On the factorization of RSA-120

We present data concerning the factorization of the 120-digit number RSA-120, which we factored on July 9, 1993, using the quadratic sieve method. The factorization took approximately 825 MIPS years and was completed within three months real time. At the time of writing RSA-120 is the largest integer ever factored by a general purpose factoring algorithm. We also present some conservative extrapolations to estimate the difficulty of factoring even larger numbers, using either the quadratic sieve method or the number field sieve, and discuss the issue of the crossover point between these two methods


Published in:
Advances in Cryptology - CRYPTO '93. 13th Annual International Cryptology Conference Proceedings, 166 - 74
Presented at:
Advances in Cryptology - CRYPTO '93. 13th Annual International Cryptology Conference Proceedings, Berlin, Germany
Year:
1994
Keywords:
Laboratories:




 Record created 2010-06-24, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)