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Engin Türetken1 ?, Christian Blum2, Germán González1, and Pascal Fua1
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Abstract. We present a novel approach to fully automated reconstruc-
tion of tree structures in noisy 2D images. Unlike in earlier approaches,
we explicitly handle crossovers and bifurcation points, and impose geo-
metric constraints while optimizing a global cost function.

We use manually annotated retinal scans to evaluate our method and
demonstrate that it brings about a very substantial improvement.

1 Introduction

Tree-like structures, such as vascular networks, dendritic trees, or bronchial net-
works, are pervasive in biological imagery. With the advent of modern acquisition
techniques that produce endless streams of 2D and 3D imagery, there has been
renewed interest in automated delineation as a means of exploiting this data.
Of particular interest are topologically accurate delineations, which are critical
for diagnosis and analysis purposes. However, despite many years of sustained
effort, automated delineation techniques remain fragile and error-prone.

In earlier work [1], we showed that robustness could be improved by exploiting
the global tree topology early in the algorithm. However, this method suffers from
the fact that the tree-growing algorithm it uses makes all its decisions based on
local image evidence without regard to tree shape. As a result, it still makes
topological mistakes, such as those highlighted by circles in Fig. 1.

In this paper, we address this issue by incorporating into the tree reconstruc-
tion algorithm shape priors that enforce geometric consistency between pairs of
graph nodes and edges. This involves solving a k-cardinality arborescence prob-
lem, which is known to be NP-hard [2]. Nevertheless, we will show that good
approximate solutions can be obtained by extending the metaheuristic approach
of [3]. We also explicitly model crossovers and bifurcations, which are particu-
larly troublesome in 2D projections of 3D volumes and can result in spurious
branches, gaps, and other topological errors if not handled properly.

Introducing geometry constraints and handling crossovers results in a robust
fully automated delineation technique that we demonstrate on vascular trees of
retinal fundus images. As shown in Fig. 1, it yields a significant improvement,
which is also supported by quantitative evaluation.
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Fig. 1: The first and third rows depict vascular tree reconstructions from two
different retinal scans. In the second and fourth rows, we show enlarged versions
of the same images. (a) Original images with manually outlined blood vessels
overlaid in white. (b) Trees reconstructed using a minimum spanning tree (MST)
approach. (c) Trees reconstructed using our earlier method [1]. (d) Trees recon-
structed using the proposed technique. Note the false positives and the false
negatives, highlighted respectively by the green rectangles and the yellow circles
in columns (b) and (c), have disappeared from column (d).

2 Related Work

Most automated delineation techniques start by computing a tubularity image in
which pixels likely to belong to filaments have high scores. This image can then
be thresholded and its skeleton computed [4]. This tends to produce disconnected
components and artifacts on noisy data, which often require considerable post-
processing and analysis for a correct tree to be produced.
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Fig. 2: Graph construction. (a) Original image. (b) Sampled points. The green
point and the red circle represent the root node and optic disk region respectively.
The red points are potential crossovers and the yellow ones are ridge points. (c)
Graph built from the most probable paths.

Alternatively, the tubularity scores can be used to find seed points and re-
cursively trace high-tubularity paths [5, 6]. Although computationally efficient,
this technique lacks robustness since cumulative tracing errors can result in large
topological ones. More global methods avoid this problem by using more of the
image evidence and optimizing a global objective function [7, 8]. However, while
such methods produce smooth tree components, they do not guarantee their
spatial connectedness. Furthermore, they are computationally intensive, which
limits their applicability to large datasets.

By contrast, methods that sample local maxima of the tubularity image and
then connect these samples into a spanning tree [1, 9], guarantee connectivity.
However, they do not take into account global tree geometry, such as smoothness
along the edges or branching factors, which can play an important role in im-
proving topological accuracy, avoiding over-fitting, and speeding up convergence.
They also fail to explicitly account for bifurcations and crossovers, which can eas-
ily lead to mistakes. While post-processing pruning [9] can sometimes eliminate
some spurious branches, it does not allow for recovery from other topological
mistakes. This is the problem we address in this paper by introducing more
global geometry constraints early in the algorithm to prevent such mistakes.

3 Method
Our method consists of the following steps:

1. We compute a tubularity value at each pixel [10], which encodes how likely
it is to be on the centerline of an elongated linear structure.

2. To avoid having to compute a tree that spans individual image pixels, which
would be prohibitively expensive, we select high-probability pixels such as
those of Fig. 2(b) that are as evenly spaced as possible and treat them as
the graph nodes to be linked.

3. We compute the most probable paths between pairs of nearby nodes, such
as those of Fig. 2(c), and treat them as the edges of our directed graph. We
assign them probabilistic costs that are lowest when all pixels along them
are likely to lie in the middle of a filament.
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Fig. 3: Two cases that can lead to reconstruction errors. (a) A crossover with
a single sample point that can be used to build either the horizontal AXB
branch or the vertical Y XZ one, but not both. (b) If there is no sample point
at the bifurcation D, incorporating both the AB and AC paths into the graph
will result in counting twice the pixels in AD. This is avoided by introducing a
sample point at D.

4. We compute the lowest-cost arborescence among those that span K edges
for a wide range of K < N , where N is the number of nodes. This is known
as the K-Cardinality Arborescence Problem. Even though it is NP-Hard,
approximate solutions can nevertheless be computed efficiently and fast.

5. Among these arborescences, we select the one that optimizes a global objec-
tive function.

The above workflow is the same as the one we introduced in our earlier
work [1] with two key differences: First, in [1], we did not take into account the
geometric properties of the trees when constructing them. Here, we incorporate
into our objective function geometric terms that favor trees whose branches are
smooth and along which the width remains consistent. Second, we explicitly
model bifurcations and crossovers.

To solve the associated minimum arborescence problem, we had to substan-
tially modify the tree building procedure [3] we used in our previous work. This
produced very significant performance improvements, as shown in Fig. 1 and
further discussed in Section 4.

3.1 Sampling

We first compute the response of the Rotational Features introduced in [10]
at different scales and orientations at each image location xi, and retain the
maximum value as our tubularity score f(xi). We then map this score to a
posterior probability that xi belongs to a filament centerline, P (xi|f(xi)), by
fitting a sigmoid function. We keep the orientation φi and the width estimates
wi of each point.

We then use a two-step approach to sampling local maxima of this probability
image. First, we threshold and skeletonize it, and use the combined cross-point
number method [11] to detect potential crossovers and bifurcations, which we
will refer to as landmarks such as those depicted by the red dots in Fig. 2(b).
For each landmark, we create two colocated nodes to prevent problems at tree
reconstruction time, such as those depicted by Fig. 3(a). The sampling of bifur-
cations such as the one in Fig. 3(b) is useful to avoid overcounting pixels when
scoring the trees that we reconstruct. In the second step, we sort the remain-
ing pixels according to their probability of belonging to a filament, select the



most probable one, eliminate all those within a certain radius, and iterate. This
produces the regularly spaced samples shown as yellow dots in Fig. 2(b).

In the specific case of retinal scans, we know a priori that the root of the
tree we want to build is located in the optic disk, which is depicted by the red
outline in Fig. 2(b). We use a variant of [12] to detect the optic disk and remove
all samples that reside within it except the one nearest to its center, which will
be assigned as the tree root.

3.2 Building the Graph

The procedure described above returns a set V of nodes. We construct a directed
graph G = (V,E) such as the one of Fig. 2(c) by linking all pairs of samples vm
and vn ∈ V that are within a certain distance of each other—except colocated
ones—by a Dijkstra path emn ∈ E that minimizes the integral of the negative
log of the posterior probabilities P (xi|f(xi)) introduced in Section 3.1.

In [1], we showed that such paths are maximal probability paths between
the vertices and that their total costs cnllmn can be treated as sum of negative
log likelihoods along them. We also showed that if we assume that all geometric
arrangements of edges are equally probable, a near-optimal tree can be obtained
by minimizing

F nll(T (k)) =
∑

emn∈T (k)

cnllmn , (1)

where T (k) denotes a tree of cardinality k. However, in reality, not all trees are
equally plausible. Those whose branches are smooth, conform to the underlying
image orientation, and whose widths vary slowly and consistently, are much more
likely to be correct than others.

To account for this, we exploit four geometric terms to capture the underlying
relations between parts of the tree structure:

1. Edge Direction Similarity (Φe) We model the angular difference between
pairs of adjacent directed edges by a von Mises distribution (circular normal
distribution).

2. Width Consistency (Φw) We model the width differences of pair of ver-
tices connected through directed edges by an asymmetric Gaussian distribu-
tion, since for most datasets a decrease in width is more probable than an
increase along a directed path from the root vertex.

3. Orientation Consistency (Φo) For pairs of connected vertices, we mea-
sure the angular deviations of their orientations from the direction of the line
between them. The deviations are modeled using a von Mises distribution.

4. Tortuosity (Φt) We compute tortuosity values of the paths corresponding
to edges and represent them by a Gaussian distribution. For the vascular
reconstructions obtained in this paper, the tortuosity measure that we used
is the ratio of the path length to the linear distance between the endpoints.

We estimate the parameters of these distributions using maximum likelihood
estimation (MLE). Given the individual terms, the combined pairwise potential



can be written as

Φ(emn|erm,wrmn,φrmn) = Φe(emn | erm) + Φw(emn | wm, wn) + (2)

Φo(emn | φm, φn) + Φt(emn | l(vm, vn)) .

where wrmn = (wr, wm, wn) and φrmn = (φr, φm, φn) denote triplets of width
and orientation estimates, and l(vm, vn) the estimated path between vertices vm
and vn. The criterion we optimize then becomes

F nll(T (k)) =
∑

emn∈T (k)

cnllmn +
∑

erm∈T (k)
emn∈T (k)

Φ(emn | erm,wrmn,φrmn) . (3)

When k is given, finding the tree that minimizes F nll(k) yields very good
results. In practice, however, k is unknown and the criterion of Eq. 3 suffers
from one severe drawback: since the cost of additional edges is always positive,
it systematically favors low values of k. To overcome this difficulty, when scoring
the final tree, we count not only the cost of including some edges in the tree but
also of discarding those that do not belong to it. This turns out to be equivalent
to replacing the cnllmn, which are the sums of negative log likelihoods along the
paths, by cllrmn computed by summing log likelihood ratios − log(P (xi|f(xi))/(1−
P (xi|f(xi)))) along the paths. We then take the global score to be

F llr(T (k)) =
∑

emn∈T (k)

cllrmn +
∑

erm∈T (k)
emn∈T (k)

Φ(emn | erm,wrmn,φrmn) . (4)

In effect, replacing the log likelihoods by the log likelihood ratios amounts to
penalizing graph edges with high probabilities that are left out of the final tree
and overcomes the bias for low values of k [1].

In summary, for each cardinality k=2 . . . N , we build the tree that minimizes
Eq. 3, and assign to it the score of Eq. 4. The final result is the tree that
minimizes such score among all cardinalities,

T̂∗ = argmin
T (k)∈{T (2),...,T (N)}

F (T (k)). (5)

3.3 Estimating the Optimal Tree

Both to force trees to grow from the estimated root and to take advantage of the
pairwise terms to guide the reconstruction process, we extended the ant colony
optimization based algorithm presented in [3]. Due to space limitations, here we
only sketch the modifications we made.

First, to operate on directed graphs, we modify the neighborhood structure
to only contain those edges that point away from the leaves of the current ar-
borescence. Second, we fix the root node and initiate the search from it. At each
growing step, we compute the effective cost of an edge in this neighborhood by
taking into account the pairwise potentials introduced in Section 3.2. An edge
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Fig. 4: Quantitative evaluation of the reconstructions in the two retinal scans of
Fig. 1. (a) DIADEM scores as a function of the tree cardinality for our earlier
approach [1] in blue dotted line, and for the one presented here in red solid
line, which is substantially better. The yellow squares represent the scores of the
standard MST. (b) Corresponding scores computed using the criterion of Eq. 4.
In both cases, the diamonds denote the selected cardinality, taken to be the one
that minimizes this criterion.

is then stochastically selected based on this cost and the number of times it has
been previously selected in the search. Finally, we set a limit on the bifurcation
factor of a node in order avoid false connections on crossovers.

The above procedure is run several times until the obtained minimum costs
for all cardinalities stabilize. Finally, we pick among all these arborescences of
different cardinalities the one that minimizes the criterion of Eq. 4. The algorithm
is very efficient since it requires only a few minutes to converge to topologically
sound reconstructions, such as the ones shown in Fig. 1.

4 Results
The retinal scans of Fig. 1 belong to the DRIVE database [13]. We manually
outlined the vascular trees and treat them as ground truth. These ground truths
are used to compare the quality of the reconstructions of the presented method
as shown in Fig. 1(d), against a spanning tree as given in Fig. 1(b), and the work
of [1], Fig. 1(c).

To compare the methods quantitatively, we use the metric introduced by the
DIADEM challenge [14], which is specifically designed to compare topology of a
reconstructed tree against ground truth. The metric returns a number between
0 and 1 that measures the topological distance between trees by matching their
branching and end points, and then analyzing the connecting paths. Mistakes
close to the tree root are penalized more heavily than the ones closer to the
leaves since they produce more severe topological changes.



Fig. 4(a) shows that the method proposed here yields a very substantial
improvement over the other methods with respect to the DIADEM metric, which
is consistent with the qualitative results presented Fig. 1(d). The optimal tree
cardinalities, illustrated by the diamonds in Fig. 4(b), are automatically obtained
by minimizing the score of Eq. 4.

5 Conclusion
We have presented an algorithm for automatic tree reconstruction that en-
forces geometric constraints such as smoothness and width consistency along
the branches, while explicitly handling crossovers and bifurcations. This yields
a substantial qualitative and quantitative improvement in the reconstructions of
retinal vascular trees at an acceptable computational cost.

In future work, we will extend our approach to other domains such as 3D
dendrite delineation and generalize the type of constraints we can impose.

References

1. Gonzalez, G., Turetken, E., Fleuret, F., Fua, P.: Delineating Trees in Noisy 2D
Images and 3D Image-Stacks. In: CVPR, San Francisco, CA (June 2010)
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