Lattice sieving and trial division

Roger A. Golliver', Arjen K. Lenstra?, Kevin S. McCurley®

1 Intel SSD, MS CO1-05, 15201 NW Greenbrier Parkway,

Beaverton, OR 97006, U.S. A

E-mail: roger®@ssd.intel.com

2 MRE-2Q334, Bellcore, 445 South Street,
Morristown, NJ 07960, U.S. A
E-mail: lenstra@bellcore.com
3 Organization 1423, Sandia National Laboratories,
Albuquerque, NM 87185-1110, U.S. A
E-mail: mccurley@cs.sandia.gov

Abstract. This is a report on work in progress on our new implementa-
tion of the relation collection stage of the general number field sieve inte-
ger factoring algorithm. Our experiments indicate that we have achieved
a substantial speed-up compared to other implementations that are re-
ported in the literature. The main improvements are a new lattice sieving
technique and a trial division method that is based on lattice sieving in
a hash table. This also allows us to collect triple and quadruple large
prime relations in an efficient manner. Furthermore we show how the
computation can efficiently be shared among multiple processors in a
high-band-width environment.

1 Introduction

Throughout this paper we assume that the reader is familiar with the number
field sieve (NFS) integer factoring algorithm (8]. We restrict ourselves to the
relation collection stage of NFS.

Let n > 1 be an odd integer which is not a prime power, and let m be an
integer such that f(m) =0 mod n for an irreducible polynomial f € Z[X] of
degree d > 1. We do not discuss how m and f might be found. In the rela-
tion collection stage of NFS we attempt to find sufficiently many relations, i.e.,
pairs (a,b), with b> 0, satisfying the following conditions (cf. [9: 2.8, 7.3)):
(1.1) ged(a,b) =1,

(1.2) on the rational side the number a — bm is B;-smooth, except for at most
two additional prime factors which should be < Bs, for some rational
smoothness bound B; and rational large prime bound Bj < B},

(1.3) on the algebraic side N(a,b) = b4 #(a/b) is Bz-smooth, except for at most
two additional prime factors which should be < Bs, for some algebraic
smoothness bound By and algebraic large prime bound By < B3,

where, as usual, an integer is called z-smooth is its prime factors are < .

Notice that we allow two large primes on either side, unlike [9] or [2] where at
most one large prime per side was used, and unlike (3] where at most one large

prime was used on the rational side. One of the advantages of our new imple-
mentation is that it finds these double large prime relations without the loss of
efficiency that was reported in [9: 7.3] or that would follow from a straightforward
extension of the method from [2]. Another advantage is that it is substantially
faster than implementations previously reported in the literature (cf. [2, 3, 9]),
even though it considers far more reports (see below) and produces far more
relations; of course it is even faster without the double large primes, but then it
produces just the same (and much smaller) amount of relations as were found
in [9] and [2].

In [9] the traditional method was used in the relation collection stage: for b=
1,2,... in succession a large interval of a-values is sieved to find pairs (a,b) for
which both a —bm and N(a,) are likely to be smooth, and these candidates are
tested for actual smoothness using trial division, until sufficiently many relations
have been found. In [12] Pollard suggested a faster sieving method: for a large
enough collection of medium sized primes ¢ < By sieve in the sublattice L of
the (a, b)-plane consisting of the pairs (a,b) for which ¢ divides a — bm, where
the sieve (and the trial division) on the rational side can be restricted to the
primes < g. Pollard describes two ways to do the sieving in Lg: sieving by rows,
which requires only a small amount of memory but which is inefficient for large
primes, and sieving by vectors, which is much faster if a large amount of memory
is available. In [2] the first method is used, because of the small processors used
there. In [3] a more efficient variation of the first method was used, also because
not enough memory was available to make an efficient implementation of the
second method possible (cf. [14]).

Our implementation makes use of the second method, for the sieving and
for the trial division, though our ¢’s are medium sized primes on the algebraic
rather than the rational side. So, our L, is the sublattice of the (a,b)-plane
consisting of the pairs (a,b) for which ¢ divides N(a,b). The speed-up that we
achieve depends for the sieving on the amount of memory that is available, but
our trial division is an order of magnitude faster than previous methods, almost
irrespective of the available memory. Our sieving implementation is explained in
Qection 2, the trial division in Section 3.

Our relation collection program can be executed on any multiple-instruction
multiple data machine that has enough memory per node, by assigning different
¢'s to different nodes. Qur program can also be executed on two smaller nodes si-
multaneously if a high-bandwidth communication between the two nodes exists.
Various parallelization issues are discussed in Section 4.

Relations with one or two large primes can be combined in the usual way to
turn them into useful relations (cf. [9: 2.10]). The algorithm to find these com-
binations can be generalized to find most combinations among relations with at
most three large primes, as shown in [4]. This approach gets stuck, however, at
four large primes. Satisfactory methods to find all combinations among relations
with any (small) number of large primes are described in [5]. As shown in (5] the
relations with four large primes give rise to an unusually large number of combi-
nations, when combined with relations with fewer large primes. This could lead

to considerable savings in the relation collection stage compared to approaches
that use fewer than four large primes. It could also lead to substantially more
work in the final stages of NFS, the matrix reduction and the square root com-
putation. It remains to investigate how these effects can best be balanced. We
refer to [5] for a further discussion of this point.

In Section 5 we give the run times and yields of our relation collection pro-
gram for various ¢’s for a 129-digit n, and we derive some estimates how long
the complete relation collection might take.

2 Sieving

Let the notation be as above, and let P be the set of all pairs (p,r) with p a
prime < B; and r = m mod p with 0 < r < p. Similarly, let Q be the set of all
pairs (p,r) with p a prime < Bz and f(r) = Omod p with 0 < 7 <p. Notice
that a particular prime can occur up to d times in @ because f may have d
distinct roots modulo p. Assume that the elements of @ are ordered in some
well-defined way such that (p1,m1) < (p2,72) if p1 < p2. In practice #@Q will be
close to m(B2), the number of primes < B;. The sets P and Q are called the
rational and the algebraic factor base, respectively.

For any u = (p,1) € PUQ let L, be the lattice generated by the vectors (p,0),
(r,1) in the (a,b)-plane. Notice that L, corresponds to the pairs (a,b) for which
p divides a — bm for u € P, and for which p divides N(a,b) and r = a/bmod p
for u € Q.

9.1. Preparing q. Throughout this section and the next we fix a pair (g,8) € Q
with ¢ > By, for some By < By. Abbreviate Lg 5) to Lg. We apply a straightfor-
ward lattice reduction method to the basis (g,0), (s,1) of Lq in the (a,b)-plane,
and find two short vectors Vi = (a1, b1), Va = (a2, b2) generating L, such that
the Euclidean length ||Vi|| of V4 is > ||V2||. Each point of L, can be written as
c-Vi +e-V, € Z2, for ¢, e € Z, and each point in the (c, e)-plane corresponds
to a pair (a,b) for which g divides N(a,b) and s = a/bmod g:

(2.2) (a,b) = (c-a1 +e-az,c-by +e-ba).

Sieving will take place in the (c,e)-plane. Let Qg = {u: u€ Q,u < (g,8)}-

9.3. Preparing the primes. Let D be a crossover value between ‘small’ and
‘large’ primes. Its value depends on n, g and the implementation (cf. Section 5).
Define for all u = (p,r) € P U Q, the sublattice Lgy of Ly as Lg N Ly. A basis
for Lg, in the (c, e)-plane is given by

az—‘r'bg

gu1=(P:0): {}32= (T‘bl—al

mod p, 1).

For all u’s for which this basis is well-defined, Uy2 # (0,1) mod p, and p > D,
we compute a reduced basis Uy1, Uya for Lgy in the (c,e)-plane, with Ul =
||Uuzl[; for all other u we call u exceptional and set both Uy and Uyz equal to
U.2 (but see Remarks 2.4 and 2.5).

9.4. Remark. In our implementation we have a total of 65 bits available to
store Uy1 and Uyz: one parity bit, two bits for signs, and 2 X 17 and 2 x 14 bits for
the absolute values of the entries of Uyy and U2, respectively (cf. Remark 2.12).
If the basis U1, Uu2 for a certain u does not fit in this format we declare u to
be exceptional and treat it as such. This happens only occasionally for the By
and Bs that we have been using; see Section 5 for examples. For exceptional u’s
the vectors Uy and Uy can easily be stored in 65 bits. '

9.5. Remark. In the above initialization of Uy and Uu2 for the exceptional
w’s we assume that the smallest e-value to be sieved equals 1. If the first e-value
to be sieved equals ey, then Uuy should be initialized as (e1 - Uy2) mod p.

2.6. Partitioning the sieve. Suppose that we want to sieve the (c,e)-plane
for ¢ € Cand 0 <e < E, where C and E depend on n; see Section 5 for
examples. Because in general the required (2C +1)- E sieve-locations do not fit
in memory, we partition the sieve into ¢ pieces S1, S2; -+« S,, with S; = {(c, e):
le| € C, Ei-1 <€ < E;} for appropriately chosen N A e E,
and sieve over S; for 1 = 1,2,...,t in succession as described in 2.7, 2.8, and 2.9
(cf. Remark 2.13). See Section 5 for examples of #S; used in practice.

9.7. The algebraic sieve. To find the pairs (c,e) € Si for which the corre-
sponding N (a, b)/q is likely to be g-smooth we first set all S[c, el to zero, where
S is an array with indices (c,e) € Si (but see Remark 2.10 and 2.13). Next we
do the following for all u = (p,7) € Qq-

For the exceptional u’s we sieve ‘by rows’: for e = Eia+1L,Eia+2,... E;
in succession first replace s[c,el by Sle,el + [0.5 + log p) for all ¢ with |¢| £ C
that are modulo p equal to the first coordinate of Uui, and next replace U1 by
(Una +Uu2) mod p. Notice that the u with p £ 2C+1 should be treated differently
from the u with larger p For exceptional u’s with very small p sieving by rows is
quite slow. In practice the small p are therefore replaced by appropriately chosen
powers (and the roots are changed accordingly).

For the non-exceptional u’s we sieve ‘by vectors’: for all Z-linear combinations
(c,e) of U and Uye with (c,€) € Si replace Slc,el by Sle, el + [0.5 + logp].
The appropriate linear combinations can be found officiently by considering the
relevant inequalities involving Uu1, Uu2, Ei-1, E;, and C; we do not claborate.

The vectors Uy and Uu2 remain unchanged in this step, unlike the vectors
for the exceptional u’s which get updated from one e-row to the next. So, for the
non-exceptional u’s the S; can be processed in any order, but for the exceptional
u’s they have to be processed in order, unless Uy is given the correct initial
value for each Sj, using Remark 2.5. Obviously this step takes at least a constant
amount of time per u; it follows that #S should not be too small compared to p
to make ‘sieving by vectors’ efficient.

9.8. Checking sieve locations and rational sieve. After sieving with allu € Qq,
we inspect all values stored in S (cf. Remark 2.10), remember the coprime pairs
(c,e) and Slc,el’s for which the latter is larger than some fixed algebraic report
bound and replace those s[c,el’s by zero. Next we sieve with all u € P, as
described in 2.7 (but with the obvious changes), to find the (c,€) € S; for which
the corresponding a — bm’s are likely to be B,-smooth.

2.9. Collecting reports. Finally we re-inspect the same pairs and S-values
that were remembered after the algebraic sieve, and keep the reports: the co-
prime (a,b) for which the corresponding Slc,e] (cf. (2.2)) is larger than some
fixed rational report bound, for which S[c,e] is sufficiently close to a floating
point approximation of log(a — bm), and for which the value of the first sieve
is sufficiently close to a floating point approximation of log(N(a,b)/q). Notice
that these tests get successively more discriminating and more expensive. The
resulting pairs (a,b) have a good chance to satisfy (1.2) and (1.3) if the report
bounds are set correctly. See Section 5 for examples of report bounds, of numbers
of pairs to be remembered, and of numbers of reports.

After Sy, Sa, ..., St have been sieved all reports (a,b) have to be inspected,
i.e., the corresponding a — bm and N(a, b)/q have to be trial divided (but see
Remark 3.4). Our implementation of the trial division is described in Section 3.

2.10. Remark. As usual we use single bytes to represent the S[c,el. Instead
of initializing the S[c,e] as zero for the first sieve and testing Slc,e] > z for
some bound z, we initialize the S[c, e] as —z and test S (¢, e] for non-negativity.
On most architectures this can be done several bytes at a time, which is often
much faster. The initialization of § can be speeded up similarly.

9.11. Remark. Because for general n the number N (a,b)/q can be expected
to be substantially larger than a — bm we sieve over the algebraic side before we
sieve over the rational side. This minimizes the number of pairs and values to
be remembered after the first sieve. For special n (where a — b is often larger
than N(a,b)/q) we change the order of sieving.

2.12. Remark. Per u = (p,7) € PU Qg we use 16 consecutive bytes, i.e., 128
bits, of storage: one byte for the difference (divided by 2) with the previous p,
three bytes for r, a floating point approximation of 1/p in 31 bits, and 65 bits
for the vectors Uy, and Uye (cf. Remark 2.4). The approximation of 1/p is used
to speed up the computations modulo p in the sieving and in the trial division.
Evidently, this limits the general applicability of our implementation, but for n
well beyond our current range of interest this format suffices.

This dense data structure was chosen for two reasons. First, by having the
factor base’s C data structure size equal to a small power of two, we can be sure
that the compiler will efficiently map the structure in memory, avoiding miss-
aligned data access penalties and wasted memory. Secondly, since the factor base
is accessed sequentially, having a single large array for the factor base, requires
only one active TLB entry for accessing the structure, thus freeing more TLB
entries to map the large sieve array.

913. Remark. Because only the u € P U Qg have to be stored during the
sieving and trial division for a certain g, the value of ¢ increases with g, without
affecting the total memory used, i.e., the smaller ¢, the more memory can be
devoted to S. During the sieving the (¢, e) for which both ¢ and e are even can
be avoided at no extra cost. Because these points are not needed (cf. (1.1)) we
do not include them in S. This slightly affects the description given above.

3 Trial division

The straightforward approach to process the reports (a,b) is to apply trial di-
vision successively to each a — bm with the elements from the rational factor
base and, if necessary, to each N (a,b)/g with the elements < (g,s) from the
algebraic factor base. Because up to two additional primes are allowed per side,
these trial divisions might be followed, per report, by at most two applications
of for instance, Shanks's ‘squfof’ to factor the remaining composite cofactors.

In [9] and [2] at most one additional prime factor per side is allowed in the
relations. Consequently there are far fewer reports, and there are no remaining
composites to be factored after the trial divisions. At most two trial divisions
per report works thus reasonably well, although the trial division time becomes
a substantial fraction of the time spent on the relation collection stage (varying
from a quarter to a third, according to [2: Table 1]).

There are several ways to make the trial divisions go faster. Obviously, it is
always better to check that a = br mod p for (p,r) € PU Q, before the actual
trial division on a— b or N(a,b)/q is carried out. We can also keep track of the
sum of the logarithms of the divisors found, compare this to the sieve values, and
try to use this (cheap) information to jump ahead in the factor bases; this saves
some time. We could use early aborts: give up on reports for which not enough
divisors have been found after processing certain fixed fractions of the factor
bases. This also saves some time, but some relations get lost which is something
we try to avoid in NFS (unlike Quadratic Sieve).

Because we have substantially more reports than [9] and [2], but also than [3],
none of these approaches works satisfactorily for us. Therefore we decided to do
the trial division simultaneously for all reports per (g,s) by sieving in a hash
table. The pairs (c, e) corresponding to the reports (a, b) are the hash keys, and
for each key the hash table H has storage for the key, a counter C¢), and an
array A(c,e) of, say, 50 integers (cf. Remark 3.4). We also use flags F. and F, for
lc<Cand0<e< E (cf. 2.6). We use the space allocated for S to store H, the
F.’s, and the F’s.

3.1. Rational trial sieving. Initially we set all flags to 0. For all reports (a, b)
we store the corresponding (c,e) in H, we set C(c¢) 0 —1 and set F, and Fe
to 1. For all non-exceptional u = (p, r) € P we do the following: for all Z-linear
combinations (c,e) of Uy1 and Uy2 for which F, and F, are both equal to 1 and
for which (c,€) is in H, we increase C(c,) by 1, and we store p in A(c.e) [Cic,e)d-
This is similar to what we did in 2.7, except that we now remember the primes
instead of simply accumulating the logarithms of the primes, and that we process
all §;for1 <1<t simultaneously (but see Remark 3.4).

3.2. Rational factorization. For all reports (a,b) we remove all factors p from
a — bm, first for the primes p stored in A(c,e) [0] through Ac,e) [C(c,e)3 and next
for all exceptional u = (p,r) € P. If the remaining cofactor of a — bm is either
> B2, or both > B3 and < B2, or not easily proved to be composite (ct. [7]),

then (a,b) is removed from the list of reports. We keep the reports (a,b) for

which we have found the complete factorization of a — bm, except for at most
one factor which is either prime and < Bs, or composite and < B2.

3.3. Algebraic trial sieving and factorization. For the remaining reports we
repeat 3.1 with the u € Qq instead of the u € P. Next we remove all factors
p from N(a,b)/g, by retrieving the p’s stored in A(c,) followed by trial division
with the p’s for which u = (p,7) € Qq i8 exceptional. If the remaining cofactor
is 1, prime and < Bj, or composite and < B2, then we use Shanks’s ‘squfof’
(followed by the elliptic curve method (cf. [7)) if ‘squfof’ did not work) to factor
both this cofactor and the cofactor of a — bm, if needed, and report the resulting
relation if it satisfies (1.2) and (1.3). Notice that N(a,b) might have one or two
prime factors p with ¢ <p < B2 (cf. [2: Section 12]); these (a, b) are reported as
well, but since they might also be found for a larger g (i.e., one of those p's) we
have to remove duplicate relations before processing them.

3.4. Remark. Because efficient look-up in H is essential, we assume that the
number of reports is small compared to the number of locations #H in H. After
processing a piece of the (c, €)-plane (i.e., after each completion of 2.9), we there-
fore check if the total number of reports found so far exceeds #H/z, for some
small z (2 or 3, say), and if that is the case we perform 3.1 to process them. Of
course, we also perform 3.1 after the sieving for a particular (g, s) is completed
if new reports have been found after the last execution of 3.1.

3.5. Remark. Because sieving with the exceptional u's is relatively slow, and
because there are typically only a few thousand of them, we do not resieve with
them, but find the corresponding primes using root checking and trial division.

4 Parallelization issues

The code was originally developed to run as a single UNIX®= process. That
version can be executed in an ”embarrassingly parallel” fashion by assigning
disjoint sets of ¢’s to different processes and collecting the relations. We wanted
to run this code on the Intel Paragon [6] at Sandia National Laboratories. This
machine currently has 528 nodes with 32MB of memory and 1312 nodes with
16MB of memory, for a total of 1840 computational nodes and 37GB of memory.
Other nodes in the machine are responsible for providing interactive user and I/O
services. The nodes are all connected by a high speed /low latency communication
network as a 16 x 120 mesh. Each node has two i860XP processors, although the
present software dedicates one of the processors to handling communication (in
the future we plan to utilize the second processor for computation). We chose
to use the SUNMOS operating system** [11] on the compute nodes rather than
the standard OSF operating system. The reasons for this are:

- SUNMOS consumes only 240K of physical memory on a node, whereas OSF

consumes approximately 5 megabytes,

* UNIX is a registered trademark of UNIX Software Laboratories, Inc.
#* SUNMOS stands for Sandia UNM Operating System, named after the orga-
nizations that collaborated on its development.

. SUNMOS offers message passing bandwidth of 170 megabytes per second,
whereas OSF currently peaks at about 35 megabytes per second,

- SUNMOS user 4 megabyte physical memory pages for it’s memory address-
ing, while OSF uses 4 kilobyte pages. The larger memory page size allows
yields approximately 35% faster speed in the sieving code due to more effi-
cient use of TLB entries.

Experiments are currently underway with SUNMOS to allow the second node
processor to be used for computation.

4.1. Large nodes. Our first step at parallelization for the Paragon followed
the ”embarrassingly parallel” UNIX model. Each 32MB Paragon node ran one
process which was given a distinct set of ¢’s. To optimize the performance the
only change required was to reduce the startup I/O by having a single root node
read the factor base data from disk and broadcast the data to the other nodes
over the communication network. The problem of load balancing was resolved by
assigning each node a number of ¢'s per job. Each node appended the relations
it found to a file which is named to help the management of sieving over a large
number of ¢’s and possibly a number of (c, e) ranges.

4.2. Small nodes. We wanted to be able to use the entire Sandia Paragon,
but the majority of nodes in the machine have only 16MB of memory, and this
is too small to hold the factor base and the sieve array in physical memory.
Paging would extract an extremely heavy performance penalty, so we overcame
this problem with a second level of parallelization. The 16MB nodes were treated
as even and odd node pairs. The factor base was distributed between the node
pairs. The even node got all the even indexed factor base elements, and the odd
processor got all the odd ones, with the obvious implications for the ‘differences’
from (2.12). This distribution of the factor bases was chosen over others, because
it had better load balancing properties for the division of work between the node
pairs. All other data structures including the sieve array were duplicated between
the node pair.

The lattice sieving and trial division process is done as described in Sections
9 and 3. The sieving is done in parallel with the partitioned factor base, and the
node pairs use the high speed communication network to combine and exchange
the sieving results. Both nodes in the pair duplicate the initialization steps. The
algebraic sieving is done in parallel by each node, using their own portion of
the factor base, after which the node pair synchronizes and combine their sieve
results. This communication step is the most intensive of the parallelization,
since the entire sieve array is exchanged between the pair of nodes.

Each node examines the sieve array for the interesting locations as in 2.8.
These are re-initialized and each node sieves over their own half of the rational
factor base. The node pair then synchronizes again and exchanges the values of
the interesting sieve locations remembered after the algebraic sieve. The nodes in
the pair each examine disjoint parts of the possible reports and save those which
pass the screening described in 2.9. The nodes then synchronize and exchange
the reports which will be saved for the trial division stage.

The trial division sieving parallelized as follows. First each node sieves with
their half of the rational factor base as in 3.1. For each report the node pairs
exchange and remove the prime factors thus found, after which they both remove
their exceptional primes from the remaining cofactors and exchange these factors
too. The even node then checks to see if the report might satisfy condition (1.2)
and should be checked for condition (1.3) (i-e., no attempt is made yet to factor
a remaining composite cofactor > Bf and < Bj). Algebraic trial sieving is
parallelized in a similar way to process the remaining reports.

The node pair parallelization required the modification of about 100 lines of
the 4000 line sieve program, and the inclusion of about 800 lines for the data
partitioning, synchronization, and communications operations. Qur experiments
using the same size sieve array, show that the time to sieve over an equivalent
g % (c,e) range on a 32MB node vs. a 16MB node pair is about 1.8 to 1. Thus
this second level of parallelization allows us to use the 16MB nodes with only a
small loss of efficiency and greatly increasing the number of nodes which can be
used. It should be noted that this level of parallelization to use small memory
nodes heavily depends on the existence of a high-bandwidth, reliable network
between the nodes.

5 Run times and parameter choices

At the time of writing the relation collection stage of a factoring attempt
of n=RSA-129 (cf. [13]) has just been completed on the Internet, using the
quadratic sieve method (QS) and the familiar electronic mail approach [10]. This
computation took approximately 5000 to 6000 MIPS years [1]. We list some tim-
ings and parameter choices for our program applied to the same n and running
on a Sparc-10 workstation, estimated as 33 MIPS. Our numbers suggest that
relation collection for NFS for this n could be completed in a fraction of the
time needed by QS.

We use m = 8000000099160814875591 from which f follows by writing n in
the symmetric base m; these m and f were found by James B. Shearer. Based
on results from [2], we chose By = 3-10°, #P = 216815, By = 11932088,
#Q = 783185 = 10° — #P, B, = By = 230 We used D = 50000 (cf. 2.3).
Logarithms on the algebraic side have base 2, with report bound 83; on the
rational side these numbers are 1.6 and 42.

We tried low range (5-10°), medium range (7-10°), and high range (11-10°)
¢’s, all of them with C = 2!% and E = 30000 (cf. 2.6), which are realistic
choices. The number of exceptional primes > D on the rational side usually
varied between 10 and 20; on the algebraic side the number grows with g, but
never became more than 250. The total number of exceptional primes on either
side was therefore never substantially more than 7 (D) + 250 = 5300.

With a bound of 23.5MB on the total memory use by our program, we could
devote 14MB to S for the low range ¢’s, 12MB for mid range ¢’s, and 8MB for
the high range. The 23.5 was chosen to make it easier to compare performance
with both the 32MB and the pairs of 16MB Paragon nodes. If more than 23.5MB

can efficiently be used it is in general a good idea to do that. Lur ChOlce T4 1
average sieving times of 1810, 1900, and 2300 seconds per g, and average trial
division times of 360, 420, and 500 seconds per g, for the low, medium, and high
range, respectively. Sieving and trial division for 500000 ¢'s and our C and E
can therefore be done in 1400 MIPS years.

After the algebraic sieve we typically have to remember <= 120000 pairs per
S;. The yield after the rational sieve decreases with 7, usually from = 800 to
~ 80. On average slightly less than 1 /4 of the accumulated reports survives 3.2,
and a much smaller fraction of the survivors leads to a relation. The yields per
q are roughly 109, 120, and 143 relations for the three ranges. The ¢’s combined
should therefore lead to more than 5 107 relations. According to data collected
for another number in [3] it is very likely that this will lead to far more than 10°
combinations. We refer to [5] for details, also concerning the distribution of the
various types of relations.

References

1. D. Atkins, M. Graff, A. K. Lenstra, P.C. Leyland, Title to be announced, in prepa-
ration
2. D.J. Bernstein, A.K. Lenstra, A general number field sieve implementation, 103~
126 in: [8)
3. J. Buchmann, J. Loho, J. Zayer, An implementation of the general number field
sieve, Advances in Cryptology, Proceedings Crypto’93, Lecture Notes in Comput.
Sci. 773 (1994) 159-165
J. Buchmann, J. Loho, J. Zayer, Triple-large-prime variation, manuscript, 1993
_ B. Dodson, A.K. Lenstra, NFS with four large primes: an explosive experiment,
in preparation
6. Intel Corporation, Paragon(tm) XP/S Product Overview, 1991
7. A.K. Lenstra, H.W. Lenstra, Jr., Algorithms in number theory, Chapter 12 in:
J. van Leeuwen (ed.), Handbook of theoretical computer science, Volume A, Algo-
rithms and complexity, Elsevier, Amsterdam, 1990
8. A.K. Lenstra, H. W. Lenstra, Jr. (eds), The development of the number field sieve,
Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993
9. A.K. Lenstra, H. W. Lenstra, Jr., M.S. Manasse, J. M. Pollard, The number field
sieve, 11-42 in: (8]
10. A.K. Lenstra, M.S. Manasse, Factoring by electronic mail, Advances in Cryptol-
ogy, Eurocrypt 89, Lecture Notes in Comput. Sci. 434 (1990) 355-371
11. B. Maccabe, K.S. McCurley, R. Riesen, SUNMOS for the Intel Paragon: A Brief
User’s Guide, Sandia National Laboratories Technical Report # SAND 93-1024
12. J.M. Pollard, The lattice sieve, 4349 in: (8]
13. RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; public information
available by sending electronic mail to challenge-rsa-list@rsa.com
14. J. Zayer, personal communication, September 1993

o

