siever from [2] that was used in [1] takes about 8.8 seconds to provide
the required list. Thus, one may expect that about 8.8/0.6 ≈ 15 PC’s are required
to prepare the line data for a TWINKLE device. It follows that a single modified
and simplified TWINKLE device supported by about 15 PC’s can do the special
q NFS sieving for a 512-bit number in (π(5∗108)−π(224))∗0.6 seconds, i.e., about
half a year. To keep up with the actual divisions and cofactor factorizations at 0.1
seconds per resulting relation (cf. 5.4) for 100 million relations (cf. 4.3), a single
PC suffices. A total of 16 PC’s would be able to do the sieving in slightly more
than a year (cf. [1]), and the total improvement ratio is about 2.3. But note that
the auxiliary PC’s require only a modest amount of memory, whereas the PC’s
running the special q siever from [2] need to be able to allocate 64 megabytes
of RAM to run efficiently. The same analysis holds when the TWINKLE device
runs at the minimum recommended speed of 1 GHz.

The single wafer required for this modified and simplified TWINKLE device is
much smaller than the one proposed in [7]. From our analysis it looks as if loading
the new line data is the big bottleneck for special q sieving on the TWINKLE
device. If that can be done x times faster, the TWINKLE device will run about
x times faster. But the comparison to PC’s would not be affected, because also
x times more PC’s would be needed to prepare the line data. So, from that point
of view the data loading time is not a bottleneck, and we conclude that the PC
support required for the preparation of the list of line data has a similar (and even
stronger) effect on TWINKLE-assisted special q sieving as the post-processing
PC-support has for TWINKLE-assisted line sieving.

7.3 Special q Sieving for 768-Bit Numbers

Based on the asymptotic running time of the NFS, it may be expected that
768-bit numbers are at most 5,000 times harder to factor than 512-bit numbers.
The size of the total sieving region grows proportional to the running time, and
the factor base sizes and size of sieving region per special q grow proportional to
the squareroot of the running time. Based on the figures from [1] we expect that
90,000 PC’s with huge RAM’s of about 5 gigabytes per PC can do the special q
sieving in about a year. Based on extrapolation of the results from [1] we expect
that one terabyte of disk space (about 50 standard PC hard disks costing a total
of about $10,000) would suffice to store the data resulting from the sieving step.

Using well known structured Gaussian elimination methods that require only
sequential disk-access to the data, a matrix of less than half a billion rows and
columns and on average less than 100 entries per row can be built, requiring less
than 200 gigabytes of disk space. Extrapolation of existing PC implementations
of the block Lanczos algorithm suggests that this still relatively sparse matrix
can be processed in less than 4,000 years on a single PC, using a blocking factor
of 32. Preliminary results of block Lanczos parallelization seem to indicate that
k-fold parallelization leads to a (k/3)-fold speed-up, where so far no values of
k > 16 have been used (cf. [4]). Assuming that this parallelization scales up

50 Arjen K. Lenstra and Adi Shamir

to larger k, application of these preliminary results with k = 5 ∗ 4 ∗ 4, 000 =
80,000 and a conservative (80,000/5)-fold speed-up leads to the estimate that
80,000 PC’s can do the matrix step in 3 months, when they are connected to a
sufficiently fast network. Each of the PC clients would need only a few megabytes
of RAM to store only a small fraction of the matrix. Unlike other figures in this
paper, this estimate has not been confirmed by an actual implementation, and
we stress that it is based on the assumption that the parallelization from [4]
scales reasonably well. Note that future 64-bit PC’s can use a blocking factor of
64, thereby halving the number of Lanczos iterations and substantially reducing
the time required. Another way to parallelize block Lanczos that may be worth
considering is to replace each PC client by clusters of, say, t PC clients, thereby
further reducing the number of Lanczos iterations by a factor t.

We now consider how the simplified design from 7.2 scales up to 768-bit num-
bers. The total sieving time increases by a factor of about 5,000 to approximately
2,500 years. The factor base sizes increase by a factor 70, but so does the size
of the sieving region per special q, so the same number of supporting PC’s will
be able to prepare the required lists of line data, per TWINKLE device. The
wafer size would increase by a factor less than 9, and thus become comparable
to the size proposed in [7]. We can thus conclude that about 5,000 modified
and simplified TWINKLE devices supported by about 80,000 PC’s can do the
sieving step for a 768-bit number in about half a year. With the above estimate
for the matrix step we arrive at the estimate given in the abstract.

PC’s with 5 gigabyte RAM’s which are needed to run the special q siever in
standard NFS factorizations are highly specialized: Only a negligible number of
such machines exist, and they have very few other applications. On the other
hand, the auxiliary PC’s in TWINKLE-assisted factorizations do not need ex-
ceptionally large memories, and thus it is possible to timeshare standard PC’s
which are used for other purposes in the organization (or over the Internet) dur-
ing daytime. Large memories are also not needed for parallelized block Lanczos
implementations. Since the 80,000 PC’s are likely to be more expensive than
the 5,000 TWINKLE devices, their free availability can dramatically reduce the
cost of the hardware, and make a TWINKLE-assisted attack on a 768-bit RSA
modulus much more feasible than a pure PC-based attack that uses dedicated
PC’s with huge memories.

8 TWINKLE without Optoelectronics

After the publication of the original TWINKLE paper, several alternative im-
plementations were proposed by various researchers. The main theme of the
modified designs was to replace the optoelectronic adder by an electronic adder
of one of the following types:

1. An analog adder, in which each cell adds some current to a common line.
An event is registered whenever the total current is high enough.

2. A digital adder, in which a tree of local 2-way adders adds the binary numbers
which represent the contributions of the various cells.

Analysis and Optimization of the TWINKLE Factoring Device 51

3. A one dimensional systolic array, in which each cell increments one in p
numbers passing through it for some p. The sequence of numbers “falling
off” the end of the array is scanned for high entries.

The analog adder is likely to be too slow to react to rapidly changing signals due
to the high capacitance of the tree of wires. The digital adder tree is faster, but
each adder is likely to use a larger area and more power than a single LED which
is dark most of the time. In addition, large adder trees are not fault tolerant,
since a dead adder can eliminate the contributions of all the cells in its subtree.
Similarly, a systolic array requires complex bypass mechanisms to overcome the
dead or unreliable cells along it, since each number should pass through all the
cells.

A purely electronic design may look more attractive than an optoelectronic
design, since it is slightly easier to design and somewhat cheaper to manufacture.
However, this is not likely to be a major consideration in large scale factoring
efforts by large organizations, and in most respects it makes the design less effi-
cient: Gallium Arsenide technology is faster than silicon technology, LED’s are
smaller than adders, independent cells are more fault tolerant than intercon-
nected cells, and ultraprecise timing is easier to achieve with optics than with
electronics.

9 Conclusion

From our analysis we conclude that both the original TWINKLE device as
proposed in [7] and the variant that runs at one tenth of the speed can be
expected to achieve a substantial speed-up over a PC implementation for the
QS-factorization of 384-bit numbers. We described a modified version of the
TWINKLE device that is better suited for the implementation of the NFS fac-
toring algorithm than the original design. We found that 768-bit RSA moduli
are more vulnerable to NFS attacks by our improved TWINKLE design than by
current PC implementations.

References

1. S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B. Murphy,

H.J.J. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F.

Morain, A. Muffett, C. Putnam, C. Putnam, P. Zimmermann, Factorization of a

512-bit RSA modulus, these proceedings.

2. R. Golliver, A.K. Lenstra, K.S. McCurley, Lattice sieving and trial division, Pro-

ceedings of ANTS-I, Lecture Notes in Computer Science 877, Springer, pp 18-27.

3. A.K. Lenstra, H.W. Lenstra, Jr., The development of the number field sieve, Lecture

Notes in Mathematics 1554, Springer, 1993.

4. P.L. Montgomery, Parallel block Lanczos, presentation at the RSA 2000 conference,

Jan 17, 2000.

52 Arjen K. Lenstra and Adi Shamir

5. P.L. Montgomery, B. Murphy, Improved polynomial selection for the number field

sieve. Extended abstract for the Conference on the Mathematics of Public-Key

Cryptography, June 13-17, 1999, The Fields Institute, Toronto, Ontario, Canada.

6. C. Pomerance, The quadratic sieve factoring algorithm, Proceedings of Euro-

crypt’84, Lecture Notes in Computer Science, Springer, pp 169-182.

7. A. Shamir, Factoring large numbers with the TWINKLE device, Proceedings of the

CHES conference, Lecture Notes in Computer Science 1717, Springer, August 1999.

	Introduction
	The Original TWINKLE Design
	Analysis of TWINKLE-Assisted 384-Bit QS Factorizations
	Number Field Sieve
	Polynomial Selection
	Sieving
	Matrix Processing
	Algebraic Square Root Computation

	Sieving
	Factor Bases and Sieving Thresholds
	Line Sieving
	Special Sieving
	Trial Divisions
	Sieving Regions

	Hardware Enhancements
	Clock Rate
	Power Consumption
	Avoiding Trial Division
	Using Separate Algebraic and Rational LED's
	Geometric Considerations

	Analysis of TWINKLE-Assisted NFS Factorizations
	Line Sieving for 512-Bit Numbers
	Special Sieving for 512-Bit Numbers
	Special q Sieving for 768-Bit Numbers

	TWINKLE without Optoelectronics
	Conclusion

