000149488 001__ 149488
000149488 005__ 20180317095038.0
000149488 0247_ $$2doi$$a10.1007/BFb0020422
000149488 022__ $$a03029743
000149488 037__ $$aCONF
000149488 245__ $$aFactoring
000149488 269__ $$a1994
000149488 260__ $$c1994
000149488 336__ $$aConference Papers
000149488 490__ $$aLecture Notes in Computer Science$$v857
000149488 520__ $$aFactoring, finding a non-trivial factorization of a composite positive integer, is believed to be a hard problem. How hard we think it is, however, changes almost on a daily basis. Predicting how hard factoring will be in the future, an important issue for cryptographic applications of composite numbers, is therefore a challenging task. The author presents a brief survey of general purpose integer factoring algorithms and their implementations
000149488 6531_ $$acomputational complexity
000149488 6531_ $$adigital arithmetic
000149488 6531_ $$amathematics computing
000149488 700__ $$0244290$$aLenstra, Arjen K.$$g171548
000149488 7112_ $$aDistributed Algorithms. 8th International Workshop, WDAG '1994. Proceedings$$cBerlin, Germany
000149488 773__ $$k857$$q28 - 38$$tDistributed Algorithms. 8th International Workshop, WDAG '1994. Proceedings
000149488 8564_ $$s2076976$$uhttps://infoscience.epfl.ch/record/149488/files/149488.PDF$$yPostprint$$zn/a
000149488 909CO $$ooai:infoscience.tind.io:149488$$pIC$$pconf
000149488 909C0 $$0252286$$pLACAL$$xU11265
000149488 917Z8 $$x139598
000149488 917Z8 $$x171548
000149488 937__ $$aEPFL-CONF-149488
000149488 970__ $$a4933273/LACAL
000149488 973__ $$aOTHER$$rREVIEWED$$sPUBLISHED
000149488 980__ $$aCONF