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Abstract. We present data concerning the factorization of the 12O-digit 
number RSA-120, which we factored on July 9,1993,  using the quadratic 
sieve method. The factorization took approximately 825 MIPS years and 
was completed within three months real time. At the time of writing 
RSA-120 is the largest integer ever factored by a general purpose fac- 
toring algorithm. We also present some conservative extrapolations to 
estimate the difficulty of factoring even larger numbers, using either the 
quadratic sieve method or the number field sieve, and discuss the issue 
of the crossover point between these two methods. 

On the factorization of RSA-120 

Evaluation of integer factoring algorithms, both from a theoretical and practical 
point of view, is of great importance for anyone interested in the security of 
factoring-based public key cryptosystems. In this paper we concentrate on the 
practical aspects of factoring. Furthermore, we restrict ourselves to general pur- 
pose factoring algorithms, i.e., algorithms that do not rely on special properties 
the numbers to be factored or their factors might have. These are the algorithms 
that are most relevant for cryptanalysis. 

Currently the two leading general purpose factoring algorithms are the 
quadratic sieve (QS) and the number field sieve (NFS), cf. [12] and [2]. Through- 
out this paper, NFS is the generalized version (from [2]) of the algorithm from [$I; 
the latter algorithm is much faster, but can only be applied to composites of a 
very special form, cf. [9]. Let 

~ , [ a , b ]  = exp((b+ o(l))(log2:)"(ioglogz)'-") 

for real a,  b ,  2, and 2: -+ 00. To factor an odd integer n > 1 which is not a prime 
power, QS runs in time 
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and NFS in 

L,[1/3,1.923]. 

It follows that NFS is asymptotically superior to QS, but for numbers in the 
100 to 150-digit range it is not immediately obvious which of the two methods 
is faster. If the o(1)’s in both runtimes are set to zero, then the crossover occurs 
for n around 124 digits. This computation neglects many aspects affecting the 
practical runtimes of both methods, and is thus oversimplistic. Similarly, it does 
not make much sense to evaluate any of these expressions for some particular n 
(again with o(1) = 0), and to interpret the result as ‘the number of instructions’ 
needed to factor that  n, as sometimes happens in the literature or on sci.crypt. 
They can be used, however, to predict how hard factoring m will be, when it is 
known how hard n is, and if n and m differ by not more than, say, 15 digits. 
Although such a prediction can be helpful, it is of only limited practical value, in 
particular if rn is considerably larger than n or if n was already testing the Iimits 
of our capabilities. This is caused by the fact that the 41 )  is not a constant and 
by a variety of other issues that will be discussed below. 

The QS-factorization of a 116-digit factor of 10142+1 was the largest general 
purpose factorization reported in the literature [ll].  As mentioned in [ll] vari- 
ous parameters for that  factorization were deliberately chosen suboptimally, in 
order t o  keep memory requirements acceptable to the contributors of cycles (the 
authors of [ll] use their ‘electronic mail’ approach (cf. [lo]) to get the cycles nec- 
essary for this factorization, so they had every reason to avoid complaints from 
prospective contributors). The factorization was completed in approximately 400 
MIPS years, which corresponds to roughly 400 . lo6 .365 .24 .3600 = 1.3 . 10l6 
instructions. Application of the ill-advised practice described above to this 116- 
digit n would lead to  an estimate of L,[1/2,1] w 5.7 .  1OI6 instructions, which is 
off by only a factor 4.4, and thereby unusually accurate. 

In the present paper we consider the 120-digit number RSA-120. Until June 9, 
1993, RSA-150 wa8 the smallest unfactored number on the ‘RSA challenge list,’ 
which is a list of composite numbers of d digits, for d = 100, 110, 120, . . ., 
490, 500. This list was compiled by RSA Data Security Corporation Inc. in the 
following manner (cf. [14]): 

Each RSA number is the product of two randomly chosen primes of ap- 
proximately the same length. These primes were both chosen to be con- 
gruent to 2, modulo 3, so that the product could be used in an RSA 
public-key cryptosystem with public exponent 3. The primes were tested 
for primality wing a probabilistic primality testing routine. After each 
product was computed, the primes were discarded, so no one-not even 
the employees of RSA Data Security-knows any product’s factors. 

RSA-100 was factored in April 1991 by the third and fourth author into two 
50-digit primes, and RSA-110 was factored in April 1992 by the third author 
into two 55-digit primes [4]. Here we discuss some of the data that we gathered 
during our QSfactorization of RSA-120, and we present its two 60-digit prime 
factors. This factorization is a new general purpose factoring record, breaking 
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the old record by 4 digits. A reader who wished to argue that the 116-digit record 
has not been broken would need to assert that there is no reason to believe the 
integrity of the above statement of RSA Data Security Curporation Inc., of its 
employees, or of the authors of this paper. 

There are several points where our effort differs from the old 116-digit record. 
In the first place we did not employ the approach from [lo] where an unknown 
number of anonymous volunteers on the internet contribute virtually all neces- 
sary cycles, all using the same program. Instead, we used three independently 
coded programs that ran at only four different sites, unevenly spread over two 
continents: the first author used his QS-implementation on workstations at the 
university of Saarbrucken [3], the other authors used the program from [lo;  111 
on workstations at Lehigh University, Bellcore, and DEC SRC, and the third au- 
thor used his SIMD QS-implementation on Bellcare’s massively parallel machine 
(MasPar), as described in [4] .5 

Secondly, we did not impose artificial restrictions on any of the parameters 
that have to be chosen, as the authors of [ll] readily admit to have done (for 
the reasons mentioned above). As a consequence, the memory demands of our 
programs, as well as the further storage requirements, vastly exceeded those of 
any previous factoring efforts of which we are aware. This includes factoriza- 
tions using the number field sieve applied to  composites of a very special form, 
a detailed account of which can be found in [l; 8; 91. While we have made every 
attempt to minimize the total effort to factor RSA-120 we also gathered experi- 
ence with the much larger programs and files that one would have to deal with 
when attempting to  factor the 512-bit moduli used for security in cryptosystems 
such as RSA. We note that, as a practical matter, many people would regard 
1024-bit moduli as the minimum necessary for longer term security; and that 
our result provides a benchmark that indicates how far our best current efforts 
are from being able to  factor such 308-digit numbers. 

As will be shown in the next section our factorization of RSA-180 took at 
most 825 MIPS years. As mentioned above, we tried to minimize this runtime, SO 

we do not expect that RSA-120 could have been factored by QS in substantially 
less time. Extrapolation of the 400 MIPS years for the 116-digit number from [11] 
to RSA-120, using (l), gives approximately 950 MIPS years; here we use the fact 
that the multiplier for the 116-digit number was 1, hut that we used 7 for RSA- 
120, i.e., we factored 7-RSA-120. (The use of multipliers is one of the reasons why 
extrapolation of QS-runtimes may be unreliable.) This shows that extrapolation 
based on (1) can give reasonably accurate results. When we use (1) to extrapolate 
the 825 MIPS years for RSA-120 to the runtime that would be needed for the 
QS-factorization of a 129-digit number, we would get approximately 5000 MIPS 
years. At the time of writing a group of people on the internet is actually working 

’ When we were almost finished we were joined by Walter Lioen and Herman te Riele 
from the Centre for Mathematics and Computer Science (CWI) in Amsterdam, The 
Netherlands, who were using their QS-implementation on workstations at the CWI. 
We gratefully acknowledge their assistance. 
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on the QS-factorization of a 129-digit numberY6 following the approach and using 
an adapted version of the code of [lo]. Current predictions indicate that it will 
take between 5000 and 6000 MIPS years to complete this factorization, which is 
close to our prediction based on extrapolation. 

An important issue in the study of the practical behavior of factoring algo- 
rithm is the crossover point between QS and NFS. Experiments indicate that the 
NFS-implementation from [l] would need at least 300 MIPS years for a general 
110-digit number. Optimistic extrapolation to RSA-120, using (2), suggests that 
it would take at least 1300 MIPS years using NFS; similarly, a 129-digit number 
would take at least 5000 MIPS years. These figures suggest that the crossover 
point between QS and NFS lies beyond 130 digits. 

Unlike QS, however, NFS is a very new algorithm: hardly anybody has much 
practical experience using it on numbers with more than 110 digits, and most 
implementations are still in an experimental stage, At the time of writing the 
third author is working on various improvements of his NFS-implementation 
that increase the sieving and trial division speed, and that at the same time 
improve the yield by including relations with triple and quadruple large primes 
(cf. [8: 7.31). While it is still too early to present runtime estimates for this new 
NFS implementation, experiments suggest that the expected NFS runtimes given 
above can be substantially improved and that the crossover point lies closer to 
125 than to 130 digits. 

In the remainder of this paper we present some of the data and statistics 
that we have gathered during our factorization of RSA-120, aimed at a reader 
with a reasonable background in current factoring terminology. We also present 
the factorization of RSA-120. 

QS-data for RSA-120 

We present QS-data related to the following number: 

RSA- 120 = 22701048 12954373633342599609474936688958753364660847800 
38173258247009162675779735389791151574049166747880487470296548479, 

where the first line consists of the first 55 digits, and the second gives the last 
65 digits (cf. [14]). We used 7 as multiplier, and a factor base size of 245810. 
These choices are based on several experimental runs with these and other 
choices. For the 116-digit factorization of n = + 1)/(101 . 569 ' 7669 * 

380623849488714809) reported in [ll] multiplier 1 and a factor base size of 
120000 were used, but the authors of [ll] remark that 160000 would have been 
a better choice. Because the factor base size is supposed to grow with the square 
root of the runtime, this remark would indicate that 

The number they are trying to factor is the 129-digit RSA challenge number that 
was published in Martin Gardner's column in the August 1977 issue of Scientific 
American. 
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(with rn = 7 - RSA-120) would be a good choice for RSA-120, and this is indeed 
close to our choice. The memory requirements of our programs varied between 
4 and 7 megabytes. As far as we know this is considerably more than wi19 ever 
used before in a large factoring project using workstations; the reason that we 
could afford this ‘luxury’ is that most new workstations, at least most of the 
machines that we were using, are normally equipped with 16 or more megabytes 
of main memory. On such machines our program fitted comfortably alongside 
space consuming standard software packages (windows, etc.), something which 
is much harder on machines with only 8 megabytes or less. 

Sieving stage. We used the ‘double large prime variation’ of QS from [ll], 
but we allowed large primes up to 230 which is an order of magnitude larger than 
108-more or less the customary bounda7 As a result we collected far more data 
than would have followed from a straightforward extrapolation of the data from 
the 116-digit factorization. For that factorization 1.25 million relations involving 
one or two large primes were sufficient to generate 120000 combinations. For 
RSA-120 we collected 5 105500 relations (1 175 252 338 bytes of data) , 48665 
of which were full relations, 884 323 were partial relations involving a single 
large prime, and 4 172512 were partial relations involving two large primes.’ The 
5056835 partial relations generated 203 557 combinations, where only 653 899 of 
the partials actually occurred in at least one combination. This led to a total 
of 48665 + 203557 = 252222 relations, which is considerably more than the 

245810 + 10 relations that we would need to factor RSA-120. The lengths of 
the relations in terms of the original relations are given in the table. 

length 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

number of 
combinations 

48665 
41493 
42958 
37018 
29910 
20753 
13821 
7934 
4587 
2484 
1305 

length 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

number of 
combinations 

646 
303 
173 
86 
48 
22 

6 
5 
1 
3 
1 

Among the 1149564 relations,contributed by the first author there were 16203 single 
large prime relations with large prime between Z30 and Z31. 

The second author contributed 30.3%, Bellcore’s MasPar 26.7%’ the first author 
22.5%, and workstations at Bellcore, DEC SRC, and the CWI the remaining 20.5%. 
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Fig. 1. Progress in the sieving stage 

The total number of polynomials generated during the sieving stage was 
approximately 13 million, and the total number of sieve reports (i.e., actual trial 
divisions carried out) was approximately 100 million. 

The figure presents the progress (as a function of computing time) of the 
relation collecting stage. The full and the partial relations behaved as usual 
almost as linear functions of time; the partials are not given in the figure. The 
upper curve, the sum of the full relations and the independent combinations 
among all partials, hit the 245810 mark on June 7, after 82 days of sieving. The 
‘small combinations’ gives the growth of the number of combinations among all 
partials with large prime(s) less than los. From this curve and the curve giving 
its sum with the fulls, it follows that using large primes larger than lo8 saved 
us approximately two weeks of sieving; although considerably more disk space 
is needed to store the huge amounts of data, it follows that it is indeed a good 
idea to relax the usual bound of lo8 on the large primes. 

The ‘combinations among ordinary partials’ gives the growth of the number 
of combinations in the ordinary single large prime variation. These combinations 
of ordinary partials are known to accumulate according to a quadratic curve, and 
we determine the leading term of this quadratic below. The reader might observe 
that this leading term is sufficiently small that the factorization was completed 
before the quadratic term becomes visible in the picture. The lowest curve, the 
‘combination among pp’s’, is merely a curiosity, as it gives the number of cycles 
among the partial relations involving two large primes, excluding the partials 
with a single large prime. These cycles were never actually constructed, because 
there is no reason at all to exclude the ordinary partials, but we counted their 
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lengths: two cycles of length 3 and 5432 cycles of lengths ranging from 22 to 155, 
with an average length of 95.5. 

Not given in the figure are the curves for the number of combinations among 
partials with large primes < i - lo8,  for i = 2,  3, . . ., 10. For i = 10 that curve 
is almost the same as the ‘all combinations curve’, because there were 202428 
combinations among partials with large primes < l o9 ,  which is only 1129 less 
than the total of 203557 combinations. For i = 2 ,  3,  . . 9 the combination curve 
for i - 10’ lies approximately halfway between the curves for (i - 1) . l o 8  and 10’. 
All cycles were counted and built using the methods from [ll]. 

Analysis of sieving. The main reason to present all these numbers and curves 
is to gain a better understanding of the behavior of the double large prime vari- 
ation, and in particular to be able to predict how much sieving iu needed before 
the factorization can be completed. A theoretical estimate of the number of com- 
binations among the ordinary partial relations is given in [ll: Section 31: if there 
are t ordinary partial relations, and if p ,  is the probability that a large prime 
q E Q occurs in such a relation, where Q is the set of large primes that can pos- 
sibly occur in these relations, then the number of combinations is approximately 
c . t 2 ,  for c = (CqcQ p i ) / 2 .  

To apply this estimate, let Q = { q  : q prime, 7216241 < q < 230, (7) = l}, 
where 7216241 is the largest element in our factor base, and rn = 7 - RSA-120. 
For an initial estimate of p ,  one might assume that a particular large prime q 
occurs with probability inversely proportional to q ,  since l / q  of all numbers are 
multiples of q .  This assumption neglects the fact that after the large prime q is 
removed from the number, the resulting co-factor is (almost) smooth, i.e., factors 
over the factor base. Since smaller numbers are more likely to be smooth than 
larger numbers, this may make the occurrence of larger large primes more likely. 
On the other hand, due to the way the sieving process works, partial relations 
with smaller large primes are easier to find than those with larger large primes. 
To take these considerations into account, we take as our model that q occurs 
with probability proportional to l / q Q ,  for some positive Q < 1. For the 868120 
ordinary partials with large prime q in Q (where 884323 - 868120 = 16203 had 
large prime > 230) ,  we found that Q = 0.79. This leads to c = 5.832. lo-’, and 
an estimate of c . 8672682 = 43866 combinations. This is reasonably close to 
the 41490 combinations that we actually got (41493 - 41490 = 3 combinations 
of length two were among the 16203 ordinary partials with large prime > z 3 O  

referred to above), and we may conclude that the number of combinations of 
length two can fairly well be predicted, as soon as Q can be estimated reliably 
enough given some initial collection of ordinary partials. Although other QS- 
factorizations lead to very similar curves, even two factorizations with the same 
factor base size and #Q may have entirely different a’s. The curves for one of 
them may therefore lie much ‘higher’ or ‘lower’ than the curves for the other. 
This is another reason why extrapolation of QS-runtimes may be unreliable. 

A theoretical analysis of the expected number of combinations of length 
more than two is much harder and has to our knowledge not yet been given. 
Consequently, we do not know of a better way to predict the yield than to plot 
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the initial parts of the curves and extrapolate them in some reasonable way. The 
third author has all large prime data (138995818 bytes) available for anyone 
who wants to analyse these data further, compute the corresponding cr (we only 
computed the a corresponding to the single large prime relations), or attack 
this problem in any other way that might take the guess-work out of future 
QS-runtime predictions. 

We used two methods to estimate the runtime of the sieving stage. Ftom 
a combination of all log-files of all our runs on DEC5000/240 workstations, we 
found that 5 105500 relations could have been found on a single DEC5000/240 
workstation in 33.02 years. Because a DEC5000/240 is a 25 MIPS machine, it 
follows that sieving took approximately 825 MIPS years. Another estimate is 
based on the MasPar runtime. Using only 3/4 of the full memory, the MasPar 
produced on average 480 full relations per CPU-day. This implies that 101.4 
CPU-days would produce 48665 full relations, and since the MasPar is rated 
at approximately 3000 MIPS, we derive an estimate of (3000 - 101.4)/365 = 830 
MIPS years. This is too pessimistic because using the full MasPar would produce 
more fulls per day, and because the partials produced by the MasPar had on 
average smaller large primes than the partials produced by the other machines, 
and are therefore more likely to be combined with other partials. 

We have carried out extensive tests with other choices of the factor base size, 
both before we started and after we had finished the sieving step. According to 
our computations a factor base size of 240000 would have required one percent 
more time, 230000 four percent, and 220000 more than seven percent. We did 
not attempt to analyse the effects of a factor base that is even larger than 245810. 

Matrix reduction. As a result of the sieving stage we got a 252222 x 245810 
bit-matrix. To find dependencies modulo two among its rows the third author 
used the technique described in [9] with the extension from [l]: structured Gaus- 
sian elimination (cf. [5; 131) followed by the incremental version from [l] of the 
MasPar dense matrix eliminator described in [6]. Structured Gauss managed to 
reduce the size of the matrix to 89304 x 89088. This took 15 hours on a SparclO 
workstation, 10 of which were needed to build the 994489344 byte dense matrix, 
in 47 separate files of more than 21MB each. This dense matrix was smaller than 
expected (and smaller than one of the dense matrices from [l]) and just fitted in 
core on the MasPar. Reading it into core took 13 minutes, finding dependencies 
took 4 CPU-hours. The second dependency produced the two 60-digit prime 
factors of RSA-120: 

327414555693498015751146303749141488063642403240 171463406883 

and 

693342667110830181197325401899700641361965863127336680673013. 

Acknowledgments. Acknowledgments are due to Paul Leyland for his helpful 
comments. 
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