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ABSTRACT: Ab initio electronic structure methods have reached a satisfactory
accuracy for the calculation of static properties, but remain too expensive for quantum
dynamical calculations. Recently, an efficient semiclassical method was proposed to
evaluate the accuracy of quantum dynamics on an approximate potential without having
to perform the expensive quantum dynamics on the accurate potential. Here, this method
is applied for the first time to evaluate the accuracy of quantum dynamics on an
approximate analytical or interpolated potential in comparison to the quantum dynamics
on an accurate potential obtained by an ab initio electronic structure method. Specifically,
the vibrational dynamics of H2 on a Morse potential is compared with that on the full CI
potential, and the photodissociation dynamics of CO2 on a LEPS potential with that on the
excited 1� surface computed at the EOM-CCSD/aug-cc-pVDZ level of theory. Finally, the
effect of discretization of a potential energy surface on the quantum dynamics is evaluated.
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EVALUATION OF THE ACCURACY OF MOLECULAR QUANTUM DYNAMICS

1. Introduction

A b initio methods for the electronic structure
of molecules have reached a satisfactory accu-

racy for the calculation of static properties, such as
energy barriers or force constants at local minima of
the potential energy surface (PES). The most accu-
rate of such methods remain out of reach when one
wants to describe molecular properties that depend
on full quantum dynamics [1]. To make a calculation
feasible, one has to approximate either the dynamics
of the system [2] or the PES [1], but both approaches
can have nontrivial effects on the results [3].

A recent paper [4] has proposed an efficient
and accurate way to determine the consequences of
approximating the PES. Namely, the authors have
considered quantum dynamics that is done exactly
but on a PES obtained by a lower level electronic
structure method that is less accurate but also less
expensive [4]. When such a calculation is finished,
its accuracy is not known because of the forbidding
expense of the dynamics on the more accurate poten-
tial. Li, Mollica, and Vaníček have demonstrated the
feasibility of their approach by analyzing the effect
of perturbation of an analytical LEPS potential [5, 6]
for the photodissociation of CO2. Here, for the first
time, we show how the approach from Ref. [4] can
be used to assess the accuracy of an analytical PES
in comparison with an accurate, truly ab initio PES.
In particular, we show that the quantum dynamics
and resulting observables can be quite different even
if the difference between the two PESs is quite small
in the dynamically accessible region. We can estimate
the error of the quantum dynamics on the analytical
potential without computing the dynamics on the
ab initio potential.

In addition to being computed by less accurate
methods, a PES used for the quantum dynamics
is often computed only on a grid which is sparser
than the grid used in the actual quantum dynam-
ics. The potential energy at grid points which lie
“in between” are then obtained by some interpola-
tion method. The above approach used to evaluate
the accuracy of the approximate PES can also be
employed to evaluate the accuracy of the interpo-
lated PES with respect to the PES computed on-the-
fly. With this ability, our method can be used as a fast
tool to find an appropriate grid density necessary to
achieve a desired accuracy.

The remainder of the article is organized as fol-
lows: In Section 2, we describe the dephasing rep-
resentation of quantum fidelity and how it is used

to evaluate the accuracy of a PES. In Section 3, the
methodology is tested on the vibrational dynamics
of the H2 molecule, where we compare an analyti-
cal Morse potential with an ab initio potential at the
full CI/cc-pVTZ level of theory, and on the photodis-
sociation dynamics of CO2, where we compare the
analytical LEPS potential with an ab initio poten-
tial at the EOM-CCSD/aug-cc-pVDZ level. We also
evaluate the effect of constructing the PES by inter-
polation from a sparser ab initio computed potential
energy grid. Section 4 concludes the article.

2. Methodology

For simplicity, we use the Born-Oppenheimer
approximation and focus on the quantum dynam-
ics of nuclei, although the method of Ref. [4]
applies to any quantum dynamics and has been
used successfully to analyze the importance of non-
adiabatic effects [7]. The molecular time-dependent
Schrödinger equation is solved in two stages:
First, the time-independent equation for electrons
is solved with fixed nuclear configurations, and
then the nuclear motion is calculated on the result-
ing electronic PES. We consider two PESs: Vacc is
a very accurate high-level electronic structure PES
(presumably “almost exact”), which is too expen-
sive to be used for quantum dynamics. Vappr is an
approximate PES, obtained by a lower-level elec-
tronic structure method or by an analytical fit of
Vacc, and “cheap” enough to be used for quantum
dynamics.

In Ref. [4], the accuracy of quantum dynamics on
the approximate PES is quantified by computing the
quantum-mechanical (QM) overlap

fQM(t) := 〈ψacc(t)|ψappr(t)〉, (1)

where the subscript of ψ denotes the correspond-
ing PES used for the propagation of the initial state
ψ(0). The quantity F(t) := |fQM(t)|2 is known as quan-
tum fidelity or Loschmidt echo and has been defined
by Peres [8] to measure the sensitivity of quantum
dynamics to perturbations. Much effort has been
devoted to the study of the temporal decay of fidelity
and many universal regimes have been found [9]. In
our setting, if F(t) ≈ 1 for all times up to tmax, we can
trust quantum dynamics on the approximate poten-
tial Vappr and use the resulting ψappr(t) to compute all
dynamical properties up to tmax.

Since Vacc is too expensive, neither ψacc(t) nor
fQM(t) can be computed. Li, Mollica, and Vaníček
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have circumvented the necessity to compute ψacc(t)
by using the dephasing representation (DR) of quan-
tum fidelity [10, 11]. The DR is a semiclassical
approximation of fidelity [12, 13] that has been
shown to be accurate in chaotic, integrable, and
mixed systems even in nonuniversal regimes sen-
sitive to the choice of the initial state and details of
dynamics [10, 11]. To evaluate the accuracy of Vappr, a
specific type of “perturbation” is considered, namely
the difference �V = Vappr−Vacc between the approx-
imate and accurate PESs. The DR can be derived from
the semiclassical initial value representation (IVR)
expression for fidelity amplitude [11]

f (t)
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Here x denotes a phase-space point (q, p), super-
script t is the corresponding time, xt
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denote the trajectories on the approximate and accu-
rate PESs, respectively. Finally, St

appr and St
acc are

the corresponding actions. To simplify the evalua-
tion of this highly oscillatory integral, the shadow-
ing theorem [14] is invoked, which states that for
every trajectory on the accurate PES, a very near
(“shadowing”) trajectory on the approximate PES
exists. Using the shadowing trajectories, the action
St

acc can be linearly expanded about St
appr. The sta-

tionary phase approximation yields the DR as an
interference integral

fDR(t) :=
∫

dx0 ρW(x0) exp[−i�S(x0, t)/�], (2)

�S(x0, t) =
∫ t

0
dτ �V

[
qτ

appr(x
0)

]
. (3)

Here, �S(x0, t) is the action due to �V along the
trajectory qt

appr(x
0) of Vappr, and ρW is the Wigner

function of the initial state ψ ,

ρW(x)

= h−d
∫

dξ ψ∗
(

q + ξ

2

)
ψ

(
q − ξ

2

)
exp

(
i
ξ · p

�

)
.

(4)

In the “dephasing representation,” all of fidelity
decay appears to be due to interference and none due
to the decay of classical overlaps. By using only the

trajectories of the approximate PES, the dephasing
representation is related to the semiclassical pertur-
bation approximation [15]. However, in our case,
due to the shadowing property, it is not necessary
to assume that the trajectory of Vacc remains near
the trajectory of Vappr with exactly the same initial
condition [12, 13].

Note that we suggest using trajectories of Vappr for
computing fDR. In principle, one could instead use
trajectories of Vacc [which would only mean switch-
ing the roles of Vacc and Vappr in Eqs. (2) and (3)]
but when compared with the exact QM result (1),
the expected accuracy would be similar to the accu-
racy of Eq. (2). The reason for choosing expression
(2) together with (3) is simply efficiency: the DR
expression (2) requires values and gradients of the
“cheaper” PES (Vappr) but only values of the more
expensive PES (Vacc), whereas the dual expression
based on trajectories of Vacc would require values of
Vappr but both values and gradients of Vacc.

The fundamental reason why quantum dynamics
calculations are expensive is nonlocality of quantum
mechanics: Wave function ψ(t + �t) at any point
in space depends in general on ψ(t) in the whole
space. Therefore, exact quantum dynamics, no mat-
ter on which PES, is only possible for few degrees
of freedom (DOF). We expect the DR to be use-
ful for evaluating the accuracy of a PES in future
applications with more DOFs where the quantum
dynamics itself has to be approximated in addition
to approximating the PES. In this article, we aim
to show the accuracy of the DR for estimating the
difference between wave functions evolved on the
ab initio potential Vacc and the analytical potential
Vappr. We, therefore, need the exact quantum dynam-
ics for comparison. Consequently, we only consider
systems with few DOF for which one can construct a
semiglobal PES Vacc, i.e., compute a potential energy
grid with nj points in the jth DOF.

Once the PES is known, dynamics can be per-
formed, e.g., by the second order split-operator
method [16]. In this method, the quantum evolu-
tion operator for time step �t is approximated by
the following:

e−iĤ�t/� = e−iV̂�t/2�e−iT̂�t/�e−iV̂�t/2� + O(�t3), (5)

where Ĥ = T̂ + V̂ is the Hamiltonian of the sys-
tem and T̂ is the kinetic energy operator. Quantum
dynamics consists of alternate kinetic and poten-
tial propagations (which are just multiplications in
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appropriate representations) and a fast Fourier trans-
form (FFT) to change the representation in between.
The complexity of the FFT is O(N log N) where N =∏d

j=1 nj is the dimension of the Hilbert space and d
is the number of DOF. The overall cost of quantum
propagation is O(d t nd log n) where n := N1/d is the
average number of grid points per DOF.

In the DR, potential energy and forces are eval-
uated on-the-fly, along classical trajectories. This
makes the DR calculation feasible, like classical
molecular dynamics (MD), for very large systems.
The costs of evaluating Vappr and ∇Vappr are very
small since we have an analytical expression for
Vappr. The cost of evaluating Vacc along the classical
trajectories is even smaller since we can take advan-
tage of the potential energy grid Vacc constructed for
the quantum dynamics. While the classical trajectory
is unlikely to go exactly through the precomputed
grid points, we can easily obtain the value of Vacc at
the point qt

appr by interpolation on-the-fly. (We have
used multilinear interpolation [17].) The overall cost
of the DR dynamics is O(d npaths t), where the number
of trajectories needed, npaths = C(F)σ−2 is approxi-
mately independent of d, t, or the type of classical
dynamics, and only depends on the value of fidelity
one wants to describe and the statistical error one
wants to achieve [4]. We have assumed that the dom-
inant cost at each step is the evaluation of the force
∇Vappr and that it is proportional to d: Such scaling
with d could be attained, e.g., by using a finite dif-
ference approach. In particular, in the DR, there is no
exponential scaling with the number of DOF.

For the propagation of trajectories and comput-
ing the classical action �S according to the DR
expression (3), we have used the Verlet algorithm
[18],

p
(

t + �t
2

)
= p(t) − ∇Vappr(q(t))

�t
2

,

q(t + �t) = q(t) + m−1p
(

t + �t
2

)
�t,

p(t) + �t) = p
(

t + �t
2

)
− ∇Vappr(q(t + �t))

�t
2

,

(6)

which is the second order symplectic integrator cor-
responding exactly to the split operator method (5)
for quantum dynamics.

In general, the quantum wave function can be
much less smooth than the PES. Recall, e.g., the
wave function of the nth excited state of the sim-
ple harmonic oscillator which has n local minima,

whereas the potential has only one minimum. Quan-
tum dynamics, however, requires the knowledge of
the propagator, and therefore of the potential, on
the same grid as the wave function. As the ab ini-
tio potential Vacc is very expensive, it is convenient
to perform the electronic structure calculations on
a much sparser grid of

∏d
j=1 n̄j points with n̄j � nj

and then construct the dense PES grid for quan-
tum dynamics by interpolation from the sparse
grid. Again, we have used the multilinear interpo-
lation [17]. In fact, the effect of interpolation can be
analyzed by the DR and this is done in Section 3.3.

3. Results

3.1. VIBRATIONAL DYNAMICS OF H2

The first system considered was the vibrational
dynamics of the H2 molecule. After removing rota-
tions and translations, a single vibrational DOF is
left: the bond length r. As H2 is a 2-electron mole-
cule, the full CI PES Vacc = VFCI can be computed
using the correlation consistent polarized valence
triple zeta basis set (cc-pVTZ) [19]. For the approx-
imate analytical potential Vappr, we have used the
Morse potential [20],

VMorse(r) := V0 + De(1 − e−(r−r0)/a)2. (7)

Above, V0 is the potential energy at the minimum,
De is the classical dissociation energy, r0 is the equi-
librium bond length, and a controls the steepness
of the potential. Values of V0, r0, De, and a were
fitted to Vacc via the least squares method in the
bond length range 0.79 a.u. < r < 4.26 a.u. The
resulting parameter values were V0 = −1.1737 a.u.,
r0 = 1.4279 a.u., De = 0.1947 a.u., and a = 1.0052
a.u. The two potentials, Vacc and Vappr, are compared
in Figure 1. In the dynamically accessible region,
|Vacc − Vappr| ≤ 9.0 × 10−3 a.u.

Both DR and QM dynamics calculations were per-
formed for 2000 fs with a time step of 2 a.u. ≈ 0.05
fs on a grid with n = 2048 points 6 × 10−3 a.u. apart.
The full CI/cc-pVTZ PES grid Vacc = VFCI was com-
puted with Gaussian 09 [21]. Thanks to the low
cost of the ab initio potential VFCI, the construction
of the PES did not require interpolation. Interpo-
lation was only used for evaluating Vacc along the
npaths classical trajectories used in the DR calculation.
We have used npaths = 512 which should result in a
statistical error smaller than n−1/2

paths ≈ 4%, but to con-
firm this, we reran calculations with npaths = 16, 384
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FIGURE 1. (a) Comparison of Vappr = VMorse and
Vacc = VFCI for the H2 molecule. Also shown are the
vibrational energy levels of VMorse and the initial wave
packet. (b) The difference |Vappr − Vacc| = |VMorse − VFCI|
between the two potentials as a function of the bond
length.

and npaths = 131, 072. Also, npaths = 64 was used, to
demonstrate that even with a much lower number
of paths a good estimate of fidelity can be obtained.
The initial state was a Gaussian wave packet, with
position and momentum centered at R0 = 3 a.u.,
P0 = 0 a.u., respectively, and with a position width
σr = 0.3 a.u.

Figure 2(a) shows the fidelity of the vibrational
dynamics on the Morse potential (7) in comparison
to VFCI for the time of 50 fs which contains several
vibrational periods since we expect that the main fea-
tures of the spectrum will be resolved by this time.
First of all, the figure confirms that the fidelity can
be computed accurately by the DR since the DR and
exact QM results agree very well. In other words, we
can estimate the accuracy of quantum dynamics on
VMorse by FDR without having to perform quantum
dynamics on VFCI which is needed for computing
FQM. Second, by comparing the DR results for 64;
512; 16,384; 131,072 trajectories, Figure 2(a) shows
that even using 64 trajectories suffices to obtain an

adequate estimate of fidelity. Third, the figure shows
that for our system, the fidelity remains close to unity
(>0.9) in the given range of time, and therefore,
we expect that the dynamical observables depen-
dent on the dynamics up to time tmax = 50 fs to be
accurately described by using VMorse. We emphasize
that this conclusion would be hard to predict from
the static comparison of the potentials in Figures
1(a) and (b). An example of an observable is the
vibrational spectrum that can be obtained simply by
taking the Fourier transform of the autocorrelation

FIGURE 2. Comparison of vibrational quantum
dynamics of H2 on VMorse and VFCI. The initial state was a
Gaussian wave packet with R0 = 3 a.u., P0 = 0, and
σr = 0.3 a.u. (a) Quantum fidelity computed by the DR
and exactly (QM). (b) Comparison of the autocorrelation
functions on VMorse and VFCI. (c) Comparison of
vibrational spectra of VMorse and VFCI.
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function C(t) = 〈ψ(0)|ψ(t)〉. Figure 2(b) compares
the autocorrelation functions computed using Vacc

and Vappr, and Figure 2(c) the corresponding vibra-
tional spectra. The two spectra have noticeable but
small differences, and so we can conclude that in this
case, the Morse potential VMorse is an accurate repre-
sentation of the ab initio potential VFCI. The DR has
correctly predicted this without having to compute
the dynamics or the vibrational spectrum on VFCI.

3.2. PHOTODISSOCIATION DYNAMICS OF CO2

The second system considered was the collinear
photodissociation of carbon dioxide, a model that
had been studied extensively by both quantum-
dynamical [6, 22] and semiclassical methods [23].
Invoking the Franck-Condon principle, photodisso-
ciation dynamics is the quantum dynamics of the
initial state (vibrational ground state of the PES of the
electronic ground state) on the dissociative excited
PES. The photodissociation spectrum is obtained
again by the Fourier transform of the autocorrelation
function C(t).

In the case of carbon dioxide, a single excited sur-
face is not sufficient for even a qualitative calculation
of the photodissociation spectrum between 200 mm
and 120 nm. Instead, a rather involved nonadiabatic
simulation would have to be performed including
at least the dissociative 1� surface as well as the 1


and 1� surfaces, both of which have local minima
near the Franck-Condon region. Here, we concen-
trate on the dissociative 1� excited PES, which is
responsible for the high energy end of the spec-
tral band. Namely, we explore how accurately this
surface is approximated by the widely used LEPS
surface [5, 6]. The accurate ab initio 1� surface Vacc,
computed at the EOM-CCSD/aug-cc-pVDZ level of
theory [19, 24–26], is displayed in Figure 3(a) and will
be referred to as VEOM-CCSD below. The approximate
analytical potential Vappr is given by the analytical
LEPS potential for CO2 [5, 6],

Vappr(r1, r2) := VLEPS(r1, r2).

The difference between VEOM-CCSD and VLEPS is plot-
ted in Figure 3(b).

The DR and QM dynamics calculations were per-
formed for 192 fs with a time step of 6.5 a.u. ≈ 0.16
fs. Converged quantum calculations required n =
2, 048 points to discretize each CO bond length from
0.6 a0 ≈ 0.3 Å to 40.6 a0 ≈ 21.5 Å, altogether using a
2, 048 × 2, 048 grid to represent the PES or the wave

FIGURE 3. Comparison of Vappr = VLEPS and
Vacc = VEOM-CCSD for the collinear configurations of CO2.
(a) Contour plot of the 1� surface VEOM-CCSD. Energy is
in a.u. (b) Contour plot of the difference
�V = VEOM-CCSD − VLEPS. �V is set to zero in the CO +
O dissociation limit. Energy difference is in a.u.

function. As in the case of H2, npaths = 512 classical
trajectories were used to compute the DR of fidelity,
with npaths = 64; 16, 384; and 131, 072 to confirm
the convergence. The initial state was a Gaussian
wavepacket corresponding to the vibrational ground
state of the electronic ground state of CO2. Both
CO bond lengths were equal to 2.212 a0. The coor-
dinate widths of the wavepacket were σ = 0.075 a0

for the symmetric stretch and σ = 0.069 a0 for the
asymmetric stretch.

The ab initio PES Vacc was constructed by mul-
tilinear interpolation [17] of a 128 × 128 potential
energy grid in the range from 0.6 a0 to 10.6 a0 ≈ 5.6 Å
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computed using Gaussian 09 [21]. As the dynam-
ics in the region beyond 10.6 a0 affects neither the
autocorrelation function nor the spectrum, the ab ini-
tio potential was padded by a constant asymptotic
energy value in the region from 10.6 to 40.6 a0. The
potential energy profiles of the ground state and the
1
, 1�, and 1� excited surfaces along the symmetric
stretch coordinate qualitatively correspond to those
obtained by Knowles et al. using the MC SCF method
[27]. As the aug-cc-pVDZ basis set used to compute
the 1� surface is still relatively small, the accu-
racy of the results was checked by comparing the
three lowest excitation energies at the CCSD/aug-
cc-pVDZ minimum structure with those obtained
by the same method but using the aug-cc-pVTZ and
aug-cc-pVQZ basis sets.

The excitation energy of the 1� state, computed
with the DZ, TZ, and QZ basis sets, is, respectively,
9.07, 9.02, and 9.03 eV. In the same order, the basis
dependent excitation energies for the lower lying 1


state are 9.00, 8.95, and 8.96 eV, and for the 1� state,
8.79, 8.90, and 8.96 eV. This suggests that for the 1�

and 1
 surfaces, the TZ basis set result is already
converged within 10−2 eV precision and that even
with the DZ basis set one can obtain accurate results.
Differences for 1� state are higher. This is not surpris-
ing since the DZ basis set does not contain enough
basis functions of the appropriate symmetry. To con-
clude, as we are interested only in the dynamics on
the 1� surface, the DZ basis seems to be sufficient to
achieve the 5×10−3 a.u. accuracy in the dynamically
important region of the PES. This is still a twice bet-
ter accuracy than that of the well-performing Morse
potential used above for H2.

To compute the spectrum, the CCSD/aug-cc-
pVDZ zero point vibrational energies of the sym-
metric and asymmetric stretches were added to the
CCSD/aug-cc-pVDZ ground state electronic energy
in order that the zero energy reference correspond
to the spectroscopic measurement. In contrast to
the ab initio surface, the LEPS potential is usually
defined to be zero at the CO + O dissociation limit.
To compare with the ab initio spectrum, the LEPS
energy had to be augmented by adding the afore-
mentioned zero point vibrational energies as well as
the electronic CO2 → CO + O dissociation energy
computed at the CCSD/aug-cc-pVDZ level of the-
ory. (The basis set superposition error was corrected
by the counterpoise procedure [28].)

Figure 4(a) shows the fidelity of the photodissoci-
ation dynamics on the LEPS potential in comparison
to the ab initio potential. The figure confirms that
the fidelity can be computed accurately by the DR

FIGURE 4. (a) Quantum fidelity of the
photodissociation dynamics of CO2 on VLEPS and
VEOM-CCSD, computed approximately (by the DR) and
exactly (QM). (b) Comparison of the autocorrelation
functions on VLEPS and VEOM-CCSD. (c) Comparison of the
photodissociation spectra on VLEPS and VEOM-CCSD.

since the DR and exact QM results agree very well
up to the time where fidelity decays approximately
to zero. Hence, we can avoid performing quantum
dynamics on VEOM-CCSD.

Again, one is interested more in observables and
less in the overlap of the wave functions, so we have
used the dynamics to compute the photodissocia-
tion spectra on the two PESs (by a Fourier trans-
form of the autocorrelation functions). The auto-
correlation functions and photodissociation spectra
corresponding to VLEPS and VEOM-CCSD are compared
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in Figures 4(b) and (c). The two spectra are very
different: they differ both in the intensities and in
the positions of peaks. The DR has correctly pre-
dicted this conclusion without having to compute
the photodissociation spectrum on VEOM-CCSD.

In comparison with experimental spectra [29,
30] whose high energy region should be approx-
imated by the computed spectra, we notice that
the shape of this spectral region, with high and
well defined peaks, is better approximated by the
dynamics on the ab initio surface. The LEPS spec-
trum has too small peaks and is very irregular.
On the other hand, the LEPS spectrum reproduces
almost exactly the position of the maximum of this
part of the spectrum, which is located at ∼9.3 eV,
whereas the EOM-CCSD/aug-cc-pVDZ spectrum
underestimates the position of maximum by ∼0.5
eV. It should be stressed that the comparison with
experimental spectra can be qualitative at best, as
the model does not consider other electronic sur-
faces, nonadiabatic couplings between them, the two
bending vibrations, or the excited vibrational states
of CO2.

3.3. VIBRATIONAL DYNAMICS OF H2 ON AN
INTERPOLATED PES

Constructing an ab initio PES is an expensive
procedure even for the smallest molecules. In prac-
tice, one often uses an interpolated surface Vappr :=
Vinterpol. Namely, the accurate ab initio potential Vacc

is evaluated only on a sparse grid, and Vappr is
obtained by an interpolation from this grid. It is
straightforward to estimate the “static” effect of such
interpolation, e.g., by computing the upper bound
�Vmax := max |Vinterpol − Vacc| for the difference
between the two potentials in the dynamically acces-
sible region of the PES. However, it is difficult to
predict, a priori, what will be the effect on dynami-
cal observables. To answer this question, we consider
Vacc = VMorse for H2 and Vappr = Vinterpol to be a PES
interpolated from the Morse potential sampled only
on a grid of 32 or 1,024 points.

Figures 5 and 6 compare the quantum vibrational
dynamics on Vinterpol and VMorse. We consider both
a sparse interpolation (with 32 grid points, with
�Vmax = 0.033 a.u., Fig. 5) and a dense interpolation
(with 1,024 grid points and �Vmax = 3.5 × 10−5 a.u.,
Fig. 6). Panels (a) of Figures 5 and 6 show the fidelity
for the two cases, computed by DR with 512 trajecto-
ries and by the exact QM dynamics. Figures 5(a) and
6(a) show that the sparser grid leads to a rapid decay
of fidelity, whereas the denser grid results in fidelity

FIGURE 5. Comparison of vibrational quantum
dynamics of H2 on VMorse and the interpolated surface
Vinterpol-32. The initial state was a Gaussian wave packet
with R0 = 3 a.u., P0 = 0, and σr = 0.3 a.u. (a) Quantum
fidelity computed by the DR and exactly (QM). (b)
Comparison of vibrational spectra of Vinterpol-32 and
VMorse.

very close to unity up to t = 50 fs. In both cases,
fidelity is quite well predicted by the DR. Therefore,
we expect that in the first case, the interpolation will
have a large effect on the spectrum, whereas in the
second case, the effect should be small. These predic-
tions are confirmed in Figures 5(b) and 6(b) in which
the spectra of VMorse, Vinterpol-32, and Vinterpol-1024 are
compared. While the spectrum of Vinterpol-32 is very
different from that of VMorse, the spectra of VMorse and
Vinterpol-1024 are barely distinguishable.

Finally, we also analyzed the effects of interpola-
tion of the 1� excited PES of CO2. For this purpose,
we computed the DR of fidelity between an inter-
polated and on-the-fly evaluated LEPS PESs. The
interpolated LEPS PES was discretized and inter-
polated in the same way as the EOM-CCSD PES
in Section 3.2. The DR of fidelity stayed above 0.97
until the completion of the first two and most impor-
tant recurrences in the autocorrelation function and
remained above 0.86 for the whole length of simula-
tion (180 fs). As the LEPS PES is sufficiently similar
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FIGURE 6. Comparison of vibrational quantum
dynamics of H2 on VMorse and the interpolated surface
Vinterpol-1024. The initial state was a Gaussian wave packet
with R0 = 3 a.u., P0 = 0, and σr = 0.3 a.u. (a) Quantum
fidelity computed by the DR and exactly (QM). (b)
Comparison of vibrational spectra of Vinterpol-1024 and
VMorse.

to the EOM-CCSD PES, we expect a similar effect of
interpolation on the EOM-CCSD PES. Because of the
relatively high value of fidelity, we expect the effect
of the interpolation on the results of Section 3.2 to be
very small.

4. Conclusions

In this article, dephasing representation of quan-
tum fidelity was used to analyze the accuracy of
quantum dynamics on an approximate analytical or
interpolated PES in comparison with the dynamics
on an ab initio PES. In all cases studied, the fidelity
computed with the DR method proved to be a reli-
able estimate of the quantum fidelity. The method
is easy to implement; in addition to a classical
molecular dynamics code, it only requires the cal-
culation of the action due to the difference between
the two PESs. Nevertheless, the main advantage
of the method is its efficiency. In case of the two-
dimensional model of CO2, the DR method is ∼100

times faster than the quantum calculation. Further-
more, in contrast to quantum dynamics, the DR does
not scale exponentially with the number of DOF and
therefore can be easily applied to multidimensional
problems.

In the future, we plan to perform exactly such a
many-dimensional calculation, but in that case, it
will be impossible to have a comparison with the
exact quantum dynamics. Therefore, further work is
needed to predict situations where the DR may fail.
E.g., we have observed that the DR cannot repro-
duce recurrences in fidelity. However, these usually
occur after fidelity decays to zero first, and then it is
obvious that the approximate PES is insufficient.

In summary, the DR is a tool capable of estimat-
ing the accuracy of the quantum dynamics on an
approximate PES without actually running the quan-
tum dynamics simulation and without the need for a
PES grid. Hence, the DR can be used during the ini-
tial phase of a quantum simulation to decide whether
the method chosen to compute a PES allows for a
dynamics of the desired accuracy. Or, as demon-
strated in the last part of this article, the method can
be used as a quick tool to find a sufficient grid point
density for an ab initio PES.
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