
Massively parallel elliptic curve factoring

B. Dixon., A. I i . Lenstra**

Abstract. We describe our m-aively parallel implementations of the elliptic curve fartoring method.
One 05 our implementations is based on a new systolic version of Montgomery multiplication.

1. Introduction

The study of theoretical and practical aspects of factoring algorithms is of continuing

interest for the analysis of various well known public-key cryptosystems. In this paper we

describe two massively parallel implementations of the elliptic curve factoring method [5] .

U s u d y one distinguishes two types of factoring algorithms, the general purpose algo-
rithms whose expected run time depends solely on the size of the number n being factored,

and the special purpose algorithms whose expected run time also depends on properties

of thc (unknown) factors of n. Examples of special purpose algorithms are trial division,

Pollard’s rho method, PoUard’s p - 1 method, and the elliptic curve method. To find a

factor p , trial division needs time approximately linear in p , Pollard’s rho method IS ap-

proximately linear in fi, and Pollard’s p - 1 method is approximately linear in the largest

prime factor of p - 1. Thus, in the worst case all these mcthods take exponentid time.

The elliptic curve method takes expected time O ((l ~ g n) ~ L , [&]) to find p , where

for 5 + 00. It follows that in the worst case p x J;; the method takes expected time

Ln[l] , which is subexponential in n. Because their run time depends so strongly on the

size of smallest factor of n, and only polynomially on the size of n itself, the performance
of special purpose methods is usually measured by the size of the prime discovered.

From a security point of view, the above exponential time methods are not something

to worry about, except that one somctimes takes the precaution to construct R such that

Pollard’s p - 1 method will not be unexpectedly lucky. Such precautions cannot be taken

against the elliptic curve method. Whcreas in Pollard’s p - 1 method p will be discovered

if p - 1 has only small factors, the elliptic curve method will find p if the method is SO lucky

Department of Computer Science, Princeton liniversity, Princeton, N J 08544, U. S. A,
email: bddQprinceton.cdu.

email: lenstraObelkore.com.

** Bellcore, rrn 26334, 445 South Street, Morristown, NJ 07960, U. S. A,

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT ’92, LNCS 658, pp. 183-193, 1993
0 Spnnger-Verlag Berlln Heidelberg 1993

184

to hit upon a number close to p that has only small factors. Because the method consists

of many independent trials, there is always the possibility that p will be discovered.

In this paper we consider two implementations of the elliptic curve method on a

particular type of massively parallel computer, so-called single instruction, multiple data

(SIMD) machines. As far as we know SIMD elliptic curve implementations have not been

considered before, although massive parallelism is not new to this area. In [4], for instance,

a distributed network implementation of the ellipt#ic curve method is described, which may

be viewed as a large scale multiple instruction, multiple data (MIMD) approach. wt:
will see that SIMD machines, even though they are relatively cheap compared to MIMD
machines, nevertheless can achieve an impressive elliptic curve performance*.

Using one of our implementations we have been able, for the first time for the elliptic

curve method, to find a 40 digit factor**. The previous elliptic curve record was 38 digits,

which occurred three times as far as we know. On the negative side, the elliptic c w e

method has also missed many smaller factors, in the 35 digit range, even after serious

efforts. Using the run time estimates given above, one finds that finding a 60 digit factor

can be expected to be more than 3000 times more difficult than finding a 40 digit factor.

Given how much computing time has been invested to this date in the elliptic curve method,

it seems safe to say that i t is unlikely that with present day technology we will ever be
able to discover factors of 60 or more digits using the elliptic curve method. Estimates

of this type are, for instance, useful for the dcsign of cryptosystems based on discrete

logarithms modulo a composite modulus. like 181. Finding 50 digit factors with the elliptic

curve method is approximately 70 times more difficult than finding 40 digit factors; it is

therefore not inconceivable that yuch factors might be found using more powerful machines.

The remainder of this paper is organized as follows. In Section 2 a short description

of the SIMD machine that we use for our implementations is given. A very superficial

~~~ * It is t he  policy of Bellcore to  avoid any statements of comparative analysis or evaluation of 
products or vendors. Any mention of products or vendors in this presentation or accompanying 
printed materials is done where necessary for the sake of scientific accuracy and precision, or to 
provide an example of a technology for illustrative purposes, and should not be construed as either 
a positive or negative commentary on that product or vendor. Neither the inclusion of a product 
or a vendor in this prescntation or accompanying printed materials, nor the omission of a product 
or a vendor, should be interpreted as indicating a position or opinion of tha t  product or vendor 
on the part  of the presenter or Bellcore. 

In the mean time Dave Rusin from the University of Northern Illinois has found a 42 digit ** 
factor, using Peter Montgomery’s elliptic curve program. 



185 

description of the elliptic curve method, and our first SIMD implementation are presented 

in Section 3. Section 4 describes our block-wise SIMD multi-precision modular integer 

arithmetic. The second elliptic curve implementation, which is bascd on this block-wisc 

arithmetic, is presented in Section 5, along with some results concerning random generators 

with very long period, that were constructed using this second elliptic curve implementa- 

tion. 

2. The hardware 

This section contains a short overview of the 16E; Maspar, the massively parallel computer 

that we have used for the implementations to be described in this paper. Our description 

is very incomplete, and only covers those aspects of the machine that are referred to in 

the following sections. For a complete description of the MasPar we refer to the manuals, 

like [7]. 
The 1GIi MasPar is a SIMD machine, consisting of, roughly, a front end, an array 

control un i t  (ACU), and a 128 x 128 array of processing elements (PE array). Masks, or 

conditional statements, can be used to select and change a subset of active processors in 

the PE array, the so-called active set. The fact that i t  is a SIMD machine means that 

instructions are carried out sequentidly, and that instructions involving parallel data are 

executed simultaneously by all processors in the active set, while the other processors in 
the P E  array are idle. The instructions involving singular (i.e., non-parallel) data are 

executed either on the front end or on the ACU;  for the purposes of our descriptions the 

front end and the ACU play the same role. 

According to our rough measurements. each PE can carry out approximately 2 .  lo5 
additions on 32 bit integers per second. and can be regarded as a 0.2 MIPS processor. 

Furthermore, each PE has 64IiBytes of memory, which implies that the entire PE array 

has lGByte of memory. Each processor can communicate with its north, northeast, east, 

southeast, south, southwest, west, and northwest neighbor, with toroidd wraparound. 

Actually, a processor can send data to a processor at any distance in one of these eight 
directions, with the possibility that all processors that lie in between also get a COPY of the 

transmitted data. There is also a global router that allows any processor to communicate 
with any other processor, but we never riseded it .  

Each job has a size between BE; and MI<, reflecting the amount of PE-memory it uses. 

Only those jobs which together occupy at most 64I< are scheduled in a round robin fashion, 

giving each job 10 seconds before it is preempted, while the others must wait. This means 



that jobs are never swapped out of PE-memory. 

For our implementations we used the MasPar Parallel Application Language MPL, 
which is from our perspective, a simple extension of C. 

3. Elliptic curve method 

In this section we briefly describe our first SIMD implementation of the elliptic curve 

method. For a detailed description of the elliptic curve method, hints for its implementation 

and parameter choices, we refer to [3; 5;  10; 111. For our purposes it sUaces to know that 

the elliptic curve method consists of a number of independent trials. For each trial an 

elliptic curve E modulo n and a point 2 in a group G related to E are randomly selected. 

The group operation in G, which we will write multiplicatively, consists of several additions, 

subtractions, multiplications, and inversions of integers modulo n, and can be carried out 

in time O((10g TI} ')  per operation. Clearly, the group operation breaks down if some integer 

y for which gcd(n, y) # 1 has to be inverted modulo n in the course of a group operation; 

in this case a factor of n has been found. 

This is exploited as follows. Using the group operation, the point x is raised to a 

huge power k consisting of the product of all prime powers below a certain bound B1. The 

trial is lucky if this computation cannot be completed because thc group operation breaks 
clown, since in this case a factor of n has been found. The trial fails if 2' E G has been 

computed successfully. If p is n's smallest prime divisor and 41 = LP[m], then each 

trial has probability Lp[-m] to factor n,  as explained in [3; 51. This implies that the 

number of independent trials needed to factor n can be expected to be Lp[J1?zJ. One 

trial takes time O((Iogn)2B1), from which the total expected run time O((logn)2L,[t/ZJ) 

follows. 

The computation of zh E G is usually referred to as the first phase of the algorithm. 
In the second phase zkq E G is computed for all primes q in [B1, &] for some bound Bz. 
This requires approximately an additional ?r(BZ) - r ( B 1 )  group operations, where ~ ( b )  
denotes the number of primes 5 b. It appears to be close to optimal to select BI  and Bz 
in such a way that the two phases take approximately the same amount of time, which 

makes Bz an order of magnitude larger than B l .  

The optimal parameter choice for the elliFtic curve metliod depends on the unknown 

factor p of n, and therefore cannot be known beforehand. A common approach is to 
do a few trials with fairly low Bi (and corresponding Bz), upon failure a few trials with 

slightly larger B1, and so on, until either the number is factored or the factoring attempt is 



187 

aborted. The expected amount of work to find a certain factor usually varies only slightly: 

the success probability for t trials with bound B1 is not dramatically different from the 
success probability for c . t trials with bound B l / c ,  but only for c in a limited range, say 

1/2 < c < 2. The optimal parametcr choices depend on the implementation as well. For 
instance, for the implementation described in [4], the optimal choices are t = 300 and 

B1 = 65000 to find 25 digit factors with a 60% success probability, t = 950, B1 = 275000 
for 30 digits, and t = 2300, B1 = 1100000 for 35 digits. 

The trials of the elliptic curve method are independent, but any number of them can be 

carried out simultaneously. Since the sequence of operations involved in the computation of 

x k  E G depends only on the value of k, and not on the actual data to which the operations 

are applied, t elliptic curve trials can be carried out in parallel on a t processor SIMD 
machine. An exception occurs if onc of the trials factors n,  but in that case the process 

can be terminated. Using this elementary approach we ran 16K trials in parallel on the 16Ii 

Maspar, with each of the 16Ii PE's working on its own elliptic curve, uniquely generated 

using a single random seed. For this purpose the niulti precision integer arithmetic used 

in f4] was adapted to the blad'ar, in such a way that each PE operates independently on 

its own extended precision integers, simultaneous with the other PE's (in the active set). 

Thus we can carry out 161C elementary operations (+, -, c ,  quotient and remainder) on 

extended precision integers in parallel, without interprocessor communication. 

Because inversions niodulo n are slow, particularly so on a SIMD machine where 

the cost is determined by the processor that needs the most iterations, we kept track of 

the numerators and denominators (modulo n) of the group elements, without performing 

the inversions. But since these inversions are supposed to lead to the factorization of n,  

they cannot be avoided entirely. At regular intervals we therefore computed the product 

modulo n of all denominators (using 11 (i.c., 1og2(16h')) multiplications modulo n on the 

PE array), and computed the greatest com~iioii divisor g of the resulting product aud n 

on the (much faster) front end. If g turns out to be > 1, the PE's can be inspected to 

see how many of them found a factor, or to refine the factorization if g is not prime. The 

latter usually happened only in the presence of several very small factors (up to 10 digits); 

luger factors are usually found on only one PE. 

Addition and subtraction modulo n are easily made efficient in SIMD mode, but 

multiplication modulo n is more problematic. This is caused by the remainder computation 

modulo n, where the instruction stream is more dependent on the values involved. We 



used the so-called Montgomeryrepresentation throughout our program, because it allows a 

modular multiplication that is oblivious of the data involved, without affecting the addition 
or the subtraction; see Section 4 or [gJ. 

Although these and various other improvenients considerably enhanced the perfor- 

mance of our first implementation, there was not much wc could do about the fact that 

a 0.2 MIPS PE is a fairly slow processor: it took about a day to complete 16K curves 

with I31 = 50000 and Bz = lo6 for a 100 digit n. With these parameters one can almost 

guarantee that all factors up to 28 digits will be found, but this is not an optimal param- 

eter choice. To find 28 digit factors far  fewer curves with much larger BI would be better, 

whereas the optimal B1 that corresponds to 16K trials is more than lo7.  The latter would 

be a good choice if one wants to look for 45 digit factors, but it would require an inordinate 

amount of time on this machine. 

Consequently, this parallel elliptic curve program is not ideally suited for the present 

Maspar. For future generations of SIMD machines, however, our program might turn out 

to be useful: if future PE’s run at speeds comparable to that of current workstations, then 

16K parallel trials with matching bounds could be processed in at most a few days. 

Given the current PE speed, the only way to get a better parallelelliptic curve program 

on the 16K hvlasPar seems to be to divide the work per curve over r PE’s, for some r. This 
would decrease the number of trials by r iuld hopefully increase the speed per curve by the 

same factor, thus allowing parameter choices which are closer to optimal for factors in the 

30 digit range. We achieved this by designing a multi precision integer arithmetic that is 

entirely differexit from the one mentioned above. This arithmetic will be described in the 
next section. 

4. Block-wise modular ar i thmetic  

In this section we describe an alternative integer arithmetic for SIMD machines, that 

essentially reconfigures the machine into a machine with fewer but faster processors, at 
least for arithmetic modulo a fixed integer n. 

Let b be some small integer such that arithmetic operations on b bit intcgcrs can be 
carried out cfficiently on a PE. Because multiplication of 32 bit integers with a 64 bit 

result is the most efficient multiplication that a PE can perform, we used b = 30, SO that 

we could also add without overflow problems. Let r be the smallest integer with Zb” > n,  

where R is thc odd number being factorcd. Each of the 128 rows of 128 PE’s is divided 

into u = [128/(r + 1)) disjoint blocks of r + 1 consecutive PE’s, and 128 - (r + 1) * u idle 



189 

PE's. Thus, there are 128 * u blocks. The active set consists of the PE's that are contained 

in a block. 

Suppose that the consecutive PE's in a block are numbered from 0 to r .  If the ith 
PE contains a b bit integer v, 2 0, then v o , q , . .  . ,v, together represent the number 

v = cr=, v;2*.'. Since we use the integers in {0,1,. . . , n - 1) to represent residue classes 

modulo n, we usually have, that v < n and therefore v, = 0. This extra PE is used in 
the mu!tiplication modulo n. Let u = E l o  11,2b.1 and w = C:=, be two integers 

modulo n. To compute the sum s = v + w the r + 1 PE's compute si = V; + ~i and 

ci = S,/2' ,  next Ci is sent by the ith PE to the neighboring (i + 1)th PE, and finally S; is 

computed as S; - c, . 2b + c,-l .  In the unlikely event that one of the 3, is still 2 2b the 

carry propagation is repeated until all s; are < Z b .  Here we note that it requires o d y  one 

fast instruction on the MasPar to chcck if thcrc are still rtny carries to be propagated. To 

complete the addition modulo n, we simply subtract n from a, using a similar technique; 

if s - n is negative then s is the final outcome, otherwise it is LI - n. 

Examples that require r carry propagation steps are easy to construct, and a depth 

O(1ogr) carry propagation tree would give a better worst case performance. Our simplistic 

approach, however, works on average much faster because the second carry propagation 
step hardly ever occurs. 

Multiplication modulo n withm blocks is more complicated. As in the first elliptic 

curve implementation we used the hlontgomery representation to avoid divisions. Let 

R = 2b.r, thc smallest power of 2' larger than R .  The Montgomery representation .i of an 

integer 5 modulo n is the integer L .  R mod n E {0,1 , .  . . , n - 1). Addition and subtraction 

of numbers in Montgomery representation is not different from orcLnary addition and 

subtraction modulo n, and is carried out as described above. Multiplication, however, 

becomes much simpler than ordinary multiplication modulo n. Let z be such that z 

z . y mod n. Then 2 equals S . y/R mod n. This i can be computed efficiently as follows. 
First compute t) = 5 . y. Let u = E:Lo ~ ~ 2 ~ . ~  and d be such that d .  n -1 mod 2', which 

is well-defined because n is odd. Kext, for i = 0,1,. . . , r - 1 in succession replace u by 

v + 2*.' . n . ( ~ i  d mod 2'1, where the v, for i > 0 are the radix 2b digits of the u that was 

computed in the previous iteration. Notice that after iteration j the new uj is zero, and 

that the new v is congruent to the old u modulo n. Consequently, the resulting uo though 

vp-l are all zero, and the division by R can be carried out by simply shfting the resulting 

v to the right. The result might be 2 n, in which case it suffices to subtract n once to 



190 

make it < n. Montgomery multiplication can be carried out using 2rz + r multiplications 

on bbit integers. 

By merging the iterations for the (ordinary) multiplication of i and ij, and the division 

modulo n by R, the multiplication of numbers in Montgomery representation can be clone 

quite easily in a block of PE’s. Straightforward application of the above algorithm leads to 

a block-wise modular multiplication that can be made to fit in blocks of only r consecutive 

PE’s, with 3 multiplications per iteration: two on all PE’s in the block (on different data), 

but one (the computation of ‘u, . d mod a* )  that operates on identical data for all PE’s in 

the block or that could be carried out by only one PE and sent to the others. This is 
inefficient, because it requires time for 3r multiplications on r PE’s in parallel, instead 

of the 2r + 1 = (2rZ + l ) /r  multiplications we hoped for. As shown in [2] the 3r can 

be improved to 27- + 2, giving a ratio which is close to optimal. Using this method we 

got an acceptable speed for the modular multiplication: for a 95 digit n one modular 

multiplication takes about 0.003 seconds, and becaube r = 11 implies [128/(11 + 1)) = 10 
blocks per row, 1280 of these multiplications can be carried out simultaneously. 

An additional advantage of the block-wise arithrnetic is that all relevant values c a n  

be kept in registers, so that costly memory fetches arid stores can be avoided. A detaiied 

description can be found [ 2 ] .  

5 .  A second implementation and resuIts 

Incorporation of the modular arithmetic from the previous section into our first SIMD 
elliptic curve implementation led to a second version of our program that runs one curve 

per block instead of one curve per processing element, This implies that the number of 

trials depends on the size of n. For a 95 digit n we get 1280 trials, for 80 digits r becomes 

9, and the number of trials goes up to 1536. 

We used the following elementary method to lower the number of group operations 

needed to compute the kth power of the point z on the curve. According to the definition 
of k given in Section 3, we have k = ni=, q,, where { q l ,  q 2 , .  . . , qI}  is the set of prime 

powers < a,. The usual way of computing xk is to first raise z to the power q1, next 

raise the result to the power q2 ,  etc., until dl q, have been processed. Let for some integer 

rn the weight w ( n )  be defined as the number of ones in the binary rcpresentation of m. 

If ordinary repeated squaring and multiplication is used for the exponentiation, then the 
cost of the computation of x k  E G is Cf=l[log, g,] squaring3 in G and ‘&(w(g,) - 1) 

multiplications in G. 



191 

Let s = SI U S2 U . . . S, be a partition of {1,2,. . . , I}, and let q j  = n,Esj p i .  Clearly, 

zk can also be computed by first raising x to the power ql, next the result to the power q3 ,  

etc., UP to 95.  The number of squarings in G needed for this computation is approximately 

the same as the number of squarings given above. The number of multiplications in G, 
however, can be made substantially smaller by choosing a partition S for which xi==, w(Qj) 

is small. Finding the best partition with respect to t h s  metric is in general a hard problem. 

In practice we will have to do with what can be found in a reasonable amount of time. 

Using a simple greedy algorithm (and B ,  = 10Oooo) we found a partition in subsets of 

cardinality at most two that had approximately half the original weight; Bill Cook used 

this solution to derive an optimal partition under the same restrictions, but the resulting 

weight was not significantly lower. Next, we considered subsets of cardinality at  most 

three. This resulted in approximately a third of the original weight. Given how much time 

it took US to find these triples, this is probably the best we may hope to achieve. The 
triples were found by means of a greedy-type algorithm on the 16K MasPar. To make 

the run times acceptable we processed the primes in intervals. More precisely, for each 

. . .20}  we dctcrmined partitioils into triples of the prime powers < 2 . lo6 for 
the primes in the interval [ ( z  - 1). lo5, i . lo’]. This separation into intervals is also useful 

because i t  allows a choice of bounds. The total run time of the program was reduced by 

18% using this technique. To give an example, the primes 1028107, 1030639, and 1097101 
have weights 10, 16, and 11, but their product has weight 8; in binary 

E { 

1000000 z 00 0 1000000 1000000 10000000000000 100000 100000000000000 1. 

This example is remarkable but by no means exceptional, 

For TI with r = 11 it takes about 34 hours to complete 1280 elliptic curve trials with 

B1 = lo6 and Bz = 2 .  10‘. For n with r = 12 i t  takes approximately 34 * 12/11 hours 

to complete 1152 trials with the same bounds, and other timings can be derived similarly. 

Consequently, tliis second elliptic curve program allows a much more balanced choice of 

the parameters for a search of factors in the 30 digit range, We have used the program 

to factor various numbers from the list of composite numbers from [l] and many numbers 

from the ‘Partition List’ of the ‘RSA Data Security Factoring Challenge.’ To date the 



? 92 

largest factor we have found has 40 digits, which was a new elliptic curve factoring record: 

p( 11279) =26 . 5  ,8418 735626 949973 617503. 

1232 079689 567662 686148 201863 995544 247703. 

78 507734 924917 342278 622201 969372 653526 213641 483293. 

The number factored was the 89 digit product of the last two factors, and y( 11279) denotes 

the 11270th partition number. The factorization was found by one of 1408 trials with 

B1 = lo6 after q = 1208269 in the second phase, which means that we have been quite 
lucky since finding the factor at this point happens with probability 0.7%*. 

We found another, unexpected, application of our SIMD elliptic curve program in [6]. 
In this paper a new class of pseudo random generators is introduced with the remarkable 

property that they have provably long periods. Such generators are based on integers b, 
r ,  and s such that m = b' f b" f 1 is prime, and have a period equal to the order of b 
modulo m. Tlie size of b depends on the type of pseudo random number generator that is 

needed; typically it varies between 16 and 64 bits. Consequently, primes m as above can 

fairly easily be found, if r and 8 are not excessively large (typically they vary between 10 

and 50). Establishing the order of b, however, requires factoring rn - 1, which might be 

(and usually is) hard. We found, among others, that b = 253 - 1052 has order ( m  - 1)/2 
modulo the 511 digit prirne m = b3' + bI6 - 1, where thc factorization of the factor b8 + 1 
of m - 1 was found using our SIMD elliptic curve implementation: 

b8 + 1 =257 . 16673 .275422 758002 613571 762817. 
29 464604 796724 055573 394001 .65726 748717 597552 856331 429857' 

18 355214 139747 587789 390113 133069 907813 629489. 

This was one of the few examples where the global inversion on the front end produced 

a composite factor: one block had found the 24 digit factor and simultaneously an other 

block had found the 26 digit factor. This b and m provide an attractive way to generate 
double-precision floating point pseudo randoni numbers using just  addition. 

* This corresponds to a 0.0006% probability of success per curve. For comparison, the 42 digit 
factor referred t o  above, w u  found with 4 1  = 2 .  lo6, and Bz % lo8, which leads to a 0.003% 
probability of success per curve. T h e  number of curves used in that factorization is unknown to 
us. 



193 

References 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

J. Brillhart, D. H. Lehmer, J. L. Selfridgc, €3. Tuckerman, S. S. Wagstaff, Jr., Factor- 

izations of b" f 1, b = 2, 3, 5, 6, 7, 10, 11, 12 u p  to high powers, second edition, 

Contemporary Mathematics 22, Amer. Math. SOC., Providence, 1988. 

B. Dixon, A. K. Lenstra, Systolic Montgomery multiplication, in preparation. 

A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, Chapter 12 in: J. van 

Leeuwen (ed.), Handbook of theoretical computer science, Volume A, Algorithms and 
complexity, Elsevier, Amsterdam, 1990. 

A. K. Lenstra, M. S. Manasse, Factoring by electronic mail, Advances in Cryptology, 

Eurocrypt 'SO, Lecture Notes in Comput. Sci. 434 (1990), 355-371. 
H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 

649-673. 

G. Marsagha, A. Zaman, A new class of random numbcrgenerators, Ann. of Appl. 

Prob. 1 (1991), 462-480. 

hfad'z MP-I principles of opcration, MasPar Computer Corporation, Sunnyvale, CA, 
1989. 

U.M. Maurer, Y. Yacobi, Non-interactive public key cryptography, Advances in CTP- 
tology, Eurocrypt '91, Lecture Notes in Comput. Sci., to appear. 

P. L. Montgomery, Modular multiplication without trial division, Math. Comp. 44 

(1985), 519-521. 

P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, 
Math. Comp. 48 (1987), 243-264. 

R. D. Silverman, S. W. Wagstaff, Jr., A practical analysis of the elliptic curve factoring 

algorithm, manuscript. 


	Introduction
	The hardware
	Elliptic curve method
	Block-wise modular arithmetic
	A second implementation and resuIts
	References

