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Abstract

We combine detection and tracking techniques to achieve robust 3—D motion recovery of people
seen from arbitrary viewpoints by a single and potentially moving camera. We rely on detecting key
postures, which can be done reliably, using a motion model to infer 3—D poses between consecutive
detections, and finally refining them over the whole sequence using a generative model.

We demonstrate our approach in the cases of golf motions filmed using a static camera and walking
motions acquired using a potentially moving one. We will show that our approach, although monocular,
is both metrically accurate because it integrates information over many frames and robust because it

can recover from a few misdetections.

Index Terms

Computer vision, Motion, Video Analysis, 3D Scene Analysis, Modeling and recovery of physical

attributes, Tracking.
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|. INTRODUCTION

Recent approaches to modeling people’s 3—D motion from video sequences can be roughly
classified into those that detect specific postures in individual frames and those that track the
motion from frame to frame given an initial pose. The first category usually involves matching
against a large image database and is becoming increasingly popular, but requires very large
training datasets to be effective. The second category involves predicting the pose in a frame
given the pose computed in previous ones, which can easily fail if errors start accumulating in
the prediction, causing the estimation process to diverge.

Neither technique is clearly superior to the other, and both are actively investigated. In this
paper, we show that they can be combined to accurately reconstruct the 3—D motion of people
seen from arbitrary viewpoints using a single, and potentially moving, camera. At the heart of our
approach is the fact that human motions often contain characteristic postures that are relatively
easy to detect. Given two consecutive such postures, modeling intermediate poses becomes an
interpolation problem, which is much easier to solve reliably than open-ended tracking.

More specifically, we show that we can reconstruct 3D golfing motions filmed using a static
camera and walking motions acquired using a potentially moving one. In the golf case, the
easy-to-detect postures are the starting position, when the golfer transitions from upswing to
downswing, and the final one. For walking, they are the ones that occur at the end of each step
when people have their legs furthest apart. We therefore use a chamfer-based method [11] that
was designed to detect key postures from any viewpoint, even when the background is cluttered
and background subtraction is impractical because the camera moves as is the case in the first
row of Fig. 1. Because the detected postures are projections of 3—D models, we can map them
back to full 3-D poses and use them to select and warp motions from a training database that
closely match them. This yields initial pose estimates such as those of the second row of Fig. 1.
It lets us create the synthetic images we would see if the person truly were in those positions.
These images are depicted by the figure’s third row and we refine the pose until they match the
real ones. This yields the results depicted by the two last rows of Fig. 1.

The importance of combining detection and tracking to achieve robustness has long been
known [9], [23] and manually introducing a few 3—D keyframes in a tracking algorithm has been

shown to be effective [10]. More recently, a fully automated approach to combining tracking and
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Fig. 1. Our approachFirst row: Input sequence acquired using a moving camera with silhouettes detected at the beginning
and the end of the walking cycle. The projection of the ground plane is overlaid as a bluSegpadd row: Projections of the

3-D poses inferred from the two detectioiird row: Synthesized images that are most similar to the input: Different colors
represent different appearence modé&isurth row: Projections of the refined 3-D posdsfth row: 3-D poses seen from a

different viewpoint.

detection has been shown to be robust at following multiple people over very long sequences
in [28] in 2-D. This is achieved by detecting people in canonical poses and tracking them
from there, which still has the potential to diverge. By contrast, interpolating between detected
silhouettes prevents this and yields 3—D reconstructions.

We chose walking and golfing to demonstrate our approach because we had access to both
the relevant motion databases and silhouette detection techniques. The framework, however, is
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general because most human motions include very characteristic postures that are easier to detect
than completely arbitrary ones. Athletic motions are a good example of this. Canonical postures
can be detected when a tennis player hits the ball with a forehand, a backhand, or a serve [38].
In a work environment, there also are very characteristic poses between which people alternate,
such as sitting at their desk and walking through doors.

The fact that canonical postures are common is important because one of the limitations of
state-of-the-art detection-based approaches to 3—D motion reconstruction is that huge training
databases would be required to detect all possible postures. By contrast, if one only needs to
detect a few easily recognizable postures, much smaller databases should suffice, thus making

the approach easier to deploy.

I[I. RELATED WORK

Existing approaches to video-based 3—D motion capture remain fairly brittle for many reasons:
Humans have a complex articulated geometry overlaid with deformable tissues, skin, and loose
clothing. Their motion is often rapid, complex, self-occluding and presents joint reflection
ambiguities. Furthermore, the 3—D body pose is only partially recoverable from its projection in
one single image, where usually the background is cluttered and the resolution is poor. Reliable
and robust 3—D motion analysis therefore requires good tracking across frames, which is difficult
because of the poor quality of image-data and frequent occlusions. Recent approaches to handling
these problems can roughly be classified into those that

« Detect: This implies recognizing postures from a single image by matching it against a

database and has become increasingly popular recently [40], [1], [13], [24], [20], [12], [19],
[30], [25], [4], [42] but requires very large sets of examples to be effective. Moreover this
often relies on background subtraction and on clean silhouettes, such as those that can
be extracted from the HumanEva dataset [35], which require static cameras or controlled
environments. Finally these methods are usually able just to obtain a good reconstruction
of the body pose but cannot correctly locate it in a 3D environment.

« Track: This involves predicting the pose in a frame given observation of the previous one. It

requires thus an initial pose and can easily fail if errors start accumulating in the prediction,
causing the estimation process to diverge. The possibility of drifting is usually mitigated

by introducing sophisticated statistical techniques for a more effective search [9], [7], [8],
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[45], [46], [37], by using strong dynamic motion models as priors [33], [27], [34], [2], [43],
[39], [29] or even by introducing physics-based models [5].

Neither technique has been proved to be superior, and both are actively studied and sometimes
combined: Manually introducing a few 3-D keyframes is known to be a powerful way to constrain
3-D tracking algorithms [10], [22]. In the 2-D case, it has recently been shown that this can be
done in a fully automated fashion to track multiple people in extremely long sequences [28]. This
involves tracking forwards and backwards from individual and automatically detected canonical
poses. While effective, this approach to tracking still has the potential to diverge. In this paper, we
avoid this problem and go to full 3—D by observing that automated canonical pose detections can
be linked into complete trajectories, which let us first recover rough 3—-D poses by interpolating
between these detections and then refining them by using a generative model over full sequences.
A similar approach has been proposed for 3-D hand tracking [41] but makes much stronger
assumptions than we do by requiring high-quality images so that the hand outlines can accurately
and reliably be extracted from the background.

The work presented in this paper builds on some of our own earlier results. We rely on
spatio-temporal templates to detect the people in canonical poses [11] and on PCA-based motion
models [44] to perform the interpolation. However, unlike in this latter paper, the system does
not require manual initialization. This means that we had to develop a strategy to link detections,
infer initial 3—D poses from them, and perform the pose refinement even when the camera moves
or the background is cluttered. As a result, we can now operate fully automatically under far
more challenging conditions than before.

[Il. APPROACH

We first use a template-based approach [11] to detect people in poses that are most characteris-
tic of the target activity, as shown in the first row of Fig. 1. The templates consist of consecutive
2-D silhouettes obtained from 3—D motion capture data seen from six different camera views and
at different scales. This way the motion information is incorporated into the templates and helps
to distinguish actual people who move in a predictable way from static objects whose outlines
roughly resemble those of humans. For each detection, the system returns a corresponding 3-D
pose estimate.
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In theory, a person should be detected every time a key pose is attained, which the template-
based algorithm does very reliably. The few false positives tend to correspond to actual people
but detected at somewhat inaccurate scales or orientations and false negatives occur when the
relative position of the person with respect to the camera generates an ambiguous projection
and the key pose becomes hard to distinguish from others. In our experiments, this almost
never happened in the golfing case and sometimes did in the walking case when the camera
moved and saw the subject against a cluttered background and from a difficult angle. To handle
such cases, we have implemented a Viterbi-style algorithm that links detections into consistent
trajectories, even though a few may have been missed. Since the camera may move, we perform
this computation in the ground plane, which we relate to the image plane via a homography that
is recomputed from frame to frame.

Finally, we use consecutive detections to select and time-warp motions from a training database
obtained via optical motion capture. As shown in the second row of Fig. 1, this gives us
a rough estimate of the body’s position and configuration in each frame between detections.
To refine this initial estimate, and since the camera may move from frame to frame, we first
compute homographies between consecutive frames and use them to synthesize a background
image from which the moving person has been almost completely removed. When we know
the camera to be static, we synthesize the background image by simple median filtering of the
images between detections. We then learn an appearance model from the detections and use it
in conjunction with the synthesized background to produce new images, which lets us refine
the body position by minimizing an objective function that represents the dissimilarity between
the original and synthetic images. For increased robustness, we perform this minimization over
all frames simultaneously. This yields the refined poses depicted by the bottom three rows of
Fig. 1.

In the remainder of this section, we first introduce the models we use to represent human
bodies and their motion. We then briefly describe our approach first to detecting people in
canonical poses, second to using these detections to estimate the motion between frames, and,

finally, to refining this estimate.
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A. Body and Motion Models

As in [44], we represent the human body as cylinders attached to an articulated 3—D skeleton
and use a linear subspace method to represent the motion between canonical poses. This body
model has standard dimensions and proportions, thus it allows us to obtain reasonable results
on different subjects without the need of being specifically trimmed. Adapting the skeleton
proportions would have required an a priori knowledge of their more likely variations, as was
done for example in [3] using the SCAPE model. In practice, we have not found it necessary to
do so because of the scale ambiguity inherent to monocular reconstruction. Using a model that
is slightly too small or too big simply results in variations in the recovered camera position with
respect to the subject. pose whether canonical or not, is given by the position and orientation
of its root node, defined at the sacroiliac, and a set of joint angles. More formally, tktnote
the number of joint angles in the skeletal model. A pose at tinsethen given by a vector of
joint angles, denoted, = [6;,--- ,0p]T, along with the global position and orientation of the
root

g R’ . 1)

A motion between two canonical poses can be viewed as a time-varying pose. While pose
varies continuously with time, we assume a discrete representation in which pose is sampled at

N distinct time instants. In this way, a motion becomes a sequenceé ditcrete poses
U= [¢f,---y8]" e RPN (2)
G = [gf,-.gn]" € ROV,

Since motions can occur at different speeds, we encode them at a canonical speed and time-warp
them to represent other speeds. We let the pose vary as a function of a phase paraimagter

is defined to be 0 at the beginning of the motion and 1 at the end. For periodic motions such
as walking, the phase is periodic. For non-periodic ones such as swinging a golf club, it is not.
The canonical motion is then represented with a sequencé pbses, indexed by the phase of

the motion. For frame: € [1, N], the discrete phase, € [0, 1] is simply

n—1

In practice, we learn motion models from optical motion capture data comprising several

people performing the same activity several times. For walking, we used a‘¥Vigystem to
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capture the motions of four men and four women on a treadmill at speeds ranging from 3 to 7
km/h by increments of 0.5 km/h. The body model had= 84 degrees of freedom. While one
might also wish to include global translational or orientational velocities in the training data,
these were not available with the treadmill data. We therefore only learn motion models for the
joint angles. Four cycles of walking and running at each speed were used to capture the natural
variability of motion from one gait cycle to the next for each person. Similarly, to learn the golf
swing model, we asked two golfers to perform 24 swings each.

Because our subjects move at different speeds, we first dynamically time-warp and re-sample
each training sample. This produces training motions with the same number of samples, and with
similar poses aligned. To this end, we first manually identify a small number of key postures
specific to each motion type. We then linearly time warp the motions so that the key postures
are temporally aligned. The resulting motions are then re-sampled at regular time intervals using
guaternion spherical interpolation [31] to produce the training p({ﬂgé,j.v:l.

Given a training set of\/ such motions, denotec{,\Ifj}jf‘il, we use Principal Component
Analysis to find a low-dimensional basis with which we can effectively model the motion. In
particular, the model approximates motions in the training set with a linear combination of the

mean motiond, and a set okigen-motion§©,}", :
U~ O+ Y b . (4)
i=1

The scalar coefficients{«;}, characterize the motion, and < M controls the fraction of
the total variance of the training data that is captured by the subspace. In all the experiments
shown in this paper, we used = 5, which has proved sufficient to achieve good reconstruction
accuracy.

A pose is then defined as a function of the scalar coefficidntg,, and a phase valug, We

therefore write

Y, an, e ) =~ 90(#)+Zaz’9z’(#) : %)

Note than nowo;(u) are eigen-posesand©,(u) is the mean pose for that particular phase.

24th June 2010 DRAFT



Frame 1 Frame 2 Frame 3

I
- I"hl.ll |:III
g .
£ .
[
o P\ P’ I
© A
o % W
a
E
8 5 & LI

(b) () (d)

Fig. 2. Creating spatio-temporal templates. (a) Six virtual cameras are placed around the model. Viewpoints 3 and 7 are
not considered because they are not discriminant enough. (b) A template corresponding to a particular view consists of several
silhouettes computed at three consecutive instants. The small blue arrows in image Camera 1 / Frame 1 represent edge orientations
used for matching silhouettes for some of the contour pixels. (c) The three silhouettes of a walking template are superposed to
highlight the differences between outlines. (d) Superposed silhouettes of a golf swing template.

B. Detection and Initialization

As in our earlier publication [11], people in canonical poses are detected sfsatip-temporal
templateghat are sequences of three silhouettes of a person, such as the one of Fig. 2(c). The first
corresponds to the moment just before they reach the target pose, the second to the moment when
they have precisely the right attitude, and the third just after. Matching these templates against
three-image sequences let us differentiate between actual people who move in a predictable
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way and static objects whose outlines roughly resemble those of humans, which are surprisingly
numerous. As a result, it turns out to be much more robust than earlier template-based approaches
to people detection [26], [15], [16].

As shown in Fig. 2(a), to build these templates, we introduced a virtual character that can
perform the same captured motions we used to build the motion model discussed above and
rendered images at a rate of 25 frames per second as seen from virtual cameras in six different
orientations. The rendered images are then used to create templates such as those depicted by
Fig. 2(b). The rendered images are rescaled at seven different scales ranging fx@ o2
92x 113 pixels, so that an image at one scale is 10% larger than the image one scale below.
From each one of the rendered images, we extract the silhouette of the model. Each template is
made of the silhouette corresponding to the canonical pose, the one before, and the one after.
The silhouettes are represented as sets of oriented pixels that can be efficiently matched against
image sequences. We refer the interested reader to our earlier publication for further details [11].

An added bonus of this approach to detecting people, is that to each detection we can associate
the set of{a;} PCA coefficients, as defined in Eqg. 4. Averaging the coefficients corresponding
to two consecutive detections and sampling thephase parameter of Eqg. 3 at regular intervals
gives us a pose estimate in each intermediate frame. In the golfing case where the body’s center
of gravity moves little, this is enough to characterize the whole motion since we can assume
that theg; vector of Eq. 1 that encodes the position and orientation of the body root remains
constant except for the component that encodes the rotation aroundakis. In the walking
case, this is of course not true and we use the position of the detected silhouettes on the ground
plane to estimate the person’s 3D location and orientation. We then use spline interpolation to

derive initial g; values in between, as will be discussed in more details in Section IV-C.

C. Refinement

The poses obtained using the method discussed above are only approximative. To refine them,
we generate for each one the synthetic images we would see if the person truly were in that
pose and compare to the original one. Minimizing the dissimilarity between real and synthetic
image then lets us refine the poses in each individual frame.

In our implementation, we depart from typical generative approaches in two important ways.

First, to increase robustness, we refine the poses over all the frames simultaneously by optimizing
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Fig. 3. Refinement process. The images are from left to right the input image, the initialization given by the interpolation
process, the result obtained without using a background image, and finally the result obtained as proposed. Whole parts of the

body can be missed when the background is not exploited.

with respect to thex PCA coefficients of Eq. 4 ang; root node positions and orientations of
Eg. 1. Second, as shown in the third row of Fig. 1, we not only create an appearance model for
the person but also for the background so that the synthetic images we produce include both.
As illustrated by Fig. 3, this is important because it effectively constrains the projections of the
reconstructed model to be at the right place and allows recovery of the correct pose even when
the initial guess is far from it.

To perform the refinement, we define the objective funcfiow) as— log(p(¥|I1, . .., Iy)) of
a pose sequenck = U(pg, -+, N, 81, 8N, Q1, "+ ,Qyy) IN &N IMage sequench, . . ., Iy.

To compute it we consider the standard Bayesian formula

A _p(Il,...,IN|\if)-p(\if)
p(\P|Il>7IN)_ p(Il,,IN) . (6)

The p(1y,...,Iy) term is constant and can be ignored. Because we have a dependable way to

initialize ¥, we express the prior as a distance from its initial value and write its negative log

as

) m .0 2
—tosp(D) =30 (2) ”

k=1
whereq!? represents the initialization value for tté* PCA parameter, given by the detections,
and )\, is the eigenvalue associated to tié eigenvector.
Assuming conditional independence of the appearance in consecutive frames given the motion

model, we can decompoggly, ..., Iy|¥) as

N

P(Il>--->IN|‘i’) = HP(IiWi,gi), (8)

i=1

where; = ¢(ui, o, . . ., aun) is the pose in imagé;, as defined by Eq. 5.
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Assuming for simplicity that, given an estimated pasge a background, and a foreground

model, all the pixelju,v) in image; are conditionally independent, we write
p(Lldn &) = [ pUi(u,v)[di &) 9
(uw)el;

We estimate(I;(u, v)|¢);) for each pixel of frame as follows: Given the generated background
images, we project our human body model according to pgsés discussed above, individual
limbs are modeled as cylinders to which we associate a color histogram obtained from the
projected area of the limb in the frames where the silhouettes were detected. We project the
body model onto the generated background image to obtain a synthetic image, such as those
depicted by the third row of Fig. 1. Ifu,v) is located within the projection of a body part, we
takep(I;(u, v)|t;) to be proportional to the value of its corresponding bin in the color histogram
of the body part. If, instead(u,v) is located on the background, we takél;(u,v)|) to be
a Gaussian distribution centered on the corresponding pixel value in the synthetic background
image B;, with fixed covariance:.. We therefore write

pLi(u. )1, &) = SRR
N(B;(u,v),%; Ii(u,v)) if (u,v) € F

where F' represents the projection of the body model into the image. Modeling both the fore-
ground and background appearence helps in achieving more accuracy and robustness, as already
noted in the literature [18], [32] for static camera cases.

Given Egs. 7, 8 and 9, we can write
L(0) = —log(p(¥)) + Z Z —log(p(L; (u, v)|1)) (10)
i=1 (uw)el;
and refine all the poses between detections by minimizibgl) with respect to
(1, , UN, 81, ,8N,0Q1, * ,Qy), Which define the motion in the whole sequence. This
minimization is performed stochastically by sampling particles thrown in the parameter space

around the initialization.

IV. FROM DETECTIONS TOTRAJECTORIES

To reconstruct golf swings, we treat as canonical poses the transition between the upswing

and the downswing and the end of the upswing, as shown in Fig. 4. Since there is a little
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Fig. 4. Key pose detections at the beginning and at the end of a golf swing.

motion of the golfer's center of gravity during the swing, we take ghevectors of Eq. 1 to

be initially all equal, and during the optimization we only allow a rotation around tleis.
Furthermore, since the camera is static in the examples we use, we simply median filter frames in
the whole sequence to synthetize the background image we need to perform the pose refinement
of Section IV-C.

To track walking people, we use the beginning of the walking cycle, when the legs are furthest
apart, as our canonical pose. Our spatio-temporal templates detect this pose reliably but with
the occasionnal false positive and false negative. Such errors must be eliminated and the valid
detections linked into consistent trajectories, which is more involved than in the golf case since
people move over time and the camera must be allowed to move also to keep them in view.

In this section, we first describe the linking procedure, discuss how we initializg, tWectors
that encode the person’s global motion, and, finally, account for the fact that the direction in
which people face and in which they move are strongly correlated.

A. Linking Detections

In our scheme, people should be detected at the beginning of every walking cycle but are occa-
sionally missed. To link these sparse detections into a complete trajectory, we have implemented
a Viterbi-style algorithm. It is important to note that the system is trained on a very specific
pose, the left leg in front of the right one, which helps our algorithm resolve ambiguities by
giving higher scores to the correct detections. We could have used two keyposes instead of one
for each walking cycle, but we empirically found that using one was a good trade-off between
tracking robustness and computational load. As shown in Section V even missing a detection

out of two can still lead to reliable results. Finally these detections include not only an image
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Fig. 5. Ground plane tracking. Given the corresponding interest points in each pair of the consecutive frames in the sequence
I;,i =0..N it is possible to compute the homographies between these frafhgsi = 0..N — 1. Further, knowing the initial
homography between the world ground plane and the reference ilHiggewe compute the required homographies between

each of the frames and the world ground pladg,: = 1..N.

location but also the direction the person faces, which is an important clue for linking purposes.
a) Ground Plane RegistrationSince the camera may move, we work in the ground plane,

which we relate to each frame by a homography that is computed using a standard technique [36],

which is illustrated in Fig. 5. In practice, we manually indicate the ground plane in one frame

and compute an initial homography between it and the world ground glkane H{’. Then, we

detect interest points in both the reference frame and the next one and match them. From the set

of correspondences we compute the homography between the subsequent frame ground plane

and the reference frame ground plafg, and further from the subsequent frame ground plane

and the world ground plan&;’. We repeat this process for all the framigs = 1..N obtaining

the homographies between them and world ground pléfte: = 1..N, N being the number

of the sequence frames. This makes it easy to compute the world ground plane coordinates of

the detections knowing the 2D coordinates in the frame ground plane. Since there are specific
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Fig. 6. Transitional probabilities for hidden stgt&, Y, O). They are represented by three Gaussian distributions corresponding

to three possible previous orientations. Each Gaussian covers a 2D area bounded by two circleglofradii andd. + dd.,
wheredd. represents an allowable deviation from the mean, and by two lines defined by tolerancéengle

orientations associated with each detection, we also recalculate these orientations with respect
to the world ground plane.

b) Formalizing the ProblemThe homographies let us compute ground plane locations and

one of the possible orientations for all detections, which we then need to link while ignoring
potential misdetections. To this end, we define a hidden state at @s¢he oriented position of

a person on the ground plarg = (X, Y, O), wheret is a frame index(X,Y") are discretized
ground plane coordinates, aiidlis one of the possible orientations.

We introduce the maximum likelihood estimate of a person’s trajectory ending up atistate
24th June 2010
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at timet
Ft(’L) = Inax P(Il,[q = ll, ---,Im Ln = ln) ) (11)

I,ln
where I; represents thg' frame of the video sequence. Casting the computatiof’ @ a
dynamic programming framework requires introducing probabilities of observing a particular
image given a state and of transitioning from one state to the next.

We therefore take;;, the probability of observing framé given hidden state, to be
1

)
dbayes-chamfer

where dpayes-chamferdS @ Weighted average of the chamfer distances between projected template

contours and actual image edges. This makes sense because the coefficients used to weight
the contributions are designed to account for the relevance of different silhouette portions in a
Bayesian framework [11].

We also introduce the probability of transition from stagtat time¢’ to state: at timet

aft = P(Ly = i|Ly = j),with At =t —t'. (13)

ji
Since we only detect people when their legs are spread furthest apart, we can only expect a
detection approximately every. = 30 frames for an average = 5 km/h walking speed in a 25

Hz video. This implies an average distante= % between detections. We therefore assume
thata$' for statei = (X, Y, O) follows a Gaussian distribution centered(a,, Y,,) such that

\/(X X2+ (Y —Y,)?=d. (14)

and positioned in the directiol80° opposite to the orientatio@, as depicted by point A in Fig.
6. This Gaussian covers only the hidden states with orientation equal Tde other previous
states from which a transition may occur are those with orientatidns /4 and O — /4,
which are covered by two neighboring Gaussians, as depicted by points B and C in Fig. 6.
c) Linking Sparse Detectionssiven the probabilities of Eq. 12 and 13, if we could expect

a detection in every frame, linking them into complete trajectories could be done using the
Viterbi algorithm to recursively maximize thB, maximum likelihood of Eq. 11.

However, since we can only expect a detection approximately edery= 30 frames, we
allow the model to change state directly frabp at timet' to L; at timet¢ (¢’ <t), N. — 0t <
t —t' < N.+ 6t and skip all frames in betweent is a frame distance tolerance that we set to

10 in our implementation.
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This lets us reformulate the maximization problem of Eg. 11 as one of maximizing

Pt(l) = ltma}li P(It17Lt1 = lt17 '--7Itn7Ltn = ltn) )
= by Tﬁi{(aﬁtrt—At(j)) : (15)

wheret; <t < ... < t,, n are the indices of frames in which at least one detection occurred
and N, — 6t < At < N, + dt.

This formulation lets us initially retain for each detection several hypotheses with different
orientations and allow the dynamic programming algorithm to select those that provide the most
likely trajectories according to the probabilities of Eq. 12 and 13. If a detection is missing, the
algorithm simply bridges the gap using the transition probabilities only. For the sequences of
Fig. 7 and Fig. 9, this yields the results depicted by Fig. 8 and Fig. 10.

B. Predicting 3D Poses between Detections

A complete trajectory computed as discussed above includes rough estimates of the body’s
position, orientation, and 3D pose parameterized by a set of joint angles for the frames in which
the key posture was detected. We use straightforward spline interpolation to predict positions
and orientations of the body between the two detections, which allows us to initializg the
vectors of Eg. 1.

The whole procedure is very simple and naturally extends to the case where a key posture
has been missed, which can be easily detected by comparing the number of frames between
consecutive detections and the median value for the whole sequence. In this case, a longer
motion must be created by concatenating several motion cycles —usually 2, and never more
than 3 in our experiments— depending on the number of frames between detections. This new
motion is then resampled as before. Obviously the initial predictions then lose in accuracy, but
they usually remain precise enough to retrieve the correct poses thanks to the refinement process
described in the following subsection.

C. Refining the Predicted Poses

To track a person walking about, the camera usually has to move to keep him in view.
Therefore we cannot use a simple background subtraction technique to create the background

image we require for refinement purposes and adopt the more sophisticated approach depicted
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Fig. 7. Filtering silhouettes with temporal consistency on an outdoor sequence acquired by a moving Earsteth&o rows:
Detection hypothesed.hird and fourth row: Detections after filtering out the detection hypotheses that do not lie on the
recovered most probable trajectory. Note that the extremely similar poses in which is very hard to distinguish which leg is in

front of which leg, are successfully disambiguated by our algorithm.

by Fig. 11. We treat each image of the sequence in turn as a reference and consider the few
images immediately before and after. We compute homographies between the reference and all
other images [17], [36], which is a reasonable approximation of the frame-to-frame deformation
because the time elapsed between successive frames is short and lets us warp all the images into
the reference frame. Then, by computing the median of the values for each pixel in HSV color
space, we obtain background images with few artifacts.

To account for the fact that walking trajectories are smooth both spatially and temporally, we
do not treat theg; and y; as independent from each other. Instead, as we did for initialization
purposes, we represent trajectories as 2-D splines lying on the ground plane and whose shape

is completely defined by the position and orientation of the body root node at the endpoints of
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Fig. 8. Recovered trajectory for the sequence depicted by Fig. 7. Dark blue squares represent detection hypotheses and bright
short lines inside them represent the detection orientations. Smaller light green squares and lines represent the retained detections

and their orientations respectively. These detections form the most probable trajectory depicted by dark blue lines.

Fig. 9. Filtering silhouettes with temporal consistency on an outdoor sequence acquired by a moving Earsteth&o rows:
Detection hypothesed.hird and fourth row: Detections after filtering out the detection hypotheses that do not lie on the

recovered most probable trajectory.
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Fig. 10. Recovered hypothetical trajectory for the sequence depicted by Fig. 9. Dark blue squares represent detection hypotheses
and bright short lines inside them represent the detection orientations. Smaller light green squares and lines represent the retained

detections and their orientations respectively. These detections form the most probable trajectory depicted by dark blue lines.

Fig. 11. Synthesizing a background imagé.st row: The rightmost image is the reference image whose background we want
to synthesize. The other 4 are those before and after it in the sequgacoad row: The same four images warped to match
the reference image. Computing the median image of these and the reference image yields the rightmost image, which is the

desired background image.

a sequence, which we denote@s,.: andg.,q. In other words, we write all thg; as functions

of g« @Ndge,q. Similarly, we introduce a parameter< . < 1 that defines what percentage

of the walking cycle has been accomplished during the first half of the sequence and derive all
the otheru; by simple interpolation. If the speed remains constant during a walking cycle, the
value of i, is 0.5. In practice, it can go frond.3 to 0.7 if the person speeds-up or slows-down

between the first and the second half-cycle.
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We can now refine the pose between two detections by optimizing the objective function
L(¥) of Eq. 10 with respect t@jic, a1, . . . , Qtm, start; Bena). OUF €XpeEriments have shown that
using this reduced set of variables regularizes the motion and yields much better convergence
properties than using the full parameterization. However, this formulation does not exploit the
fact that people usually walk in the direction they are facing, which means that the body global
position, which is controlled by the first three variables of the @[, andg.,, vectors is not
independent from the other three, which control orientation. We can therefore further improve
our results by adding an additional term to our objective function to enforce this constraint. We

define

N
Luae(¥) = L() + ﬁZ(QS?i—n—»i) (16)

where ¢(;_1)—; is the angle between the direction the person faces and the direction of motion
andg is a weighting term which is kept constant for all our experiments, and whose purpose is
to make the two terms of the same order of magnitude. As demonstrated in [14] and as will be

shown in Section V, minimizing.,...x(¥) instead of L(\V) has little influence on the recovered
poses but yields more realistic global body orientations.

V. RESULTS

In this section, we present our results on golfing and walking sequences that feature subjects
otherthan those we used to create our motion databases and seen from many different perspec-
tives. A computationally expensive part of the algorithm is the refinement step of Section IV
C since, for each particle, we must render the whole sequence, be it a walking cycle or a golf
swing, and compute the image likelihood for each frame. Therefore finding the best solution
for an activity can require around 10 minutes on a standard computer, in our current MATLAB

implementation.

A. Golfing

Fig. 12 depicts a golf swing by a professional golfer. By contrast, Fig. 13 depicts one performed
by one of the authors of this paper who does not play golf and whose motion is therefore far from
correct. In both cases, our system correctly detects the key postures and recovers a 3D trajectory
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Fig. 12. Reconstructing a golf swing performed by a professional pl&yest and third row: Frames from the input video
with reprojected 3D skeletonSecond and fourth row: 3D skeleton seen from a different viewpoint. The corresponding videos

are given as supplementary material.

without any human intervention. This demonstrates that it is robust not only to the relatively
low quality of the imagery but also to potentially large variations in the exact motion being
recovered. Fig. 14 shows the background model that was recovered and used to generate the
results of Fig. 12. Note that the feet are mistakenly made part of the background reconstruction
and this results in unwarranted motion of the feet. This is easily fixed by constraining them to

remain on the ground, as show in the supplementary material.

B. Walking

We now demonstrate the performance of our algorithm on walking sequences acquired under
common but challenging conditions. In all cases except when we use the HumanEva dataset [35]
to quantify our results, the subject is seen against a cluttered background and the camera moves

to follow him, which precludes the use of simple background subtraction techniques.
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Fig. 13. Reconstructing a golf swing performed by a novice plalyast row: Frames from the input video with reprojected

3D skeletonsSecond row: 3D skeleton seen from a different a different viewpoint.

Fig. 14. Background image used to generate the results of Fig. 12. Notice that there are some artifacts for instance in the feet

area, which are anyway overcome by our algorithm.

In the sequences of Figs. 15 and 16 the camera translates. Furthermore, in Fig. 16, the subject
is seen first from the side and progressively from the back as he becomes smaller and smaller.
In the sequence of Fig. 17, the subject walks along a circular trajectory and the camera follows
him from its center. At some point the subject undergoes a total occlusion but the global model

allows the algorithm to nevertheless recover both pose and position for the whole sequence. We

Fig. 15. Recovered 3D skeletons reprojected into individual images of the sequence of Fig. 7, which was acquired by a camera

translating to follow the subject.
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o

Fig. 16. Final result for the subject of Fig. 9 who moves away from the camera and is eventually seen from Biekind.

and third rows. Frames from the input video with reprojected 3D skelet@esond row and fourth rows: 3D skeletons seen

from a different viewpoint. The 3—-D pose is correctly estimated over the sequence, even when the person goes far away and
eventually turns his back to the camera. Note that the extremely similar poses in which it is very hard to distinguish which leg

is in front are successfully disambiguated by our algorithm.

can also recover the instantaneous speeds and the ground plane trajectory, as shown in Fig. 18.
All these results were obtained by minimizing the objective function of Eg. 16 that explicitly
enforces consistency between the direction the person faces and the direction of motion. We
also computed results by minimizing the objective function of Eq. 10, which does not take
this consistency into account. When shown in projections in the original images, these two
sets of results are almost indistinguishable. However, the improvement becomes clear when one
compares the two trajectories of Fig. 18, one obtained without enforcing the constraint and the
other with. To validate these results, we manually marked the subject’s feet every 10 frames in
the sequence of Fig. 17 and used their position with respect to the tiles on the ground plane
to estimate their 3D coordinates. We then treated the vector joining the feet as an estimate of

the body orientation and the midpoint as an estimate of its location. As can be seen in Table I,
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X Error Y Error Orientation Error
Mean | Std.Dev. || Mean | Std.Dev. || Mean | Std. Dev.

Not Linking Orientation to Motion 12.0 7.1 16.8 11.9 11.7 7.6
Linking orientation to Motion 11.8 7.3 14.9 9.3 6.2 49
TABLE |

COMPARING THE RECOVERED POSITION AND ORIENTATION VALUES FOR THE BODY ROOT NODE AGAINST GROUND TRUTH
DATA FOR THE SEQUENCE OFFIG. 17. WE PROVIDE THE MEAN AND STANDARD DEVIATION OF THE ABSOLUTE POSITIONAL
ERROR IN THEX AND Y COORDINATES, IN CENTIMETERS, AND THE MEAN AND STANDARD DEVIATION OF THE RECOVERED

ORIENTATION ERROR, IN DEGREES

linking orientation to motion produces a small improvement in the position estimate and a much

more substantial one in the orientation estimate, which is consistent with what can be observed
in Fig. 18. Obviously these numbers should be only considered in a relative way, and to have
an idea of the quantitative performance of our algorithm we refer the reader to the results on

the HumanEvall sequence.

In the sequence of Fig. 19 the subject walks along a curvilinear path and the camera follows
him, so that the viewpoint undergoes large variations. We are nevertheless able to recover pose
and motion in a consistent way, as shown in Fig. 20 that depicts the recovered trajectory. Again,
linking orientation to motion yields improved results.

Fig. 21 demonstrates the robustness of our approach to missed detections. We ran our algorithm
on the same sequence as in Fig. 1 but ignored one out of every two detections. Note that, even
though the subject is now only detected every other step, the algorithm’s performance barely
degrades.

To further quantify our results, we tracked subject S4 of the HumanEvall dataset [35] over
230 frames acquired by camera C1. Since it is static, we used the same simple approach as in
the golf case to synthesize the background image we use to compute our image likelihoods. In
Fig. 22 we plot the mean 3-D distance between the real position of some reference points and
those recovered by our algorithm, which are commensurate with the numerical results of Table |
that we obtained using our own sequences. Given that our approach is strictly monocular—we

simply ignored the input of the other cameras—the 158mm average error our algorithm produces
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Fig. 17. Subject walking in a circldzirst and third rows: Frames from the input video with reprojected 3D skelet@esond
and fourth rows: 3D skeletons seen from a different viewpoint. The numbers in the bottom right corner are the instantaneous

speeds derived from the recovered motion parameters. The corresponding videos are submitted as supplementary material.

P ——

/ :
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(@) (b)

Fig. 18. Recovered 2D trajectory of the subject of Fig. 17. The underlying grid is made birieter squares and the arrows
represent the direction he is facing. (a) When orientation and motion are not linked, he appears to walk sideways. (b) When

they are, he walks naturally.

is within the range of methods that make similar assumptions. By comparison, errors around
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3.8 Km/h E 3.9 Km/h o 5.3 Km/h

47 Km/h X 45Km/h 43Km/h )i ) 4.3 Km/h

Fig. 19. Pedestrian tracking and reprojected 3D model in a second seql&rateand third rows: Frames from the input
video with reprojected 3D skeletonSecond and fourth rows: 3D skeletons seen from a different viewpoint. The numbers in

the bottom right corner are the instantaneous speeds derived from the recovered motion parameters.

(a) (b)

Fig. 20. Recovered 2D trajectory of the subject of Fig. 19. As in Fig. 18, when orientation and motion are not linked, he

appears to walk sideway (a) but not when they are (b).

200mm are reported in [21] and between 100 and 200mm in [6]. This is encouraging given the

fact that we only use relatively coarse models and motions described by a reduced number of
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Fig. 21. Robustness to misdetectidiirst two rows: Initial and refined poses for a sequence in which 3 consecutive key-poses
are detected.ast two rows: Initial and refined poses for the same sequence when ignoring the central detection and using the
other two. The initial poses are less accurate but the refined ones are indistinguishable.

parameters. In other words, our algorithm is designed more for robustness, moving cameras, and
recovery from situations where other algorithms might lose track, such as total occlusions, than
for accuracy.

Of course the algorithm, even if it is designed for robustness, can fail. In the walking case,
this can happen if the subject performs very sharp turns, thus preventing the Viterbi algorithm
to infer the correct trajectory. Similarly, facing the camera for too long can result in loss of
track since our detector is designed for people not seen completely frontally. This could be
overcome by adding an appropriate detector, which would be fairly easy to do since it could
take advantage of the very reliable frontal head detection algorithms that now exist. In the golfing
case, a misdetection of either the initial or the final pose would also cause a failure, but they
are infrequent because the pose is so characteristic.
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Fig. 22. Absolute mean 3D error in joint location obtained on frames 21-248 of the HumanEvall dataset for subject S4 and

using only camera C1 as input. It is expressed in millimeters.

Fig. 23. Tracking subject S4 from the HumanEvall dataset using only camera C1. Obtained results projected onto the input

frames.

VI. CONCLUSION

The walking and golfing motions contain characteristic postures that are relatively easy to
detect. We have exploited this fact to formulate 3—D motion recovery from a single video

sequence as an interpolation problem. This is much easier to achieve than open-ended tracking
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and we have shown that it can be solved using straightforward minimization.

This approach is generic because most human motions also feature canonical poses that can
be easily detected. This is significant because it means that we can focus our future efforts on
developing methods to reliably detect these canonical poses instead of all poses, which is much
harder.

A limitation of our approach is that we do not handle transitions from one activity to another, as
Markovian motion models could. However, since transitions typically also involve keyposes, the
approach could potentially be extended to this much more demanding context given a sufficiently
rich training database. This would involve choosing which motion model to use to connect these
keyposes and modeling the transition probabilities between activities, and is a topic for future
research.
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