
Abstract— Series of Pseudo Random Numbers are often used
as simulation input, and they strongly influence the results. Thus,
their usage and the usage of their generator need to be taken care
of very well. Qualified generators are available on the web as
source code or libraries. However, they require an additional
middleware to adapt them to the running environments, and this
can lead to misuses.

This paper proposes Pseudo Random Number Generators
embedded inside a Web Service for the use in simulations. This
service, while offering a unique interface accessible from any
platform, eases the important task of retrieving correct pseudo
random numbers. The general architecture of the service is
presented, as well as a reference implementation. The
performance of the Web Service generator is compared to the
performance of local generators.

Index Terms— Random Number Generation, Web Services,
Load-testing.

I. INTRODUCTION

ERFORMANCE evaluation of a computer system or
network infrastructure (later designated as “system”) is

and has always been a key task. It permits to verify if an
existing infrastructure can fulfill precise requirements, or to
foresee the qualities and flaws of novel ones. This evaluation
can be based on a mathematical analysis. It can also be
conducted over the system itself. However, when the situation
becomes to complex to be formulated in equations, or if usage
of the real system is to costly, dangerous or time consuming
[1], performance evaluation can be conducted by means of
simulation.

The description of a system can be partitioned into two
parts. One part is devoted to the system itself (the internal
part). The second part is related to the external events that

Manuscript received February 25, 2008; revised May 15, 2008. The
research presented here has been undertaken by members of the European
Cooperation in the field of Scientific and Technical Research (COST) Actions
285 (“Modeling and Simulation Tools for Research in Emerging Multi-service
Telecommunications”) and 291 (“Toward Digital Optical Networks”).

This research was also supported by the German Research Foundation
(DFG) as part of the Collaborative Research Centre 637 “Autonomous
Cooperating Logistic Processes”, and by the Swiss Secretariat for Education
and Research.

S. Rumley is with the Laboratoire de Télécommunications, Ecole
Polytechnique Fédérale de Lausanne, Station 11, 1015 Lausanne, Switzerland
(e-mail: sebastien.rumley@epfl.ch).

M. Becker is with the TZI, University of Bremen, Otto-Hahn-Allee NW1,
28359 Bremen, Germany. (e-mail: mab@comnets.uni-bremen.de).

“stimulate” the system (the external part). Simulation of the
first part consists in reproducing the behaviors of each
component of the system inside a computer program. As most
of these devices present a deterministic behavior (notable
exception is the IEEE 802.3/Ethernet random waiting time
after collision, or the 802.11/Wifi backoff period), the system
itself can be considered as deterministic. Oppositely, the
external part (i.e. the real world) is non-deterministic and
triggers random events (e.g. transmission errors, packet
arrival, or telephone pick-up) which directly affect the internal
part. This non-deterministic behavior of the external
environment is modeled using statistical distributions. Within
simulation, random numbers are needed to generate samples
of these distributions, and in turn triggering events.

Truly random sequences of numbers cannot be generated by
finite state machines, thus by software means. They can be
obtained from specific physical processes [2], although these
processes require to be implemented in external interfaces,
inducing costs. More often, sequences generated by
algorithms called Pseudo Random Numbers Generators
(PRNGs) are substituted for truly random sequences. PRNGs
do not provide real randomness, but presents other
advantages, such as reproducibility of the sequences, which is
useful for debugging, and very high generation rate. For these
reasons, PRNGs are particularly suitable for simulation [1].
They should however comply with several criteria (for
instance, high sequence length, unpredictability, or high
entropy) to be eligible as good ones [3],[4].

PRNGs are based on complex algorithms themselves based
on number theory and algebra. Performing a correct
implementation requires specific knowledge, while testing and
validating it can be very time consuming. It is therefore
profitable and rewarding to reuse implementations of PRNGs
made by experienced persons, and having been tested and
validated by a wide user community.

Unfortunately, this reusability principle is not straight-
forward to apply: the source code of PRNGs can only be
integrated into projects sharing the same development
environment, while PRNGs available as libraries have to be
compatible with the execution environment. Some middleware
can be added to bypass these road-blocks, but the
reproducibility of the PRNGs might be then difficult to
guarantee. It might also be affected by differences at the
hardware, operating system, or runtime environment level.

This study proposes an approach where both the PRNG and
a part of the required middleware are embedded into a

Pseudo Random Numbers Generators available
as Web Services

Sébastien Rumley and Markus Becker, Members, IEEE

P

SPECTS 2008 91 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

component deployed as Web Service. This approach solves
many of the problems formerly enounced, as the variability of
the service is almost null: a precise, tested and assessed
implementation of PRNG is executed over a single hardware
platform, within a unique runtime environment and library set.
Furthermore, it can be called by any user working on any
platform, using a single unified interface provided by an
identical middleware. This service is therefore a reliable and
independent source of pseudo random numbers.

This contribution is organized in the following manner. In
the next Section, a short presentation of random number
generation is given. Section III situates this contribution in the
context of generic component oriented and service oriented
architectures. In Section IV, an abstract description of the
approach is given, while reference implementations and
performance measurements are given in Section V. A
conclusion is given in Section VI.

II. PSEUDO RANDOM NUMBER GENERATION

A general description of the pseudo random number
generation is available in several reference books [5]. The first
pseudo generator function (called middle-square method) has
been imagined by John von Neumann in 1946. Even if von
Neumann was aware of its poor quality, he preferred it to true
random sequences stored on punch card for performance
reasons. After 1946, many generators have been presented [6],
[7]. Their quality, in particular their cycle length, increased
together with the computing power, which allowed
simulations requiring more and more numbers. More recently,
Matsumoto et al. [3] presented a generator called Mersenne
Twister providing a mathematically proven period of 219937-
1. Other recent advances, generators and additional references
have been summarized by Panneton et al. [8].

Depending on their properties, PRNGs can be more or less
suited for different usages [9]. There exist also several
algorithmic methods to test PRN sequences, and assess their
corresponding generators [10], [11]. Utilization and impact of
PRNGs in communication network simulations has been
addressed in various publications, for instance in [12], while
the effects induced by bad generators, or incorrect usage of
good ones are described in [13]-[15], [32].

Software implementations of PRNG algorithms can be
found in many locations of the Internet, and for various
platforms. In particular, several packages offer
implementations of the Mersenne Twister [16]-[18], as well as
other PRNGs. Among them, the GNU Scientific Library [16]
is also offering known bad PRNGs, which permits
comparisons.

III. COMPONENT/SERVICE ORIENTED ARCHITECTURE

The Web Service (WS) in which the PRNGs are packed is
the basic building block for a Service Oriented Architecture
(SOA) for simulations [19]-[21]. WS provide increased
interoperability in comparison to older distributed computing
schemes like Remote Procedure Call (RPC): while RPC

allows only communications between remote machines
sharing at least a programming environment, WSs can be used
between any pair of computers, whatever being the operating
system, the programming environment or the programming
language used. SOA applies the code reusability principle. A
service can be seen as a reusable component, following in this
way a Component Oriented design [22], [23]. The utilization
of the SOA in the context of academic research or education
has already been proposed: network planning tool deployed as
WS [20], or scientific devices controllable through WS [33].

Request to WSs are sent using the Simple Object Access
Protocol (SOAP), also employed to format the response.
SOAP is a synchronous and stateless protocol [24] and defines
a simple XML structure in which transmitted data must be
incorporated. As SOAP messages are generally transported
using the well known HTTP protocol, Web Services are often
implemented beside conventional web servers like
Apache [25].

Advantages of the SOA are multiple. The yield of the code
constituting the service increases, as this service can be
accessed by more users. It avoids the multiplication of the
implementations, and thus diminishes the risks of mutation
among the implementations, which can lead to
incompatibilities. Additionally, less code means less
development time and less bugs. Besides these quantitative
considerations, qualitative gains can also be disclosed. In a
SOA, implementation should be performed by experienced
persons. People missing the appropriate knowledge should
only write the connecting interfaces. This guarantees a high
quality of the offered service. If in addition, the maintenance
is operated by skilled people, the service will present high
availability and robustness.

The SOA however presents several drawbacks, too. In
particular, the stateless property of the SOAP protocol
imposes a one-time transmission of all information, which
makes reference passing calls impossible. In the case of
PRNGs, this obliges to attach the state of the PRNGs in each
call, which is resource consuming.

Performances of WSs are also subject to the potentially
high latency or low bandwidth induced by remoteness. When
payload data is of limited size and when the offered
bandwidth towards the destination is large, this limitation has
no real impact. In other cases, this can be an important
performance limitation factor. Finally, WSs, due to the high-
level interfaces they provide, require XML over HTTP,
written in ASCII. Additional processing time is thus required
for each message reception/emission [26], [27]. Several tracks
have been envisaged to reduce the required processing time,
by means of compression, different encoding styles or SOAP
attachments [27].

Nevertheless, one expects in the future to see these
limitations being mitigated by the appearance of high-capacity
and low latency computing grids. Synergies between WSs and
Grid Computing have already been exposed so far [28].

SPECTS 2008 92 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

IV. PRNG WEB SERVICE ARCHITECTURE

The architecture of the realized PRNG service is sketched
in Fig. 1. As already mentioned, a classical web server engine
is used to handle incoming TCP connections and parse HTTP
messages. Once the HTTP payload is extracted, the WS is
accessed.

Fig. 1. Server side Implementation of the PRNG Web Service.

Inside the WSs, the SOAP message is parsed to recover the
call parameters, which are in the present case:

• The name of Pseudo Random Number Generator
(The WS may embed various ones)

• The number of desired samples
• A single seed value OR the generator state
An example of SOAP request message is shown in Fig. 2.

The state is transmitted as a collection of columns. In the
example, it consists of one array of integers (first column,
included in element <m:c0>) plus one pointer over this array
(unique element of the second column <m:c1>). This format
tolerates more columns, and has been selected to allow
PRNGs using states structured differently. The state size
element contains a list of comma separated integers. The first
integer indicates the number of columns, while the following
integers denote the length of each column.

Because certain PRNGs provide a mechanism to populate
their state register from a single value (the seed) at the
initialization, the full state element listed in the Fig. 2 can be
replaced by a simple seed element in the first request.
Successive requests must however include the state to keep

continuity in the sequence.
The WS also includes the logic transforming ASCII

numbers into integers. Once the parameters are extracted, the
WS initializes the embedded generator, either using the given
seed, either replacing the state values by the ones contained
inside the request. The WS then retrieves n requested samples
from the PRNG, retrieves again the state of the PRNG, and
packs all results in the response message, whose example is
listed in Fig. 3. This message is eventually forwarded to the
web server for HTTP formatting and serialization. On the
client side, once the message is received, parsing operation is
conducted and the response values are extracted. Depending
on whether more samples will be requested or not, the state
can be stored or discarded.

To prevent any interpretation difference on the client side
of ASCII double or long values, SOAP messages include only
integer values, ranging from -231 to 231-1. Whether the way of
storing integer arrays inside the SOAP messages is the right
option or not stays an open question. The format used for state
in Fig. 2 and 3 has a high overhead and may require more
efforts from the XML parser, but is less error prone. Another
possibility consists in using the format used for the state size:
comma separated integers. This would however require an
additional parsing pass, as XML parser will only extract the
string contained inside the element. For the moment, no
definitive solution has been selected.

V. REFERENCE IMPLEMENTATION

To validate the proposed approach, several implementations
have been realized, both on the client and server side. A main
Java implementation has been achieved, and various designs
have been tested and measured within it. Additionally, C and
Python based implementation have been setup, to verify

< SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingstyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance>"
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
 <m:get_prng xmlns:m="http://tcom.epfl.ch/pnrgweb/v1">
 <m:prngtype xsi:type="xsd:string">mt19937</m:prngtype>
 <m:samples xsi:type="xsd:type">9</m:samples>
 <m:state_size>2,624,1</m:state_size>
 <m:state>
 <m:c0>
 <m:s>-200633805</m:s>
 <m:s>-111674796</m:s>
 : :
 <m:s>1516013983</m:s>
 </m:c0>
 <m:c1>
 <m:s>30</m:s>
 </m:c1>
 </m:state>
 </m:get_prng>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Fig. 2. SOAP request including state, requesting 9 samples

< SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingstyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
 <m:get_prngResponse
 xmlns:m="http://tcom.epfl.ch/pnrgweb/v1">
 <m:nb_samples>9</m:nb_samples>
 <m:samples>
 <m:v>3434214777</m:v>
 : :
 <m:v>2248176379</m:v>
 </m:samples>
 <m:state_size>2,624,1</m:state_size>
 <m:state>
 <m:c0>
 <m:s>1221865289</m:s>
 : :
 <m:s>-2030900162</m:s>
 </m:c0>
 <m:c1>
 <m:s>39</m:s>
 </m:c1>
 </m:state>
 </m:get_prngResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Fig. 3. SOAP response, including state and returning 9 samples.

SPECTS 2008 93 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

interoperability, compatibility and portability of the approach
over various platforms.

WebServer architecture:
On the server side, C and Python implementations rely on

embedded HTTP servers to handle incoming TCP connection
and parse HTTP messages. The Java implementation
discarded Apache/Tomcat/Axis for performance and lack of
flexibility reasons and uses a lightweight HTTP Server library
called Simple [29].

SOAP/WS architecture:
Various packages provide support for SOAP message

handling, for instance SOAPpy library in Python, cSOAP in
C, or Axis in Java. However, we experienced difficulties with
several libraries, either because they offer too high level
functions and miss of flexibility and configurability (Axis, in
particular), either because they use different definitions and/or
implementations of the WS/SOAP mechanisms. Fig. 4 lists
SOAP messages generated by SOAPpy and cSOAP clients
and highlights the differences. cSOAP, additionally, requires
the SOAP header element, although it is mentioned as
optional in the W3C’s specification [30]. For these reasons,
dedicated logic for SOAP message creation and parsing has
been developed within the Java implementation. This
provided a good compatibility with all clients, as well as more
flexibility to test various design choices.

XML Parsing:
Parsing of the SOAP message is clearly the most time

consuming task of the approach, both on the server and on the
client side. The selection of an appropriate parser is thus a
crucial step. In this study, both DOM and SAX parsers have
been tested. DOM parsers are slower and more memory
consuming, as they first store the XML document as an object
structure, and later let the user accessing it. They however
allow more flexibility regarding the way the elements are
placed inside the XML structure. SAX parsers permit on the
contrary to parse message in one pass, reading directly on the
input stream. They are very efficient but less robust, and
impose a strict organization inside the message. Fig. 5
illustrates performance of the implementation and compares
the two parsers. The WS server is executed locally on the

same multi CPU machine than the client and thus performance
does not suffer from any network latency. It appeared that
SAX parsers are about 30% faster than DOM. By replacing
DOM parsers by SAX engines on both side, performances
nearly double. The SAX Parser also tolerates larger messages
due to its reduced memory consumption.

Selection of the PRNGs:
The three packages mentioned in the introduction have been

included in the reference implementations. GSL [16] is used
by the C and Python servers, while SSJ [17] and Mantissa [18]
are implemented in the Java server. All three include the
Mersenne Twister algorithm, which has been selected as
reference generator. The way the function is implemented
varies however between the packages. GSL and Mantissa
populate the initial state vector using a unique seed, while SSJ
requires a full sequence. SSJ generates double values but
Mantissa outputs integers. GSL is configurable on that point.
After many trials, adaptations and reverse engineering
operations, we eventually generated identical sequences using
the different methods. Additionally, as previously mentioned,
the state of the PRNG must be accessible. However, to
guarantee the consistency of the sequences, implementations
declare the state variables private. Thus, we also modified the
implementation of both Mantissa and SSJ packages, in order

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
 <m:get_prng xmlns:m="http://tcom.epfl.ch/prngweb/v1">
 <m:seed xsi:type="xsd:int">498374</m:seed>
 <m:samples xsi:type="xsd:int">21</m:samples>
 <m:prngtype xsi:type="xsd:string">mt19937</m:prngtype>
 </m:get_prng>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
 <get_prng SOAP-ENC:root="1">
 <seed xsi:type="xsd:int">498374</seed>
 <samples xsi:type="xsd:int">21</samples>
 <prngtype xsi:type="xsd:string">mt19937</prngtype>
 </get_prng>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 4. Comparison between SOAP messages. Left message has been created by cSOAP, right message by SOAPpy. Differences have been highlighted

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.0
0E

+02

3.1
6E

+02

1.0
0E

+03

3.1
6E

+03

1.0
0E

+04

3.1
6E

+04

1.0
0E

+05

3.1
6E

+05

Samples per request

Ti
m

e
P

er
 S

am
pl

e
[m

s]

SAX on client and server

DOM on server

DOM on both

Fig. 5. Comparison between SAX and DOM parsers. A total of 4 millions
of samples have been retrieved in all cases

SPECTS 2008 94 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

to retrieve and set the state. GSL did not require any
modification: the state of the different pseudo random number
generators is accessible.

Besides the Mersenne Twister, another generating function
has been tested: the FourTap shift register [31], included in
the Mantissa package. Performances of two WSs
implementing each of these two generators have been
measured and are compared (Fig. 6). Again, WSs are executed
on the same machine. The FourTap has a much bigger state
than the Mersenne Twister, thus imposes larger messages
which lead to a performance penalty. The penalty is however
reduced when large amount of samples are retrieved within
the same request. In Fig. 6, a local minimum appears at 10k
samples for the two series corresponding to 10k of samples.
This is due to the fact that the request size matches the number
of reclaimed samples perfectly.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.0
E+0

2

3.2
E+0

2

1.0
E+0

3

3.2
E+0

3

1.0
E+0

4

3.2
E+0

4

1.0
E+0

5

3.2
E+0

5

1.0
E+0

6

Total number of samples retrieved

Ti
m

e
Pe

r S
am

pl
e

[m
s]

M.Twister, Req=10k
M.Twister, Req=300k
FourTap, Req=10k
FourTap, Req=300k

Fig. 6. Comparison between two PRNG functions (Mersenne Twister and
FourTap), and between two request size.

XML Serialization:
Different options also exist regarding XML serialization.

SOAP messages can be constructed using a DOM object,
which are eventually serialized over the stream. This is
however memory and time consuming. A progressive
serialization of the XML has been tested but provided no
benefits, probably due to packet fragmentation at the TCP/IP
stack level. In the retained solution, XML text is progressively
written in a byte buffer, which is then linearly serialized to the
stream.

Client caching mechanism:
To mitigate the influence of the multiple overheads (i.e.

SOAP envelopes, XML tags and transmission of state) over
the performance, the Java client has been equipped with a
caching mechanism. In this way, the client first fills its cache
by sending one or more request to the server. Once filled,
random numbers stored in the cache can be consumed by the
user application, i.e. the simulation. When the last number is
consumed, the client fills the cache again.

The effect of cache size over performances has been

measured, and is represented in Fig. 7. The request cannot be
larger than the cache, to avoid loosing numbers. By increasing
the cache size, larger requests can be emitted, which improves
performance. A cache much larger than the request size is not
valuable, and can even bring penalties. In order to see the
effect of an increased delay, the same experiment has also
been performed in alternative conditions: the server has been
moved on a laptop connected to the server through a wireless
and Virtual Private Network (VPN) connection.

Several scenarios have also been set up to measure the
influence of the ratio request size/cache size. When the WS is
running on the same machine, the overhead is mostly due to
XML parsing. By maximizing the size of the requests, less
state messages have to be parsed. A ratio of 100% is therefore
giving the best performance. If the WS is more distant,
smaller request permit a better anticipation. Some results are
listed in Fig. 8.

1.0E-03

1.0E-02

1.0E-01

1.00E+03 1.00E+04 1.00E+05

Cache size [samples]

Ti
m

e
P

er
 S

am
pl

e
[m

s]

Local, Req=min(1k,cache)

Local, Req==min(10k,cache)

Local, Req=min(100k,cache)

VPN, Req=min(1k,cache)

VPN, Req=min(10k,cache)

VPN, Req=min(100k,cache)

Fig. 7. Effect of cache size on performance.

1.E-03

1.E-02

1.E-01

1.0
E+0

3

3.2
E+0

3

1.0
E+0

4

3.2
E+0

4

1.0
E+0

5

3.2
E+0

5

1.0
E+0

6

Cache Size [samples]

Ti
m

e
P

er
 S

am
pl

e
[m

s]

VPN 25%
VPN 50 %
VPN 100%
Local 25%
Local 50%
Local 100%

Fig. 8. Effect of different ratios request size/cache size (25%, 50%, 100%)
with a local and distant WS.

Parallel cache reloading mechanism:
One can take advantage of multi-threading to concurrently

consume random numbers and refill the cache. Such a
possibility has been included into the client. The reading

SPECTS 2008 95 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

thread (i.e. the one which consumes the samples) periodically
verifies the level of the cache. When this level falls under a
certain threshold, it triggers a new thread, which requests
more numbers from the server, while the reading thread
continues its normal execution. If all numbers are exhausted,
the reading thread waits until the requesting thread terminates.

In order to provide a global overview of the performances,
four situations are compared:

• server and client are running on the same machine
(Intel Quad CPUs, Windows environment)

• server is moved on a Pentium 4 based machine working
on the same LAN (Linux environment).

• server is moved on a Pentium M laptop connected to the
LAN via a wireless connection and through a VPN
(Windows environment).

• random numbers are retrieved directly without using
the WS.

Additionally, a block acting as simulator is introduced. This
block simply performs a configurable number of floating point
divisions. Each time a sample is read, this block is executed.

Results corresponding to these four situations are illustrated
in Fig. 9. The x axis corresponds to the number of divisions
made in the block. Multithreading (MT) gives shorter times
when samples are requested locally or on the LAN, but not
when requested through the VPN: due to the reduced
bandwidth of the VPN, the reading thread consumes the
results too quickly, and waits for the other thread to finish.
Synchronization mechanisms between threads are thus
required, and occupy additional resources.

Fig. 9 shows that direct generation is without comparison
better for pure sample generation. WS based generation
becomes competitive if several operations have to be
conducted with each random number. In terms of rates, a
PRNG directly accessed furnishes between 10 to 100 millions
of samples per second, whereas the WS based approach is
limited to 0.1 to 1 million when used locally, and to 10 to 100
thousands when used in a campus network (wireless and

VPN). The impact of the remoteness becomes acceptable, if
the required rate is smaller than these values.

VI. CONCLUSION

A WS providing Pseudo Random Number series has been
presented. Such a service could be made available over a
campus wide network or over an academic grid, and accessed
by any user of the network. The underlying hardware and
software platform over which the service is running does not
vary over time. Neither does the implementation of the PRNG
algorithms, and the additional middleware. Therefore, an
almost perfect reproducibility of the generated sequences is
guaranteed. As the service should be setup and maintained by
people having experience in pseudo random number
generation, only valid sequences are generated. Those
sequences can be later used in many fields, for instance in
simulation.

A reference implementation has also been described. By
using a cache mechanism and requesting large amount of
numbers at the same time, the performance of this approach is
acceptable, although much slower than a direct
implementation. Utilization in simulations requiring a limited
amount of pseudo random numbers is thus possible.

The implementation also revealed that the same PRNGs
packaged in different libraries could generate different
sequences if not initialized in a very similar way, which is not
straightforward. Finally, incoherencies between SOAP
implementations have been highlighted.

The described service intends to cure in parts the credibility
crisis of simulation studies denounced in [12]. On one hand
regarding the limited attention paid to pseudo random number
generation, on the other hand regarding the non-
reproducibility of the results. Indeed, if the simulator itself is
proposed as a service, and if the PRNG function and seed are
published along the results, anybody could check their
validity.

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1 3 9 27 81 243 729 2187

Floating point divisions between each samples

Ti
m

e
Pe

r S
am

pl
e

[m
s] direct generation

same machine, MT=on

same machine, MT=off

LAN, MT=on

LAN, MT=off

VPN, MT=on

VPN, MT=off

Fig. 9. Comparison between direct generation, using WS running on the same machine, on the same LAN, or in the same campus network, through VPN. MT
means multithreading.

SPECTS 2008 96 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Phillips. “A Review of High Performance Simulation Tools and
Modeling Concepts”, Recent Advances in Modeling and Simulation
Tools for Communication Networks and Services. Springer, 2008.

[2] True Random Numbers, 2007. http://www.random.org
[3] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-

dimensionally equidistributed uniform pseudorandom number
generator”. ACM Trans. On Modeling and Computer Simulation, 8(1):3-
30, Jan. 1998.

[4] Stevanovic, R., Topic, G., Skala, K., Stipcevic, M., Rogina, B.M.:
“Quantum Random Bit Generator Service for Monte Carlo and Other
Stochastic Simulations“. Lecture Notes in Computer Science, Springer.
2007.

[5] D. E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley Professional, 3 edition, Nov. 1997.

[6] D. Lehmer. “Mathematical methods in large-scale computing units”.
Proc. 2nd Symposium on Large-Scale Digital CoCalculating Machinery,
pages 141-146. Harcard University Press, 1951.

[7] R. Tausworthe. Random numbers generated by linear recurrence
module two. In Math. Comp., volume 19, pages 201-209, 1965.

[8] F. Panneton, P. L'Ecuyer, and M. Matsumoto 2006. “Improved long-
period generators based on linear recurrences modulo 2”. ACM Trans.
on Mathematical Software, 32(1):1-16, March 2006.

[9] P. L'Ecuyer, “Software for uniform random number generation:
distinguishing the good and the bad”. Proceedings of the 33nd
conference on Winter simulation (WSC ’01), 2001.

[10] J. Soto. “Statistical Testing of Random Number Generators”.
Proceedings of the 22nd National Information Systems Security
Conference, Oct. 1999.

[11] P. L'Ecuyer and R. Simard. “TestU01: A C Library for Empirical Testing
of Random Number Generators”. ACM Transactions on Mathematical
Software, 33(4),Aug. 2007.

[12] K. Pawlikowski, H.-D. J. Jeong, and J.-S. R. Lee. “On credibility of
simulation studies of telecommunication networks”. IEEE
Communications Magazine, 40(1):132{139, Jan. 2002.

[13] M. Becker, T. L. Weerawardane, X. Li, and C. Görg. “Extending
OPNET Modeler with External Pseudo Random Number Generators and
Statistical Evaluation by the Limited Relative Error Algorithm”. Recent
Advances in Modeling and Simulation Tools for Communication
Networks and Services. Springer, 2008.

[14] B. Hechenleitner. “Defects in Random Number Routines of Well-
Known Network Simulators and Appropriate Improvements”. PhD
thesis, School of Scientic Computing of the University of Salzburg,
2004.

[15] P. Hellekalek. “Good random number generators are (not so) easy to
find”. Proceedings Second IMACS Symposium on Mathematical
Modelling, 1998.

[16] GNU Scientific Library Reference Manual - Revised Second Edition,
2007. http://www.gnu.org/.

[17] SSJ: Stochastic Simulation in Java,
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html

[18] Mantissa (Mathematical Algorithms for Numerical Tasks In Space
System Applications),
http://www.spaceroots.org/software/mantissa/index.html

[19] J. Bih. Service oriented architecture (SOA): A new paradigm to
implement dynamic e-business solutions, 2006.

[20] S. Rumley, C. Gaumier. “Distributed RWA Tools via Web Services”.
Proceedings Optical Network Design and Modelling (ONDM 2008)
Conference, March 2008.

[21] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth. “Web
service technologies and their synergy with simulation”. Proceedings of
the Winter Simulation Conference (WSC ’02), volume 1, pages 606 615,
Dec. 2002.

[22] O. Nierstrasz and D. Tsichritzis. Object-Oriented Software Composition.
Prentice Hall, 1995.

[23] M. Lackovic and C. Bungarzeanu. A Component Approach to Optical
Transmission Network Design. Modelling and Simulation Tools for
Emerging Telecommunications Networks. Springer, 2006.

[24] Web Services Architecture, 2007. http://www.w3.org/TR/ws-arch/.
[25] Apache Web Server, 2007. http://httpd.apache.org.

[26] K. Chiu, M. Govindaraju, and R. Bramley. “Investigating the Limits of
SOAP Performance for Scientific Computing”. Proceedings of the 11th
IEEE International Symposium on High Performance Distributed
Computing, 2002.

[27] R.A. van Engelen, “Pushing the SOAP Envelope with web services for
scientific computing”, 1st International Conference on Web-services,
June 22-26, 2003.

[28] M. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh, R.
van Engelen, K. Chiu, and M. Lewis. “A Benchmark Suite for SOAP-
based Communication in Grid Web Services”. Proceedings of the
ACM/IEEE SC 2005 Supercomputing Conference, 2005.

[29] http://simpleweb.sourceforge.net/
[30] http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
[31] R.M. Ziff, “Four-tap shift-register-sequence random-number

generators”, Computers in Physics, vol. 12, number 4, 1998.
[32] M. Matsumoto, I. Wada, A.k Kuramoto and H. Ashihara. “Common

Defects in Initialization of Pseudorandom Number Generators”. ACM
Transactions on Modeling and Computer Simulation. Article 15,
Volume 17, Number 4, 2007.

[33] Y. Yan, Y. Liang, X. Du, H.S. Hassane, A. Ghorbani, “Putting labs
online with Web services”,IT Professional Volume 8, Issue 2, March-
April 2006.

SPECTS 2008 97 ISBN: 1-56555-320-9

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 04,2010 at 13:08:32 UTC from IEEE Xplore. Restrictions apply.

