We introduce VSH, very smooth hash, a new S-bit hash function that is provably collision-resistant assuming the hardness of finding nontrivial modular square roots of very smooth numbers modulo an S-bit composite. By very smooth, we mean that the smoothness bound is some fixed polynomial function of S. We argue that finding collisions for VSH has the same asymptotic complexity as factoring using the Number Field Sieve factoring algorithm, i.e., subexponential in S. VSH is theoretically pleasing because it requires just a single multiplication modulo the S-bit composite per ω(5) message-bits (as opposed to O(log S) message-bits for previous provably secure hashes). It is relatively practical. A preliminary implementation on a 1GHz Pentium III processor that achieves collision resistance at least equivalent to the difficulty of factoring a 1024-bit USA modulus, runs at 1.1 MegaByte per second, with a moderate slowdown to 0.7MB/s for 2048-bit RSA security. VSH can be used to build a fast, provably secure randomised trapdoor hash function, which can be applied to speed up provably secure signature schemes (such as Cramer-Shoup) and designated-verifier signatures. © International Association for Cryptologic Research 2006.