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The last few years there have beea a lot of exciting new
results in the area of factorization of polynomials. In this
note we give an overview of the most important results,
and we give some directions for future research.

A long standing open problem was the Infeger linear
programming problem with a fixed mumber of variables. In
1980 this problem was shown to be polynomially solvable,
by an algorithm that relied on methods from geometry of
rumbers [21] (sec also [8]). Some of these geometrical
methods proved to be useful for the factorization of poly-
nomialsa.swdl. In particular an algorithm from [21] to

te reasonably orthogonal bases for integral lattices
omﬂdbeapphedwdevdopavuyprmcd algorithm to
factor polynomials over alpebraic mumber fields [13].
Although this algorithm is not polynomial-time, it is the
fastest algorithm for this purpose that we know of.

Another application of integral lattices to polyno-
mial factorization consisted of a new algorithm to factor
polynomials with integral coefficients, also described in
{13]. This is the first algorithm where factors of polynomi-
als are regarded as short vectors in integral lattices, a tech-
nique that appeared to have important theoretical conse-
quences,

Unfortunately, this new technique did not yet lead
to a polynomial-time algorithm for the factorization of
polynomials. The reason for not being polynomial-time
was that the algorithm from [21] to reduce bases for
integral lattices was not polynomal-time; this reduction
algorithm was used to determine approximations of shor-
test vectors in integral lattices,

In fact, at that time no time algorithm
to factor polynomials at all was known. Most factoriza-
tion algorithms were based on the so-called Berlekamp-
Hensel technique: first compute a sufficiently precise p-
adic factorization, then look for suitable combinations of
these p-adic factors to find the true factorization. In prac-
tice these algorithms perform very well; in theory nothing
better than an exponential-time bound can be proved, due
to the fact that the p-adic factorization possibly contains
considerably more factors than the true factorization (see
[5] for a construction of such

The situation changed in 1981, when L. Lovész
invented a ial-time basis reduction algorithm for
integral lattices. This algorithr makes it possible to com-
pute an approximation of a shortest vector in & lattice in
polynomial-time, Combined with the technique from [13],
this easily led 1o a polynomial-time algorithm to factor
polynomials with rational coefficieats [14].

Together with the results that were obtained by Kal-
tofen in his Ph.D. thesis [6], this implied polynomial-time
factoring algorithms for polynomnials in amy fixed pumber
of variables, and with integral coefficients. Ia his method

the multivariate problem is reduced in polynomial-time to
the univariate case, and the resulting univariate polyno-
mial is factored by means of [14]. Other polynomial-time
algorithms for similar polynomial factoring problems that
were discovered i dently, are described in [4; 11]
and in [15; 17; 18; 19]. In the latter papers immediate
generalizations of the method from [14] are given (see also
[29) in this context).

In theory, and for the dense encoding scheme, the
problem of factorization of polynomials is solved by now.
For the case of sparsely encoded multivariate polynomials,
whmhumpmﬂaemnlemt.thenmahmnnotso
very nice. In (28] a (probabilistic) polynomial-time reduc-
tion from sparsely encoded multivariate polynomials to
polynomials in two variables is given. Clearly, a lot of
research should still be carried out in this area.

Also, for polynomials with cocfficients in a finite
field the problems are not yet solved. Very fast algorihms
exist that are expected ial-time in the logarithm
of the characteristic of the field, even for multivariate
polynomials [2; 4; 7; 16; 22]. If we look at the worst case
running time, then the best algorithms are at least linear
in the characteristic of the field [2].

We now discuss some research areas where L.
Lovész' basis reduction algorithm played a crucial role in
obtaining important new results. This is to show that the
area of symbolic and algebraic computation is closely
related to a lot of other interesting and active research
arcas which have not traditionally been involved in com-
puter algebra.

As a first important application of the polynomial-
time polynomial factorization algorithm, we want to men-
tion the result by Susan Landau and Gary Miller in [12].
They showed that it can be decided in polynomial-time
whetber the roots of a polynomial can be expressed by
radicals or not. Besides the L*-algorithm, their algorithm
makes use of another recent result which says that the
order of a primitive solvable group of degree n is
bounded by ¢,n®, for constant ¢, and ¢; [23].

Testing a (sufficiently precise rational approximation
of 2) complex number for algebraicity, can be shown to be
equivalent with looking for a relatively short vector in a
hluoe(see[9.20]or[24],mlbehnpaperllman
improved version of the basis reduction algorithm is
described). Therefore, complex numbers can be tested for
dgebmatympolynmalume,whmhabumﬂyhdsto

another polynomial-time algorithm for factoring pofyno-
mials with rational cocfficients. We can also say tha! the
bits of an algebraic number cannot be used to generate
random sequences [9].

Also in cryptography progress has been made. A
well-known public-key cryplosystem was the Merkle-



Hellman cryptosystem, which was based on the difficulty
of solving knapsack problems. First Adi Shamir had bro-
ken the basic Merkle-Hellman cryptosystem [25] (his
method used the algorithm from [21). However, the
iterated Merkle-Hellman cryptosystem was not affected by

Shamir's attack. Recently, several other papers that have

a high probability to break the more complicated iterated

cryptosystem were published [1; 3; 10]; they are all based

on the basis reduction algorithm. As a result, the situa-
tion now is that knapsack-based cryptosystems are con-
sidered to be unsafe.

Another subject, which is related to the Riemann
Hypothesis, is the disproval of Mertens' conjecture.
Although nobody in fact expected the Mertens’ conjecture
to be true (this would have i the Riemann
Hypothesis) it was considered to be too difficult to per-
form the obvious attacks to disprove it. This changed
when the power of vector-computers could be combined
with the basis reduction algorithm to compute short vec-
tors in lattices (computations performed by A.M. Odlyzko
on the Bell Labs Cray 1). Combined with H. Te Riele's
high precision computations of the first 2000 non-trivial
zeros of the Riemann zeta function this led to & proof that
an infinity of counterexamples to Mertens' comjecture
exists [26].

Finally, we want to mention the problem of comput-
ing shortest vectors in a lattice. No polynomial-time algo-
rithm for this problem is known yet, and it is widely con-
jectured that no polynomial-time solution exists. (Notice
that the polynomial-time basis reduction algorithm can
only be teed to find a reasonable approximation of
a shortest vector!) If the Ly-norm is replaced by the L,-
norm, the problem is known to be NP-hard (27].

Clearly, there is a lot of interaction possible between
computer algebra and many other branches of mathemat-
ics; more than usually is recognized. The future of com-
puter algebra should therefore be to attract as many dis-
ciplines as possible, and to interest mathematicians in the
problems that are still open in the field. We should try
and look at more than what nowadays is considered to be
computer algebra.
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(Continued from p. 19)

details the numerics of computational
geometry - such as the problems caused by
braiding straight lines.

The state of the art: what is it, what should it
be?

Today’s commercially available software in
computer graphics and CAD has not yet taken
into account the results of computational
geometry.  Straightforward algorithms are
mostly used whose theoretical efficiency is poor
as compared to known results. Perhaps the
straightforward algorithms are better in prac-
tice than theoretically optimal ones, but such
difficult questions have hardly been investi-
gated, as CAD systems development today is
so labor intensive that all resources are
absorbed by just getting the system to work,
and algorithm analysis has so far largely res-
tricted itself to theoretically measurable per-
formance.

We know by analogy with numerical analysis
what the next step should be in the maturing
process of computational geometry: The
development of efficient, portable, robust pro-
gram libraries for the most basic, frequent
geometric subroutine library of CAD, thus
exposing theoretical results to a severe practi-
cal test. The interaction between computa-
tional geometry and computer-aided design
promises to be mutually beneficial.



