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Summary 17 

Hairsine and Rose developed a mechanistic, one-dimensional, precipitation-driven erosion 18 

model that, since its appearance, has been validated by several sets of experimental results. 19 

The model allows any sediment particle to be present in one of three zones, viz., the flow zone, 20 

the deposited layer, or the original soil. The model has the general form of a two-region 21 

model, in which advection is the only transport process. For the special case of a soil 22 

composed of a single particle size and for overland flow that occurs at a steady rate and with a 23 

uniform depth, it is possible to derive fully explicit analytical solutions to the model. Details of 24 

the solutions for a slightly generalized mathematical form of the model are provided. The 25 

Goldstein J function, which appears commonly in two-region model solutions, was modified to 26 

accommodate some of the solutions presented. The form of the model analyzed indicated that, 27 

based only on sediment concentrations in runoff water, it is not possible to distinguish one 28 

mechanistic feature of the Hairsine-Rose model, i.e., that raindrop-induced detachment of the 29 

undisturbed soil moves directly into the flowing water. From the point of view of the model, it 30 

is equally plausible for raindrop impact to move sediment directly into the deposited layer. 31 

Keywords: Two-region model, Mobile-immobile region model, Soil erosion, Precipitation, 32 

Analytical solution, Bessel functions, Laplace transform, Convolution, Overland flow, Raindrop 33 

detachment 34 

  35 
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1 Notation 36 

𝑎  ν/D T-1 

𝑎o Coefficient of detachability of the original soil ML-3 

𝑎d Coefficient of detachability of the deposited soil ML-3 

b P(𝑎d – 𝑎o)/MdT T-1 

c ν/D T-1 

d P 𝑎d /MdT T-1 

D Overland flow depth (constant) L 

f P 𝑎o ML-2 T-1 

ℱ  Defined by Eq. (27)  

𝑔  P 𝑎o ML-2 T-1 

H Heaviside function  

HR Model of Hairsine and Rose (1991)  

In Modified Bessel function of the first kind of order n  

J Goldstein J function  

Jmod Modified Goldstein J function  

L Flume length L 

ℒ-1 Inverse Laplace transform operator  

Md Mass per unit area of sediment in the deposited layer ML-2 

MdT Mass of redeposited soil per unit area sufficient to prevent erosion of the 

original soil 

ML-2 
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Ms Mass per unit area of sediment in the water column ML-2 

p Ms ML-2 

P Precipitation LT-1 

q Md ML-2 

qf Volumetric water flux per unit width (constant) L2T-1 

s Laplace transform variable T-1 

sgn Sign function  

t Time T 

u qf/D LT-1 

w Several definitions, used in convolution integral solutions  

x Position L 

Greek   

α Defined by Eq. (18)  

α1 Defined by Eq. (25)  

α2 Defined by Eq. (25)  

β   𝑏𝑐
𝑥

𝑢
 𝑡 −

𝑥

𝑢
    

δ Dirac delta function  

ν Particle setting velocity LT-1 

  37 
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2 Introduction 38 

Hairsine and Rose (1991) presented a model, hereafter termed the HR model, for 39 

erosion where the only mechanism causing detachment of soil particles from the bed is 40 

impact by raindrops. Their model further developed the original theory of Rose et al. (1983a), 41 

which was successfully applied to sediment discharge data from the Walnut Gulch 42 

experimental watershed by Rose et al. (1983b). An essential development leading to the HR 43 

model was the incorporation of a mechanistic description of the shielding effect of eroded soil 44 

particles that settle out of the flow and form a deposited layer on top of the original soil 45 

surface. Erosion of the original soil is then moderated by the existence of the deposited layer, 46 

or shield, since its presence requires the removal of this sediment before any of the original 47 

soil can be accessed. Consequently, the energy of the raindrop impact is then partitioned 48 

between eroding both the shield and, depending on the shield thickness, the original soil. 49 

As the ability of raindrop impact to cause erosion decreases with the overland flow 50 

depth and, because flow-driven erosion mechanisms are neglected here, the HR model only 51 

applies to shallow flows that are below the threshold streampower for sediment entrainment. 52 

Hairsine and Rose (1991) considered soil particles to be present in one of three locations, viz., 53 

in the original soil layer, in the deposited layer or in the water. The particles are motionless in 54 

each of the two possible soil layers, and are advected when in the water. Raindrop impact 55 

provides the only means of dislodging particles. The model is presented and described further 56 

in §3. 57 

Several analytical studies and experimental analyses of the HR model have appeared. In 58 

their original paper, Hairsine and Rose (1991) provided the steady-state solution for the 59 

suspended sediment concentration under conditions of a constant excess rainfall rate. They 60 

assumed that the kinematic approximation to overland flow applied and used a steady state 61 
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water flux which increased linearly with position along the flow path. A form of the steady-62 

state solution (assuming a uniform overland flow depth) was applied by Proffitt et al. (1991) 63 

in order to deduce model parameters. Sander et al. (1996) assumed that the flow depth and 64 

downgradient water flux were both constant and that spatial variations were negligible in 65 

comparison to temporal variations, i.e., they dropped the spatial derivative in the model. Their 66 

analytical approximation was able to reproduce the experimental data of Proffitt et al. (1991). 67 

The solution of Sander et al. (1996) involved a numerical element in that the problem was 68 

converted to a system of ordinary differential equations, which was solvable analytically, but 69 

required the numerical calculation of eigenvalues and eigenvectors. Under the same 70 

assumptions as Sander et al. (1996), Parlange et al. (1999) derived approximations for short 71 

and long time behavior of the model, which were both straightforward to compute and in 72 

good agreement with numerical simulations. Hairsine et al. (1999) extended the approach of 73 

Hairsine and Rose (1991) and provided an event-based (i.e., no spatial dependence) 74 

description of sediment sorting due to the erosion process. The HR model assumes that 75 

rainfall detachment of sediment particles is not particle-size selective. However, the model 76 

predicts that sorting occurs due to finer sediments settling out of the water column more 77 

slowly than coarse sediments and hence are transported further, although at steady state the 78 

settling velocity distribution of the deposited and original soil were predicted to be identical 79 

(Hairsine and Rose, 1991). Hogarth et al. (2004a) presented an asymptotic space-time 80 

approximation motivated by a Laplace transform-based expansion that is increasingly valid 81 

for larger times. Their approximation was shown to compare well with the accurate 82 

numerical solutions of Hogarth et al. (2004b). Hogarth et al. (2004b) also clearly 83 

demonstrated the important role played by particle settling velocities in model prediction. 84 

Laboratory, i.e., small scale, experiments validating the HR model have been reported (e.g., 85 

Heilig et al., 2001; Gao et al., 2003), with good agreement found. Tromp-van Meerveld et al. 86 
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(2008) modified slightly the analytical approximations of Parlange et al. (1999) to account for 87 

the effects of infiltration on deposition rates and analyzed data sets collected using the EPFL 88 

erosion flume. This brief survey shows that the HR model has been investigated in detail 89 

theoretically and has been validated using different experimental data sets. 90 

Despite the numerous studies on or making use of the HR model, there have been no 91 

exact solutions published which are valid for all space and time. In this paper we present the 92 

first exact solutions to their model. The assumptions required to simplify the model so as to 93 

obtain these are (i) steady overland flow, (ii) constant water depth and (iii) that the soil 94 

consists of a single particle size. 95 

3 Theory 96 

The HR model has been described previously, so only a brief summary is presented here. 97 

From the outset, the simplification of a single particle size is applied, since this is the main 98 

assumption that leads to the analytical solutions presented below. 99 

The form of the HR model presented by Lisle et al. (1998) is convenient since it uses the 100 

mass per unit area of sediment in the water, Ms [ML-2], and the mass per unit area of sediment 101 

in the deposited layer, Md [ML-2], as dependent variables. Note again that the model considers 102 

the development of a deposited layer, as time passes, which moderates the level of erosion of 103 

the underlying original soil layer. The model’s governing equations are: 104 

∂𝑀𝑠

∂𝑡
+
𝑞𝑓

𝐷

∂𝑀𝑠

∂𝑥
= −

ν

𝐷
𝑀𝑠 +

𝑎𝑑 − 𝑎𝑜
𝑀𝑑𝑇

𝑃𝑀𝑑 + 𝑎𝑜𝑃, (1)  

∂𝑀𝑑

∂𝑡
=
ν

𝐷
𝑀𝑠 −

𝑎𝑑
𝑀𝑑𝑇

𝑃𝑀𝑑 , (2)  
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where t [T] is time, x [L] is position, qf [L2T-1] is the total volumetric flux per unit width of the 105 

domain, D [L] is the depth of the overland flow, ν [LT-1] is the particle setting velocity, 𝑎d 106 

[ML-3] is the coefficient of detachability of the deposited soil, 𝑎o [ML-3] is the detachability of 107 

the original soil, MdT [ML-2] is the mass of redeposited soil per unit area needed to block 108 

completely erosion of the original soil layer, and P [LT-1] is the precipitation rate. The water 109 

advection rate, qf/D, is assumed to be constant as both qf and D are taken as constants. The 110 

erodible soil is in the region x > 0. Water flows into this zone from x < 0, where the soil bed is 111 

considered to be non-erodible. Indeed, the model assumes in addition that at time zero there 112 

is a water layer flowing at a steady rate across the soil surface, the latter becoming erodible 113 

for times greater than zero. 114 

The second term on the right side of Eq. (1) vanishes if 𝑎d = 𝑎o, however the values will 115 

be different if the cohesion of the original soil and that of the deposited layer are different. 116 

Given the processes that take place such as bed compaction or disturbance by means other 117 

than rainfall impact, it is reasonable to expect 𝑎d ≠ 𝑎o under many circumstances. This 118 

inequality is fundamental to the HR model. During an erosion/deposition event, erosion of the 119 

original soil be is halted at any locations where Md/MdT attains unity. 120 

Equations (1) and (2) are solved subject to: 121 

𝑀𝑠 0, 𝑡 = 0, (3)  

𝑀𝑠 𝑥, 0 = 0, (4)  

𝑀𝑑 𝑥, 0 = 0. (5)  

Equations (3) – (5) mean that there is initially no deposited layer or suspended sediment in 122 

the overland flow, and that sediment-free water enters the region containing the erodible soil, 123 

beginning at x = 0. 124 
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To ease the clutter of notation that would otherwise appear in the solution, Eqs. (1) – 125 

(5) are replaced (and slightly generalized) by a version with simpler notation: 126 

∂𝑝

∂𝑡
+ 𝑢

∂𝑝

∂𝑥
= −𝑎𝑝 + 𝑏𝑞 + 𝑓𝐻 𝑥 , (6)  

∂𝑞

∂𝑡
= 𝑐𝑝 − 𝑑𝑞 + 𝑔𝐻 𝑥 , (7)  

𝑝 0, 𝑡 = 0, (8)  

𝑝 𝑥, 0 = 0, (9)  

𝑞 𝑥, 0 = 0. (10)  

where H is the Heaviside function, defined as: 127 

𝐻 𝑥 =  
0, 𝑥 < 0,
1, 𝑥 ≥ 0.

  (11)  

This function in Eqs. (6) and (7) forces the solution to zero where x < 0. Definitions of the 128 

variables follow directly given that Eqs. (1) – (5) correspond, respectively, to Eqs. (6) – (10). 129 

Equations (1) and (2) have 𝑎 = c. In mathematical terms no significant simplification comes 130 

from enforcing this condition, so it is relaxed to generalize the solution slightly. 131 

Equations (6) – (10) have the form of the so-called two-region (mobile-immobile) 132 

model, although without the diffusion term normally found in models of this type (e.g., Coats 133 

and Smith, 1964; Lindstrom and Stone, 1974; Mironenko and Pachepsky, 1984; Li et al., 1994; 134 

Haggerty and Gorelick, 1995; Griffioen et al., 1998; Choi et al., 2000; Ekberli, 2006; Lu et al., 135 

2009; Silva et al., 2009). Apart from the lack of diffusion, the other main characteristic of the 136 

model in Eqs. (6) – (7) that distinguishes it from the two-region model is that the coefficients 137 

𝑎, b, c and d are not equal. Thus, existing solutions for two-region models cannot directly be 138 



10 

applied to the present problem. Generalized solutions that consider an arbitrary transport 139 

operator, e.g., Walker (1987), provide solutions in the form of integrals that solve Eqs. (6) – 140 

(10). While examples of such integral solutions to (6) – (10) are given within this paper, so 141 

too are fully explicit series solutions. 142 

In Eq. (7) an additional term not present in Eq. (2), 𝑔H(x), has been added. The HR 143 

model assumes that all sediment particles eroded from the original bed enter the water 144 

column. This additional term, not present in the HR model, models the transition of particles 145 

from the original bed directly to the deposited layer. Depending on the energy transmitted by 146 

a raindrop impact and the density of the sediment, for instance, motion of any given particle 147 

could be minute, such that this modification to the HR model would be reasonable. This 148 

question is returned to briefly in §4. 149 

Because of superposition, there is no need to solve Eqs. (6) – (10) with both f and 𝑔 non-150 

zero simultaneously, so two problems are solved in the following, setting 𝑔 and f in turn to 151 

zero. In terms of the HR model, setting 𝑔 to zero (f non-zero) means that material eroded from 152 

the original soil moves into the water phase only, whereas setting f to zero (𝑔 non-zero) 153 

means that this material moves only into the deposited layer. In reality, probably both these 154 

situations occur simultaneously. The Laplace transform method is used to obtain the 155 

solutions. Let s be the Laplace transform variable (transform with respect to t) and let 156 

transformed functions be denoted by an overbar. The solution to Eqs. (6) – (10) in the Laplace 157 

space is: 158 

𝑝  𝑥, 𝑠 =  
𝑏𝑔

𝑠 𝑠 + 𝑑 
+
𝑓

𝑠
 
𝐻 𝑥 

𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   , (12)  

𝑞  𝑥, 𝑠 =
𝑐

𝑠 + 𝑑
𝑝  𝑥, 𝑠 +

𝑔𝐻 𝑥 

𝑠 𝑠 + 𝑑 
, (13)  
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where 159 

𝑕  𝑠 = 𝑠 + 𝑎 −
𝑏𝑐

𝑠 + 𝑑
. (14)  

3.1 Solution for 𝒈 = 0 160 

3.1.1 Solution in the form of an integral 161 

For 𝑔 = 0, Eqs. (12) and (13) become, respectively: 162 

𝑝  𝑥, 𝑠 

𝑓𝐻 𝑥 
=

1

𝑠𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   , (15)  

𝑞  𝑥, 𝑠 

𝑐𝑓𝐻 𝑥 
=

1

𝑠 𝑠 + 𝑑 𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   . (16)  

Consider first the solution for Eq. (15). The Laplace transform inverse  ℒ-1) of 1/[s𝑕 (s)] is: 163 

𝑤 𝑡 = ℒ−1  
1

𝑠𝑕  𝑠 
 

=
𝑑

𝑎𝑑 − 𝑏𝑐
 1

+ exp  −
𝑡

2
 𝑎 + 𝑑   

𝑎2 − 𝑑2 − α2

2α𝑑
sinh  α

𝑡

2
 − cosh  α

𝑡

2
   , 

(17)  

where 164 

α2 =  𝑑 − 𝑎 2 + 4𝑏𝑐. (18)  

The inverse Laplace transform of exp  −
𝑥

𝑢
𝑕  𝑠   is given by Eq. (48) in the Appendix. The 165 

Appendix contains a table of several forward and inverse Laplace transforms that are used 166 
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throughout this paper. Therefore, by the convolution theorem for products of functions (e.g., 167 

Spiegel, 1965): 168 

ℒ−1  
1

𝑠𝑕  𝑠 
exp  −

𝑥

𝑢
𝑕  𝑠   

=    𝑤 𝑡 − τ exp  −𝑑  τ −
𝑥

𝑢
   

𝑏𝑐

τ −
𝑥
𝑢

𝑥

𝑢
𝐼1  2 𝑏𝑐

𝑥

𝑢
 τ −

𝑥

𝑢
   

𝑡

𝑥
𝑢

dτ

+ 𝑤  𝑡 −
𝑥

𝑢
  𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
 . 

(19)  

The combination of Eqs. (15), (17) and (19) gives the solution for p as: 169 

𝑝 𝑥, 𝑡 

𝑓𝐻(𝑥)
= 𝑤 𝑡 

− 𝐻  𝑡 −
𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
  𝑤  𝑡 −

𝑥

𝑢
 

+   𝑤 𝑡 − τ exp  −𝑑  τ −
𝑥

𝑢
   

𝑏𝑐

τ −
𝑥
𝑢

𝑥

𝑢
𝐼1  2 𝑏𝑐

𝑥

𝑢
 τ −

𝑥

𝑢
   

𝑡

𝑥
𝑢

dτ . 

(20)  

The solution for q, from Eq. (16) is constructed in the same manner as p. In this case 170 

function w is given by: 171 

𝑤 𝑡 =
1

2α 𝑎𝑑 − 𝑏𝑐 
 2α +  𝑎 + 𝑑 − α exp  −

𝑡

2
 𝑎 + 𝑑 + α  

−  𝑎 + 𝑑 + α exp  −
𝑡

2
 𝑎 + 𝑑 − α   . 

(21)  
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Thus, the solution for q/[cfH(x)] is given by the right side of Eq. (20), with w defined in this 172 

case by Eq. (21). 173 

Case of 𝑎d = bc 174 

It can be seen from Eq. (17) that this case leads to division by zero, and so it must be 175 

considered explicitly as a special case. Consider p first. The function w in Eq. (17) simplifies 176 

to: 177 

𝑤 𝑡 =
1

𝑎 + 𝑑
 𝑑𝑡 +

𝑎

𝑎 + 𝑑
 1 − exp −𝑡 𝑎 + 𝑑    , (22)  

while Eq. (19) essentially remains the same, except that bc is replaced by 𝑎d. The solution is 178 

given by Eq. (20) with bc replaced by 𝑎d, with w defined by Eq. (22). 179 

For q/[cfH(x)], the solution is given by the right side of Eq. (20), with bc replaced by 𝑎d 180 

and w given by: 181 

𝑤 𝑡 =
1

𝑎 + 𝑑
 𝑡 −

1 − exp[−𝑡 𝑎 + 𝑑  

𝑎 + 𝑑
 . (23)  

3.1.2 Series solution 182 

The denominator, s𝑕 (s), of Eq. (15) can be expanded in partial fractions as: 183 

1

𝑠𝑕  𝑠 
=

𝑑

α1α2𝑠
+

α1 − 𝑑

α1 α2 − α1  𝑠 + α1 
+

α2 − 𝑑

α2 α1 − α2  𝑠 + α2 
, (24)  

where 184 

 
α1

α2
 =  𝑎 + 𝑑  

+
−
 α /2 (25)  
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factorize Eq. (18). The Laplace inversion of the second term in Eq. (15) thus reduces to the 185 

inversion of the three terms on the right side of Eq. (24), with each term multiplied by 186 

exp[-x𝑕 (s)/u]. By then setting x = 0 in these inversions results in the inverse of the first term 187 

in Eq. (15). This approach to obtaining fully explicit solutions is used repeatedly below. 188 

As is evident from Eq. (24), only a single inverse Laplace transform is needed, i.e., that 189 

given by Eq. (50) in the Appendix. Then, the inversion of Eq. (15) is: 190 

𝑝 𝑥, 𝑡 

𝑓𝐻(𝑥)
=

𝑑

𝑎𝑑 − 𝑏𝑐
ℱ −𝑑 −

α − 𝑑 + 𝑎

α α + 𝑑 + 𝑎 
ℱ 𝑎 + α −

α + 𝑑 − 𝑎

α 𝑑 + 𝑎 − α 
ℱ 𝑎 − α , (26)  

where 191 

ℱ 𝑚 = exp  −
𝑡

2
 𝑑 + 𝑚  

− 𝐻  𝑡 −
𝑥

𝑢
 exp  −

𝑥

𝑢
 𝑎 −

2𝑏𝑐

𝑑 − 𝑚
 

−
𝑑 + 𝑚

2
 𝑡 −

𝑥

𝑢
  𝐽𝑚𝑜𝑑  

2𝑏𝑐

𝑑 − 𝑚

𝑥

𝑢
,
𝑑 − 𝑚

2
 𝑡 −

𝑥

𝑢
  . 

(27)  

The inverse transform of 𝑞  is calculated from Eq. (16) in the same manner. The required 192 

partial fraction expansion is: 193 

1

𝑠 𝑠 + 𝑑 𝑕  𝑠 
=

1

α1α2𝑠
+

1

α1 α2 − α1  𝑠 + α1 
+

1

α2 α1 − α2  𝑠 + α2 
, (28)  

so, again, Eq. (50) is utilized. The final result is: 194 

𝑞 𝑥, 𝑡 

𝑐𝑓𝐻(𝑥)
=

1

𝑎𝑑 − 𝑏𝑐
ℱ −𝑑 +

2

α α + 𝑑 + 𝑎 
ℱ 𝑎 + α +

2

α α − 𝑑 − 𝑎 
ℱ 𝑎 − α . (29)  

Case of 𝑎d = bc 195 
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The special case of 𝑎d = bc is considered next. The solution is presented in terms of 𝑎 196 

and d rather than b and c. Equations (18) and (25) give, for this case: 197 

α1 = 𝑎 + 𝑑 and α2 = 0. (30)  

The partial fraction expansion in Eq. (24) becomes: 198 

𝑠 + 𝑑

𝑠2 𝑠 + 𝑎 + 𝑑 
=

𝑎

 𝑎 + 𝑑 2𝑠
−

𝑎

 𝑎 + 𝑑 2 𝑠 + 𝑎 + 𝑑 
+

𝑑

 𝑎 + 𝑑 𝑠2
. (31)  

Here, an additional inverse transform is needed to invert the function that results from the 199 

final term on the right side of Eq. (31). The required inverse transform is given by Eq. (53) in 200 

the Appendix. The solution that results is: 201 

𝑝 𝑥, 𝑡 

𝑓𝐻 𝑥 
=

𝑎

 𝑎 + 𝑑 2
[ℱ −𝑑 − ℱ 2𝑎 + 𝑑  

+
𝑑

𝑎 + 𝑑
 
 

 
𝑡

−
1

𝑑
𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
   𝑛

∞

𝑛=1

 
𝑑  𝑡 −

𝑥
𝑢 

𝑎
𝑥
𝑢

 

𝑛
2

𝐼𝑛 2β  . 

(32)  

The partial fraction expansion arising in the inverse transform for q in Eq. (16) is: 202 

1

𝑠2 𝑠 + 𝑎 + 𝑑 
=

1

 𝑎 + 𝑑 2 𝑠 + 𝑎 + 𝑑 
−

1

 𝑎 + 𝑑 2𝑠
+

1

 𝑎 + 𝑑 𝑠2
. (33)  

This expression is very similar to that for p, Eq. (31), so that the inverse transform for q differs 203 

from Eq. (32) only in the coefficients of each term on the right side. The result is: 204 
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𝑞 𝑥, 𝑡 

𝑐𝑓𝐻 𝑥 
=

1

 𝑎 + 𝑑 2
[ℱ 2𝑎 + 𝑑 − ℱ −𝑑  

+
1

𝑎 + 𝑑
 
 

 
𝑡

−
1

𝑑
𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
   𝑛

∞

𝑛=1

 
𝑑  𝑡 −

𝑥
𝑢 

𝑎
𝑥
𝑢

 

𝑛
2

𝐼𝑛 2β  . 

(34)  

3.2 Solution for 𝒇 = 0 205 

The two Laplace-domain solutions, Eqs. (12) and (13) become, respectively: 206 

𝑝  𝑥, 𝑠 =
𝑏𝑔

𝑠 𝑠 + 𝑑 

𝐻 𝑥 

𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   , (35)  

𝑞  𝑥, 𝑠 =
𝑏𝑐𝑔

𝑠 𝑠 + 𝑑 2

𝐻 𝑥 

𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   +

𝑔𝐻 𝑥 

𝑠 𝑠 + 𝑑 
. (36)  

3.2.1 Solution in the form of an integral 207 

For 𝑎d ≠ bc, and due to the equivalence of Eqs. (15) and (34), the solution for p/gH(x) is 208 

simply b/c times the right-hand side of Eq. (19) with w(t), given by Eq. (21). For 𝑎d = bc the 209 

same statement applies, but with w given by Eq. (23). 210 

For q, as in §3.1.1, essentially all that changes is the w function used in Eq. (20). The 211 

functions needed to obtain the solution from Eq. (20) are given here (with a summary of all 212 

the solutions given in Table 1). Also, there is an additional term in the solution corresponding 213 

to the final term on the right side of Eq. (36). Solutions will be written with q/[𝑔H(x)] on the 214 

left side, so: 215 
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ℒ−1  
1

𝑠 𝑠 + 𝑑 
 =

1 − exp −𝑑𝑡 

𝑑
, (37)  

should be added to the right side of Eq. (20) for each of the two following solutions for q. 216 

Table 1 near here 217 

For 𝑎d ≠ bc, the w function is found from the inverse of bc/[s(s + d)2𝑕 (s)], with the 218 

result: 219 

𝑤 𝑡 =
𝑏𝑐

𝑑 𝑎𝑑 − 𝑏𝑐 
+

exp −𝑑𝑡 

𝑑
− exp  −

𝑡

2
 𝑑 + 𝑎 − α  

𝑎 − 𝑑 + α

α 𝑑 + 𝑎 − α 

+ exp  −
𝑡

2
 𝑑 + 𝑎 + α  

𝑎 − 𝑑 − α

α 𝑑 + 𝑎 + α 
, 

(38)  

while for 𝑎d = bc, it is 220 

𝑤 𝑡 =
𝑎𝑡

𝑎 + 𝑑
+

exp −𝑑𝑡 

𝑑
−
𝑑exp[− 𝑎 + 𝑑 𝑡 

 𝑎 + 𝑑 2
−
𝑎 𝑎 + 2𝑑 

𝑑 𝑎 + 𝑑 2
. (39)  

3.2.2 Series solution 221 

As in §3.2.1, the solution for p(x,t)/[b𝑔H(x)], as is apparent from Eqs. (12) and (13), is, 222 

for 𝑎d ≠ bc, simply the right side of Eq. (29). Similarly, for 𝑎d = bc, the solution for 223 

p(x,t)/[b𝑔H(x)] is given by the right side of Eq. (34). 224 

For q, considering 𝑎d ≠ bc, it is seen from Eq. (36) that the partial fraction expansion of 225 

𝑠 𝑠 + 𝑑 2𝑕  𝑠  is needed. It is: 226 
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1

𝑠 𝑠 + 𝑑 2𝑕  𝑠 
=

1

𝑑α1α2𝑠
−

1

α1 α1 − 𝑑  α1 − α2  𝑠 + α1 
−

1

𝑑 α1 − 𝑑  α2 − 𝑑  𝑠 + 𝑑 

−
1

α2 α2 − 𝑑  α2 − α1  𝑠 + α2 
. 

(40)  

From Eq. (40), it is apparent that the inverse of the corresponding exponential terms in Eq. 227 

(36) involve two entries in the transform pairs given in the Appendix, viz., Eqs. (49) and (50). 228 

Then, the inverse of Eq. (36) is: 229 

𝑞 𝑥, 𝑡 

𝑔𝐻(𝑥)
=

1

𝑑
 1 − 𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
  𝐼0 2β +

𝑏𝑐

𝑎𝑑 − 𝑏𝑐
ℱ −𝑑 

+
4𝑏𝑐𝑑

α α + 𝑑 + 𝑎  𝑑 − 𝑎 − α 
ℱ 𝑎 + α 

+
4𝑏𝑐𝑑

α 𝑎 − 𝑑 − α  𝑑 + 𝑎 − α 
ℱ 𝑎 − α  . 

(41)  

For 𝑎d = bc, Eq. (40) becomes: 230 

1

𝑠 𝑠 + 𝑑 2𝑕  𝑠 
=

1

𝑎𝑑2 𝑠 + 𝑑 
+

1

𝑑 𝑎 + 𝑑 𝑠2
−

1

𝑎 𝑎 + 𝑑 2 𝑠 + 𝑑 + 𝑎 
−

2𝑑 + 𝑎

𝑑2 𝑎 + 𝑑 2𝑠
. (42)  

The inversions for the terms appearing on the right side of Eq. (42) are, respectively, Eqs. 231 

(49), (53), (50) and (50), respectively. The resulting expression for q(x,t) is: 232 
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𝑞 𝑥, 𝑡 

𝑔𝐻 𝑥 
=

1

𝑑
 1 − 𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
  𝐼0 2β  

+
𝑎

𝑑 𝑎 + 𝑑 
 
 

 
𝑑𝑡

− 𝐻  𝑡 −
𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
   𝑛

∞

𝑛=1

 
𝑑  𝑡 −

𝑥
𝑢 

𝑎
𝑥
𝑢

 

𝑛
2

𝐼𝑛 2β  

−
1

 𝑎 + 𝑑 2
 𝑑ℱ 2𝑎 + 𝑑 +

𝑎

𝑑
 2𝑑 + 𝑎 ℱ −𝑑  . 

(43)  

4 Discussion 233 

The model in Eqs. (6) and (7) can aid in the question of identifiabilty of the HR model 234 

parameters and, indeed, how such a model is validated. Concerning validation, in particular, 235 

apart from very small scale laboratory experiments, soil erosion experiments are usually 236 

carried out using flumes set up to measure sediment and water fluxes at the end of the flume, 237 

i.e., in the notation used here experiments measure a quantity proportional to up(L,t), where 238 

L is the flume length. Consider setting f = 0 in Eq. (6) and allow the constant 𝑔 to become 239 

time-dependent such that Eqs. (6) and (7) become, respectively: 240 

∂𝑝

∂𝑡
+ 𝑢

∂𝑝

∂𝑥
= −𝑎𝑝 + 𝑏𝑞, (44)  

∂𝑞

∂𝑡
= 𝑐𝑝 − 𝑑𝑞 +

𝑓

𝑏
[δ 𝑡 + 𝑑 𝐻 𝑥 , (45)  

Here, sediment is supplied from the original soil to the deposited layer, whereas in the HR 241 

model sediment is supplied only to the water phase. Thus, it is, in physical terms, quite 242 
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different from the HR model. The Laplace domain solution of Eqs. (44) and (45) subject to 243 

Eqs. (8) – (10) is: 244 

𝑝  𝑥, 𝑠 

𝑓𝐻 𝑥 
=

1

𝑠𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   , (46)  

𝑞  𝑥, 𝑠 

𝑓𝐻 𝑥 
=

𝑐

𝑠 𝑠 + 𝑑 𝑕  𝑠 
 1 − exp  −

𝑥

𝑢
𝑕  𝑠   +

1

𝑏𝑠
. (47)  

Observe that Eq. (46) is identical to Eq. (15), which was obtained for the case 𝑔 = 0, i.e., 245 

sediment was supplied only to the water phase. But, Eq. (47) differs from Eq. (16) by the final 246 

term, i.e., 1/(bs). Solutions to Eq. (47) are therefore the same as those for Eq. (16), with an 247 

additional term fH(x)/b. This means that experiments that do not measure both p and q (i.e., 248 

for p, sediment concentrations exiting the flume and, for q, the deposited layer) are unable to 249 

say definitively, in the absence of other information, whether the HR model form is correct. In 250 

other words, a model validated based only on sediment concentrations in the runoff cannot 251 

distinguish whether the original soil sediment has been moved directly into the flow, or has 252 

been moved to the deposited layer, and from there to the flowing water. 253 

5 Conclusion 254 

In a mechanistic model, parameters are determined, ideally, independently, and the 255 

model used to make predictions. Soil erosion is a complex process, and is an extremely 256 

challenging system in which to make measurements, in consequence making model validation 257 

subject to uncertainty. Solutions for a slightly generalized HR model have been presented. The 258 

model generalization, however, makes clear that the mechanisms included in the model 259 

cannot be validated solely on sediment concentration data collected in runoff. Rather, 260 

experimental measurements of the deposited layer would provide an additional means to 261 

analyze whether the form of the model is correct. The reason for this is that the HR model 262 
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assumes that, when considering the original soil, eroded sediment is transferred to the water 263 

phase and from there to the deposited layer. Certainly for large particles, this assumption 264 

would be open to question. An alternative model would be for the original soil sediment to 265 

move directly to the deposited layer. As an example, the extreme case where this is the only 266 

possibility was solved, with the solution revealing that the model prediction of the deposited 267 

layer changes, whereas the sediment concentrations in the runoff do not. 268 
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8 Appendix: Laplace Transform Pairs and the Modified Goldstein J 355 

Function 356 

In this Appendix results used to derive the analytical solutions are listed. Some 357 

additional transform pairs are included for those interested in solving similar problems. A 358 

modification of the Goldstein J function was found to be necessary, as is discussed below. The 359 

function 𝑕  𝑠  is defined in Eq. (14). 360 

Laplace Domain 

Function 
Real Domain Function Equation 

exp  −𝑕  𝑠 
𝑥

𝑢
   𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
    

𝑏𝑐

𝑡−
𝑥

𝑢

𝑥

𝑢
𝐼1 2β + δ  𝑡 −

𝑥

𝑢
    (48)  

exp  −𝑕  𝑠 
𝑥

𝑢
 

𝑠+𝑑
  𝐻  𝑡 −

𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
  𝐼0 2β   (49)  

exp  −𝑕  𝑠 
𝑥

𝑢
 

𝑠+𝐵
, 𝐵 ≠

𝑑  

𝐻  𝑡 −
𝑥

𝑢
 exp  −

𝑥

𝑢
 𝑎 −

𝑏𝑐

𝑑−𝐵
 − 𝐵  𝑡 −

𝑥

𝑢
  𝐽𝑚𝑜𝑑  

𝑏𝑐

𝑑−𝐵

𝑥

𝑢
,  𝑑 − 𝐵  𝑡 −

𝑥𝑢  

(50)  

𝑠exp  −𝑕  𝑠 
𝑥

𝑢
 

𝑠+𝐵
  ℒ−1  exp  −𝑕  𝑠 

𝑥

𝑢
  − 𝐵ℒ−1  

exp  −𝑕  𝑠 
𝑥

𝑢
 

𝑠+𝐵
   (51)  

exp  −𝑕  𝑠 
𝑥

𝑢
 

 𝑠+𝑑 2   𝐻  𝑡 −
𝑥

𝑢
 exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
   

𝑡−
𝑥

𝑢

𝑏𝑐

𝑢

𝑥
𝐼1 2β   

(52)  

exp  −𝑕  𝑠 
𝑥
𝑢 

 𝑠 + 𝐵 2
, 𝐵

≠ 𝑑 

𝐻 𝑡−
𝑥

𝑢
 

𝑑−𝐵
exp  −𝑎

𝑥

𝑢
− 𝑑  𝑡 −

𝑥

𝑢
   𝑛∞

𝑛=1  𝑑 − 𝐵 𝑛  
 𝑡−

𝑥

𝑢
 

𝑏𝑐
𝑥

𝑢

 

𝑛

2

𝐼𝑛 2β   
(53)  
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In Eq. (50), Jmod is a modification of the Goldstein J function (Goldstein, 1953). Note that 361 

original J function arises naturally in two-region problems such as that in Eqs. (6) – (10), see, 362 

for example, Goltz and Roberts (1986), Barry and Parker (1987), Veling (2002), De Smedt et 363 

al. (2005). However, it is necessary to modify it as per the following definition: 364 

𝐽𝑚𝑜𝑑  𝑦, 𝑧 = exp −𝑦 − 𝑧  [sgn 𝑦  𝑛  
𝑧

𝑦
 

𝑛
2
𝐼𝑛 2 𝑦𝑧 

∞

𝑛=0

, (54)  

where the sign function, sgn, is defined by: 365 

sgn 𝑦 =  

−1, 𝑦 < 0,
0, 𝑦 = 0,
1, 𝑦 > 0.

  (55)  

The modified J function is necessary to account for negative arguments, which can occur in the 366 

solutions reported here. The J function of Goldstein (1953) is recovered by setting sgn(y) = 1 367 

in Eq. (54), i.e., it is defined by: 368 

𝐽 𝑦, 𝑧 = exp −𝑦 − 𝑧   
𝑧

𝑦
 

𝑛
2
𝐼𝑛 2 𝑦𝑧 

∞

𝑛=0

. (56)  

Goldstein (1953) also gave the alternative definition: 369 

𝐽 𝑦, 𝑧 = 1 − exp −𝑦 − 𝑧   
𝑦

𝑧
 

𝑛
2
𝐼𝑛 2 𝑦𝑧 

∞

𝑛=1

. (57)  

The corresponding definition for Jmod(y,z) is: 370 

𝐽𝑚𝑜𝑑  𝑦, 𝑧 = 1 − exp −𝑦 − 𝑧  [sgn 𝑧  𝑛  
𝑦

𝑧
 

𝑛
2
𝐼𝑛 2 𝑦𝑧 .

∞

𝑛=1

 (58)  

The third J function definition of Goldstein (1953): 371 
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𝐽 𝑦, 𝑧 = 1 − exp −𝑧  exp −𝑦  𝐼0 2 𝑦 𝑧 𝑑𝑦 .
𝑦

0

 (59)  

remains remains unchanged, i.e., J = Jmod in this case. 372 

Limiting values of Jmod(y,z) are, as for the J function: 373 

𝐽𝑚𝑜𝑑  𝑦, 0 = exp −𝑦 , 𝐽𝑚𝑜𝑑  0, 𝑧 = 𝐽𝑚𝑜𝑑  𝑦,∞ = 1, 𝐽𝑚𝑜𝑑  ∞, 𝑧 = 0. (60)  

To these limits, the following limits for Jmod(y,z) can be added: 374 

𝐽𝑚𝑜𝑑  𝑦, −∞ = ∞, 𝐽𝑚𝑜𝑑  −∞, 𝑧 = ∞. (61)  

  375 
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Table 1. Summary of equations solved and analytical solutions. 376 

Laplace 

Transform 

Equation 

Solved 

Solution Section Remarks 

Eq. (15) Eq. (20) §3.1.1 𝑔 = 0 (all entries to the 

partition below are for this 

case), integral solution for p, w 

from Eq. (17), 𝑎d ≠ bc. 

Solution for the water phase 

sediment concentration. 

Physical interpretation for all 

solutions with 𝑔 = 0: Sediment 

mobilized from the original 

soil moves only to the water 

phase, in accordance with the 

HR model. 

Eq. (16) Eq. (20) §3.1.1 𝑔 = 0, right side gives the 

integral solution for 

q/[cfH(x)], w from Eq. (21) , 

𝑎d ≠ bc. Solution for the 

deposited layer concentration. 

The physical interpretation 

corresponds to that given in 

the entry above for Eq. (15). 

Eq. (15) Eq. (20) §3.1.1, Case of 𝑎d = bc 𝑔 = 0, integral solution for p, 

w from Eq. (22) , 𝑎d = bc. 

Solution for the water phase 

sediment concentration. This 

case is given for mathematical 
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completeness. For the HR 

model, it corresponds to a 

non-erodible original soil, 

which is physically 

implausible. 

Eq. (16) Eq. (20) §3.1.1, Case of 𝑎d = bc 𝑔 = 0, right side gives the 

integral solution for 

q/[cfH(x)], w from Eq. (23), 

𝑎d = bc. Solution for the 

deposited layer concentration. 

Again, this solution is given for 

completeness as, in terms of 

the HR model, 𝑎d = bc is 

physically implausible. 

Eq. (15) Eq. (26) §3.1.2 𝑔 = 0, series solution for p, 𝑎d 

≠ bc. Solution for the water 

phase sediment concentration. 

Same interpretation as given 

for Eq. (15) above (first entry 

in this table). 

Eq. (16) Eq. (29) §3.1.2 𝑔 = 0, series solution for q, 𝑎d 

≠ bc. Solution for the 

deposited layer concentration. 

Same interpretation as given 

for Eq. (16) above (second 

entry in this table). 

Eq. (15) Eq. (32) §3.1.2, Case of 𝑎d = bc 𝑔 = 0, series solution for p, 𝑎d 

= bc. Solution for the water 

phase sediment concentration. 

Same interpretation as the 

above entry for 𝑎d = bc. 
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Eq. (16) Eq. (34) §3.1.2, Case of 𝑎d = bc 𝑔 = 0, series solution for q, 𝑎d 

= bc. Solution for the 

deposited layer concentration. 

Same interpretation as the 

above entry for 𝑎d = bc. 

Eq. (35) Eq. (20) §3.2.1 f = 0 (all the solutions to the 

end of the table are for this 

case), right side gives the 

integral solution for 

p/[bfH(x)], w from Eq. (21), 

𝑎d ≠ bc. Solution for the water 

phase sediment concentration. 

Physical interpretation for all 

solutions with 𝑓 = 0: Sediment 

mobilized from the original 

soil moves only to the 

deposited (shield) layer. This 

is in contrast to the HR model 

where sediment moves from 

the original soil only to the 

water phase. 

Eq. (35) Eq. (20) §3.2.1 f = 0, right side gives the 

integral solution for 

p/[bfH(x)], w from Eq. (23), 

𝑎d = bc. Solution for the water 

phase sediment concentration. 

As was the case above, this 

case is given for mathematical 

completeness. It corresponds 

to a non-erodible original soil, 

which is physically 
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implausible. 

Eq. (36) Eq. (20) §3.2.1 f = 0, right side gives the 

integral solution for 

q/[𝑔H(x)], w from Eq. (38), 𝑎d 

≠ bc. Solution for the 

deposited layer concentration. 

The physical interpretation 

corresponds to that given in 

the entry two rows above for 

Eq. (35). 

Eq. (36) Eq. (20) §3.2.1 f = 0, right side gives the 

integral solution for 

q/[𝑔H(x)], w from Eq. (39), 𝑎d 

= bc. Solution for the 

deposited layer concentration. 

Physical explanation follows 

that given two rows above. 

Eq. (35) Eq. (29) §3.2.2 f = 0, the right side of Eq. (29) 

gives the series solution for 

p(x,t)/[b𝑔H(x)], 𝑎d ≠ bc. 

Solution for the water phase 

sediment concentration. Same 

interpretation as given for Eq. 

(35) above (first entry in this 

sub-section of this table). 

Eq. (35) Eq. (34) §3.2.2 f = 0, the right side of Eq. (34) 

gives the series solution for 

p(x,t)/[b𝑔H(x)], 𝑎d = bc. This 

case is for the water phase 

sediment concentration, but is 

physically implausible as 
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explained above. 

Eq. (36) Eq. (41)  §3.2.2 f = 0, series solution for q, 𝑎d 

≠ bc. Deposited layer 

concentration for the case 

where the sediment from the 

original soil is transferred only 

to the deposited layer. 

Eq. (36) Eq. (43) §3.2.2 f = 0, series solution for q, 𝑎d 

= bc. Solution for the 

deposited layer concentration. 

Again, this solution is given for 

completeness as 𝑎d = bc is 

physically implausible. 
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