
Real-Time Vehicle Tracking for Driving Assistance

Andrea Fossati
CVLab - EPFL

1015 Lausanne - Switzerland
andrea.fossati@epfl.ch

Patrick Schönmann
Cinetis SA

1920 Martigny - Switzerland
patrick.schoenmann@cinetis.ch

Pascal Fua
CVLab - EPFL

1015 Lausanne - Switzerland
pascal.fua@epfl.ch

Abstract

Detecting car taillights at night is a task which can
nowadays be accomplished very fast on cheap hardware.
We rely on such detections to build a vision-based sys-
tem that, coupling them in a rule-based fashion, is able
to detect and track vehicles. This allows the generation of
an interface that informs a driver of the relative distance
and velocity of other vehicles in real time and triggers a
warning when a potentially dangerous situation arises. We
demonstrate the system using sequences shot using a cam-
era mounted behind a car’s windshield.

1. Introduction

One of the main particularities that distinguishes newer
cars from older ones is the growing use of embedded elec-
tronic components whose role is to improve driver safety.
Even purely mechanical devices, such as brakes, have now
been electronically enhanced. While some cars are now
equipped with proximity sensors for parking assistance, the
new trend is now to equip them with long-range radar sen-
sors or video-based assistance functions to protect the ve-
hicle’s occupants, those of other cars and pedestrians [8].
In this paper we describe a low cost video-based assistance
system, that relies on taillight tracking to locate other vehi-
cles at night-time, to analyze their trajectory and to avoid
collisions. We chose night-time because it is a delicate sit-
uation, in which the driver’s perception of distance is far
worse than during the daytime, which makes our system
potentially very helpful. The need for reliable real-time per-
formance makes it a challenging problem as it imposes re-
strictions on the algorithms that may be used.

We demonstrate our approach on sequences shot with

a small camera mounted behind the cars windshield and
pointing forwards. Essentially the same approach could
have been used with a camera pointing backwards to mon-
itor the situation behind the car by detecting headlights in-
stead of taillights.

Our approach includes the following steps: We first de-
tect independent candidate taillights using standard low-
level image processing. We then couple them using ade-
quate criteria. Finally we track the resulting pairs over time
to infer the presence and location of vehicles. This lets us
generate a radar-like view that includes distance to other
cars and their relative velocity. As shown in Fig. 1, it can be
very helpful to the driver. By further analysis of the input
image the system can also detect if a blinker is activated.

The contribution of this paper is therefore twofold: First,
we propose a simple, effective and real-time technique to
track multiple vehicles at night-time, both in urban and rural
environments while realistically estimating their trajectories
and velocities with respect to the camera. Secondly, we pro-
vide the driver with a valuable interface that can help him
understand the situation by augmenting his perception of
the traffic conditions and triggering a warning when events
that require an increased level of attention are likely to hap-
pen.

2. Related Work

The standard approach for robust and accurate vehicle
tracking in traffic consists in adopting sophisticated instru-
ments like radars or lidars, as for example in [14]. How-
ever, this has the drawback of being very expensive, in con-
trast to standard video cameras. For this reason, in recent
years, several authors have investigated the video-based ve-
hicle detection and tracking issue. Some researchers fo-
cused on analyzing traffic and vehicles’ motion [12, 4] or

1

Figure 1. Sample output of our Real-Time Tracking System. On
the left part tracked vehicles are marked and their distance in me-
ters to the camera is overlaid on them. On the right part a radar-like
view of the scene is drawn: A green rectangle represents the car
on which the camera is mounted and yellow rectangles represent
other vehicles. The purple segment on them indicates their relative
velocity with respect to the camera.

on detecting cars [5] using a static camera. Others stud-
ied instead what kind of information can be retrieved us-
ing vision algorithms on sequences captured using a cam-
era that is itself mounted on a vehicle. Among these [6]
used a video camera to detect, however not tracking them
in time, light sources which could correspond to other vehi-
cles, using the light source spectral distribution for discrim-
inating purposes. The work in [1] has an approach similar
to ours in the sense that uses taillights to detect vehicles, but
does not determine their location in space and to run in real
time needs a very low-resolution input and a hybrid hard-
ware/software implementation. It also fails in case a blinker
is activated. Similarly [7] detects oncoming cars through
their headlights but also this work only focuses on deter-
mining if a car is present, and not where it is located.

On the other hand some works tackled the real-time
tracking problem, which is the one we try to solve. Different
techniques have been proposed in the literature, for example
using a mixture of sonar and vision information [10] or us-
ing stereo vision [11]. For tracking purposes [13] suggested
to mount a few artificial landmarks on the car to be fol-
lowed, while [3] used templates of a car’s back to perform
the tracking. In [2] a system for tracking cars on highways
was proposed, using edges and templates, which was able
to run in real-time thanks to anad hocsystem architecture.
Finally [15] describes a system used by an autonomous car
to track and follow a lead vehicle at night, which uses tail-
lights to compute an approximate trajectory. This method
can follow only one car and requires manual initialization
of the location of the lead vehicle. Our contribution has
therefore been to unify and improve the latter approaches to

build a fully automatic system able to track multiple cars, at
night, both in highways and city environments. Moreover,
our system does not need any special hardware but still runs
in real time, which gives it the ability to promptly trigger
useful warnings for the driver.

3. Algorithm Overview

Our framework is composed of two main parts. The first
part, described in Section 4, involves analyzing the input
frames separately and outputting a list of detected vehicles,
together with a confidence value for each such candidate.
This list is obtained by first finding image patches most
likely to correspond to taillights and then coupling them by
selecting among all possible pairs those that satisfy certain
criteria.

The second part takes those detected pairs as input, as
discussed in Section 5. It then generates a time-consistent
reconstruction of the scene by linking detections across con-
secutive frames. This allows the system to find those that
truly correspond to actual vehicles and to reconstruct their
trajectories with respect to the camera. Finally such infor-
mation is used to generate the radar-like view of the scene
and to predict potential collisions.

4. Vehicle Detection

4.1. Light coupling for vehicle detection

The vehicle detection algorithm consists in analyzing the
input images separately: In each frame we first detect all
the n light patches, secondly we generate the1

2
n(n − 1)

possible pairs of candidate taillights and finally we filter out
those whicha priori cannot be a vehicle. In this section
we will first describe how the light pairs are filtered, to give
a global view of how vehicle detection is performed. We
will then explain in detail how we detect light patches in the
input images and characterize them.

4.1.1 Pair Filtering

First of all, we need to define a few measures and thresholds
in order to choose the pairs of lights that are the most likely
to be the two main taillights of a vehicle. To do this, we
begin by introducing a set of conditionsCi to be necessarily
fulfilled. Any pair of lights that fails at complying to at
least one of them will be immediately removed from the list
of potential vehicles. To avoid missing some vehicles, all
the parameters used to compute these conditions are set in
a way that minimizes the number of false negatives, thus
including also some outliers that will be filtered out in the
successive tracking phase.

The most important threshold to be applied is the need
for a pair to have both its lights on the same horizontal line.
We therefore begin by defining the first conditionC1 as the

fact that the angle between them must be smaller than a very
low thresholdε as follows:

C1 : arctan
(

∆µy

∆µx

)
6 ε,

where ∆µy is the vertical distance between two light
patches and∆µx is their horizontal distance. We will ex-
plain in Section 4.2.3 how to compute such quantities.

Secondly, we assume that the shape of both taillights
should be similar, assuming minimal variation in the lamp.
We therefore choose a reasonable thresholdζ which has
been computed after validation on the training sequences.
ConditionC2 can then be defined as

C2 : ∆shape6 ζ,

where∆shapeis computed as will be defined in Section
4.2.4.

As the area of lights theoretically should not vary too
much either, we define a third condition for removing pairs
that have a large difference between the areas of both lights:

C3 : ∆area6 area.

In Section 4.2.4 we will show how the area of a candidate
taillight is computed. The quantity∆areadefines the differ-
ence of area between two lights, whileareais their average
area.

Finally conditionC4 represents the fact that two candi-
date taillights should have a similar appearance:

C4 : ∆type6 η.

The type of a candidate taillight is defined as described in
Section 4.2.5, where also a quantitative measure to compute
the difference∆type between two light patches will be in-
troduced.

4.1.2 Dissimilarity Indicators

We can now define four dissimilarity measuresDi from the
left terms of the previous inequalities by normalizing them
with their right term, thus obtaining variables whose value
is between 0 and 1 if their corresponding conditionCi is
fulfilled:

D1 =
arctan(∆µy

∆µx
)

ε
D2 =

∆shape

ζ

D3 =
∆area

area
D4 =

∆type

η
.

The final dissimilarity measureD consists of the sum of
all Di:

D =
4∑

i=1

Di. (1)

Once the previous conditions and dissimilarity measures
are defined, the vehicle detection algorithm is as simple as
generating each possible pair of taillights and storing those
which satisfy all the necessary conditionsCi along with
theirD value.

4.1.3 Detection Results

As can be seen in Fig. 2, only four out of the about 150 pos-
sible pairs of the input frame satisfy all the conditionsCi

and have been kept, half of them being real vehicles. More-
over, all individual detected vehicles are coherent without
further analysis of the scene.

Figure 2. Detection Results. Top Row: Input frame. Center Row:
Taillight Detection. Bottom Row: Vehicle Detection.

4.2. Light Detection and Characterization

We will now explain in more detail how the candidate
light patches are obtained and how their features are com-
puted, to clarify the similarity measures introduced in the
previous section. Our approach to detecting candidate tail-
lights goes through several steps. First, a score function is
computed at every pixel in the input frame. This basic func-
tion applies a threshold on the input pixels to retain only
those which have a high probability of pertaining to a car’s
light, and outputs a value related to this probability that can
further be used to weight the pixel’s contribution to the com-
putation of the light’s descriptor. Then, we group the pixels
together according to the light they belong to. Finally, we
extract from such sets of pixels the features that allow the
computation of the conditionsCi presented in the previous
section.

4.2.1 Score Function

To make the computation fast we decided to select a color
space in which a simple thresholding is enough to discrim-

inate the candidate lights, and HSV was our final choice
after some experiments. In fact, being the Value channel
a representation of the human perception of brightness, it
already gives a good representation where lights differ a lot
from other elements in the input scene. We therefore simply
define our score function as being the value of such chan-
nel if greater than a certain threshold. In our experiments
this thresholdτ was always fixed to a quarter of the biggest
possible value:

score(v) =
{

v if v > τ
∅ otherwise

}
. (2)

As we can see in Fig. 3, despite its simplicity, this score
function does quite a good job at detecting cars’ lights.
Most of the false positives have indeed very similar prop-
erties to the true positives, and they do not seem to be re-
movable on a per pixel basis without further knowledge of
the surrounding region.

Figure 3. Results - Score. Top Row: Input frame. Center Row:
Score Function. Bottom Row: Light Detection.

4.2.2 Pixels Grouping

By using a thresholded score measure, in addition to save
processing time, we also most likely get disconnected
groups of pixels. However, assuming each connected set
of pixels is a light is a reasonable choice. Fig. 3 illustrates
well the pros and cons of such an approach if we compare
the taillights of the closest car at the center of the frame
and the several headlights of the on-coming vehicles on the
left. Indeed, when applying this approach to the input image
depicted in the top row of Fig. 3, the taillights of the near
vehicle will be correctly detected. On the other hand, we
will have up to five different light sources detected as a sin-
gle light on the left side of the image. Our algorithm avoids
this by using first regrouping connected pixels together, and
later splitting them into two or more lights only if necessary,
during the tracking phase.

The algorithm we use for grouping pixels is an effi-
cient version of theConnected Component Labelingalgo-
rithm [16]. We found this algorithm to be a fair tradeoff be-
tween overgrouping and creation of small noise-only lights

due to artifacts in the border of the real lights. Noise ap-
pearing in objects reflecting light, such as road signs, is also
likely to be grouped using such an approach, which helps
preventing parts of it from being detected as vehicles in a
later phase. Reducing the number of those small groups
of pixels also helps saving processing time as less pairs of
lights will be generated and tested in the vehicle detection
phase.

4.2.3 Light Location

We characterize a light by its location and shape, which we
formally define as

((
µx

µy

)
,

(
σx

σy

))
,

where(µx, µy) denotes the centroid and(σx, σy) denotes
the spatial standard deviation of the group of pixels. These
simple descriptors of position and shape are sufficient to
compute most derived features that we will define in the
following subsection.

4.2.4 Light Shape and Area

We approximate the candidate lights as being rectangles
centered at(µx, µy) whose horizontal and vertical dimen-
sion are respectively4σx and 4σy. Therefore we have a
straightforward way of defining the area of a light as

area= 4σx · 4σy. (3)

Concurrently, the shape can be defined as the ratio be-
tween both sides of the rectangle:

shape=
σx

σy
. (4)

4.2.5 Appearance Information and Light Type

To distinguish among headlights, taillights and blinkers
we have analyzed several training videos and built, for
each of the light types, a probability distribution on the
HS space, considering the fact that the V Channel has al-
ready been used for thresholding. The task of such dis-
tributions is to assign to every input pixel a likelihood
to belong to each one of the light types. Fig. 4 shows
the 3 different likelihood functionsωT (h, s), whereT =
{Headlight|Taillight|Blinker} represents the light type.

At this point we simply need to extend this calculation
to measure the likelihood of a given patch of pixels to be of
one type or another.

ωHeadlight(h, s) ωTaillight(h, s) ωBlinker(h, s)
Figure 4. Likelihood distributions for the 3 different light types,
based on the H and S channels.

Extending Pixel Measurement to a Light Patch The
best choice for measuring the likelihood of a whole light
patch is theoretically to multiply the likelihoods of all the
pixels (or, to avoid rounding problems in the implementa-
tion, to sum the logarithms of their likelihoods). However,
this would be based on the assumption of independence of
such pixels, which has not proved to be robust enough in
our experiments. We have therefore chosen to use a differ-
ent method and average them instead, which is more robust.
The likelihood for a light patchL, given a light typeT , is
then defined as

p(L|T) =

∑
(h,s)∈L ωT (h, s)

‖L‖ , (5)

where‖L‖ indicates the number of pixels inside the light
patchL.

Bayes Factors Finally we need to find a way of measur-
ing the confidence that a light is effectively of a detected
type. We chose to compare the probabilities relatively to
each other instead of looking at their absolute value, and we
will use Bayes factors [9] for that purpose. Bayes factors
let us select amongst several probability models the one that
most likely has generated a given set of events. The Bayes
factorK is defined as

K =
p(L|T1)
p(L|T2)

, (6)

whereT1 andT2 are the 2 hypotheses that we want to com-
pare, which in our case represent 2 different light types.

The logarithm ofK is calledweight of evidenceand can
be measured in different units depending the base of the
chosen logarithm. The logarithmic unit on base 10 is called
ban, which we will use for the following definition:

Weight of Evidence= 10 · log10(K) [deciban] . (7)

The main advantage of Bayes factors amongst other sta-
tistical hypothesis testing method resides in the interpreta-
tion of the output value. Indeed, the use of a logarithmic
unit such as the deciban gives us results that are linear with

respect to an intuitive notion of confidence, and a scale of
interpretation ofK in deciban is given in Table 1 as pro-
posed by Jeffreys [9].

Weight of evidence Strength of evidence
< 0 Negative (supportsT2)

0 to 5 Barely worth mentioning
5 to 10 Substantial
10 to 15 Strong
15 to 20 Very strong
> 20 Decisive

Table 1. Interpretation of Bayes factors

Light Type We can therefore compute a simple and
meaningful measure of the confidence that a light pertains
to its most likely type by testing it against all the other
types, and then using the lowest of the weights of evidence.
We can now define the quantity∆type between two light
patches as the difference of this measure of confidence if
they are most likely to belong to the same type, or as∞
otherwise.

5. Vehicle Tracking

5.1. The Tracking Algorithm

The next step towards a full understanding of the scene
is then to ensure consistency in time. We have therefore
developed an algorithm for tracking the detected vehicles
from frame to frame. For tracking to be robust, we define a
criterion to evaluate the confidence that the tracked objects
are indeed real vehicles.

The list of detected vehicles, obtained as described in
Section 4, is first merged with a list of tracked vehicles,
retained from the previous frame: vehicles of which a match
is found, meaning that they were already been tracked, have
their confidence value updated through a weighted average
between theD value of their taillights and their previous
confidence value. Then newly detected vehicles, that do
not have a match in the list of tracked vehicles, are added.
For this we make some basic assumptions about plausible
locations where vehicles may appear and optionally assign
them a start bonus or malus accordingly. This process is
explained in details in Section 5.1.2.

Finally, we sort the list of tracked vehicles according to
the vehicles’ confidence and loop through it again for de-
tecting physical incoherencies between them, as described
in Section 5.1.3.

As the confidence of the tracked vehicles is updated at
each iteration of this algorithm, we finish by removing those
whose confidence drops below a certain threshold.

5.1.1 Tracked Vehicle Lookup and Special Cases Han-
dling

Once a vehicle is detected in the current scene, its descriptor
[µx, µy, σx, σy, area, shape, type] is compared to those of the
vehicles that are stored in the tracking list, and the nearest
neighbor is selected for the match. If there are no neighbors
which are close enough, then a new entry is generated in the
list.

However, there are two special cases that need to be de-
tected and handled: merged lights from distinct vehicles and
lights merged with blinkers. The common point between
these two situations is that both provoke a sudden increase
of the light’s area, which can easily be detected during the
nearest neighbor matching phase.

In such case, we want to split a set of connected pixels
into two or more lights, and for this purpose we choose to
use an approach originally inspired from non-maxima sup-
pression. Lights are split by raising the score thresholdτ
of Section 5.1 until disconnected groups of pixels are ob-
tained. If the size of one of the latter is less than an adap-
tive threshold, defined in Eq. 8, we remove its pixels and
continue raisingτ until we get other disconnected groups.
Finally, if we remove all pixels without finding a satisfying
partition, we do not split the light. The stopping criterion is
hence

‖Ln‖∑N
i=1 ‖Li‖

<
0.25
N

, (8)

where‖L‖ defines the size in pixel of a light patch andN
is the number of groups.

If two or more lights are found by the splitting algo-
rithm, these are considered as separated and their dissim-
ilarity measures to other light patches updated accordingly.
Otherwise, the increase of the light’s area is most proba-
bly caused by a blinker. As the light could not be split, we
need to find another way of separating the main light and its
blinker.

Therefore the center both of the light and the blinker is
obtained according to the evolution of the detected light’s
center betweent − 1 and t. We first set the main light’s
center to its extrapolated value computed from the position
and velocity att−1, and the blinker’s center to the center of
the detected light. We can then compute the blinker’s raw
features and type. If the blinker’s detected type isblinkeror
any other type with at most asubstantialweight of evidence
compared toblinker, we assume that the detected light in-
deed contained a blinker.

5.1.2 New Detected Vehicles

When a detected vehicle is not matched to any vehicle in
the tracking list, a new entry is generated. To increase ro-
bustness to noise, newly detected vehicles which are not on

the horizon line or at the limit of the camera’s viewing angle
are given a penalty to overcome issues due to reflections on
the license plate of overtaking vehicles, or to the presence
of accessory pairs of headlights on their bottom part. More-
over, the main taillights of a vehicle being the most distant
ones, we inevitably start tracking those pairs of light sources
before the second main light appears in the camera’s angle
of view, thus giving them a non-negligible advantage.

At the same time, we also prevent most of the false pos-
itives to interfere in tracking, based on the assumption that
these are likely to appear and disappear in short intervals.
A vehicle has to be tracked for at least a certain amount of
time before being displayed in an output video or taken into
account in the collision prediction phase described in Sec-
tion 5.2.3. Persistent noise is also filtered out with the step
described in the next section.

5.1.3 Physical Inconsistencies

To avoid a physically inconsistent reconstruction of the
scene, which can be produced by false positives, we define
a box with the approximate proportions of a car around the
pairs of taillights and consider that no other vehicles are al-
lowed to have a light in that area. Then, correction is done
by comparing each vehicle to others that have a higher con-
fidence and decreasing the confidence of the former if one
or more of its taillights are in the other car’s box, or one or
more of the other’s lights are inside its box.

5.2. Motion Analysis

5.2.1 Position Estimation

A standard formula for computing the distanceZ to an ob-
ject of known size simply consists of the focal lengthf mul-
tiplied by the ratio between the sizeL of the real object and
the sizel of the object’s projection on the image plane. This
assumes that the road can be considered planar, which is
true in most cases. Then

Z =
f · L

l
=

f · Wreal
Wsensor

, (9)

whereWreal is the real width of the vehicle, which is as-
sumed to be constant for all vehicles, andWsensoris the
vehicle’s width on the imaging sensor, which is derived
from the camera calibration and the vehicle’s width in pix-
els Wpixels, that can be computed using the light patches
location as

Wpixels = (µright
x + 2 · σright

x) − (µleft
x − 2 · σleft

x). (10)

Knowing the depthZ of the plane in which the vehicle
is situated, Eq. 11 can be derived from it. This defines the
lateral shiftX between the camera’s center and the vehicle’s

position, assuming that other vehicles travel in a direction
which is approximately parallel to the camera’s optical axis:

X =
Z · Ssensor

f
, (11)

whereSsensoris the horizontal distance on the imaging sen-
sor between the detected vehicle’s center and the image cen-
ter and can be computed with the help of camera calibration.

5.2.2 Data Smoothing and Interpolation

When using only Eq. 9 and Eq. 11 for computing the ve-
hicles’ position, the obtained results are correct but their
evolution in time is sometimes jittering. We therefore
smooth them through spline interpolation as follows: At
each frame, vehicles are pushed into a buffer storing one
second of data (25 frames in our case), which is an appropri-
ate time interval with enough data to compute stable splines.
When the vehicle has been tracked for less than three frames
(i.e. there is not enough data to be interpolated), we use the
raw values(µx, µy) and(σx, σy) of its lights for the compu-
tations. After three frames, these values are corrected using
standard 2D spline fitting and interpolation, since we are not
interested in the relative distance along the vertical Y-axis.

Finally, we apply exactly the same method for correcting
the distance, itself computed from the interpolated values of
µ andσ. It is important to notice that the smoothed values
are neither stored nor taken into account for the following
interpolations. Only the raw values are stored in order to
make the trajectory reconstruction stick to the real data.

5.2.3 Collision Prediction and Warnings

As previously mentioned, we already have access to the po-
sition, velocity and acceleration of vehicles from the spline
interpolations. We therefore have all the information we
need for making trajectory predictions and thus detect po-
tential imminent collisions.

This can help preventing accidents by warning the driver.
If, within a given safety delay (e.g. 4 seconds), a vehicle’s
extrapolated trajectory will intersect, also considering a spa-
tial safety margin, the trajectory of the car on which the
camera is mounted, a warning is triggered.

Apart from predicting collisions, we also provide warn-
ings indicating active blinkers. This is achieved by setting
a blinker flag to vehicles at each frame in which either the
blinker correction algorithm had to be used, or the head-
light’s detected type isblinker. In order to prevent a flicker-
ing effect, we make the warning last as long as the vehicle
has a blinker flag set in any of the ten last frames.

6. Results

We present here the results of our vehicle detection and
tracking system. The screenshot in Fig. 1 shows the final
output of our system in a standard situation. Note that all
vehicles present in the input image are detected and their
positions and relative velocities estimated. Fig. 5 depicts a
video grabbed when arriving in a city center. It confirms
that the system works well even in situations of medium
artificial lighting if the exposure of the camera is set appro-
priately. In fact, the system works better when the camera’s
exposure is set to be very low, so that only strong lights are
visible on the sensor.

Figure 5. Results - In town, stopped at traffic lights.

We also illustrate additional visualization features of the
radar-like view. As shown in Fig. 6, vehicles further than
fifty meters are displayed in the top band reserved for that
purpose. Their frontal distance, rounded to ten meters, is
displayed above them. Their lateral distance is represented,
as for other vehicles, by the lateral offset of the vehicle in
the radar-like frame. Fig. 7 shows the representation of a car
whose right blinker is active, the small triangle representing
the direction the driver indicates by activating such blinker.
Finally, vehicles that trigger a warning due to a danger of
collision in the next few seconds are colored in red, as in
Fig. 8.

Figure 6. Results - Far away vehicle.

Figure 7. Results - Blinker activated.

Figure 8. Results - Security warning.

Since we believe that the performance of our algorithm
can be better judged in video sequences, we provide them
as supplemental material. As all the figures presented in
this section, they are composed of two parts. The left one
represents the original video with the cars’ bounding boxes
and their distance in meters overlaid. The right part is a
radar-like view of the scene. The green box and the two red
lines represent the front part of the car in which the camera
is installed, and the angle of view of the camera. The yellow
rectangles represent the vehicles on the road, and the purple
line starting at their center is their velocity vector.

Finally we present some failure modes of our frame-
work: It intrinsically cannot track motorbikes or vehicles
that have a broken taillight. It also does not explicitly han-
dle occlusions, but we think that this is acceptable since the
most critical vehicles for the driver’s security are the closer,
and therefore occluding, ones. When the occluded vehi-
cles will re-appear they will automatically be re-detected
and tracked. Obviously it also cannot cope with bumps on
the road and large slopes. Finally, given our assumptions
about the constant width of vehicles, the distance estimates
for big trucks or very small cars will suffer from some in-
accuracy. Apart from such cases, we believe that our tech-
nique for vehicle detection and tracking is generally able to
provide an accurate and realistic trajectory estimation, and

is therefore a good starting point for making night driving
safer.

6.1. Quantitative evaluation

To better evaluate the accuracy of the distance estima-
tion algorithm, we designed a simple experiment to obtain
some quantitative results. Since doing it in the dynamical
case would require special and expensive equipment (i.e. a
radar), we focused our attention on the static case, which
is anyway a good approximation since all the input frames
are analyzed separately. We therefore took several pictures
of 3 different cars at 3 different distances each (10, 20 and
50 meters). We tested both the case in which the cars are
straight in front of the camera and shifted on one side as if
they were on a parallel lane. For each one of such cases
we took 10 measurements, whose averages are shown in
Table 2. As can be noticed there is a slight degradation of
accuracy in the vehicles when they are further away and on
a parallel lane, but we still believe such figures to represent
acceptable distance estimations.

Car Location 10 m 20 m 50 m
Straight in the front 6.16% 6.92% 7.81%

One lane shift 8.04% 8.39% 9.23%

Table 2. Average errors of distance estimations in the static case.

Finally to demonstrate the robustness of the algorithm to
missed detections and false positives we manually labeled
several test video sequences, making a distinction between
the easier highway scenarios and the more challenging city
center ones. Then we evaluated our algorithm frame by
frame, counting the number of correct detections, missed
detections and false positives. The results of these exper-
iments are summarized in Table 3. It can easily be seen
in the table that there is a very low ratio of false positives,
which in the highway scenario are totally absent. Moreover
these experiments show that even the ratio of false negatives
is low and, as expected, is better in the highway scenes than
in the city center ones, where the clutter and the traffic have
more influence.

Scenario Correct Missed False
Detections Detections Positives

Highway 10365 187 (1.77%) 0
City Center 3370 200 (5.60%) 5

Table 3. Evaluation of the number of correct vehicle detections,
missed detection and false positives.

6.2. Performance Analysis

To provide a first evaluation of the system’s performance,
we computed the average number of frames per second it

can process on a Pentium D 1.8 GHz dual core. To evalu-
ate computation time only, we use a version of the program
that does not provide any output video. From all the 50
videos we have processed, we removed the best (47 fps)
and worst (33 fps) results. The remaining processing times
varied from 39 to 46 fps, with an average of 43 fps, which
means that the average processing time is 23 milliseconds,
on input frames of resolution720 × 576.

7. Conclusion

We presented a system to detect and track vehicles at
night, estimate their position and relative velocity and pre-
dict their trajectory. Special care has been taken to make
the system robust, by minimizing the false negatives and
filtering out the false positives using temporal consistency.
The framework also provides information that can help en-
hancing security by warning the driver in case of potentially
dangerous situations. Finally the system runs in real-time
on ordinary hardware using as input a standard video cam-
era.

Future work will involve enhancing the system’s perfor-
mances by increasing the quality of its input data. By choos-
ing an optimal camera model and finding its more appropri-
ate exposure, we could already increase the system’s accu-
racy while reducing processing time. We are also consider-
ing a hardware implementation of the algorithm to further
speed it up.

References

[1] N. Alt, C. Claus, and W. Stechele. Hardware/software ar-
chitecture of an algorithm for vision-based real-time vehicle
detection in dark environments. InDATE ’08: Proceedings
of the conference on Design, automation and test in Europe,
pages 176–181. ACM, 2008.

[2] M. Betke, E. Haritaoglu, and L. Davis. Real-time multiple
vehicle detection and tracking from a moving vehicle.Ma-
chine Vision and Applications, pages 69–83, Aug. 2000.

[3] T. Chateau and J. Lapreste. Robust real time tracking of a
vehicle by image processing. InIEEE Intelligent Vehicles
Symposium, pages 315–318, 2004.

[4] B. Coifman, D. Beymer, P. Mclauchlan, and J. Malik. A real-
time computer vision system for vehicle tracking and traf-
fic surveillance.Transportation Research Part C: Emerging
Technologies, 6(4):271–288, 1998.

[5] R. Cucchiara and M. Piccardi. Vehicle detection under day
and night illumination. Proc. of ISCS-IIA99, Special Ses-
sion on Vehicle Traffic and Surveillance, Genoa, Italy, 1999.,
1999.

[6] R. DeFauw, S. Lakshmanan, and K. Prasad. A system
for small target detection, tracking, and classification.In-
telligent Transportation Systems, 1999. Proceedings. 1999
IEEE/IEEJ/JSAI International Conference on, pages 639–
644, 1999.

[7] M. Eichner and T. Breckon. Real-time video analysis for
vehicle lights detection using temporal information.Visual
Media Production, 2007. IETCVMP. 4th European Confer-
ence on, pages 1–1, Nov. 2007.

[8] D. Gavrila and S.Munder. Multi-cue pedestrian detection and
trackingfrom a moving vehicle, 2007.

[9] H. Jeffreys.Theory of Probability. Clarendon Press, 1961.
[10] S. Kim, S.-Y. Oh, J. Kang, Y. Ryu, K. Kim, S.-C. Park, and

K. Park. Front and rear vehicle detection and tracking in
the day and night times using vision and sonar sensor fu-
sion. Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, pages 2173–
2178, Aug. 2005.

[11] X. Li, X. Yao, Y. Murphey, R. Karlsen, and G. Gerhart. A
real-time vehicle detection and tracking system in outdoor
traffic scenes.Pattern Recognition, 2004. ICPR 2004. Pro-
ceedings of the 17th International Conference on, 2:761–764
Vol.2, Aug. 2004.

[12] S. Lin, Y. Chen, and B. Wu. A real-time multiple-vehicle
detection and tracking system with prior occlusion detection
and resolution. InProceedings of the 18th International Con-
ference on Pattern Recognition, pages 828–831, 2006.

[13] F. Marmoiton, F. Collange, J. Alizon, and J. Derutin. 3d lo-
calization of a car observed through a monocular video cam-
era. InProceedings of the IEEE International Conference on
Intelligent Vehicles, 1998.

[14] M. Sergi, C. Shankwitz, and M. Donath. Lidar-based vehicle
tracking for a virtual mirror. InIntelligent Vehicles Sympo-
sium. Proceedings. IEEE, pages 333–338, 2003.

[15] R. Sukthankar. Raccoon: A real-time autonomous car chaser
operating optimally at night. InProceedings of IEEE Intelli-
gent Vehicles, 1993.

[16] K. Suzuki, I. Horiba, and N. Sugie. Linear-time connected-
component labeling based on sequential local operations.
Computer Vision and Image Understanding, 2003.

