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Abstract. We describe our single-instruction multiple data (SIMD) im- 
plementation of the multiple polynomial quadratic sieve integer factoring 
algorithm. On a 16K MasPar massively parallel computer, our implemen- 
tation can factor 100 digit integers in a few days. Its most notable success 
was the factorization of the 110-digit RSA-challenge number, which took 
about a month. 

1 Introduction 

Usually one distinguishes two types of integer factoring algorithms, the general 
purpose algorithms whose expected run time depends solely on the size of the 
number n being factored, and the special purpose algorithms whose expected run 
time also depends on properties of the (unknown) factors of n. To evaluate the 
security of factoring-based cryptosystems, it is important to  study the practical 
behavior of general purpose factoring algorithms. In this paper we present an 
efficient SIMD-implementation of the multiple polynomial quadratic sieve (QS) 
factoring algorithm [12], still the most practical general purpose method for 
integers in the range from 80 t o  120 digits. 

The largest number factored by QS is a 116-digit number. This factorization 
was carried out in a few months on a widely distributed network of workstations, 
and took a total computation time of approximately 400 mips-years (1 mips-year 
is about 3.15.1Ol3 instructions) [lo]. The previous QS record for asingle-machine 
implementation had 101 digits, and waa carried out on one processor of a four 
processor Cray Y-MP4/464 in 475 CPU-hours [14]. This record was broken by 
our factorization of the 110-digit RSA-challenge number. 

As will be explained in Section 3, QS consists of two main steps: the sieving 
step, and the matrix elimination step. All successful parallel implementations of 
QS that we know of have followed the approach described in [2]: distribute the 
sieving step over any number of available processors, which work independently 
of each other, and collect their results and perform the matrix elimination at 
a central location. In [2] the sieving step was done on a local network of work- 
stations using the Ethernet for the communication, in [9] the workstations are 
scattered around the world, and communicate with the central location using 
electronic mail. In both of these implementations the network of participating 
machines can be viewed as a loosely coupled multi-processor machine, where the 
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processors work asynchronously in multipleinstruction multiple data (MIMD) 
mode; i.e., each processor carries out its own set of instructions on its own set 
of data. Very powerful and fairly expensive massively parallel MIMD machines, 
with more computational power than was ever achieved using the approach from 
[9], are currently available. It should not be hard to  break the 116-digit QS record 
on such a machine, but getting enough computing time might be prohibitively 
expensive, and is certainly more expensive than it was to use the donated cycles 
from the internet network. 

Another type of massively parallel machine is the single-instruction rnulti- 
ple data (SIMD) machine. These machines usually consist of some particular 
network (hyper-cube, mesh) of several thousand small processors, each with its 
own fairly limited amount of memory. Unlike the processors on MIMD machines 
which can work more or less on their own, the SIMD processors simultaneously 
carry out the same instructions, but each processor on its own data. Further- 
more, arbitrary subsets of processors can be made inactive or reactivated at  any 
time. Although the rough computational power of large SIMD machines is com- 
parable to that of supercomputers or large MIMD machines, SIMD machines 
are only efficient for computations that can be cast as a SIMD process. 

SIMD machines have proven to be very useful for the matrix elimination 
step of QS [6; 81. For that application, as well as for various other factoring 
applications (cf. [S]), it suffices to have a fairly restrictive type of SIMD machines, 
namely machines that only allow direct addressing (where the memory address is 
part of the instruction). For efficient sieving applications, however, it is essential 
that indirect addressing is available as well, i.e., the memory address depends 
on a value local to the processor. Although this is not the case for all SIMD 
machines, we will assume throughout this paper that this requirement is met 
(as it is for the 16K MasPar SIMD machine3 that we used for our work, cf. 
Section 2). 

Nevertheless, at first sight the sieving step does not look like the type of 
operation that would run well on any SIMD machine (cf. Section 3).  Indeed, a 
MasPar-implementation of the QS-sieving step which was attempted in [5] seems 
to support this supposition. In this paper we describe a different approach to the 
SIMD-implementation of the sieving step which works quite efficiently: on a 16K 
MasPar 100-digit integers can be factored within three CPU-days. A 110-digit 
number took one CPU-month, where we used only 5/8 of the total available 
memory; using all the memory this factorization would have taken about 20 
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days. With a later, faster version of the program we were able to do a 105- 
digit number in 5.3 CPU-days, using half of the available memory. This shows 
that relatively inexpensive SIMD machines are much better for general purpose 
factoring than was previously expected. For SIMD-implementations of special 
purpose factoring algorithms (like the elliptic curve method) we refer to  [4]. 

The success of this implementation prompted work on a SIMD-implementa- 
tion of the general number field sieve factoring method [l]. With this number 
field sieve implementation we broke the record set by the factorization of the 
ninth Fermat number, by factoring the 151-digit number (2503 + 1)/3 and the 
158-digit number 2523 - 1. 

The remainder of this paper is organized as follows. In Section 2 a short de- 
scription of the StMD machine that we used is given. Section 3 contains a general 
description of QS. A simple algorithm for the redistribution of data on a SIMD 
machine is given in Section 4. An overview of our SIMD QS implementation is 
presented in Section 5, and Section 6 contains an example. 

2 The Hardware 

This section contains a short overview of the 16K MasPar, the massively parallel 
computer that we have used for the implementation to  be described in this paper. 
Our description is incomplete, and only covers those aspects of the machine that 
are referred to in the following sections. For a complete description of the MasPar 
we refer to the manuals, such as [ l l ] .  

The 16K MasPar is a SIMD machine, consisting of, roughly, a front end, an 
array control unit (ACU), and a 128 x 128 array of processing elements (PE 
array). Masks, or conditional statements, can be used to select and change a 
subset of active processors in the PE array, the so-called active set. The fact 
that it is a SIMD machine means that instructions are carried out sequentially, 
and that instructions involving parallel data are executed simultaneously by all 
processors in the active set, while the other processors in the PE array are idle. 
The instructions involving singular (i.e., non-parallel) data are executed either 
on the front end or on the ACU; for the purposes of our descriptions the front 
end and the ACU play the same role. 

According to our rough measurements, each PE can carry out approximately 
2 . lo5 additions on 32 bit integers per second, and can be regarded as a 0.2 
MIPS processor. Furthermore, each PE has 64KBytes of memory, which im- 
plies that the entire PE array has lGByte of memory. PE’s cannot address each 
other’s memory, but as mentioned in the introduction PE’s can do indirect ad- 
dressing. Each processor can communicate efficiently with its north, northeast, 
east, southeast, south, southwest, west, and northwest neighbor, with toroidal 
wraparound. Actually, a processor can send data to a processor a t  any distance 
in one of these eight directions, with the possibility that all processors that lie 
in between also get a copy of the transmitted data. There is also a less efficient 
global router that allows any processor to communicate with any other processor, 
but we never needed it. 
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Each job has a size between 4K and 64K, reflecting the amount of PE-memory 
it uses. Only those jobs which together occupy at most 64K are scheduled in a 
round robin fashion, giving each job 10 seconds before it is preempted, while the 
others must wait. This means that jobs are never swapped out of PE-memory. 

For our implementations we used the MasPar Parallel Application Language 
MPL, which is, from our perspective, a simple extension of C. 

3 The Quadratic Sieve Factoring Method 

Let n > 1 be an odd positive integer that is not a prime power. For each random 
integer x satisfying 

( 3 4  x2 3 1 mod 71 

there is a probability of at least 1/2 that gcd(n, x - 1) is a non-trivial factor of n. 
To factor n it therefore suffices to  construct several such z’s in a more-or-less 
random manner. 

In many factoring algorithms, solutions to (3.1) are sought by collecting 
integers v such that 

where the factor base P is some finite set of integers that are coprime to n ,  and 
ep(w) E 2 for p E P .  A pair ( v , e ( v ) )  satisfying (3.2), with e ( v )  = (ep(v))pEP E 
Z#P, is called a relation, and will be denoted by v for short. If V is a set of 
relations with #V > # P ,  then there exist at least 2 # v - # p  distinct subsets W 
of V with CvEW e ( w )  = ( ~ W , ) ~ € P  and wp E 2; these subsets can be found using 
Gaussian elimination modulo 2 on the set of vectors e ( v )  mod 2. Each such W 
leads to an 2 E (nu,, v )  . (npEp p-’”~)  mod n satisfying (3.1). 

In the original quadratic sieve factoring algorithm [I21 relations are collected 
as follows. Let P consist of -1 and the primes 5 B with Legendre symbol 
(f) = 1, for some bound B .  An integer is called B-smooth if it can be written 
as a product over P. Relations are collected by looking for small integers i such 
that f(i) = (i + [A)’ - n is B-smooth; for such i we have that w = i + [a 
satisfies (3.2). Because a prime p divides f ( i )  if and only if it divides f ( i + k p )  for 
any integer k, smooth values can be found efficiently using a sieve, if the roots 
o f f  modulo the primes in P are known. For this reason, the relation collecting 
step is called the sieving step. Notice that only primes p with (!) = 1 can divide 
f ( i ) ;  this explains the definition of P .  

The second step, finding subsets W as above, is called the matrix elimination 
step. In this paper we will not pay any further attention to this step, as it is well 
known how it can be dealt with for # P  up to, say, 200000 (cf. [6; 81). 

Let 

(3.3) 
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for a real number y, and n - 00. With B = L[1/2] it can be shown on loose 
heuristic grounds that both steps of the quadratic sieve algorithm can be com- 
pleted in expected time L[1]. 

Because in the original quadratic sieve only one polynomial f is used to gen- 
erate all > # P  relations, the interval of i-values to be inspected is rather large. 
Since f(i)  % 2 i [ d  grows linearly with i, the probability of f(i) being B-smooth 
decreases with increasing i. Davis [3] suggested using more than one polynomial, 
thus allowing a smaller i-interval per polynomial which should increase the yield 
(per i) of the sieving step. In our implementation we used Montgomery's version 
of this same idea [16]. Let P be as above, and let 

(3.4) 

for integers a,  b with b2 n mod 4a2. This requires n to be 1 mod 4, which 
can be achieved by replacing n by 3n if necessary; in practice it might even be 
advantageous to use some other multiplier, cf. [16]. If f(i) is B-smooth, then 
v = ( a i  + b/ (2a) )  mod n satisfies (3.2), and B-smooth f(i)'s can again be found 
using a sieve once the roots of f modulo the primes in P are known. Thus, 
polynomials satisfying (3.4) can be used to generate relations efficiently. The 
expected run-time of the resulting factoring'algorithm, however, is still L[1]. 

f(i) = a2i2 + bi + ( b 2  - n)/(4a2), 

3.5 Constructing Polynomials 

(cf. [7; 161). We show how polynomials as in (3.4) can be constructed. Let M 
be such that f(i)'s with i E [-M, M )  will be tested for smoothness in the sieve. 
Let a 3 mod 4 be a probable prime with a2 M m / M  and Jacobi symbol 
(E) = 1. Since a is free of primes in P ,  the polynomial f has two roots modulo 
all primes in the factor base P. To find b such that b2 n mod 4a2, we first set 
b = n(0+1)/4 mod a so that b2 n mod a. Next we replace b by 

b + a((2b)- ' ( (n - b 2 ) / a )  mod a), 

and finally, if b turns out to  be even we replace b by b - u2.  It  follows that 
b2 n mod 4a2, and If(i)l = O(iJ;;) for i E [ -M,  M ) .  Notice that the roots of 
f mod p are ( - b  f f i ) / (2a2)  mod p ,  so that computation of the roots requires 
one inversion modulo p for all primes p in P ;  the values of vp z (fi) mod p 
should be precomputed and stored in a table. 

Another method to generate polynomials is presented in [13], and has the 
advantage that the roots of a polynomial modulo the primes in the factor base 
can be derived easily from the roots of the previous polynomial. We have no 
practical experience with this method. 

In implementations of QS one usually also collects values of i for which f ( z )  
factors almost completely using the elements of PI i.e., except for one (or two) 
larger primes. If the large primes in these so-called partial relations match, they 
can be combined to form relations as in (3.2). In practice this enhancement leads 
to a speed-up factor of 4 to 6. For a detailed description of how the number of 
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useful combinations among the partial relations can be counted, and how the 
combinations can be actually formed, we refer to [lo]. 

3.6 The Sieving Step 

Summarizing, for some fixed choice of factor base P, sieving bound M and 
n 1 mod4,  the QS-sieving step can be carried out by performing steps (a) 
through (h). 
(a) For all primes p in P compute rp 

(c) Compute the smallest a > qOw that satisfies the requirements in (3.5), com- 

(d) For all primes p in P compute the roots rF1 and rFz of f modp as ( - 6  f 

(e) For all integers i with i E [-M, M )  set s ( i )  to zero; 
(f) For all primes p in P and v = 1 , 2  replace s(i) by s ( i )  + [logp] for all 

i E [ - M , M )  which are equal to rpu modulo p (this is the actual sieving 

(g) For all i E [ -M,  M )  for which s ( i )  is sufficiently close to the report bound 
log If(i)l, try to factor f(i) using the elements of P ,  and store the resulting 
relations and partial relations (an i for which s ( i )  is close to the report bound 
is called a report); 

(h) If more relations and partial relations are needed, replace slow by a and go 
back to step (c); otherwise terminate. 

(J;;) modp; 
(b) Set a1ow = [@/rn]; 

pute the corresponding b as in (3.5), and let f be as in (3.4); 

TPb)/(2Q2) mod p; 

step); 

3.7 Practical Remarks 

In step (f) one often does not sieve with the small primes in P ,  or replaces them 
by sufficiently large powers, to increase the speed. This lowers the number of 
reports in step (g), so that the report bound has to be lowered accordingly. For 
a 100-digit n, the factor base P will have approximately 50000 elements, and 
the largest element of P will be about 1.3 lo6. Because a small multiple of this 
largest prime is a good choice for M ,  several million s ( i ) ’ s  have to be stored. 
Although each s ( i )  is usually represented by a single byte (8 bits), the s(i)’s 
together might not fit in memory. In that case, the interval [-M, M )  is broken 
into smaller subintervals, which are processed consecutively as above. In practice 
the report bound log If(i)l is often replaced by some appropriately chosen fixed 
bound. 
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3.8 Parallelization 

The sieving step can easily be parallelized on any number of independent pro- 
cessors, by restricting each of them to a unique interval of candidate a-values, 
disjoint from the intervals assigned to other processors. Notice that two different 
identical processors that run the same sieving program and that started at the 
same time, each on its own interval of candidate U-values, are most likely to 
be at entirely different points in the program, even after a very short run: one 
processor might find a ‘good’ U-value earlier than the other in step (c), and thus 
begin earlier with the next steps, or one processor might find more reports in 
step (g) and spend more time on the trial divisions of the corresponding f ( i ) ’ s .  
Also at other points the precise instruction stream that gets executed might dif- 
fer (for instance, in the inversions modulo p in step (d)), but these differences are 
minor compared to  the entirely different things that might happen in steps (c) 
and (g). In a situation where several copies of (3.6) are processed simultaneously 
in SIMD-mode, this might lead to major inefficiencies, because the process that 
happens to  be the slowest for a particular step sets the pace for that  step. In the 
next section it is shown how these inefficiencies can be avoided at the expense 
of some memory. 

4 Redistributing Data 

In our SIMD-implementations of (3.6)(c) and (3.6)(g) we find ourselves in the 
following situation. We have a toroidal mesh M of m SIMD processing elements 
(PE’s) that  allows fast communication between each PE and its eight nearest 
neighbors. For the 16K MasPar described in Section 2, for instance, M would 
be the array of PE’s, and m would be 16K. Furthermore, there is an inexpensive 
SIMD-process G, such that each PE running G has a fairly small probability p ,  
independent from the other PE’s, to generate a useful packet of information. 
These packets have to be processed by a time-consuming SIMD-process B. The 
goal is to  process as many packets as possible, by repeating G and B indefinitely. 

Clearly, since p is small it is quite inefficient to perform B right after G 
because then only the few PE’s that have found a packet would be processing B. 
Fortunately, in our situation we can take advantage of the following. 
(i) G can be repeated an arbitrary number of times before E is executed 

(i.e., packets do not have to  be used immediately after they have been 
generated) ; 
It is irrelevant for B on which PE a particular packet was found (i.e., 
packets may be generated and processed on different PE’s); 
It is not crucial that  all packets that have been generated are also actually 
processed by B ,  but of course generating packets that  will not be used 
leads to  inefficiencies. 

Using (i) we could keep a stack of packets per PE, and apply G until each stack 
contains at least one packet. At that point all rn top of stack elements could 
be popped and processed by B ,  after which G is again applied, and so on. For 

(ii) 

(iii) 
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small p and large rn this approach would require rather large stacks on the PE’s 
unless many packets are discarded, using (iii). 

A better solution that uses much smaller stacks and that avoids discarding 
too many packets redistributes the packets after every application of G, thus 
making use of (ii) as well. There are many ways to do this; for us the following 
worked entirely satisfactorily. 

4.1 Random Redistribution 

On all m PE’s simultaneously, do the following in SIMD-mode. Fix some arbi- 
trary ordering N I ,  N2, . . ., NS of the eight nearest neighbors (the same ordering 
for all PE’s). For i = 1, 2, . . ., 8, set N = Ni and perform steps (a) and (b). 
(a) 
(b) 

(bl)  
(b2) 
(b3) 
This approach resulted in the following behavior. Starting from empty stacks on 
all PE’s it took on average 2 / p  applications of G (each followed by (4.1)) until 
none of the PE’s had an empty stack. From that point on it takes, after each 
execution of l3 on all rn PE’s, on average l /p  applications of G (plus (4.1)), 
with a very small variance, before B can be applied again to process m packets. 
Except for the start-up stage, this is the best one could hope for. 

Although we tried several orderings of the neighbors, we never noticed a 
significant difference in the performance. With stacks of at  most 5 packets we 
occasionally lost packets but this introduced only a minor inefficiency. A simpler 
variant of (4.1) would be to remove the jump back to step (a) in the case that at  
least one packet has been moved to a neighbor. Similarly, G can be repeated a few 
times, before (4.1) is applied (with the jump). We have no experience with these 
simplifications, but we suspect that they work equally well. Notice that (4.1) uses 
only communication with nearest neighbors, with toroidal wraparound, which 
keeps communication costs to a minimum. 

Get the number of packets n on N ’ s  stack; 
If n + 1 is smaller than the number of packets on the PE’s own stack, 
then perform steps (bl)  through (b3); 
Set e equal to the top of stack packet, and pop this packet from the stack; 
Push e on the top of the stack of N ;  
Go back to step (a). 

5 A SIMD Implementation of the QS-Sieving Step 

Given the redistribution algorithm from the previous section, there are various 
ways to implement the QS-sieving step efficiently on a SIMD-machine, as long 
as the machine provides reasonably fast communication between neighbors. The 
simplest approach would be to let each PE generate polynomials as in (3.6)(c) 
(making sure that they try different a-values), until each PE got at  least one 
polynomial (using a stack of polynomials and (4.1)), after which each PE per- 
forms steps (3.6)(d)-(g) using the polynomial it ended up with (on the top of 
its stack of polynomials). This works efficiently in SIMD mode and without fur- 
ther inter-processor communication, except for the trial divisions in (3.6)(g); the 
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f(i)’s, however, can again be redistributed using (4.1), so that trial division too 
can be performed on all PE’s simultaneously. 

Although these applications of (4.1) solve the synchronization problems 
caused by SIMD execution of (3.6)(c) and (3.6)(g), this approach is inefficient 
on the 16K MasPar, because there is not enough memory per PE to store a suf- 
ficiently large chunk of the interval [-M, M). Furthermore, the roots in (3.6)(d) 
would have to be recomputed for each subinterval of [-M, M) to be processed, 
because there is not enough memory on a PE to store them. 

The opposite approach would be to process one polynomial at a time, and to 
spread the interval [-M, M) over the PE’s. This is a feasible approach if there if 
an ordering PEo, PE1, . . ., PE,-1 such that PEi and PEi+l can communicate 
quickly (with indices modulo m). On the 16K MasPar this would not be impos- 
sible, but it would lead to a fairly small subinterval per PE with a very small 
hit-probability during the sieving step, unless the combined interval [-M, M) is 
chosen exceedingly long. 

One row of 128 PE’s on a 16K MasPar has a total amount of memory of 
128 x 64K= 8MBytes, which is just about the right amount of memory to store 
the sieving interval [-M, M) for the factorization of a 100-digit n. This obser- 
vation suggests that on the 16K MasPar it might be a good idea to process 128 
polynomials at a time, with each of the 128 rows of 128 processors taking care 
of one polynomial. This is the approach that we opted for. Since there will be 
no communication between processors in different rows, except for the redistri- 
butions (cf. (4.1)) during the polynomial generation and trial division steps, we 
restrict our description to what happens in a single row of 128 processors. 

Let PEo, PE1, ..., PE12, be a row of 128 processors, such that PEj and 
PE,+l can communicate quickly (with indices modulo 128, i.e., with toroidal 
wraparound). We remove -1 and the small primes from the factor base P ,  
choose the remaining P such that # P  = 128 . ic ,  for some integer k, and we 
partition P over the row of processors in such a way that each processor stores 
k primes (but see Remark (5.2)(f)). Furthermore, each processor contains k 
square roots of n modulo its k primes (the rp from (3.6)(a)). Finally, we choose 
M such that M = 64 . L for some integer L, and we divide the sieving interval 
[-M, M) over the processors in such a way that PEj stores the length L interval 

Suppose that we have repeatedly applied (3.6)(c) combined with (4.1) on 
the entire 128 x 128 processor array simultaneously until each of the 16K p r e  
cessors has a non-empty stack of polynomials. In particular, we suppose that 
each PEj contains a unique polynomial f j ,  for 0 5 j 5 127. These polynomials 
are processed one at a time in 128 iterations. To process f j  processor PEj first 
broadcasts f, to the other processors in the row, so that all 128 processors share 
the same polynomial, after which the pipelined sieving from (5.1) is performed. 

l j  = [(i - 64)Ll (j - 63)L). 
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5.1 Pipelined Sieving 

Suppose that PEo through PE127 all have the same polynomial f, represented by 
and b as in (3.4). The values for m and I below are the same on all processors 

and can thus be taken care of by the ACU (cf. Section 2). Perform steps (a) 
through (c) on PEo through PE127 simultaneously. 

For all i E Ij set s(z) to zero (cf. (3.6)(e)); 
For m = 1, 2, . . ., k in succession (where # P  = 128 . k), perform steps 
(b l )  through (b5); 
Let p be the mth prime on PE, and rp the corresponding squareroot of 
n (with different p’s for different j ’ s ) ;  
ComputR rpl and rpz as the smallest integers 2 (j - 64)L which are 
equal to ( - b  + rp)/(2u2) and ( - b  - rp)/(2u2) modulo p ,  respectively (cf. 
(3.6)(d)), and compute FPl and Fp2 as the smallest integers 2 -64L which 
are equal to rpl and rp2 modulo p ,  respectively; 
Set 1 = 0; 
For v = 1,2,  as long as rpv < ( j  - 63)L, replace s(rpu) by s(rpu) t [logp] 
and next rpu by rpu + p (cf. (3.6)(f)); 
Replace 1 by 1 + 1. If 1 < 128, replace the 5-tuple (p,rp~,rp~,~p;pl,i;p~) by 
the corresponding 5-tuple from the left neighbor (with wraparound), on 
PEo only replace rpl and rp2 by +pl and Fp:pz, respectively, and return to 
step (b4); 
For all i E Ij for which s ( i )  is sufficiently close to the report bound 
log lf(i)l, push i, a, and b on the top of a stack of reports (cf (3.6)(g)). 

This finishes the description of (5.1). Notice that in (5.1) 128 polynomials 
are processed simultaneously on 128 rows of processors. After every execution 
of (5.1) the elements of the stack built in step (c) will be redistributed using 
(4.1). As soon as all 16K processors have a t  least one report, the f ( i ) ’ s  are 
computed and the actual trial divisions (using the original factor base including 
the small primes) are carried out on 16K processors simultaneously. And after 
128 applications of (5.1) new polynomials are generated using (3.6)(c) and (4.1). 

5.2 Practical Remarks 

(a) In our implementation we removed the first 50 primes from P ,  to speed up 
the sieving step; the threshold is best determined experimentally. 

(b) We gained considerable additional efficiency by distributing P over the PEi 
in such a way that its smallest 128 elements are taken care of by m = 1 in 
step (b), the next smallest 128 by rn = 2, etc.: as soon as for some rn all 
p’s are > L,  at most one sieve location per PE has to be updated in step 
(b4), which means that for larger m simpler code can be used. An additional 
advantage of this approach is that [logp] in (5.l)(b4) can be replaced by a 
sufficiently close approximation which is the same over the entire array of 
processing elements, and which can be changed depending on the value of VI. 

As usual, instead of log 1f(i)1 we used some fixed value for the report bound 
in (5.1)(c). 
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(c) In our implementation we only kept track of rP1, FPl and rpl - rpz.  Although 
this leads to slightly more complicated computations, it also resulted in fewer 
communications (a 4-tuple instead of a 5-tuple in (5.l)(b5)) and thus greater 
speed. 

(d) If the interval [-M, M) is too large, (5.1) can be applied repeatedly to subin- 
tervals of [-M, M) simply by changing the definition of 1, appropriately (but 
see Remark (f) below). In this way we could decrease the memory require- 
ments of our implementation considerably, at the expense of an acceptable 
slow-down. So, instead of the full 64K per PE, we normally use only about 
28K, thus allowing other people to share the machine with us. 

(e) In the trial division, the PE’s simultaneously process the primes in the com- 
plete factor base to build a list of primes occurring in their )(i). After that, 
each PE works on this list of primes to determine the multiplicities and the 
remaining factor. All PE’s for which the remaining factor is 1, or a suffi- 
ciently small prime > B, or a sufficiently small composite, dump their trial 
division results to disk. The remaining composites (which lead to  partial re- 
lations with two large primes) are factored by a separate program that runs 
independently on the front end. 

(f) In the above description each processor stores k elements of P and the cor- 
responding roots, where # P  = 128. k, and processors in the same column 
store the same subsets. We found it more efficient to distribute these subsets 
over the columns, so that processors store at  most [(k - 1)/128] + 1 elements 
of P plus the corresponding roots. This leads to some extra communication 
(in Step (5.1)(bl)), but it makes more memory available for the sieve. If 
the sieve is broken into smaller subintervals, as suggested in Remark (d), 
then we either need O(k)  memory per processor to remember various useful 
values for the next subinterval, or these values have to be recomputed for 
each subinterval. This leads to loss of memory (which could have been used 
for the sieve) or loss of time. In particular for large #P we found it more 
efficient not to use Remark (d) at all, even though the sieve gets so small 
compared to m a x P  that many primes do not even hit it once. 

6 Example 

The largest number we have factored using our SIMD QS implementation is the 
110-digit number from the RSA-challenge list [15]: 

RSA( 110) =35794234179 72586877499 18078325684 55403003778 02422822619 
35329081904 84670252364 67741151351 61 112045040 60317568667 

~58464182 144 06 154678836 553 182979 16 2384 1986 105 05601062333. 
61224210904 93547576937 03731756141 88412257585 54253106999 

At the time of writing, this is the largest number factored on a single machine 
using a general purpose factoring method. This factorization took approximately 
a month of computing time on the 16K MasPar, where we used only 40K of the 



39 

64K bytes per PE. T h e  factor base consisted of approximately 80,000 primes, 
and the  sieving interval [ - M , M )  was broken into two consecutive pieces (cf. 
(5.2)(d)). We did not use the  suggestions from Remark (5.2)(f) for this factor- 
ization; we later found out  t h a t  they would have saved us quite some time. They  
were used, however, for the factorization of a 105-digit number in 5.3 CPU-days 
using 30K per PE. Extrapolation to a 110-digit number would give at most 20 
CPU-days, still with 30K per P E .  
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