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Abstract. In this paper we describe our distributed implementation of two factoring algorithms. the 
elliptic curve method (ecm) and the multiple polynomial quadratic sieve algorithm (mpqs). 

Since the summer of 1987. our erm-implementation on a network of MicroVAX processors at 
DEC’s Systems Research Center has factored several most and more wanted numbers from the Cun- 
ningham project. In the summer of 1988. we implemented the multiple polynomial quadratic sieve 
algorithm on rhe same network On this network alone. we are now able to factor any !@I digit 
integer, or to find 35 digit factors of numbers up to 150 digits long within one month. 

To allow an even wider distribution of our programs we made use of electronic mail networks For 

the distribution of the programs and for inter-processor communicatton. Even during the mitial stage 
of this experiment machines all over the United States and at various places in Europe and Ausnalia 
conhibuted 15 percent of the total factorization effort. 

At all the sites where our program is running we only use cycles that would otherwise have been 
idle. This shows that the enormous computational task of factoring 100 digit integers with the current 
algoritluns can be completed almost for free. Since we use a negligible fraction of the idle cycles of 
alI the machines on the worldwide elecnonic mail networks. we could factor 100 digit integers within 
a few days with a little more help. 

1. Introduction 

It is common practice. to begin a paper on integer factoring algorithms with a paragraph 
emphasizing the importance of the subject because of its connection to public-key cryptosys- 
terns; so do we. We refer to [3] for more information on this point. 

This paper deals with the practical question 

how big are the integers we can factor with our present algorithms? 

This question is rather vague, because we did not specify how much time and/or money we are 
willing to spend per factorization. Before making our question more precise, let us illustrate 
its vagueness with four examples which, in the summer of 1988, represented the state of the art 
in factoring. 

(i) In 17. 241 Bob Silverman et al. describe their implementation of the multiple polynomial 
quadratic sieve algorithm (mpqs) on a network of 24 SUN-3 workstations. Using the idle 
cycles on these workstations, 90 digit integers have been factored in about six weeks 
(elapsed time). 

(ii) In [211 Herman te Riele et al. describe their implementation of the same algorithm on two 
different supercomputers. They factored a 92 digit integer using 95 hours of CPU time on 
a NEC SX-2. 

(iii) ‘Red’ Alford and Carl Pomerance implemented mpqs on 100 IBM PC’s; it took them 
about four months to factor a 95 digit integer. 

(iv) In [20] Carl Pomerance et al. propose to build a special purpose mpqs machine ‘which 
should cost about %2O.C00 in parts to build and which should be able to factor 100 digit 
integers in a month.’ 

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 355-371, 1990. 

0 Springer-Verlag Berlin Heidelberg 1990 
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In all these examples mpqs was being, or will be used as factoring algorithm, as i t  is the 
fastest general purpose factoring algorithm that is currently known 1191. In order to compare 
(i) through (iv), we remark that for numbers around 100 digits adding three digits to the 
number to be factored roughly doubles the computing time needed for mpqs; furthermore mpqs 
has the nice feature that the work can be evenly distributed over any number of machines. It 
follows that 100 digit integers could be factored in about one month, using 
- the idle time of a network of 300 SUN-3 workstations, or 
- one NEC SX-2, or 
- 1200 IBM PC's. or 
- one $20.000 special purpose processor. 
Returning to our above question let us, in view of these figures, fix one of the resources by 
stipulating that we want to spend at most one month of elapsed time per factorization. 
Apparently, the answer then depends on the amount of money we are willing to spend. 
Clearly, if we use mpqs. and if we start from scratch, then the last alternative is definitely the 
cheapest of the four possibilities listed above. However, there is no reason at all to start from 
scratch. 

If we really want to find out where our factorization limits lie nowadays, we should take 
into account that the natural habitat of the average computer scientist has changed considerably 
over the last few years: many people have access to some small number of small machines. 
and many of those small machines can communicate with each other by means of electronic 
mail. What would happen if someone exploited the full possibilities of his environment? The 
current factorization algorithms, when paraJlelized, do not require much inter-processor com- 
munication. Therefore, electronic mail could easily take care of the distribution of programs 
and data and the collection of results. So, if someone writes a factorization program, mails it 
to his friends along with instructions how to run it on the background, and convinces his 
friends to do the same with their friends up to an appropriate level of recursion, then the origi- 
nator of the message could end up with a pretty powerful factorization machine. It is not 
unlikely that he will be able to factor 100 digit integers in much less than one month, and 
wirhour spending one single penny. 

Thus we rephrase our question as follows: 
how big are rhe integers we can facror wirhin one rnonrh of elapsed rime, ifwe only 
want (0 use computing rime that we can get for free? 

SO far, we have only used the multiple polynomial quadratic sieve algorithm (mpqs) in our 
running time estimates. As we noted above, the reason for this is that mpqs is the fastest gen- 
eral purpose factoring algorithm that we currently know of, i e . ,  i t  is the fastest algorithm 
whose running time is, roughly speaking, completely determined by the size of n ,  and not by 
any other properties that n might have. Thus, for mpqs we can fairly accurately predict the 
precise moment at which a factorization will be found, once the computation has been set up. 
This implies that, if we decide to use mpqs, the answer to the above question depends solely 
on the amount of computational power we are able to get. Furthermore, i f  we are able to fac- 
tor some integer of some given size within a month, then we can factor any integer of about 
that size in about the Same amount of time. This holds irrespective of how 'difficult' the 
number might be considered to factor, like RSA keys which are usually chosen as products of 
two primes of about the Same size [ 2 2 ] .  

This does not imply that. given an arbitrary integer n to be factored which is not 'too big' 
for us, we immediately apply mpqs. That only makes sense i f  one knows that the number in 
question is 'difficult.' Ordinarily, one should first try methods that are good in finding factors 
with special properties; examples of such methods are trial division (small factors). Pollard's 
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‘rho’-method (bigger small factors) [15, IS], the p-1 and p+l-methods and their variants (fac- 
tors having various smoothness properties) [2 ,  161, and the elliptic curve method (factors of up 
to about 35 digits) (131. The more time one invests in one of these methods, the higher its 
probability of success. Unfortunately it is difficult to predict how much time one should spend, 
because the properties of the factors are in general unknown. And, the time invested in an 
unsuccessful factorization attempt using one of these methods is completely wasted; it only 
gives a weak conviction that n does not have a factor of the desired property, but no proof 
(with the exception of trial division, which yields a proof that no factor less than or equal to 
the trial division bound exists if nothing has been found). 

To return again to our question, let us assume that we will use mpqs as the method of last 
resort. As remarked above, the answer then depends on the free computational power we can 
organize. since mpqs cannot be lucky (up to a certain minor point fow which we refer to [24]). 
So, we should concentrate on methods to get as much free computing time as we can, which 
we do as described above: try to get volunteers on the electronic mail networks to run our pro- 
gram at times that their machines would otherwise be idle. To attract the attention of the max- 
imum number of possible contributors, and to make them enthusiastic about the project, we 
adopted the following strategy: 
- Write an mpqs-program that is as portable as we can make it, and ask some friends and col- 

leagues working in the same field to experirnenc with it. In that way we should get a good 
impression of what is possible, and what should be avoided, and we get some experience in 
running an ‘electronic mail multiprocessor’ on a small scale. 

- Use this program, the forces that we can organize at DEC’s Systems Research Center 
(SRC), and the (still) relatively small external power to achieve some moderately impressive 
factorization results. 

- Publish those results in the sci.math newsgroup to attract attention from possible contribu- 
tors, and ask for their help. 

- Use electronic mail to distribute the program to people who express interest. 
- Get more impressive factorization results. 
- Repeat the last three steps as long as we are still interested in the project. 
Once such a distributed mpqs implementation has been set up i t  is a minor effort to include 
some other useful factorization features. For instance, we plan to include the elliptic curve 
method (ecm) in the package we distribute; we already have considerable experience with a 
distributed ecm program at SRC, but at the time of writing this paper we had not included it in 
the program we have distributed worldwide. 

Here we should remark that ecm can easily be distributed over any number of machines, as 
it consists of a number of independent factorization trials. Any ecm trial can be lucky, and 
find a factorization, independent of any other trial. The probability of success per trial depends 
on the size Of the factor to be found. and is therefore difficult to predict; see Section 2 for 
details. The mpqs algorithm works completely differently. There the machines compute so- 
called relations, which are sent to one central location. Once sufficiently many relations have 
been received. the factorization can be derived at the central location; see Section 3 for details. 

Given such an extended package, a typical factorization effort would proceed as follows. 
Upon receipt Of a new number, all machines on the factorization network do some specified 
number of ecm trials. A successfd trial is immediatcly reponed to us,  and we broadcast a 
message to Stop the Current process. If all ecm trials have failed and the numbcr in question is 
not too big. the machines move to mpqs and start sending us relations. We :hen wait until we 
have sufficiently many relations to be able to derive the factorization. 

At the time Of writing this paper we have factored two 93, one 96, one 100, one 102, and 
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one 106 digit number using mpqs, and we m working on a 103 digit number, for all these 
numbers extensive ecm attempts had failed. The 100 digit number took 26 days (of elapsed 
time). About 85% of the work of this factorization was carried out at SRC. For the 106 digit 
number the external machines contributed substantially more than 15% of the total factorization 
effort, namely 30%. The 103 digit number will be done exclusively by external machines, 
while the machines a t  S R C  are working on other factorizations. As the factorization network 
is growing constantly, it is difficult to predict how many machines we will eventually be able 
to get. Consequently, at the present moment we are still unable to give a reliable answer to 
our question, but we have the impression that the present approach should enable us to factor 
110 digit numbers. 

It is a natural question to ask what consequences this could have for the security of the RSA 
cryptosystem. The well-known RSA challenge is to factor a certain 129 digit number con- 
cocted by Rivest, Shamir and Adlernan. At the time they presented this challenge, and gen- 
erously offered to pay $100 for the factorization, it appeared to be far out of reach. The 
analysis of mpqs however, shows that factoring 129 digit numbers is ‘only’ about 400 times as 
hard as factoring 100 digit numbers. Now that 100 digit numbers can be factored. this does 
not seem like a very secure safety margin. The $100 prize will not be much of an incentive, 
however: postage costs and the fees for currency conversion will make dividing the spoils 
counterproductive. 

RSA cryptosystems are being used nowadays with keys of 512 bits, which amounts to 155 
digits. Factoring 155 digit numbers is about 40000 times harder than factoring 100 digit 
numbers, which sounds pretty safe. But even given the present factoring algorithms, it is 
unclear how long this will remain safe. There are zillions of idle cycIes around that can be 
used, as we have seen, by anyone who has access to the electronic mail network; this network 
is growing rapidly, and its future computational power is difficult to predict. More womsome 
is that determined and powerful adversaries could in principle organize some gigantic factoring 
effort by linking together all their machines. Factoring 155 digit numbers is then not as irnpos- 
sible as many people would like it to be. 

These estimates d o  not even take into account that the average processor will get much fas- 
ter than it is now. Currendy an average workstation operates at 1 to 3 million instructions per 
second (rnips); a fast workstation operates in the range from 6 to 10 mips. Soon new worksta- 
tions will be released running at 20 to 25 mips, and it is to be expected that within five years a 
moderately priced workstation will run at 1cO mips. The reader can easily figure out what 
consequences this will have for the safety of 512 bit RSA keys. 

Of course, we are not factoring actual RSA keys. For one thing, when we report our previ- 
ous successes to try to gather helpers to work on the project, we might inadvertently attract the 
attention of the owner of the key, who might be unhappy at discovering this. Secondly. the 
only reason to factor RSA keys is to impersonate the owner. The people helping us factor the 
number might demand their share and we do not know anyone with a small enough key and a 
large enough bank balance to make this worthwhile. To avoid any suspicion, we factor only 
numbers from the Cunningham project [ 6 ] ,  or other numbers with short algebraic descriptions 
and of some mathematical significance [ 5 ] .  

Another concern of our helpers might be that they have accepted a Trojan horse [25] .  For 
this reason our implementations are relatively straightforward; helpers might not be able to ver- 
ify the Correctness of  the algorithm, but they can certainly see that nothing too strange is going 
on. We could have written something that is very clever. which can find helpers by itself. 
Such a program would be a virus [ I .  101, and while i t  might help us in conquering a single 
large number, it would probably hurt our standing in the community in thc long run. Someone 
who is not concerned about propriety might be less scrupulous. 

With all these negative possibilities, why should anyone take the risks o i  helping us? SO 
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far, the people who helped us are our friends and are not inclined to ascribe base motives to 
our work. Additionally, we have managed to help them get their names in the newspapers. In 
the future we will have to make sure that the inconveniences involved in running the program 
are outweighed by the good feelings generated by whatever share of the limelight we can place 
our helpers in. 

We do not claim that in the long run our approach is the most cost-effective way of factor- 
ing large integers on a regular basis. For that purpose we believe that Pomerance’s machine 
mentioned in (iv) above, or a couple of them, is the most promising attack. For the security of 
RSA cryptosystems, however, we think that our approach of building an ad hoc network is 
more threatening; there it counts what we can do, not what we can do on a regular basis. As 
we mentioned above, the power of such a network is difficult to estimate, and our setup has 
the advantage that it can almost immediately profit from any advances in technology (faster 
machines) or theory (faster algorithms). 

The rest of this paper is organized as follows. In Section 2 we give a rough outline of the 
elliptic cuwe method and its expected behavior, and we present some of the results we 
obtained using this method. The same will be done for the multiple polynomial quadratic sieve 
algorithm in Section 3. Some details of the distribution techniques that we have used and that 
we are planning to use are given in Section 4. 

2. The elliptic curve method 

The elliptic curve method (ecrn) consists of a number of independent factorization trials. Any 
trial can be lucky and find a factorization, independent of any other trial. The larger the smal- 
lest factor of the number to be factored, the smaller the probability of success per trial. The 
elliptic curve method is a special purpose factoring algorithm in the sense that it can only be 
expected to work if the number to be factored has a reasonably small factor. 

Indeed, the elliptic curve method is a very useful method to find small factors of large 
numbers. For instance, we will see that if a 100 digit number has a 38 digit factor, it is prob- 
ably faster to find this factor using ecm than using the multiple polynomial quadratic sieve 
algorithm. A problem, however, is that one does not know beforehand whether the number to 
be factored indeed has a small factor. If it has a small factor, then applying ecm has a reason- 
able probability of success; if there is no small factor, then ecm will have virtually no chance. 
This naturally leads to the question how much time one should spend on an attempt to factor a 
number using ecm. 

This question would probably be easier to answer if  the results from a failed ecm attempt 
would be useful for other purposes. Unfortunately however, a failed ecm trial does not contri- 
bute anything that is useful for the rest of the computation, or that might be helpful for other 
factorization attempts. Consequently, the time invested in an unsuccesshl ecm factorization 
attempt is completely wasted, It is even the case that. if ecm fails to detect a small factor after 
some number of trials, th is does not guarantee that there is no small factor, although the 
existence of a small factor becomes less ‘likely’. Also, the expected remaining computing time 
grows with the time that has been spent already. 

Those less desirable properties are not exactly fined to make the ecm a very popular method. 
Who is. after all, willing to spend his valuable cycles on a lengthy computation that will prob- 
ably not produce anything that is useful. This would not be much of a problem i f  those cycles 
are nor valuable. On big mainframes such cyclcs might be difficult to find, but on the average 
workstation they are abundant, as workstations arc usurilly idling at Icast half of the timc. A 
disadvantage is that one workstation is probably slower than a big mainframe. Many worksta- 
tions together, however, should give at least the same computational power as one big 
machine, when applied to a method that can easily be parallelized like ecm. 

Therefore, in order to find out what can still be done using ecm, and what is out of reach, 
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and without getting complaints about wasted computing time, we should run ecm in the back- 
ground on a large number of workstations. Because we cannot predict the sizes of the factors 
of the numbers we attempt to factor, our attempts will quite often be fruitless; there is not 
much of a difference between wasting cycles on unsuccessful ecm attempts or idling, SO 

nobody will complain too seriously. Every now and then we will hit upon a lucky number and 
find a factorization, thus making ourselves, the contributors of the cycles (we hope). and the 
authors of [6] (in any case) happy. 

In the rest of this section we will discuss some aspects of our MicroVAX implementation 
which is written in Pascal with VAX assembly language for the mukiprecision integer arith- 
metic (for a wider distribution of the ecm program we have a C-version as well). The ecm is 
described in detail in [13]; descriptions that focus more on practical aspects and implementa- 
tions of ecrn can be found in [4, 151. For the purposes of this paper the following rough 
description of the elliptic curve method suffices. 
Elliptic curve method. Given an integer n to be factored, randomly select an elliptic curve 
modulo n and a point x in the group of points of this elliptic curve. 
First stage: Select an integer m l ,  and raise x to the power k ,  where k is the product of all 
prime powers I m1. If this computation fails because a non-trivial factor has been found, then 
terminate. Otherwise, continue with the second stage. 
Second stage: Select an integer m 2  > m 
and m 2  in succession. If this computation fails because a non-trivial factor has been found, 
then terminate. Otherwise, start all over again. 
Given the sizes of the mi and the smallest factor p of n ,  the probability that one iteration is 
successful in factoring II can be derived. Given a choice for the mi. the expected number of 
iterations to find a factor of a certain size with a certain probability then easily follows. 
Asymptotically expected running time of ecm to find a factor p of n is 
0 ((Iogn)*e(‘+”(’)) 2’0w10dw ), summed over all trials. Every iteration, or trial, of ecm is com- 
pletely independent of every other trial. This means that we can expect to achieve an s fold 
speed-up by running the ecm program on s independent identical machines, as long as we 
make sure that those machines make different random choices. 

The second stage as formulated here has the disadvantage that it needs a table containing the 
differences between the consecutive primes UQ to m2. For huge values of m 2  this might 
become problematic, especially in a set-up where memory efficiency IS an important aspect. 
Therefore we use the so-called birthday paradox version for the second stage as described in 
(4, section 61. Our implementation also incorporates other ideas mentioned in the same paper 
which make it even more time and space efficient. We refer to [4, sections 7, 9.1, 9.3, and 
9.41 for a description of these improvements. 

Given the program and given the relative speeds of the two stages, it remains to analyze 
how the parameters should be chosen (and modified) during execution. For this purpose it is 
useful first to optimize those choices, given the size of the smallest prime factor p of n. For a 
fixed size of p the optimum parameter choice can be found by slightly changing the analysis 
given in [41 to take the various improvements into account. The resulting analysis is somewhat 
different from the one in [4], but it is sufficiently similar that we do not give any details of our 
computation and instead refer to [4]. 

In this paper we are only interested in the resulting running time estimates on a MicroVAX 
I1  processor. Our unit of work is one multiplication in Z / n  2, i.e.. one multiplication of  two 
numbers in (0. 1. .... n - I )  followed by a rcduction modulo n .  This operation can be per- 
formed at the cost of roughly two multiplications of integers of about the same size as n by 
representing the numbers as suggested in 1141. This representation of integers resulted in a 20 
percent speed-up, as compared to the ordinary representation. On a MicroVAX I1 processor, 

and try to compute x 4  for the primes q between m 
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which operates at about 1 mips, one unit of work for a 100 digit number takes about 0.0045 
seconds. 

The amount of work needed to find a factor of a certain size with probability at least 60 per- 
cent is given in Table 1. We have also indicated how many miUions of seconds this would 
take on a 1 mips computer for various sizes of n ;  notice that 30 million seconds is about one 
year. Furthermore. the table lists h e  optimal values for m l  in 'the first stage, and the number 
of iterations to achieve a 6 0  percent probability of success: it appeared that the effective value 
for m 2  for our implementation i s  about 30.m,. 

Table 1 
Amount of work, optimal parameter choice, 

and mitlions of reconds on a 1 mips computer tofrnd 
smallest factor p of n wirh a success probabiliry of 60 percenr 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

log~owork 

8.6 
8.9 
9.1 
9.3 
9.5 
9.7 
9.9 

10.1 
10.3 
10.5 
10.7 
10.9 
11.1 
11.3 
11.5 
11.6 

m l  

65000 
85000 

115000 
155000 
205000 
275000 
3 6oooO 
480000 
625000 
825000 

1 100000 
1400000 
l8ooooO 
2350000 
3000000 
385oooO 

trials 

300 
400 
500 
650 
750 
950 

1100 
1350 
1600 
1950 
2300 
2800 
3300 
3900 
4700 
5600 

millions of seconds for logl,yz = 

80 
1 
2 
3 
6 
9 
15 
25 
40 
60 
95 
150 
230 
350 
540 
830 
1300 

90 
2 
3 
4 
7 

12 
20 
30 
50 
75 

120 
190 
290 
450 
680 
1040 
1600 

100 
2 
3 
5 
9 
15 
24 
37 
60 
95 

150 
230 
360 
550 
840 
1290 
1960 

- 
110 

2 
4 
6 

11 
18 
28 
45 
72 
115 
180 
280 
430 
670 

1020 
1560 
2400 

- 

What does this mean for a network of approximately 100 workstations. each consisting of  five 
MicroVAX processors? Assuming that the average workstation is idle from 5.00 PM to 9.00 
AM, we should be able to get about 28 million seconds per weekday. This should enable us 
to find 30 digit factors of 100 digit numbers in about  one day. During the weekend we expect 
to work 1.5 times faster. 

The numbers we attempted to factor all came from the appendix of unfactored numbers from 
the Cunningham Tables [6, 81. In Table 2 we list some of the most and more wanted numbers 
from the Cunningham Tables we factored with ecm. As the 'expected time' in Table 2 is 
based on a 60 percent probability of success, it is only a very rough indication. Furthermore, 
the term expected time is misleading, because we can only expect that time given the resulting 
factorization. 
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log10n 

79.4 
91.4 
92.1 

105.8 
92.4 
89.5 

100.0 
94.6 

101.1 
95.3 

log1on 

99.2 
96.3 

103.4 
100.0 
100.8 
98.0 
89.7 

105.2 
100.3 
88.6 
93.7 
87.8 

lOgl@ 

29.4 
33.1 
33.1 
36.6 
37.1 
40.7 
40.9 
43.2 
46.4 
47.5 

Table 2 
Some factorizations obtained with ecrn 

(time in millions of secondr on a I mips computer) 

expected 
11 

84 
83 

log,@ 

26: 1 
26.3 
27.6 
27.7 
28.8 
30.7 
31.6 
31.7 
33.5 
33.9 
34.2 
35.6 

spent days factor of 
23 1.4 2A83+1 

140 7.4 2368+1 
130 7 6131-1 

time 
expected 

3 
3 
7 
8 

14 
32 
40 
60 

120 
110 
160 
240 

time 
observed 

47 
5 
3 
6 

15 
25 
15 
21 
21 

130 
31 
89 

elapsed 
days 
2.4 
0.3 
0.3 
0.5 
0.5 
1.4 
0.8 
0.9 
1.2 
5.7 
1.8 
4.1 

As might be clear from this table, the elliptic culve method is indeed very usehl  to find small 
factors, and it does so in a reasonable amount of time. Except for the first two entries, we 
have been quite lucky several times. 

Of course, there were numerous failures as well. Some of the failures for which the facton- 
zation was later found by others (or by ourselves) are listed in Table 3. The meaning of the 
'expected time' column in Table 3 is: 'the time ecrn should have spent for a 60 percent proba- 
bility of success'. As usual, p denotes the smallest prime factor of n .  

Table 3 
Some failed ecm attempts 

(rime in millions of secondF on a 1 mips computer) 

time 1 time 1 elapsed 1 n is factor 
found by 

Silverman. mpqs 
te Riele, mpqs 
Ruby, ecm 
see below, mpqs 
see below, mpqs 
Silverman. mpqs 
see below, rnpqs 
Alford, mpqs 
see below, mpqs 
see below, mpqs 

For the first three entries of Table 3 we clearly have had some bad luck; failure of ecm does 
not at all imply that there is no small factor. The last five entries were not actual faiIurcs, in 
the sense that the smallest factor was too big for ecrn to find. 

In practice it appears that ecm is relatively insensitive to the choice of the parameters. If  m 1 

is chosen too large for the (unknown) smallest prime factor of n ,  the probability of success per 
curve increases, and consequently the number of trials decreases. And vice versa, if rn is too 
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small, the probability per curve decreases, and the number of trials increases. In both cases the 
product of rnl and the number of trials, which is up to a constant a good indication for the 
work done, will be close to optimal. This practical obsetvation is supported by the theoretical 
analysis. For instance, if one uses the parameters that are optimal for loglop = 30 for an n 
that happens to have a 32 digit smallest factor, the optimal loglowork of 10.12 increases to 
only 10.13 (Le., 2400 trials with m = 275000 instead of 1350 trials with m = 48oooO). 

Consequently. the parameter choices do not matter too much, at least within certain limits. 
In our experience m l  = 1.001'-'.300000 at the ith trial worked satisfactorily, as did slightly 
larger (and smaller) choices for the growth rate and m 1. 

3. The multiple polynomial quadratic sieve algorithm 

The quadratic sieve algorithm is described in [19]. Descriptions of the multiple polynomial 
variation of the quadratic sieve algorithm (mpqs) can be found in [20, 241. 

Like the elliptic curve method, the quadratic sieve algorithms are probabilistic algorithms. 
But unlike ecm, the quadratic sieve algorithms do not depend on certain propenies of the fac- 
tors to be found. Furthermore. their success does not depend on a single lucky choice, which, 
as we have seen in Section 2, is sometimes unlikely ever to occur. Instead, they work by com- 
bining many smalI instances of luck, each of which is much more likely to take place. 

Once the computation has k e n  set up, one can easily see how 'lucky' the method is on the 
average, the progress can easily be monitored, and the moment it will be completed can fairly 
accurately be predicted. This is completely independent of how 'difficult' the number to be 
factored is considered to be. 

The quadratic sieve algorithms are called general purpose factoring algorithms because, up 
to a minor detail (cf. [24]), their run time is solely determined by the size of the number to be 
factored. Their expected running time to factor a number R is e(lco('))d'ogn'og'ogn ; this is 
independent of the sizes of the factors to be found. Notice that this is the same as the asymp- 
totic running time of the elliptic curve method if the smallest factor p is close to G.  

The quadratic sieve algorithms consist of two stages, a time consuming first stage to collect 
so-called relations, and a relatively easy second stage whek the relations are combined to find 
the factorization. In the multiple polynomial variation of the quadratic sieve algorithm the first 
stage can easily be distributed over almost any number of processors. in such a way that run- 
ning the algorithm on s identical processors at the same time results in an s fold speed-up. In 
the second stage the combination is found using Gaussian elimination, which is usually done 
on one machine. 

The following rough description might be helpful to understand the factorization process. 
Let n be the number to be factored. First one chooses an integer B > 0 and a factor base 
(PI, p 2 .  .... ps 1, consisting of p 1  = -1 and the first B-1 primes p for which n is a square 
modulo p . Next one looks for relations, which are expressions of the form 

v 2  3 q'.mj' mod n ,  B e  

j=l  

for r E  ( O , l ) ,  e ,EZaO.  and 4 a prime not in the factor base. Below we will explain how these 
relations can be found. We will call a relation with r = 0 a small relation, and a relation with 
t = 1 a parrial relation. Two partial relations with [he same q can be combined to yield a 
relation of the form 

w 2  = q2.h: mod n ,  
j=i  

(where w is the product of the v 's of the two partial relations, and the ej are rhe sums of the 
exponents of the two partial relations); such a relation will be called a big relation. For n 
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having 90 to 110 digits B will approximately range from 17000 to 100000. 
Given a total of more than B small and big relations, we will be able to find a dependency 

among the exponent vectors (e,)f=l, and therefore certainly a dependency modulo 2 among the 
exponent vectors modulo 2; this can be done by means of Gaussian elimination on a bit matrix 
having B columns and > B rows. Such a dependency modulo 2 then leads to a solution X ,  Y 
to x 2  = y2 mod n. Given this solution, one has a reasonable probability of factoring n by 
computing gcd(x-y,n). More relations lead to more dependencies, which will lead to more 
pairs x ,  y .  Therefore we can virtually guarantee to factor n ,  if the relations matrix is slightly 
over-square. 

There are various ways to generate relations. We will show how small relations can be gen- 
erated; how partial relations can be generated easily follows from this. In the original descrip- 
tion of the quadratic sieve algorithm, Pornerance proposes to use the quadratic polynomial 
f ( X )  = ([G]+X)'-n, and to look for at least B+1 integers rn such that f ( m )  is smooth; here 
we say that an integer is smooth if it can completely be factored over the factor base 
p I ,  p 2 .  ..., p B .  Because f ( m )  = ( [ f i ] + r n ) 2  mod n ,  a smooth f ( m )  produces a relation. 
From f ( m )  = 2 m G  (for small m), and the heuristic assumption that the f(rn)'s behave 
approximately as random numbers with respect to smoothness properties. we can derive an 
integer rn8 such that we expect that there are at least B +1 distinct m 's with Im I I mB for 
which the corresponding f (m )'s are smooth. 

Given a list of values o f f  ( m )  for Im I 5 mg , those that are smooth can be found as follows. 
Let p > 2 be a prime in the factor base that does not divide n ,  then the equation 
f ( X )  0 modp has two solutions m,@) and m 2 @ )  (because n is a square modulo p ) .  which 
can easily be found. But f (mi@))  = 0 mod p implies that f (mi@)-+@) = 0 mod p for any 
integer k. TO find the f ( m )  on our list that are divisible by p it suffices therefore to consider 
the locations mi@)+@ for all integers k such that hi@)+@ I I mg and i = 1. 2. Finding 
the f ( m )  that are smooth can therefore be done by performing this so-called sieving for all p 
in the factor base. 

Here we should remark that in practice one does not set up a list of f(rn)'s for 
rn = -mB, ..., -1, 0, 1. .... mB, to divide the values at appropriate locations by the primes. 
Instead a list of zero's is set up, to which approximations to the logarithms of the primes are 
added. For locations m which contain sufficiently big numbers after sieving with al l  primes, 
one compotes and attempts to factor f ( r n ) ;  how big this value should be also depends on the 
maximal size of the big prime (the q )  one allows in a partial factorization (see above). as 
f (m) 's  that do not factor completely possibly lead to a partial relation. Of course, the whole 
interval will not be processed at the same time, but it will be broken up into pieces that fit in 
memory. 

A heuristic analysis of this algorithm leads to the expected asymptotic running time men- 
tioned above. The algorithm could in principle be parallelized by giving each machine an 
interval to work OR Several authors (Davis in [9] and Montgomery in [24]) suggested a varia- 
tion Of the original quadratic sieve algorithm which is not only better suited for parallelization. 

Instead. of using one polynomial to generate the smooth residues, they suggest using many 
different suitably-chosen polynomials. Evidently, this makes parallelization easier, as each 
machine could work on its own polynomial(s). Another advantage of using many polynomials 
is that one can avoid the performance degradation that mars the original quadratic sieve algo- 
rithm (If(rn)l grows linearly with Irn 1, so that h e  probability of smoothness decreases as Im I 
grows), by considering only a fixed interval per polynomial before moving to the next p lyno-  
mial. This more than outweighs the disadvantage of having to initialize many polynomials. 
We used the multiple polynomial variation as suggested by Montgomery; for details we refer 
to [ l l ]  and [24]. 

but which also runs faster (although the asymptotic running time remains et'*M(l))J1ogniog'ogn ). 
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To determine the optimal value of B ,  the size of the factor base. we have to balance the 
advantages of large B 's (many smooth residues) against the disadvantages (we need at least 
B+1 smooth residues, they are quite costly to find, and the final reduction gets more expen- 
sive). The crossover point is best determined experimentally; in practice anything that is rea- 
sonably close to the optimal value works fine. 

This does not imply that we will always use a B that is close to optimal. For R around 103 
digits, the optimal B gets so large that it would cause various memory problems. In the first 
place the memory required by the program to generate relations grows linearly with B . In our 
setup we should also be able to run the program on small workstations, which implies that B 
cannot get too big. In the second place, storing all relations that we receive for large B (in 
particular the partial relations) gets problematic. And finally, storing the matrix during the 
Gaussian elimination becomes a problem (apart from the fact that the elimination gets quite 
slow, see below). As a consequence we will be using suboptimal values of B for n having 
more than 103 digits, at least until we have solved these problems. See below for the values 
of B that we have used for various II. 

During the first stage of the algorithm, one not only collects small relations, residues that 
factor completely over the factor base, but one looks for partial relations as well, i.e., residues 
that factor over the factor base, except for a factor 4 > p B .  The reason for this is, as we have 
seen above, that two partial relations with the same 4 can be combined into one so-called big 
relation, which is just as useful as one small relation during the final combination stage. The 
more partials we can get, the more bigs we will find, thus speeding up the first stage of the 
algorithm. But evidently, one needs quite some number of partial relations to have a reason- 
able probability to find two with the same q (cf. birthday paradox). 

In principle we could easily keep all partials with q prime and q < p : ,  and collect those 
during the first stage. Doing that would however not be very practical, as we would get an 
enormous number of partial relations. Furthermore, most matches will be found among the 
smaller 4 's. For that reason, we only keep partial relations for which 4 is not too big. An 
upper bound of 10' on 4 works quite satisfactorily. With this bound we found about fifteen 
times as many partials as smalls for B = 5oo00, which at-the end of the first stage resulted in 
about three big relations for every two smalls. For B = 65500 and the same bound on 4 we 
got about thirteen partials per small relation, and at the end we had five bigs for every three 
smalls. 

The smalls and partials we receive (and generate) at SRC are processed in the following 
straightfoward way. About once every few days the new relations are verified for correcmess. 
This verification is done for obvious reasons: who knows what people send us, and who knows 
what mailers do with the messages they are supposed to send; we never received faulty rela- 
tions that were in the right format, but we got quite some totally incomprehensible junk, badly 
mutilated by some mailer. After verification, the smalls are sorted by their weight, and merged 
into the file of 'old' small relations, thereby deleting the double relations (sometimes we get 
one message several times). The partials are sorted by their 4 value, and merged into the 
sorted file of 'old' partials. If we find two relations with the same 4 .  one is kept in or inserted 
in the sorted file of partial relations, and the combination of the two is computed and merged 
into the file of big relations. Again, doubles are deleted during the merging. and a combination 
of two identical partial relations is rejected. Of course, during these processes. we check to 
see if we are so lucky as to have found a small or big relation with even exponents, as such a 
relation could immediately lead to a factorization; we have not been so lucky yet, as was to be 
expected. 

Figure 1 illustrates the progress of the first stage for the factorization of a 100 digit number 
with B = 5oooO and 4 I 10'. The first stage started at noon, September 15, 1988, and it was 
completed on October 9. when we reached a total of more than 5oooO small and big relations. 
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It can be seen that the number of big relations grows faster and faster: the more partial rela- 
tions we get, the higher probability we have to find a double q ,  and therefore a big relation. 
The number of small relations grows more or less linearly, as was to be expected. Among the 
about 32oooO relations we had found on October 9 there were about 20500 smalls, and the 
remaining partials produced about 29500 big relations. For the other numbers we factored the 
graphs of the numbers of small and big relations behaved similarly to Figure 1. 

50000 

2 9 5 0 0  

2 0 5 0 0  

Figurc 1 

Given these figures, it will not come as a surprise that, once the first stage of the mpqs pro- 
gram has been set up on some number of machines (and keeps running on those machines!), 
the moment that the total number of small and big relations exceeds B can fairly accurately be 
predicted. As mentioned above, it then remains to find a dependency modulo 2 among the 
exponent vectors of the small and big relations. For our initial experiments we wrote a 
straightforward Gaussian elimination algorithm [12]. which was perfectly able to handle the 
sparse matrices resulting from factor bases with 5 up to about 35000 that we had chosen for 
the smaller numbers we factored. For larger 5 our algorithm definitely gets very slow; for 
B = 5oooO the Gaussian elimination took for instance about 1.5 days on a VAX 8800. We are 
still working on the implementation of more advanced methods for the Gaussian elimination, 
like Wiedemann's method [26] and extensions of Odlyzko's intelligent Gaussian eliminadon 
techniques [17]. We should note that we never needed 5+1 rows in the matrix to produce a 
factorization; it appeared that about 0.99-B is enough in practice. 

We conclude this section with some of the results we obtained with the multiple polynomial 
quadratic sieve algorithm. Because we wanted to be able to run the program at as many sites 
as possible, we decided to write our programs completely in C. Of course this causes some 
inefficiencies, because we did not use any assembly language code, We could have provided 
such code for various popular types of machines, but we did nor do that yet. 

Bigger 
numbers have two important advantages: collecting relations takes at least a few weeks, so that 

While carrying O U L  our experiments, we attempted bigger and bigger numkrs. 
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elapsed 
days 
13 
11.5 
24 
26 

120 
? 

45 

we do not have to change our (worldwide) inputs often, and the resulting factorizations a m c t  
more attention, and therefore more contributors. In this way we collected relations for the fac- 
torizations of the numbers mentioned in Table 4; as usual, p denotes rhe smallest prime factor 
of n. All numbers in Table 4 were most or more wanted in the Cunningham Tables [6] .  At 
the time of writing this paper we are collecting relations for a 103 digit number, the last enny 

external n is 
help factor of 
I 1  % 7139+1 

5 % 10'@+1 
5 9i 11'07-1 

15 % 11'04+1 
21 % 239L-1 

100 % 10[=+l 
30 % 2353+1 

in Table 4 

Table 4 
Some factorizations obtained with mpqs 

92.4 

102.88 

25000 
25000 
37900 
5 m  
65500 
65500 
65500 

4. Distributing the factorization process 

In the summer of 1987 we implemented eUiptic curve factorization, distributed over the net- 
work of approximately 100 Firefly workstations in use at SRC. The overall structure of the 
distribution was similar to Silverman's system for quadratic sieve: one central system coordi- 
nates the factorization, searching out idle systems and supplying them with tasks. The internal 
structure is quite different, however. 

To support research in distributed computation and recompilation. Ellis [23] built 'mi' and 
'dp' - the machine information and distant process servers. 'mi' keeps track of the utilization 
of every workstation, the period of time since the last keystroke or button press, and an availa- 
bility predicate provided by the owner of the workstation. Most machines have the default 
predicate. which aUows distant processing only if the machine has been unused for at least half 
an hour on weekends or in the evening, or two hours during the workday. The distant process 
mechanism stam a program on a selected machine, transparently connecting open file descrip- 
tors for standard input and output back to the originating workstauon. 

In addition, the standard SRC environment includes a stub compiler for remote procedure 
calls. One constmcts the interface in our standard programming language and supplies an 
implemenranon of the service. 'flume', the stub compiler, and the RPC runtime system then 
allow client programs to make calls to the server just by calling procedures in the interface. 
The RPC runtime includes provisions for reasonably prompt notification in the event that the 
client address space or workstation crashes. 

Using these facilities, our factoring program was easy to write. We consrmcted a stand- 
alone executable which, when supplied with a random seed and an exponent bound, runs a trial 
of the elliptic cuwe algorithm. If it discovered a factorization, it printed it and exited. I f  it 
received a Unix intempt  s i y a l ,  i t  printed a snapshot of the current state of the cornputation 
The program accepted a description of a pamally completed cume as an input to resume f3C- 
rorization. We then needed to invoke this using the distant process machinery. 

However. Fireflies are muluprocessors; each has five processors. Thus, we wanted our pro- 
gram to run multiple times on each Firefly. 

To facilitate chis, we wrote a driver program which spawns one factoring task per processor. 
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The driver program keeps the workstation busy by using RPC to request a factorization task 
whenever some processor is idle. It also reports factorizations and snapshots to the central 
server. Additionally, this program watches for the workstation to come back into use. Should 
this happen, we take one of two actions. If the owner of the workstation has returned and 
pressed a button on his mouse or keyboard, we signal the workers to exit, collect their final 
reports, and exit the driver. If another distant process appears on the workstation, we defer to 
it by suspending execution of the workers until it completes. 

The main program services requests for tasks and records reports of factorizations and 
snapshots. Periodically, it queries the ‘mi’ server for the list of all machines which are avail- 
able, and some statistics about the machines. For each machine which is not currently running 
a factoring driver, and which has enough free virtual memory that we won’t cause the machine 
to abort user programs, ‘dp’ is used to invoke a driver. 

Using this setup, we accumulated an average computing power roughly equivalent (for our 
purposes) to a dedicated Cray-1. Following a processor upgrade to the Fireflies, we find our- 
selves running at a continuous rate of roughly 500 rnips. This is sufficient, as reported above, 
for the discovery of 3O-t digit factors in a day. 

Subsequently, we came to the realization that our needs could easily be satisfied by a much 
looser communications system. Our bandwidth requirements are small for elliptic curve -- we 
just need to send out the number to be factored, and collect the factorization if i t  ever appears. 
In particular, we realized that the current electronic mail networks should easily handle the 
traffic needed to run an elliptic curve factorization. 

Political and technical realities made it preferable to attempt this with quadratic sieve, 
instead. As described above, elliptic curve is much more sensitive to the quality of implemen- 
tation, and needs to be carefully tuned to run well on a given machine. Moreover, although 
the rate of progress is slower with quadratic sieve, it is certain, and the factorizations are 
impressive. 

In the summer of 1988, we implemented a new worker program that runs quadratic sieve, 
printing the relations it finds. The driver and central server were modified to handle both e l l ip  
tic curve and quadratic sieve. We used this setup to factor a 93 digit number and gain experi- 
ence with the complete quadratic sieve process. 

The worker was also capable of being run by hand and sending results by electronic mail. 
We distributed the program to a few of our friends, and asked them to tell us how it failed to 
be sufficiently portable. 

We then refined the program, and factored a 96 digit number with more help from outside 
SRC. We then factored a 100 digit number, with the assistance of most of the prominent 
members of the factoring community. At this point, everything seemed sufficiently stable that 
we started to develop an analogue of the driver program that was simple and portable, which 
we announced the availability of on netnews, along with our most recent results. 

The current implementation consists of the quadratic sieving program, some shell scripts, 
and the utilities we need to check the relations we receive for correctness and to find linear 
combinations that lead to factorizations. 

At SRC, we have a special user account, factor@src.dec.com. that receives all the mail con- 
taining relations, requests for copies of the program, and requests for lists of tasks. A shell 
script examines the mail as it arrives, processing it  as appropriate. This takes advantage of the 
feature of the Berkeley mail delivery program, which allows mail to be delivered as input to a 
user program. 

At helper sites, we mn a script that is a simple infinite loop, waking up once each minute. 
It checks that the factoring process is still running. If not, it waits a little while (in case it 
failed due to some persistent hardware problem) and starts a new one. It fetches the task to 
perform out of a list which can be shared by many computers, if  the list is on a file system 
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which can be read and written by those computers. The script also checks that the load aver- 
age on the machine isn’t too high, and that there’s no recent typing activity by users. If either 
of these fails, the worker is suspended. On Unix systems, the script periodically enqueues 
itself in the ‘at’ queue, so that the program will survive a crash of  the machine. 

While these scripts are not particularly elegant, they are sufficiently portable that we have 
workers running on almost every known type of Unix system. A simple variant of these 
scripts also rum on VMS. As of this writing, we find that we have access to roughly loo0 
mips of sustained computing power for factoring. We have not yet run up against the limits of  
what the mail systems will handle; we estimate that we could easily handle a factor of 10 more 
mail without imposing a burdensome load on our mail transport system. This would allow us 
to factor a 103 digit number in about a week. Since the number of messages is  largely 
independent of the number being factored, we can factor larger numbers in roughly the same 
amount of time, if we can get our  hands on enough computers; we might need to stretch the 
computation out to a month to factor 130 digit numbers if we didn’t want to add load to the 
mail system. 
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