
Factoring Integers Using SIMD Sieves

Brandon Dixon' and Arjen K . Lenstra2

' Department of Computer Science, Princeton University, Princeton, N J 08544, USA,
Grnd bddOcs.princeton.edu

E-mail. lenstraQbellcore.com
Room MREZQ334, Bellcore, 445 South Street, Morristown, N J 07960, USA,

Abstract. We describe our single-instruction multiple data (SIMD) im-
plementation of the multiple polynomial quadratic sieve integer factoring
algorithm. On a 16K MasPar massively parallel computer, our implemen-
tation can factor 100 digit integers in a few days. Its most notable success
was the factorization of the 110-digit RSA-challenge number, which took
about a month.

1 Introduction

Usually one distinguishes two types of integer factoring algorithms, the general
purpose algorithms whose expected run time depends solely on the size of the
number n being factored, and the special purpose algorithms whose expected run
time also depends on properties of the (unknown) factors of n. To evaluate the
security of factoring-based cryptosystems, it is important to study the practical
behavior of general purpose factoring algorithms. In this paper we present an
efficient SIMD-implementation of the multiple polynomial quadratic sieve (QS)
factoring algorithm [12], still the most practical general purpose method for
integers in the range from 80 t o 120 digits.

The largest number factored by QS is a 116-digit number. This factorization
was carried out in a few months on a widely distributed network of workstations,
and took a total computation time of approximately 400 mips-years (1 mips-year
is about 3.15.1Ol3 instructions) [lo]. The previous QS record for asingle-machine
implementation had 101 digits, and waa carried out on one processor of a four
processor Cray Y-MP4/464 in 475 CPU-hours [14]. This record was broken by
our factorization of the 110-digit RSA-challenge number.

As will be explained in Section 3, QS consists of two main steps: the sieving
step, and the matrix elimination step. All successful parallel implementations of
QS that we know of have followed the approach described in [2]: distribute the
sieving step over any number of available processors, which work independently
of each other, and collect their results and perform the matrix elimination at
a central location. In [2] the sieving step was done on a local network of work-
stations using the Ethernet for the communication, in [9] the workstations are
scattered around the world, and communicate with the central location using
electronic mail. In both of these implementations the network of participating
machines can be viewed as a loosely coupled multi-processor machine, where the

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 28-39, 1994.
0 Spnnger-Verlag Berlin Heidelberg 1994

29

processors work asynchronously in multipleinstruction multiple data (MIMD)
mode; i.e., each processor carries out its own set of instructions on its own set
of data. Very powerful and fairly expensive massively parallel MIMD machines,
with more computational power than was ever achieved using the approach from
[9], are currently available. It should not be hard to break the 116-digit QS record
on such a machine, but getting enough computing time might be prohibitively
expensive, and is certainly more expensive than it was to use the donated cycles
from the internet network.

Another type of massively parallel machine is the single-instruction rnulti-
ple data (SIMD) machine. These machines usually consist of some particular
network (hyper-cube, mesh) of several thousand small processors, each with its
own fairly limited amount of memory. Unlike the processors on MIMD machines
which can work more or less on their own, the SIMD processors simultaneously
carry out the same instructions, but each processor on its own data. Further-
more, arbitrary subsets of processors can be made inactive or reactivated at any
time. Although the rough computational power of large SIMD machines is com-
parable to that of supercomputers or large MIMD machines, SIMD machines
are only efficient for computations that can be cast as a SIMD process.

SIMD machines have proven to be very useful for the matrix elimination
step of QS [6; 81. For that application, as well as for various other factoring
applications (cf. [S]), it suffices to have a fairly restrictive type of SIMD machines,
namely machines that only allow direct addressing (where the memory address is
part of the instruction). For efficient sieving applications, however, it is essential
that indirect addressing is available as well, i.e., the memory address depends
on a value local to the processor. Although this is not the case for all SIMD
machines, we will assume throughout this paper that this requirement is met
(as it is for the 16K MasPar SIMD machine3 that we used for our work, cf.
Section 2).

Nevertheless, at first sight the sieving step does not look like the type of
operation that would run well on any SIMD machine (cf. Section 3). Indeed, a
MasPar-implementation of the QS-sieving step which was attempted in [5] seems
to support this supposition. In this paper we describe a different approach to the
SIMD-implementation of the sieving step which works quite efficiently: on a 16K
MasPar 100-digit integers can be factored within three CPU-days. A 110-digit
number took one CPU-month, where we used only 5/8 of the total available
memory; using all the memory this factorization would have taken about 20

It is the policy of Bellcore to avoid any statements of comparative analysis or evdua-
tion of products or vendors. Any mention of products or vendors in this presentation
or accompanying printed materials is done where necessary for the sake of scien-
tific accuracy and precision, or to provide an example of a technology for illustrative
purposes, and should not be construed as either a positive or negative commentary
on that product or vendor. Neither the inclusion of a product or a vendor in this
presentation or accompanying printed materials, nor the omission of a product or a
vendor, should be interpreted as indicating a position or opinion of that product or
vendor on the part of the presenter or Bellcore.

30

days. With a later, faster version of the program we were able to do a 105-
digit number in 5.3 CPU-days, using half of the available memory. This shows
that relatively inexpensive SIMD machines are much better for general purpose
factoring than was previously expected. For SIMD-implementations of special
purpose factoring algorithms (like the elliptic curve method) we refer to [4].

The success of this implementation prompted work on a SIMD-implementa-
tion of the general number field sieve factoring method [l]. With this number
field sieve implementation we broke the record set by the factorization of the
ninth Fermat number, by factoring the 151-digit number (2503 + 1)/3 and the
158-digit number 2523 - 1.

The remainder of this paper is organized as follows. In Section 2 a short de-
scription of the StMD machine that we used is given. Section 3 contains a general
description of QS. A simple algorithm for the redistribution of data on a SIMD
machine is given in Section 4. An overview of our SIMD QS implementation is
presented in Section 5, and Section 6 contains an example.

2 The Hardware

This section contains a short overview of the 16K MasPar, the massively parallel
computer that we have used for the implementation to be described in this paper.
Our description is incomplete, and only covers those aspects of the machine that
are referred to in the following sections. For a complete description of the MasPar
we refer to the manuals, such as [l l] .

The 16K MasPar is a SIMD machine, consisting of, roughly, a front end, an
array control unit (ACU), and a 128 x 128 array of processing elements (PE
array). Masks, or conditional statements, can be used to select and change a
subset of active processors in the PE array, the so-called active set. The fact
that it is a SIMD machine means that instructions are carried out sequentially,
and that instructions involving parallel data are executed simultaneously by all
processors in the active set, while the other processors in the PE array are idle.
The instructions involving singular (i.e., non-parallel) data are executed either
on the front end or on the ACU; for the purposes of our descriptions the front
end and the ACU play the same role.

According to our rough measurements, each PE can carry out approximately
2 . lo5 additions on 32 bit integers per second, and can be regarded as a 0.2
MIPS processor. Furthermore, each PE has 64KBytes of memory, which im-
plies that the entire PE array has lGByte of memory. PE’s cannot address each
other’s memory, but as mentioned in the introduction PE’s can do indirect ad-
dressing. Each processor can communicate efficiently with its north, northeast,
east, southeast, south, southwest, west, and northwest neighbor, with toroidal
wraparound. Actually, a processor can send data to a processor a t any distance
in one of these eight directions, with the possibility that all processors that lie
in between also get a copy of the transmitted data. There is also a less efficient
global router that allows any processor to communicate with any other processor,
but we never needed it.

31

Each job has a size between 4K and 64K, reflecting the amount of PE-memory
it uses. Only those jobs which together occupy at most 64K are scheduled in a
round robin fashion, giving each job 10 seconds before it is preempted, while the
others must wait. This means that jobs are never swapped out of PE-memory.

For our implementations we used the MasPar Parallel Application Language
MPL, which is, from our perspective, a simple extension of C.

3 The Quadratic Sieve Factoring Method

Let n > 1 be an odd positive integer that is not a prime power. For each random
integer x satisfying

(3 4 x2 3 1 mod 71

there is a probability of at least 1/2 that gcd(n, x - 1) is a non-trivial factor of n.
To factor n it therefore suffices to construct several such z’s in a more-or-less
random manner.

In many factoring algorithms, solutions to (3.1) are sought by collecting
integers v such that

where the factor base P is some finite set of integers that are coprime to n , and
ep(w) E 2 for p E P . A pair (v , e (v)) satisfying (3.2), with e (v) = (ep(v))pEP E
Z#P, is called a relation, and will be denoted by v for short. If V is a set of
relations with #V > # P , then there exist at least 2 # v - # p distinct subsets W
of V with CvEW e (w) = (~ W ,) ~ € P and wp E 2; these subsets can be found using
Gaussian elimination modulo 2 on the set of vectors e (v) mod 2. Each such W
leads to an 2 E (nu,, v) . (npEp p-’”~) mod n satisfying (3.1).

In the original quadratic sieve factoring algorithm [I21 relations are collected
as follows. Let P consist of -1 and the primes 5 B with Legendre symbol
(f) = 1, for some bound B . An integer is called B-smooth if it can be written
as a product over P. Relations are collected by looking for small integers i such
that f(i) = (i + [A)’ - n is B-smooth; for such i we have that w = i + [a
satisfies (3.2). Because a prime p divides f (i) if and only if it divides f (i + k p) for
any integer k, smooth values can be found efficiently using a sieve, if the roots
o f f modulo the primes in P are known. For this reason, the relation collecting
step is called the sieving step. Notice that only primes p with (!) = 1 can divide
f (i) ; this explains the definition of P .

The second step, finding subsets W as above, is called the matrix elimination
step. In this paper we will not pay any further attention to this step, as it is well
known how it can be dealt with for # P up to, say, 200000 (cf. [6; 81).

Let

(3.3)

32

for a real number y, and n - 00. With B = L[1/2] it can be shown on loose
heuristic grounds that both steps of the quadratic sieve algorithm can be com-
pleted in expected time L[1].

Because in the original quadratic sieve only one polynomial f is used to gen-
erate all > # P relations, the interval of i-values to be inspected is rather large.
Since f(i) % 2 i [d grows linearly with i, the probability of f(i) being B-smooth
decreases with increasing i. Davis [3] suggested using more than one polynomial,
thus allowing a smaller i-interval per polynomial which should increase the yield
(per i) of the sieving step. In our implementation we used Montgomery's version
of this same idea [16]. Let P be as above, and let

(3.4)

for integers a, b with b2 n mod 4a2. This requires n to be 1 mod 4, which
can be achieved by replacing n by 3n if necessary; in practice it might even be
advantageous to use some other multiplier, cf. [16]. If f(i) is B-smooth, then
v = (a i + b/ (2a)) mod n satisfies (3.2), and B-smooth f(i)'s can again be found
using a sieve once the roots of f modulo the primes in P are known. Thus,
polynomials satisfying (3.4) can be used to generate relations efficiently. The
expected run-time of the resulting factoring'algorithm, however, is still L[1].

f(i) = a2i2 + bi + (b 2 - n)/(4a2),

3.5 Constructing Polynomials

(cf. [7; 161). We show how polynomials as in (3.4) can be constructed. Let M
be such that f(i)'s with i E [-M, M) will be tested for smoothness in the sieve.
Let a 3 mod 4 be a probable prime with a2 M m / M and Jacobi symbol
(E) = 1. Since a is free of primes in P , the polynomial f has two roots modulo
all primes in the factor base P. To find b such that b2 n mod 4a2, we first set
b = n(0+1)/4 mod a so that b2 n mod a. Next we replace b by

b + a((2b)- ' ((n - b 2) / a) mod a),

and finally, if b turns out to be even we replace b by b - u2. It follows that
b2 n mod 4a2, and If(i)l = O(iJ;;) for i E [-M, M) . Notice that the roots of
f mod p are (- b f f i) / (2a2) mod p , so that computation of the roots requires
one inversion modulo p for all primes p in P ; the values of vp z (fi) mod p
should be precomputed and stored in a table.

Another method to generate polynomials is presented in [13], and has the
advantage that the roots of a polynomial modulo the primes in the factor base
can be derived easily from the roots of the previous polynomial. We have no
practical experience with this method.

In implementations of QS one usually also collects values of i for which f (z)
factors almost completely using the elements of PI i.e., except for one (or two)
larger primes. If the large primes in these so-called partial relations match, they
can be combined to form relations as in (3.2). In practice this enhancement leads
to a speed-up factor of 4 to 6. For a detailed description of how the number of

33

useful combinations among the partial relations can be counted, and how the
combinations can be actually formed, we refer to [lo].

3.6 The Sieving Step

Summarizing, for some fixed choice of factor base P, sieving bound M and
n 1 mod4, the QS-sieving step can be carried out by performing steps (a)
through (h).
(a) For all primes p in P compute rp

(c) Compute the smallest a > qOw that satisfies the requirements in (3.5), com-

(d) For all primes p in P compute the roots rF1 and rFz of f modp as (- 6 f

(e) For all integers i with i E [-M, M) set s (i) to zero;
(f) For all primes p in P and v = 1 , 2 replace s(i) by s (i) + [logp] for all

i E [- M , M) which are equal to rpu modulo p (this is the actual sieving

(g) For all i E [-M, M) for which s (i) is sufficiently close to the report bound
log If(i)l, try to factor f(i) using the elements of P , and store the resulting
relations and partial relations (an i for which s (i) is close to the report bound
is called a report);

(h) If more relations and partial relations are needed, replace slow by a and go
back to step (c); otherwise terminate.

(J;;) modp;
(b) Set a1ow = [@/rn];

pute the corresponding b as in (3.5), and let f be as in (3.4);

TPb)/(2Q2) mod p;

step);

3.7 Practical Remarks

In step (f) one often does not sieve with the small primes in P , or replaces them
by sufficiently large powers, to increase the speed. This lowers the number of
reports in step (g), so that the report bound has to be lowered accordingly. For
a 100-digit n, the factor base P will have approximately 50000 elements, and
the largest element of P will be about 1.3 lo6. Because a small multiple of this
largest prime is a good choice for M , several million s (i) ’ s have to be stored.
Although each s (i) is usually represented by a single byte (8 bits), the s(i)’s
together might not fit in memory. In that case, the interval [-M, M) is broken
into smaller subintervals, which are processed consecutively as above. In practice
the report bound log If(i)l is often replaced by some appropriately chosen fixed
bound.

34

3.8 Parallelization

The sieving step can easily be parallelized on any number of independent pro-
cessors, by restricting each of them to a unique interval of candidate a-values,
disjoint from the intervals assigned to other processors. Notice that two different
identical processors that run the same sieving program and that started at the
same time, each on its own interval of candidate U-values, are most likely to
be at entirely different points in the program, even after a very short run: one
processor might find a ‘good’ U-value earlier than the other in step (c), and thus
begin earlier with the next steps, or one processor might find more reports in
step (g) and spend more time on the trial divisions of the corresponding f (i) ’ s .
Also at other points the precise instruction stream that gets executed might dif-
fer (for instance, in the inversions modulo p in step (d)), but these differences are
minor compared to the entirely different things that might happen in steps (c)
and (g). In a situation where several copies of (3.6) are processed simultaneously
in SIMD-mode, this might lead to major inefficiencies, because the process that
happens to be the slowest for a particular step sets the pace for that step. In the
next section it is shown how these inefficiencies can be avoided at the expense
of some memory.

4 Redistributing Data

In our SIMD-implementations of (3.6)(c) and (3.6)(g) we find ourselves in the
following situation. We have a toroidal mesh M of m SIMD processing elements
(PE’s) that allows fast communication between each PE and its eight nearest
neighbors. For the 16K MasPar described in Section 2, for instance, M would
be the array of PE’s, and m would be 16K. Furthermore, there is an inexpensive
SIMD-process G, such that each PE running G has a fairly small probability p ,
independent from the other PE’s, to generate a useful packet of information.
These packets have to be processed by a time-consuming SIMD-process B. The
goal is to process as many packets as possible, by repeating G and B indefinitely.

Clearly, since p is small it is quite inefficient to perform B right after G
because then only the few PE’s that have found a packet would be processing B.
Fortunately, in our situation we can take advantage of the following.
(i) G can be repeated an arbitrary number of times before E is executed

(i.e., packets do not have to be used immediately after they have been
generated) ;
It is irrelevant for B on which PE a particular packet was found (i.e.,
packets may be generated and processed on different PE’s);
It is not crucial that all packets that have been generated are also actually
processed by B , but of course generating packets that will not be used
leads to inefficiencies.

Using (i) we could keep a stack of packets per PE, and apply G until each stack
contains at least one packet. At that point all rn top of stack elements could
be popped and processed by B , after which G is again applied, and so on. For

(ii)

(iii)

35

small p and large rn this approach would require rather large stacks on the PE’s
unless many packets are discarded, using (iii).

A better solution that uses much smaller stacks and that avoids discarding
too many packets redistributes the packets after every application of G, thus
making use of (ii) as well. There are many ways to do this; for us the following
worked entirely satisfactorily.

4.1 Random Redistribution

On all m PE’s simultaneously, do the following in SIMD-mode. Fix some arbi-
trary ordering N I , N2, . . ., NS of the eight nearest neighbors (the same ordering
for all PE’s). For i = 1, 2, . . ., 8, set N = Ni and perform steps (a) and (b).
(a)
(b)

(bl)
(b2)
(b3)
This approach resulted in the following behavior. Starting from empty stacks on
all PE’s it took on average 2 / p applications of G (each followed by (4.1)) until
none of the PE’s had an empty stack. From that point on it takes, after each
execution of l3 on all rn PE’s, on average l /p applications of G (plus (4.1)),
with a very small variance, before B can be applied again to process m packets.
Except for the start-up stage, this is the best one could hope for.

Although we tried several orderings of the neighbors, we never noticed a
significant difference in the performance. With stacks of at most 5 packets we
occasionally lost packets but this introduced only a minor inefficiency. A simpler
variant of (4.1) would be to remove the jump back to step (a) in the case that at
least one packet has been moved to a neighbor. Similarly, G can be repeated a few
times, before (4.1) is applied (with the jump). We have no experience with these
simplifications, but we suspect that they work equally well. Notice that (4.1) uses
only communication with nearest neighbors, with toroidal wraparound, which
keeps communication costs to a minimum.

Get the number of packets n on N ’ s stack;
If n + 1 is smaller than the number of packets on the PE’s own stack,
then perform steps (bl) through (b3);
Set e equal to the top of stack packet, and pop this packet from the stack;
Push e on the top of the stack of N ;
Go back to step (a).

5 A SIMD Implementation of the QS-Sieving Step

Given the redistribution algorithm from the previous section, there are various
ways to implement the QS-sieving step efficiently on a SIMD-machine, as long
as the machine provides reasonably fast communication between neighbors. The
simplest approach would be to let each PE generate polynomials as in (3.6)(c)
(making sure that they try different a-values), until each PE got at least one
polynomial (using a stack of polynomials and (4.1)), after which each PE per-
forms steps (3.6)(d)-(g) using the polynomial it ended up with (on the top of
its stack of polynomials). This works efficiently in SIMD mode and without fur-
ther inter-processor communication, except for the trial divisions in (3.6)(g); the

36

f(i)’s, however, can again be redistributed using (4.1), so that trial division too
can be performed on all PE’s simultaneously.

Although these applications of (4.1) solve the synchronization problems
caused by SIMD execution of (3.6)(c) and (3.6)(g), this approach is inefficient
on the 16K MasPar, because there is not enough memory per PE to store a suf-
ficiently large chunk of the interval [-M, M). Furthermore, the roots in (3.6)(d)
would have to be recomputed for each subinterval of [-M, M) to be processed,
because there is not enough memory on a PE to store them.

The opposite approach would be to process one polynomial at a time, and to
spread the interval [-M, M) over the PE’s. This is a feasible approach if there if
an ordering PEo, PE1, . . ., PE,-1 such that PEi and PEi+l can communicate
quickly (with indices modulo m). On the 16K MasPar this would not be impos-
sible, but it would lead to a fairly small subinterval per PE with a very small
hit-probability during the sieving step, unless the combined interval [-M, M) is
chosen exceedingly long.

One row of 128 PE’s on a 16K MasPar has a total amount of memory of
128 x 64K= 8MBytes, which is just about the right amount of memory to store
the sieving interval [-M, M) for the factorization of a 100-digit n. This obser-
vation suggests that on the 16K MasPar it might be a good idea to process 128
polynomials at a time, with each of the 128 rows of 128 processors taking care
of one polynomial. This is the approach that we opted for. Since there will be
no communication between processors in different rows, except for the redistri-
butions (cf. (4.1)) during the polynomial generation and trial division steps, we
restrict our description to what happens in a single row of 128 processors.

Let PEo, PE1, ..., PE12, be a row of 128 processors, such that PEj and
PE,+l can communicate quickly (with indices modulo 128, i.e., with toroidal
wraparound). We remove -1 and the small primes from the factor base P ,
choose the remaining P such that # P = 128 . ic , for some integer k, and we
partition P over the row of processors in such a way that each processor stores
k primes (but see Remark (5.2)(f)). Furthermore, each processor contains k
square roots of n modulo its k primes (the rp from (3.6)(a)). Finally, we choose
M such that M = 64 . L for some integer L, and we divide the sieving interval
[-M, M) over the processors in such a way that PEj stores the length L interval

Suppose that we have repeatedly applied (3.6)(c) combined with (4.1) on
the entire 128 x 128 processor array simultaneously until each of the 16K p r e
cessors has a non-empty stack of polynomials. In particular, we suppose that
each PEj contains a unique polynomial f j , for 0 5 j 5 127. These polynomials
are processed one at a time in 128 iterations. To process f j processor PEj first
broadcasts f, to the other processors in the row, so that all 128 processors share
the same polynomial, after which the pipelined sieving from (5.1) is performed.

l j = [(i - 64)Ll (j - 63)L).

37

5.1 Pipelined Sieving

Suppose that PEo through PE127 all have the same polynomial f, represented by
and b as in (3.4). The values for m and I below are the same on all processors

and can thus be taken care of by the ACU (cf. Section 2). Perform steps (a)
through (c) on PEo through PE127 simultaneously.

For all i E Ij set s(z) to zero (cf. (3.6)(e));
For m = 1, 2, . . ., k in succession (where # P = 128 . k), perform steps
(b l) through (b5);
Let p be the mth prime on PE, and rp the corresponding squareroot of
n (with different p’s for different j ’ s) ;
ComputR rpl and rpz as the smallest integers 2 (j - 64)L which are
equal to (- b + rp)/(2u2) and (- b - rp)/(2u2) modulo p , respectively (cf.
(3.6)(d)), and compute FPl and Fp2 as the smallest integers 2 -64L which
are equal to rpl and rp2 modulo p , respectively;
Set 1 = 0;
For v = 1,2, as long as rpv < (j - 63)L, replace s(rpu) by s(rpu) t [logp]
and next rpu by rpu + p (cf. (3.6)(f));
Replace 1 by 1 + 1. If 1 < 128, replace the 5-tuple (p,rp~,rp~,~p;pl,i;p~) by
the corresponding 5-tuple from the left neighbor (with wraparound), on
PEo only replace rpl and rp2 by +pl and Fp:pz, respectively, and return to
step (b4);
For all i E Ij for which s (i) is sufficiently close to the report bound
log lf(i)l, push i, a, and b on the top of a stack of reports (cf (3.6)(g)).

This finishes the description of (5.1). Notice that in (5.1) 128 polynomials
are processed simultaneously on 128 rows of processors. After every execution
of (5.1) the elements of the stack built in step (c) will be redistributed using
(4.1). As soon as all 16K processors have a t least one report, the f (i) ’ s are
computed and the actual trial divisions (using the original factor base including
the small primes) are carried out on 16K processors simultaneously. And after
128 applications of (5.1) new polynomials are generated using (3.6)(c) and (4.1).

5.2 Practical Remarks

(a) In our implementation we removed the first 50 primes from P , to speed up
the sieving step; the threshold is best determined experimentally.

(b) We gained considerable additional efficiency by distributing P over the PEi
in such a way that its smallest 128 elements are taken care of by m = 1 in
step (b), the next smallest 128 by rn = 2, etc.: as soon as for some rn all
p’s are > L, at most one sieve location per PE has to be updated in step
(b4), which means that for larger m simpler code can be used. An additional
advantage of this approach is that [logp] in (5.l)(b4) can be replaced by a
sufficiently close approximation which is the same over the entire array of
processing elements, and which can be changed depending on the value of VI.

As usual, instead of log 1f(i)1 we used some fixed value for the report bound
in (5.1)(c).

38

(c) In our implementation we only kept track of rP1, FPl and rpl - rpz. Although
this leads to slightly more complicated computations, it also resulted in fewer
communications (a 4-tuple instead of a 5-tuple in (5.l)(b5)) and thus greater
speed.

(d) If the interval [-M, M) is too large, (5.1) can be applied repeatedly to subin-
tervals of [-M, M) simply by changing the definition of 1, appropriately (but
see Remark (f) below). In this way we could decrease the memory require-
ments of our implementation considerably, at the expense of an acceptable
slow-down. So, instead of the full 64K per PE, we normally use only about
28K, thus allowing other people to share the machine with us.

(e) In the trial division, the PE’s simultaneously process the primes in the com-
plete factor base to build a list of primes occurring in their)(i). After that,
each PE works on this list of primes to determine the multiplicities and the
remaining factor. All PE’s for which the remaining factor is 1, or a suffi-
ciently small prime > B, or a sufficiently small composite, dump their trial
division results to disk. The remaining composites (which lead to partial re-
lations with two large primes) are factored by a separate program that runs
independently on the front end.

(f) In the above description each processor stores k elements of P and the cor-
responding roots, where # P = 128. k, and processors in the same column
store the same subsets. We found it more efficient to distribute these subsets
over the columns, so that processors store at most [(k - 1)/128] + 1 elements
of P plus the corresponding roots. This leads to some extra communication
(in Step (5.1)(bl)), but it makes more memory available for the sieve. If
the sieve is broken into smaller subintervals, as suggested in Remark (d),
then we either need O(k) memory per processor to remember various useful
values for the next subinterval, or these values have to be recomputed for
each subinterval. This leads to loss of memory (which could have been used
for the sieve) or loss of time. In particular for large #P we found it more
efficient not to use Remark (d) at all, even though the sieve gets so small
compared to m a x P that many primes do not even hit it once.

6 Example

The largest number we have factored using our SIMD QS implementation is the
110-digit number from the RSA-challenge list [15]:

RSA(110) =35794234179 72586877499 18078325684 55403003778 02422822619
35329081904 84670252364 67741151351 61 112045040 60317568667

~58464182 144 06 154678836 553 182979 16 2384 1986 105 05601062333.
61224210904 93547576937 03731756141 88412257585 54253106999

At the time of writing, this is the largest number factored on a single machine
using a general purpose factoring method. This factorization took approximately
a month of computing time on the 16K MasPar, where we used only 40K of the

39

64K bytes per PE. T h e factor base consisted of approximately 80,000 primes,
and the sieving interval [- M , M) was broken into two consecutive pieces (cf.
(5.2)(d)). We did not use the suggestions from Remark (5.2)(f) for this factor-
ization; we later found out t h a t they would have saved us quite some time. They
were used, however, for the factorization of a 105-digit number in 5.3 CPU-days
using 30K per PE. Extrapolation to a 110-digit number would give at most 20
CPU-days, still with 30K per P E .

References

1. Bernstein, D. J., Lenstra, A. K.: A general number field sieve implementation (to

2. Caron, T. R., Silverman, R. D.: Parallel implementation of the quadratic sieve. J .
Supercomputing 1 (1988) 273-290

3. Davis, J. A., Holdridge, D. B.: Factorization using the quadratic sieve algorithm.
Tech. Report SAND 83-1346, Sandia National Laboratories, Albuquerque, NM,
1983

4. Dixon, B., Lenstra, A. K.: Massively parallel elliptic curve factoring. Advances in
Cryptology, Eurocrypt’92, Lecture Notes in Comput. Sci. 658 (1993) 183-193

5. Gjerken, A.: Faktorisering og parallel prosessering (in norwegian), Bergen, 1992
6. Lenstra, A. K.: Massively parallel computing and factoring. Proceedings Latin’92,

Lecture Notes in Comput. Sci. 583 (1992) 344-355
7. Lenstra, A. K. , Lenstra, H. W., Jr.: Algorithms in number theory. Chapter 12 in:

van Leeuwen, J. (ed.): Handbook of theoretical computer science. Volume A, Al-
gorithms and complexity. Elsevier, Amsterdam, 1990

8. Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., Pollard, J. M.: The factorization
of the ninth Fermat number. Math. Comp. 61 (1993) (to appear)

9. Lenstra, A. K., Manasse, M. S.: Factoring by electronic mail. Advances in Cryptol-
ogy, Eurocrypt ’89, Lecture Notes in Comput. Sci. 434 (1990) 355-371

10. Lenstra, A. K., Manasse, M. S.: Factoring with two large primes. Math. Comp. (to

11. MasPar MP-1 principles of operation. MasPar Computer Corporation, Sunnyvale,
CA, 1989

12. Pomerance, C.: Analysis and comparison of some integer factoring algorithms. 89-
139 in: Lenstra, H . W., Jr., Tijdeman, R. (eds): Computational methods in number
theory. Math. Centre Tracts 154/155, Mathematisch Centrum, Amsterdam, 1983

13. Pomerance, C., Smith, J. W., Tuler, R.: A pipeline architecture for factoring large
integers with the quadratic sieve algorithm. SIAM J. Comput. 17 (1988) 387-403

14. te Riele, H., Lioen, W., Winter, D.: Factorization beyond the googol with mpqs on
a single computer. CWI Quarterly 4 (1991) 69-72

15. RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; information available
by sending electronic mail to challenge-rsa-listQrsa.com

16. Silverman, R. D.: The multiple polynomial quadratic sieve. Math. Comp. 84 (1987)

appear)

appear)

327-339

	Factoring Integers Using SIMD Sieves
	Introduction
	The Hardware
	The Quadratic Sieve Factoring Method
	Constructing Polynomials
	The Sieving Step
	Practical Remarks
	Parallelization

	Redistributing Data
	Random Redistribution

	A SIMD Implementation of the QS-Sieving Step
	Pipelined Sieving
	Practical Remarks

	Example
	References

