000149369 001__ 149369
000149369 005__ 20190316234818.0
000149369 022__ $$a1465-3060
000149369 02470 $$2ISI$$a000307044800007
000149369 0247_ $$2doi$$a10.2140/gt.2012.16.919
000149369 037__ $$aARTICLE
000149369 245__ $$aLong knots and maps between operads
000149369 269__ $$a2012
000149369 260__ $$bGeometry & Topology Publications$$c2012$$aCoventry
000149369 300__ $$a37
000149369 336__ $$aJournal Articles
000149369 520__ $$aWe identify the space of tangentially straightened long knots in R^m, for m greater than or equal to 4, as the double loops on the space of derived operad maps from the associative operad into a version of the little m-disk operad. This verifies a conjecture of Kontsevich, Lambrechts, and Turchin.
000149369 700__ $$aDwyer, William
000149369 700__ $$g105396$$aHess, Kathryn$$0240499
000149369 773__ $$j16$$tGeometry and Topology$$q919-955
000149369 8564_ $$uhttps://infoscience.epfl.ch/record/149369/files/longKnots-2012-01-28.pdf$$zPreprint$$s463358$$yPreprint
000149369 909C0 $$xU10968$$0252139$$pUPHESS
000149369 909CO $$ooai:infoscience.tind.io:149369$$qGLOBAL_SET$$pSV$$particle
000149369 917Z8 $$x139598
000149369 917Z8 $$x105396
000149369 937__ $$aEPFL-ARTICLE-149369
000149369 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000149369 980__ $$aARTICLE