
Throughput Optimal Total Order Broadcast for
Cluster Environments1

RACHID GUERRAOUI, RON R. LEVY, BASTIAN POCHON

School of Computer and Communication Sciences, EPFL

and

VIVIEN QUÉMA

Centre National de la Recherche Scientifique

Total order broadcast is a fundamental communication primitive that plays a central role in

bringing cheap software-based high availability to a wide range of services. This paper studies the
practical performance of such a primitive on a cluster of homogeneous machines.

We present LCR, the first throughput optimal uniform total order broadcast protocol. LCR is

based on a ring topology. It only relies on point-to-point inter-process communication and has a
linear latency with respect to the number of processes. LCR is also fair in the sense that each

process has an equal opportunity of having its messages delivered by all processes.

We benchmark a C implementation of LCR against Spread and JGroups, two of the most widely
used group communication packages. LCR provides higher throughput than the alternatives, over

a large number of scenarios.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—Network communications; C.2.2 [Computer-Communication Net-

works]: Network Protocols—Protocol architecture; C.2.4 [Computer-Communication Net-
works]: Distributed Systems; C.2.4 [Computer-Communication Networks]: Local and Wide-

Area Networks—Network operating systems; D.4.4 [Operating Systems]: Communications

Management—Network communication; D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
D.4.7 [Operating Systems]: Organization and Design—Distributed systems

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: software fault-tolerance, replication, total order broadcast,
cluster computing

1. INTRODUCTION

1.1 Motivation

As an ever increasing number of critical tasks are being delegated to computers,
the unforeseen failure of a computer can have catastrophic consequences. Unfortu-
nately, the observed increase of computing speed as predicted by Moore’s law has
not been coupled with a similar increase in reliability. On the other hand, because
of rapidly decreasing hardware costs, ensuring fault tolerance through state ma-
chine replication [Schneider 1990] is gaining in popularity. Roughly speaking, state
machine replication is about maintaining several copies of the same software object
on different machines (also called replicas or processes), such that, if one or more
replicas fail, enough replicas remain to guarantee accessibility to the object. The
key to making this technique work is a well designed software layer that hides all the
difficulties behind maintaining replica consistency from the application developer

1This paper is an extended version of [Guerraoui et al. 2006].

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Rachid Guerraoui et al.

and renders it transparent to the clients.
In a replicated database for instance [Cecchet et al. 2004], all processes perform

the same write queries (INSERT and UPDATE) in the same order. Read queries
(SELECT) do not change the state of the replicated database and do not have to
be performed by all replicas. It is crucial to guarantee however uniformity, that is,
replicas should not execute any write query before making sure that all other repli-
cas will also execute it. To illustrate this, consider the simple case where a replica
executes a write request w1, subsequently answers a client’s read request r1 and
fails. If the other replicas do not execute w1, the value of r1 returned to the client
will not be consistent with the replicated database. The ordering mechanism should
ensure that all replicas perform the same operations on their copy in the same order,
even if they subsequently fail. This mechanism is encapsulated by a communica-
tion abstraction called uniform total order broadcast (UTO-broadcast) [Hadzilacos
and Toueg 1993]. This abstraction ensures the following for all messages that are
broadcast: (1) Uniform agreement: if a replica delivers a message m, then all cor-
rect replicas eventually deliver m; (2) Strong uniform total order: if some replica
delivers some message m before message m′, then a replica delivers m′ only after
it has delivered m.

Clearly, even though UTO-broadcast is very useful, not all applications need
the strong guarantees that it provides. Some applications might only need reliable
or even best-effort broadcast. We will show however that there are no weaker
broadcast protocols that can obtain higher throughput than the protocol described
in this paper. In a sense, the strong uniform total order guarantees provided by
our protocol are free.

1.2 Latency vs. Throughput

Historically, most total order protocols have been devised for low broadcast la-
tency [Kaashoek and Tanenbaum 1996; Armstrong et al. 1992; Carr 1985; Garcia-
Molina and Spauster 1991; Birman and van Renesse 1993; Wilhelm and Schiper
1995]. Latency usually measures the time required to complete a single message
broadcast without contention. (It is typically captured by a number of rounds in
the classical model of [Lynch 1996]: in that model, at the start of each round a
process can send a message to one or more processes. It receives the messages sent
by other processes at the end of the round.) On the other hand, very few proto-
cols have been designed for high throughput. Throughput measures the number
of broadcasts that the processes can complete per time unit. In some high load
environments, e.g. database replication for e-commerce, throughput is often as im-
portant, if not more, than latency. Indeed, under high load, the time spent by a
message in a queue before being actually disseminated can grow indefinitely. A
high throughput broadcast protocol reduces this waiting time.

Maybe not surprisingly, protocols that achieve low latency often fail to provide
high throughput. To illustrate this, consider the example depicted in Figure 1:

(1) In algorithm A, process p1 first sends a message to p2. In the next step p2

forwards the message to p4 and at the same time p1 sends the message to p3.
(2) In algorithm B, process p1 first sends a message to p2. In the next step p2

forwards the message to p3 and finally p3 forwards the message to p4.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 3

Algorithm BAlgorithm A

p1

p2

p3

p4

p1

p2

p3

p4

Fig. 1. Latency vs. Throughput: comparison of two broadcast algorithms A and B. Process p1

initiates the broadcast. Broadcast latency is 2 rounds for A and 3 rounds for B. However, B

has higher throughput than A: in algorithm B one broadcast is completed every round, while in
algorithm A only one broadcast is completed every 2 rounds.

Algorithm A has a latency of 2 whereas algorithm B a latency of 3. Latency wise,
A is better than B. If we look at the throughput however, we see that A can only
start a new broadcast every 2 time units, while B can broadcast a new message
every time unit. Therefore even though the latency of B is higher than that of A,
the maximal throughput of B is twice that of A.

1.3 Contributions

In this paper we present LCR, a uniform total order broadcast protocol that is
throughput optimal in failure-free periods. LCR relies on point-to-point communi-
cation channels between processes. It uses logical clocks and a ring topology (hence
the name). The ring topology ensures that each process always sends messages to
the same process, thus avoiding any possible collisions. To eliminate bottlenecks,
messages in LCR are sequenced using logical vector clocks instead of a dedicated
sequencer. Furthermore, the ring topology allows all acknowledgement messages to
be piggy-backed, reducing the message overhead. These two characteristics ensure
throughput optimality and fairness, regardless of the type of traffic. In our con-
text, fairness conveys the equal opportunity of processes to have their broadcast
messages delivered.

We give a full analysis of LCR’s performance and fairness. We also report on per-
formance results based on a C implementation of LCR that relies on TCP channels.
The implementations are benchmarked against Spread and JGroups on a cluster
of 9 machines and we show that LCR consistently delivers the highest throughput.
For instance, with 4 machines, LCR achieves throughput of up to 50% higher than
that of Spread and up to 28% higher than that of JGroups.

1.4 Roadmap

Section 2 introduces the relevant system and performance models. Section 3 gives
an overview of the related work. We describe LCR in Section 4, then we give an
analytical evaluation of it in Section 5, and we report on our experimental evaluation
in Section 6. Section 7 concludes the paper with some final remarks.

2. MODEL

2.1 System Model

Our context is a small cluster of homogeneous machines interconnected by a local
area network. In our protocol, each of the n machines (or processes) creates a

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Rachid Guerraoui et al.

TCP connection to only a single process and maintains this connection during the
entire execution of the protocol (unless the process fails). Because of the simple
communication pattern, the homogeneous environment, and low local area network
latency, it is reasonable to assume that, when a TCP connection fails, the server
on the other side of the connection failed [Dunagan et al. 2004]. We thus directly
implement the abstraction of a perfect failure detector (P) [Chandra and Toueg
1996a] to which each process has access.

2.2 Performance Model

Analyzing the performance of a communication abstraction requires a precise dis-
tributed system model. Some models only address point-to-point networks, where
no native broadcast primitive is available [Culler et al. 1993; Bar-Noy and Kipnis
1994]. The model of [Urbán et al. 2000], which was recently proposed to evaluate
total order broadcast protocols, assumes that a process cannot simultaneously send
and receive a message. This does clearly not capture modern network cards for
these provide full duplex connectivity. Round-based models [Lynch 1996] are in
that sense more convenient as they assume that a process can send a message to
one or more processes at the start of each round, and can receive the messages sent
by other processes at the end of the round. Whereas this model is well-suited for
proving lower bounds on the latency of protocols, it is however not appropriate for
making realistic predictions about the throughput. In particular, it is not realis-
tic to consider that several messages can be simultaneously received by the same
process.

In this paper, we analyze protocols using the model used in [Guerraoui et al. 2006;
Guerraoui et al. 2007]. This model assumes that processes can send one message to
one (unicast) or more processes (multicast) at the start of each round, but can only
receive a single message sent by other processes at the end of the round. If more
than one message is sent to the same process in the same round, these messages will
be received in different rounds. The rationale behind this model is that machines
in a cluster are each connected to a switch via a twisted pair ethernet cable. As
modern network cards are full-duplex, each machine can simultaneously send and
receive messages. Moreover, as the same physical cable is used to send and receive
messages, it makes sense to make the very same assumption on the number of
messages that can be received and on the number of messages that can be sent in
one round. The model we use can thus be described as follows: in each round k,
every process pi can execute the following steps:

(1) pi computes the message for round k, m(i, k),
(2) pi sends m(i, k) to all or a subset of processes,
(3) pi receives at most one message sent at round k.

In a sense, our model is similar to the Postal model [Bar-Noy and Kipnis 1997]
with the addition of a multicast primitive which is available on all current local
area networks.

2.3 Throughput

Basically, throughput captures the average number of completed broadcasts per
round. A complete broadcast of message m means that all processes delivered m.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 5

In this model, a broadcast protocol is optimal if it achieves an average of one com-
plete broadcast per round regardless of the number of broadcasters. Considering a
cluster with n processes, we seek for an optimal throughput with k simultaneous
broadcasters, k ranging from 1 to n. When evaluating throughput, we assume a
variable number k of processes continuously sending messages, where 1 ≤ k ≤ n.
Using this assumption, we can accurately model bursty broadcast patterns. In the
general case with random broadcast patterns, we can observe the following: as soon
as the load on the broadcast system approaches the maximum throughput (the case
we are interested in), processes will not be able to broadcast new messages imme-
diately. This will result in the creation of a queue of messages at the sender which
leads to sending a burst. Thus our model can accurately represent the general case
in high load scenarios.

3. RELATED WORK

The five following classes of UTO-broadcast protocols have been distinguished in the
literature [Défago et al. 2004]: fixed-sequencer, moving sequencer, privilege-based,
communication history, and destination agreement. In this section, we only survey
time-free protocols, i.e. protocols that do not rely on physical time, since these are
the ones comparable to the LCR protocol. The reason is that the assumption of
synchronized clocks is not very realistic in practice, especially since clock skew is
hard to detect. We also do not discuss protocols with disk writes as in [van Renesse
and Schneider 2004] for instance. Our goal (and that of most of the related work
surveyed here) is to optimize the broadcasting of messages at the network level.

3.1 Fixed Sequencer

p1

p2

p3

p4

m

m, seq(m)

ack stable

Fig. 2. Fixed sequencer-based UTO-broadcast.

In a fixed sequencer protocol [Kaashoek and Tanenbaum 1996; Armstrong et al.
1992; Carr 1985; Garcia-Molina and Spauster 1991; Birman and van Renesse 1993;
Wilhelm and Schiper 1995], a single process is elected as the sequencer and is
responsible for the ordering of messages (Figure 2). The sequencer is unique, and
another process is elected as a new sequencer only in the case of sequencer failure.
Three variants of the fixed sequencer protocol exist [Baldoni et al. 2006], each
using a different communication pattern. Fixed sequencer protocols exhibit linear
latency with respect to n [Défago et al. 2003], but poor throughput. The sequencer
becomes a bottleneck because it must receive the acknowledgments (acks) from all
processes2 and must also receive all messages to be broadcast. Note that this class

2Acknowledgments in the fixed sequencer can only be piggy-backed when all processes broadcast

messages all the time [Défago et al. 2003].

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Rachid Guerraoui et al.

of protocols is popular for non-uniform total order broadcast protocols since these
do not require all processes to send acks back to the sequencer, thus providing much
better latency and throughput.

3.2 Moving Sequencer

p1

p2

p3

p4

m

seq(m)

Fig. 3. Moving sequencer-based UTO-broadcast.

Moving sequencer protocols [Chang and Maxemchuk 1984; Whetten et al. 1994;
Kim and Kim 1997; Cristian et al. 1997] (Figure 3) are based on the same princi-
ple as fixed sequencer protocols, but allow the role of the sequencer to be passed
from one process to another (even in failure-free situations). This is achieved by a
token which carries a sequence number and constantly circulates among the pro-
cesses. The motivation is to distribute the load among sequencers, thus avoiding
the bottleneck caused by a single sequencer. When a process p wants to broadcast
a message m, it sends it to all other processes. Upon receiving m, processes store it
into a receive queue. When the current token holder q has a message in its receive
queue, q assigns a sequence number to the first message in the queue and broad-
casts that message together with the token. For a message m to be delivered, it
has to be acknowledged by all processes. Acks are gathered by the token. Mov-
ing sequencer protocols have a latency that is worse than that of fixed sequencer
protocols [Défago et al. 2004]. On the other hand, these protocols achieve bet-
ter throughput, although not optimal. Figure 3 depicts a 1-to-n broadcast of one
message. It is clear from the figure that it is impossible for the moving sequencer
protocol to deliver one message per round. The reason is that the token must be
received at the same time as the broadcast messages. Thus, the protocol cannot
achieve optimal throughput. Even in the n-to-n case, optimal throughput cannot
be achieved because at any given time there is only one process which can send
messages. Thus, the throughput when all processes broadcast cannot be higher
than when only one process broadcasts (in Section 5.1 we will show that optimal
throughput can only be achieved when all processes broadcast). Note that fixed
sequencer protocols are often prefered to moving sequencer protocols because they
are much simpler to implement [Défago et al. 2004].

3.3 Privilege-based Protocols

These protocols [Friedman and Renesse 1997a; Cristian 1991; Ekwall et al. 2004;
Amir et al. 1995; Gopal and Toueg 1989] rely on the idea that senders can broadcast
messages only when they are granted the privilege to do so (Figure 4). The privilege
to broadcast (and order) messages is granted to only one process at a time, but this
privilege circulates from process to process in the form of a token. As with moving
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 7

p1

p2

p3

p4

m

seq(m)

token

token

Fig. 4. Privilege-based UTO-broadcast.

sequencer protocols, the throughput when all processes broadcast cannot be higher
than when only one process broadcasts.

3.4 Communication History-based Protocols

As in privilege-based protocols, communication history-based protocols [Peterson
et al. 1989; Malhis et al. 1996; Ezhilchelvan et al. 1995; Ng 1991; Moser et al.
1993] use sender-based ordering of messages. Nevertheless, they differ by the fact
that processes can send messages at any time. Messages carry logical clocks that
allow processes to observe the messages received by other processes in order to
learn when delivering a message does not violate the total order. Communication
history-based protocols have poor throughput because they rely on a quadratic
number of messages exchanged for each message that is broadcast.

3.5 Destination Agreement

In destination agreement protocols, the delivery order results from an agreement
between destination processes. Many such protocols have been proposed [Chandra
and Toueg 1996b; Birman and Joseph 1987b; Luan and Gligor 1990; Fritzke et al.
2001; Anceaume 1997]. They mainly differ by the subject of the agreement: message
sequence number, message set, or acceptance of a proposed message order. These
protocols have relatively bad performance because of the high number of messages
that are generated for each broadcast.

Note that hybrid protocols, combining two different ordering mechanisms have
also been proposed [Ezhilchelvan et al. 1995; Rodrigues et al. 1996; Vicente and
Rodrigues 2002]. Most of these protocols are optimized for large scale networks
instead of clusters, making use of multiple groups or optimistic strategies.

4. THE LCR PROTOCOL

LCR combines (a) a ring topology for high-throughput dissemination with (b) log-
ical (vector) clocks for message ordering. It is a uniform total order broadcast
(UTO-broadcast) protocol exporting two primitives, utoBroadcast and utoDeliver,
and ensuring the following four properties:

—Validity: if a correct process pi utoBroadcasts a message m, then pi eventually
utoDelivers m.

—Integrity: for any message m, any correct process pj utoDelivers m at most once,
and only if m was previously utoBroadcast by some correct process pi.

—Uniform Agreement: if any process pi utoDelivers any message m, then every
correct process pj eventually utoDelivers m.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Rachid Guerraoui et al.

—Total Order: for any two messages m and m′, if any process pi utoDelivers m
without having delivered m′, then no process pj utoDelivers m′ before m.

We detail our LCR protocol in the following. We assume a set Π = {p0, · · · , pn−1}
of n processes. Processes are organized in a ring: every process has a predecessor
and a successor in the ring: p0 is before p1, which is before p2, etc. We call p0

“the first process in the ring”, and pn−1 “the last process in the ring”. We first
describe how we totally order messages in LCR. We then describe the behavior of
the protocol in the absence of failures and then we describe what happens when
there is a group membership change, e.g. a node failing or joining/leaving the
system.

4.1 Total Order Definition

As we explain later in this section, to broadcast a message, a process sends it to its
successor, which itself send its its successor, and so on until every process received
the message. We define the total order on messages in LCR as the order according
to which messages are received by the last process in the ring, i.e. process pn−1.
To illustrate this, consider any two messages mi and mj broadcast by processes pi

and pj , respectively. Assume i < j, i.e. pi is “before” pj in the ring. In order to
determine whether mi is ordered before mj , it is enough to know whether pj had
received mi before sending mj . This is achieved using vector clocks: process pj is
equipped with a logical vector clock Cpj

= (ck)k=[0..n−1]. At any time, the value
Cpj

[i] represents the number of broadcasts initiated by process pi that pj received
so far. Before initiating the broadcast of message mi, process pi increments the
number of broadcasts it initiated (stored in Cpi [i]) and timestamps mi with its
clock. Upon reception of message mi, process pj updates its logical clock to take
into account message mi: it increments the value stored in Cpj

[i]. If later pj sends
message mj , it will timestamp mj with its logical clock that reflects the fact that
it received mi before sending mj . Every process can thus order mi and mj by
comparing their clocks. More precisely, let us note Cmi (resp. Cmj) the logical
clock carried by mi (resp. mj). Message mi is ordered before mj , noted mi ≺ mj ,
if and only if Cmi

[i] ≤ Cmj
[i] when i < j, and Cmi

[i] < Cmj
[i] when if i = j.

4.2 Failure-free Behavior

The pseudo-code of the LCR sub-protocol executed in the absence of failures is de-
picted in Figure 5. To broadcast a message mi, process pi sends mi to its successor
in the ring. The message is then successively forwarded until it reaches the prede-
cessor of pi. Processes forward messages in the order in which they receive them.
To ensure total order delivery, each process ensures, before delivering message mi,
that it will not subsequently receive a message that is ordered before mi (according
to the order defined in the previous section). Moreover, for the sake of uniform
delivery, each process ensures, before delivering mi, that all other processes already
received mi (mi is stable). These guarantees rely on a local list, denoted pending,
used by every process to store messages before they are delivered. Messages in
pending are totally ordered according to the order defined above. We now explain
when messages stored in pending are delivered.

When the predecessor of pi receives message mi, it sends an ACK message along
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 9

the ring. The ACK message is then successively forwarded until it reaches the
predecessor of the process that sent it. Upon receiving this ACK message, each
process knows (1) that mi is stable, and (2) that it already received all messages
that are ordered before mi. The first point is obvious. The second point can be
intuitively explained as follows. Consider a message mj that is ordered before mi.
We know, by definition of the total order on messages, that process pn−1 will receive
mj before mi. Provided that messages are forwarded around the ring in the order
in which they are received, we know that the predecessor of pi will receive mj before
sending the ACK for mi. Consequently, no process can receive the ACK for mi

before mj . Once a message has been set to stable, it can be delivered as soon as it
becomes first in the pending list.

Procedures executed by any process pi

1: procedure initialize(initial view)
2: pendingi ← ∅ {pending list}
3: C[1 . . . n]← {0, . . . , 0} {local vector clock}
4: view ← initial view

5: procedure utoBroadcast(m)
6: C[i]← C[i] + 1
7: pending ← pending ∪ [m, pi, C,⊥]
8: Rsend 〈m, pi, C〉 to successor(pi, view) {broadcast a message}

9: upon Rreceive 〈m, pj , Cm〉 do
10: if Cm[j] > C[j] then
11: if pi 6= predecessor(pj , view) then
12: Rsend 〈m, pj , Cm〉 to successor(pi, view) {forward the message}
13: pending ← pending ∪ [m, pj , Cm,⊥]
14: else
15: pending ← pending ∪ [m, pj , Cm, stable] {m is stable}
16: Rsend 〈Ack, pj , Cm〉 to successor(pi, view) {send an Ack}
17: tryDeliver()
18: C[j]← C[j] + 1 {update local vector clock}

19: upon Rreceive 〈Ack, pj , Cm〉 do
20: if pi 6= predecessor(predecessor(pj), view) then
21: pending[Cm]← [∗, ∗, ∗, stable] {m is stable}
22: Rsend 〈Ack, pj , Cm〉 to successor(pi, view) {forward the Ack}
23: tryDeliver()

24: procedure tryDeliver()
25: while pending.first = [m, pk, Cm, stable] do
26: utoDeliver(m) {deliver a message}
27: pending ← pending − [m, pk, Cm, stable]

Fig. 5. Pseudo-code of the LCR protocol.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Rachid Guerraoui et al.

p0

p1

p2

p3

m1 [0 1 0 0]

m3 [0 0 0 1]

p0

p1

p2

p3

m3

m1

p0

p1

p2

p3

m3

m1

p0

[0 0 0 1]

p1

[0 1 0 1]

(m3, 3, [0 0 0 1], .)

p2

[0 1 0 0]

p3

[0 1 0 1]

(m1, 1, [0 1 0 0], .)

(m3, 3, [0 0 0 1], .)

(m3, 3, [0 0 0 1], .)

(m1, 1, [0 1 0 0], .)

(m1, 1, [0 1 0 0], .)

ACK m3

p0

p1

p2

p3

ACK m1

ACKm3

p0

p1

p2

p3

ACK m1

p0

[0 1 0 1]

p1

[0 1 0 1]

(m3, 3, [0 0 0 1], .)

p2

[0 1 0 1]

p3

[0 1 0 1]

(m1, 1, [0 1 0 0], .)

(m3, 3, [0 0 0 1], .)

(m3, 3, [0 0 0 1], .)

(m1, 1, [0 1 0 0], .)

(m1, 1, [0 1 0 0], .)

(m1, 1, [0 1 0 0], stable)

(m3, 3, [0 0 0 1], stable)

p0

p1

p2

p3

ACK m1

ACK m3

p0

[0 1 1 1]

p1

[0 2 0 1]

p2

[0 2 1 1]

p3

[0 1 1 1]

(m1, 1, [0 1 0 0], .)

(m3, 3, [0 0 0 1], .)

(m3, 3, [0 0 0 1], stable)

(m1, 1, [0 1 0 0], .)

(m1, 1, [0 1 0 0], stable)

(m3, 3, [0 0 0 1], .)

(m1, 1, [0 1 0 0], stable)

p0

[0 0 0 1]

(m1, 1, [0 1 0 0], .)

(m1, 1, [0 1 0 0], .)

(m3, 3, [0 0 0 1], .)

(m3, 3, [0 0 0 1], .)

p1

[0 1 0 1]

p2

[0 1 0 0]

p3

[0 0 0 1]

(A) (B) (C)

(D) (E) (F)

p0

[0 1 1 1]

p1

[0 2 0 1]

p2

[0 2 1 1]

p3

[0 1 1 1]

(m1, 1, [0 1 0 0], stable)

(m3, 3, [0 0 0 1], stable)

(m3, 3, [0 0 0 1], stable)

(m1, 1, [0 1 0 0], .)

(m1, 1, [0 1 0 0], stable)

(m3, 3, [0 0 0 1], .)

(m1, 1, [0 1 0 0], stable)

p0

[0 1 1 1]

p1

[0 2 0 1]

p2

[0 2 1 1]

p3

[0 1 1 1]
(m1, 1, [0 1 0 0], stable)

(m3, 3, [0 0 0 1], stable)

(m1, 1, [0 1 0 0], stable)

Fig. 6. Illustration of a run of the LCR protocol with 4 processes.

To illustrate the behavior of LCR, consider the following simple example (Fig-
ure 6) assuming a system of 4 processes. For simplicity of presentation, we consider
that the computation proceeds in rounds. The arrays in Figure 6 depict the state of
the pending list stored at each process at the end of each round. At the beginning of
round (A), processes p1 and p3 broadcast m1 and m3, respectively. Message m1 is
the first message broadcast by p1 and the latter did not receive any message before
broadcasting m1. Therefore, Cm1 = [0, 1, 0, 0]. Similarly, Cm3 = [0, 0, 0, 1]. At the
end of the round, p1 and p2 (resp. p3 and p0) have m1 (resp. m3) in their pending
list. During round (B), p0 (resp. p2) forwards m3 (resp. m1). At the end of the
round, the pending lists of p1 and p3 contain two messages: m1 and m3. Note that
in both lists, m3 is ordered before m1. Indeed, processes know that m3 is ordered
before m1 (m3 ≺ m1) because p1 < p3 and Cm1 [1] > Cm3 [1], which indicates that
when p3 sent m3, it had not yet received m1. During round (C), p1 (resp. p3)
forwards m3 (resp. m1). At the end of the round, all processes have both m1 and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 11

m3 in their pending list. Moreover, p0 (resp. p2) knows that message m1 (resp.
m3) completed a full round around the ring. Indeed, p0 (resp. p2) is the predecessor
of the process that sent m1 (resp. m3). Consequently, p0 (resp. p2) sets m1 (resp.
m3) to stable. At that time, p0 (resp. p2) knows that it will no longer receive any
message that is ordered before m1 (resp. m3). Indeed, if a message m is ordered
before m1 (resp. m3), it means, by definition of the total order on messages, that
p3 will receive it before m1 (resp. m3). Consequently, p0 (resp. p2) will also receive
m before m1 (resp. m3). Although process p0 knows that m1 is stable, it cannot
deliver it. Indeed, it first needs to deliver m3 (which is first in its pending list),
which it cannot do. The reason is that it does not know yet whether m3 is stable
or not. Delivering m3 could violate uniformity. In contrast, process p2 can deliver
m3 because it is stable and first in its pending list. Process p2 thus knows that the
delivery of m3 respects total order and uniformity. At the start of round (D), p0

(resp. p2) sends an ACK for m1 (resp. m3). These ACK messages are forwarded in
rounds E and F until they reach the predecessor of the process which initiated the
ACK message: for instance, the ACK for message m1 was initiated by process p0

in round D. It is forwarded until it reaches process p3 in round F. Upon reception
of these ACK messages (rounds D, E, F), processes set m1 and m3 to stable and
deliver them as soon as they are first in their pending list.

4.3 Group Membership Changes

The LCR protocol is built on top of a group communication system [Birman and
Joseph 1987a]: processes are organized into groups, which they can leave or join,
triggering a view change protocol. Faulty processes are excluded from the group
after crashing. Upon a membership change, processes agree on a new view. When
a process joins or leaves the group, a view change event is generated by the group
communication layer and the current view vr is replaced by a new view vr+1. This
can happen when a process crashes or when a process explicitly wants to leave or
join the group. As soon as a new view is installed, it becomes the basis for the new
ring topology.

The view change procedure is detailed in Figure 7. Note that when a view change
occurs, every process first completes the execution (if any) of all other procedures
described in Figure 5. It then freezes those procedures and executes the view change
procedure. The latter works as follows: every process sends its pending list to all
other processes. Upon receiving this list, every process adds to its pending list the
messages it did not yet receive. Then the processes send back an Ack Recover
message. Processes wait until they receive Ack Recover messages from all pro-
cesses before sending an End Recovery message to all. When a process receives
End Recovery messages from all processes, it can deliver all the messages in its
pending list. Thus, at the end of the view change procedure, all pending lists have
been emptied, which guarantees that all messages from the old view have been
handled.

4.4 Correctness

In this section, we prove that LCR is a uniform total order broadcast protocol. We
proceed by successively proving that LCR ensures the four properties mentioned at
the beginning of Section 4: validity, integrity, uniform agreement and total order.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Rachid Guerraoui et al.

Procedures executed by any process pi

1: upon view change(new view) do
2: Rsend 〈Recover, pi, pending〉 to all pj ∈ new view
3: Wait until received 〈Ack Recover〉 from all pj ∈ new view
4: Rsend 〈End Recovery〉 to all pj ∈ new view
5: Wait until received 〈End Recovery〉 from all pj ∈ new view
6: forceDeliver()
7: view ← new view

8: upon Rreceive 〈Recover, pj , pendingpj 〉 do
9: for each [m, pl, Cm, ∗] ∈ pendingpj do

10: if Cm[l] > C[l] then
11: pending ← pending ∪ [m, pl, Cm,⊥]
12: Rsend 〈Ack Recover〉 to pj

13: procedure forceDeliver()
14: for each [m, pk, Cm, ∗] ∈ pending do
15: utoDeliver(m) {deliver a message}
16: pending ← pending − [m, pk, Cm, ∗]
17: C[k]← C[k] + 1 {update local vector clock}

Fig. 7. Pseudo-code of the view change procedure.

Lemma 4.1 Validity. If any correct process pi utoBroadcasts a message m,
then it eventually utoDelivers m.

Proof. Let pi be a correct process and let mi be a message broadcast by pi. This
message is added to pi’s pending list (Line 7 of Figure 5). If there is a membership
change, pi being a correct process, it will be in the new view. Consequently, the view
change procedure guarantees that pi will deliver all messages stored in its pending
list (Line 6 of Figure 7). It will thus deliver mi. Let us now consider the case when
there is no membership change. All processes (including pi) will eventually set mi

to stable (Line 21 of Figure 5). This is due to the fact that mi will be forwarded
along the ring (because Cmi [i] is higher than the ith value stored in the clock of
each process) until it reaches the predecessor of pi. The latter marks mi as stable
(line 15 of Figure 5) and sends an ACK to its successor in the ring containing Cmi

.
Similarly to mi, the ACK message is forwarded along the ring (line 22 of Figure 5)
until it reaches the predecessor of the predecessor of pi. Upon receiving the ACK
message, each process marks mi as stable. When pi sets mi to stable, its pending
list starts with a (possibly empty) set of messages m such that m ≺ mi and m has
not been yet delivered by pi. Let us call undelivered this set of messages. Let us
first remark that this set cannot grow. Consider, for instance, the case of a message
mj sent by a process pj that precedes mi (i.e. mj ≺ mi). We know that pj sent
mj before receiving mi. Consequently, the predecessor of pi will receive mj before
receiving mi, and thus before sending the ACK for mi. As each process forwards
messages in the order in which it receives them, we know that pi will necessarily
receive mj before receiving the ACK for message mi. Let us now consider every
message in undelivered. As there is no membership change, the same reasoning
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 13

as the one we did for mi applies to messages in undelivered: every process will
eventually set these messages to stable. Consequently, all messages in undelivered
will be delivered. Message mi will thus be first in pending and marked as stable.
It will thus also be delivered by pi.

Lemma 4.2 Integrity. For any message m, any process pj utoDelivers m at
most once, and only if m was previously utoBroadcast by some process pi.

Proof. No spurious message is ever utoDelivered by a process as we assume only
crash failures. Thus, only messages that have been utoBroadcast are utoDelivered.
Moreover, each process keeps a vector clock C, which is updated in such a way
that we are sure that every message is only delivered once. Indeed, if there is
no membership change, Lines 10 and 18 of Figure 5 guarantee that no message
can be processed twice by pj . Similarly, when there is a membership change,
Line 10 of Figure 7 guarantees that process pj will not deliver messages twice.
Moreover, Line 17 of Figure 7 guarantees that pj ’s vector clock is updated after
the membership change, thus preventing the future delivery of messages that have
been delivered during the view change procedure.

Lemma 4.3 Uniform Agreement. If any process pi utoDelivers any message
m in the current view, then every correct process pj in the current view eventually
utoDelivers m.

Proof. Let mk be a message sent by process pk and let pi be a process that
delivered mk in the current view. There are two cases to consider. In the first
case, pi delivered mk during a membership change. This means that pi had mk

in its pending list before executing line 15 of Figure 7. Since all correct processes
exchange their pending list during the view change procedure, we are sure that all
correct processes that did not deliver mk before the membership change will have
it in their pending list before executing line 6 of Figure 7. Consequently, all correct
processes in the current view will deliver mk. The second case to consider is when
pi delivered mk outside of a membership change. The protocol ensures that mk did
a full round around the ring before being delivered by pi: indeed pi can only deliver
mk after having set it to stable, which either happens when it is the predecessor
of pk in the ring or when it receives an ACK for message mk. Consequently, all
processes stored mk in their pending list before pi delivered it. If a membership
change occurs after pi delivered mk and before all other correct processes delivered
it, the protocol ensures that all correct processes that did not yet deliver mk will
do it (Line 6 of Figure 7). If there is no membership change after pi delivered mk

and before all other processes delivered it, the protocol ensures that an ACK for
mk will be forwarded around the ring, which will cause all processes to set mk to
stable. Each correct process will thus be able to deliver mk as soon as mk will be
first in the pending list (Line 26 of Figure 5). The protocol ensures that mk will
become first eventually. The reasons are the following: (1) the number of messages
that are before mk in the pending list of every process pj is strictly decreasing,
and (2) all messages that are before mk in the pending list of a correct process pj

will become stable eventually. The first reason is a consequence of the fact that
once a process pj sets message mk to stable, it can no longer receive any message
m such that m ≺ mk. Indeed, a process pl can only produce a message ml ≺ mk

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Rachid Guerraoui et al.

before receiving mk. As each process forwards messages in the order in which it
received them, we are sure that the process that will produce an ACK for mk will
have first received ml. Consequently, every process setting mk to stable will have
first received ml. The second reason is a consequence of the fact that for every
message that is utoBroacast in the system, the protocol ensures that an ACK will
be forwarded around the ring (Lines 16 and 22 of Figure 5), implying that all correct
processes will mark the message as stable. Consequently, all correct processes will
eventually deliver mk.

Lemma 4.4 Total Order. For any two messages m and m′, if any process pi

utoDelivers m without having delivered m′, then no process pj utoDelivers m′ before
m.

Proof. We prove the lemma by contradiction. Let m and m′ be any two mes-
sages and let pi be a process that utoDelivers m without having delivered m′. Con-
sider a process pj that utoDelivers m′ before delivering m. Let us denote ti the
time at which pi delivered m and tj the time at which pj delivered m′. Let us
first note that the protocol ensures that at time ti (resp. tj), all processes have
already received m (resp. m′). Indeed, when there is no membership change, a
message can only be delivered after it is set to stable, which requires the message
to have done a full round around the ring. When there is a membership change,
the protocol ensures (by broadcasting messages stored in pending lists and waiting
for all processes to have received all broadcast before delivering any message) that
all processes have a consistent pending list before delivering messages (Lines 2 to 5
of Figure 7).

Case 1: tj ≤ ti. It follows that at time ti, process pi had already received m′.
Consequently, m ≺ m′, otherwise, pi would have delivered m′ first. We will show
that in that case, we are sure that pj received m before m′, thus contradicting the
fact that it delivered m′ before m. Let us note pk the process that utoBroadcast
m. Provided m ≺ m′, we know that pk sent m before receiving m′. There are
two cases to consider: if there is no membership change before pj delivers m′, as
each process forwards messages in the order in which it received them, we are sure
that pj will receive m before it can set m′ to stable. The second case is when
there is a membership change before pj delivers m′. Process pj could not receive m
before the membership change, otherwise, it would not deliver m′ before m (since
we know that m ≺ m′). Provided that pi delivers message m, we know that this
can only happen during the membership change. Indeed, the message can not have
been delivered before, otherwise pj would have received it. Consequently, at the
beginning of the view change procedure, pi has m in its pending list and will send it
to all processes. Consequently, pj will receive m during the view change procedure.
In both cases, we are sure that pj received m before delivering m′, which is in
contradiction with the fact that it delivered m′ before m provided that m ≺ m′.

Case 2: ti < tj . It follows that at time tj , process pj had already received m.
Consequently, m′ ≺ m, otherwise, pj would have delivered m first. With a similar
reasoning as the one we did for case 1, we know that pi received m′ before delivering
m, which is in contradiction with the fact that it delivered m without delivering
m′ provided that m′ ≺ m.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 15

Theorem 4.5. LCR is a uniform total order broadcast protocol.

Proof. By lemmas 4.1, 4.2, 4.3, and 4.4, we can derive the very fact that the
LCR protocol ensures validity, integrity, uniform agreement, and total order. Thus,
it is a uniform total order broadcast protocol.

5. THEORETICAL ANALYSIS

This section analyzes several key aspects of LCR’s performance from a theoretical
perspective. The performance of LCR is evaluated in failure free runs which we
expect to be the common case. We prove that LCR is throughput optimal in such
case. Then we discuss its fairness.

5.1 Throughput

In this section we show that the throughput of LCR is optimal and that no other
broadcast protocol (even with weaker consistency guarantees) can obtain strictly
higher throughput. We do this by proving an upper bound on the performance of
any broadcast protocol and show that LCR matches this bound.

Theorem 5.1 Maximum throughput for any broadcast protocol. For
a broadcast protocol in a system with n processes in the round-based model intro-
duced in Section 2.2, the maximum throughput µmax in completed broadcasts per
round is:

µmax =

{
n/(n− 1) if there are n senders
1 otherwise

Proof. We first consider the case with n senders. Each broadcast message must
be received at least n− 1 times in order to be delivered. The model states that at
each round at most n messages can be received. Thus, for n processes to broadcast
a message, a minimum of n − 1 rounds are necessary. Therefore, on average, at
most n/(n − 1) broadcasts can be completed each round. In the case with less
than n senders it is sufficient to look at a non sending process. Such a process can
receive at most 1 message per round and since it doesn’t broadcast any messages
itself, it can deliver at most 1 message per round. Since the throughput is defined
as the number of completed broadcasts per round, the maximum throughput with
less than n senders is equal to 1.

Determining the throughput of LCR is straightforward: processes receive one
message per round and the acknowledgements are piggy-backed. Thus LCR allows
each process to deliver one message per round if there is at least one sender. When
there are n senders, each process can deliver one message per round broadcast by
other processes in addition to its own messages. LCR thus matches the bound of
Theorem 5.1 and is theoretically throughput optimal. Thus, from a throughput
perspective, the strong uniform total order guarantees provided by LCR are free.

5.2 Fairness

Even though the throughput of LCR as described thus far is optimal, there is still a
problem. Consider two processes p1 and p2 that are neighbors on the ring. If p1 is

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Rachid Guerraoui et al.

continuously broadcasting messages and p2 systematically forwards p1’s messages,
then p2 cannot broadcast its own messages. Consequently, the protocol is not fair.

Fairness captures the fact that each process has an equal opportunity of having its
messages delivered by all processes. Intuitively, the notion of fairness means that in
the long run no single process has priority over other processes when broadcasting
messages. Said differently, when two processes want to broadcast a large number
of messages during a time interval τ , then each process should have approximately
the same number of messages delivered by all processes during τ .

� �

�������

	
�����
��

	
�����
������

��������
�
�
�

����
�
�
�

��������������

�������
�
�

�
�

���
	
�����
������
����
 ����!
������"

�"�
	
�����
�����
����
 �����
�������

Fig. 8. Illustration of the fairness mechanism as implemented in LCR. Each process has two
queues (send and forward) and uses the burst nb, received, sent variables to determine whether to

forward messages or send its own.

The mechanism for ensuring fairness in LCR acts locally at each process. If
a process wishes to broadcast a new message, it must decide whether to forward
a message received from its predecessor or to send its own. Figure 8 provides
an illustration of the fairness mechanism as implemented in LCR. Processes have
two queues: send and forward. Processes put broadcast requests coming from the
application level in their send queue. Messages received from predecessors that
need to be forwarded are buffered in the forward queue. When a process has a
burst of messages to send (i.e. it has more than one message in its send queue),
it piggybacks on the first message it sends an integer burst size representing the
number of messages currently stored in its send queue. Each process keeps a data
structure which stores 3 integers per process in the ring: burst size, received and
sent. For each process pi, the burst size variable is updated every time pi piggybacks
a new burst size value on a message it sends. The received variable keeps track of
the number of messages that the process received from pi since pi’s burst size has
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 17

been updated. The sent variable keeps track of the number of messages that the
process sent since pi’s burst size has been updated. When the received variable is
equal to the burst size, the three integers kept for process pi are reset (i.e. the burst
initiated by pi is finished). When the process wants to send a message, it retrieves
the first message in the forward list. Assume that this message has been sent by
process pj . The process only sends its own message if the received integer stored
for pj is higher or equal than the sent integer stored for pj , which intuitively means
that since pj started its last burst, the process initiated less broadcasts than pj .

5.3 Latency

The theoretical latency of broadcasting a single message is defined as the number
of rounds that are necessary from the initial broadcast of message m until the last
process delivers m. The latency of LCR is equal to 2n− 2 rounds.

6. EXPERIMENTAL EVALUATION

This section compares the performance of LCR to that of two existing group com-
munication systems: JGroups and Spread. Spread ensures uniform total order
delivery of messages, whereas JGroups only guarantees non-uniform total order
delivery. The experiments only evaluate the failure free case because failures are
expected to be sufficiently rare in the targeted environment. Furthermore, the
view change procedure that is used in LCR is similar to that of other total order
broadcast protocols [Défago et al. 2004].

We first present the experimental setting we used in the experiments and then
study various performance metrics: throughput, response time, fairness, and CPU
consumption. In particular, we show that LCR always achieves a significantly
better throughput than Spread and JGroups when all processes broadcast message.
We also show that when only one process broadcasts messages, LCR outperforms
Spread and has similar performance than JGroups. Regarding response time, we
show that LCR exhibits a higher response time than Spread and JGroups when
there is only one sender in the system. In contrast, it outperforms both protocols
when all processes broadcast messages. Finally, we show that LCR and Spread are
both fair and have a low CPU consumption. This contrasts with JGroups that is
not fair and has a higher CPU consumption than Spread and LCR.

6.1 Experimental Setup

The experiments were run on a cluster of machines with a 1.66GHz bi-processor and
2GB RAM. Machines run the Linux 2.6.30−1 SMP kernel and are connected using a
Fast Ethernet switch. The raw bandwidth over IP is measured with Netperf [Jones
2007] between two machines and displayed in Table I.

Protocol Bandwith

TCP 93Mb/s

UDP 93Mb/s

Table I. Raw network performance measured using Netperf.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Rachid Guerraoui et al.

The LCR protocol is implemented in C (≈ 1000 lines of code). It relies on the
Spread toolkit to provide a group membership layer and uses TCP for communica-
tion between processes. As explained in [Dunagan et al. 2004], it is reasonable to
assume, in an low-latency cluster, that when a TCP connection fails, the server on
the other side of the connection failed. It is thus easy to implement the abstraction
of a perfect failure detector [Chandra and Toueg 1996a]. Moreover, using TCP, it is
not necessary to implement a message retransmission mechanism: a message sent
from a correct process to another correct process will be delivered eventually.

The implementation of LCR is benchmarked against two industry standard group
communication systems:

—Spread. We use Spread version 4.1 [Amir et al. 2004]. The message type was set to
SAFE MESS which guarantees uniform total order. Spread implements a privilege-
based ordering scheme (see Section 3.3). A Spread daemon was deployed on each
machine. All daemons belong to the same Spread segment. Spread was tuned for
bursty traffic according to Section 2.4.3 of the Spread user guide [Stanton 2002].
Our benchmark uses the native C API provided by Spread.

—JGroups. We use JGroups version 2.7.0 [Ban 2007] with the Java HotSpot
Server 1.6.0 16 virtual machine. We use the “sequencer” stack that con-
tains the following protocols: UDP, PING, MERGE2, FD SOCK, FD ALL,
VERIFY SUSPECT, BARRIER, pbcast.NAKACK, UNICAST, pbcast.STABLE,
VIEW SYNC, pbcast.GMS, SEQUENCER, FC, FRAG2, STATE TRANSFER. This
stack provides non uniform total ordering. It implements a fixed-sequencer
ordering scheme without acknowledgements (see Section 3.1).

All experiments we present in this section start with a warm-up phase, followed
by a phase during which performance are measured. Finally, there is a cool-down
phase without measurements. The warm-up and cool-down phases last 5 minutes.
The measurement phase lasts 10 minutes.

6.2 Throughput

To assess the throughput of total order broadcast protocols, we use the following
benchmark: k processes out of the n processes in the system broadcast messages at
a predefined throughput (we call this experiment k-to-n broadcast). Each message
has a fixed size, which is a parameter of the experiment. Each process periodi-
cally computes the throughput at which it delivers messages. The throughput is
calculated as the ratio of delivered bytes over the time elapsed since the end of the
warm-up phase. The plotted throughput is the average of the values computed by
each process.

We first want to confirm our claim that LCR achieves optimal throughput. Fig-
ure 9 shows the results of an experiment with n = 5 processes. We vary the number
k of broadcasting processes (X axis). The size of messages broadcast by processes
is 10kB. Moreover, each broadcasting processes produce messages at the maximum
throughput it can sustain. We first execute LCR without enabling the fairness
mechanism described in Section 5.2. We observe that the throughput obtained by
LCR is far from optimal: in practice, a theoretical throughput of 1 should be equal
to the raw link speed between the processes, i.e. 93Mbit/s as shown in Table I. The
reason why the throughput is not optimal is that when the fairness mechanism is
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 19

disabled, senders can broadcast more messages than can be delivered, resulting in
overflowing network buffers and the data structures maintained by each process.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

Th
ro

ug
hp

ut
 (M

b/
s)

Number of senders

LCR - no flow control

Fig. 9. LCR throughput with the fairness mechanism disabled in a system with 5 processes.
Buffers are quickly saturated, which explains the low throughput.

Figure 10 depicts the throughput obtained by LCR when the fairness mechanism
is enabled. The throughput clearly improves and is now close to optimal. The
reason why the throughput improves is that the fairness mechanism throttles the
senders, and does thus prevent them from injecting too many new messages into the
ring. Note that the throughput with 5 senders is higher than with fewer senders,
the reason being LCR’s theoretical throughput of n/(n− 1) when all processes are
senders. Finally, note that in all subsequent experiments, the fairness mechanism
is enabled.

The next experiments we present (Figure 11 and 12) measure the impact of
varying the message size on the throughput of LCR, Spread and JGroups for a
system with 5 processes. In the experiment depicted in Figure 11, only one process
broadcasts messages, whereas all processes broadcast messages in the experiment
depicted in Figure 12. In both cases, we can observe that if the messages are too
small, the throughput of all protocols suffers. This is due to the cost of ordering
which remains constant despite a decrease in payload size. We can nevertheless
observe that LCR achieves significantly better performance with small messages
than Spread and JGroups. To improve performance, it is possible to batch small
messages together into bigger messages when the load on the system is high as
suggested in [Friedman and Renesse 1997b]. For all further experiments the message
size is set to 10kB, which is the optimal message size for the three protocols in both
the 1-to-n and n-to-n cases.

Having studied the impact of message size, we now study how the throughput
evolves as a function of the number of processes. Figure 13 plots the results of

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Rachid Guerraoui et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1 2 3 4 5

Th
ro

ug
hp

ut
 (M

b/
s)

Number of senders

LCR - flow control

Fig. 10. LCR throughput with the fairness mechanism enabled in a system with 5 processes.

Senders are throttled, which improves the throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (M

b/
s)

Message size (kB)

LCR
JGroups
Spread

Fig. 11. Throughput with respect to message size for a system of 5 processes with one sender.

an experiment consisting in 1-to-n broadcasts of 10kB messages. The throughput
achieved by LCR and JGroups is close to optimal and almost constant despite the
increasing number of processes. Note that JGroups does not provide uniformity,
and does thus implement a very simple communication pattern: the sender sends
its messages to the sequencer, which multicast them to all other processes. Spread’s
throughput suffers a bit more from increasing the number of processes. This can
be explained by the fact that Spread uses a token to order messages and ensure
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (M

b/
s)

Message size (kB)

LCR
JGroups
Spread

Fig. 12. Throughput with respect to message size for a system of 5 processes with 5 senders.

uniformity. Increasing the number of processes increases the time it takes for the
token to circulate among all processes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (M

b/
s)

Number of processes

Optimal
LCR

JGroups
Spread

Fig. 13. 1-to-n throughput comparison. The optimal line is constant at 93Mb/s.

Figure 14 plots the throughput as a function of the number of processes in a
system where all processes broadcast 10kB messages. The optimal line for best
effort broadcast (n/(n − 1) times the maximum link speed of 93Mb/s) is plotted
as a reference. We can first observe that the throughput of LCR is very close to

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Rachid Guerraoui et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (M

b/
s)

Number of processes

Optimal
LCR

JGroups
Spread

Fig. 14. n-to-n throughput comparison. The optimal line is calculated as n/(n−1)∗93Mb/s. The

LCR implementations closely follow the optimal line as does JGroups. JGroups however does not
ensure uniformity or ordering. Spread’s throughput is limited by the underlying privilege-based

broadcast scheme.

optimal. Since the optimality line is calculated for best effort broadcast and LCR
provides uniform total order broadcast, we can conclude that the ordering, reliabil-
ity and uniformity properties of LCR are effectively almost free. The throughput of
JGroups is almost constant (at 92Mb/s) and only slightly better than the through-
put achieved with only one sender (Figure 13). This can be easily explained by
the fact that the throughput is limited by the throughput at which the sequencer
can broadcast messages to other processes in the system (using IP multicast). The
throughput achieved by Spread is better than in the 1-to-n case due to the fact that
every process makes use of the token to broadcast the messages it produces. Nev-
ertheless, as in the 1-to-n case, the throughput slightly decreases when the number
of processes increases due to the increasing cost of ensuring uniformity (cost that
JGroups does not have).

To summarize, we can say that LCR is the only protocol that fully exploits
available network links when all processes broadcast messages, which we believe is
the common case in many applications. It does thus sustain a significantly higher
throughput than other protocols. For instance, the gain in throughput in a system
with 4 processes is of about 28% compared to JGroups and of about 49% compared
to Spread.

6.3 Response Time

In this section, we evaluate the response time of LCR, Spread and JGroups in
the 1-to-n and n-to-n cases. We setup a system with 5 processes. We vary the
throughput at which the sender processes inject new messages. The size of messages
that are broadcast is 10kB. During the measurement phase, for every message m
it broadcasts, the sender evaluates the elapsed time between the broadcast and the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 23

delivery of m. For each protocol, we stop the curve when the injected load is higher
than the throughput the protocol is able to sustain.

Figure 15 depicts the results obtained with one sender. In order to evaluate the
general case where every process could be the sender, we do not colocate the sender
and the sequencer in JGroups. We observe that Spread exhibits a consistently
lower response time than JGroups and LCR (3ms against 4ms for JGroups and
5ms for LCR when the input load is below 10Mb/s). The fact that LCR exhibits
higher response time in the 1-to-n case is not surprising provided that processes are
organized in a ring topology. Interestingly, LCR’s response time does not degrade
when the input load increases. This is in contrast with the response time of JGroups
which increases when the input load is greater than 10Mb/s (a similar behavior is
observed in the n-to-n case). Finally, a last remark we can make is that, although
providing uniform delivery of messages, Spread achieves better response time than
JGroups. This is due to the fact that Spread uses a token. Once the sender
process obtains the token, it can send messages in burst, thus decreasing the average
response time. In JGroups, the sender always needs to first send the message to the
sequencer, which will then multicast the message to other processes. Finally, note
that the fact that the sender in Spread can send multiple messages in burst when
it owns the token also explains why the response time slightly decreases when the
load gets higher (between 20Mb/s and 40Mb/s).

 1

 10

 1 10 100

Re
sp

on
se

 ti
m

e
(m

s)

Input load (Mb/s)

LCR
JGroups
Spread

Fig. 15. 1-to-n response time comparison.

Figure 16 depicts the results obtained with n senders (note that the scale used
on the Y axis is different than in Figure 15). LCR and JGroups exhibit a lower
response time than Spread (5.2ms for JGroups against 5.4ms for LCR and 7ms
for Spread when the input load is below 10Mb/s). The reason is that with Spread,
senders must wait to have the token before sending their messages. As every process
has messages to send, it takes a longer time to obtain the token. Note that the

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Rachid Guerraoui et al.

response time of Spread is almost constant, and only slightly increases when the
maximum delivery throughput is reached. The same remark applies to LCR for
which the response time only slightly increases when the input load is higher than
80Mb/s but remains low until the maximum delivery throughput is reached (up
to 108Mb/s, the response time is below 7.5ms). In contrast, the response time of
JGroups starts degrading when the input load is higher than 10Mb/s. It becomes
high for input loads higher than 70Mb/s. This is probably due to the fact that the
sequencer simultaneously receives messages from all other processes, which fills up
its network buffers and increases the time it takes for a message to be sequenced.

 1

 10

 100

 1 10 100

Re
sp

on
se

 ti
m

e
(m

s)

Input load (Mb/s)

LCR
JGroups
Spread

Fig. 16. n-to-n response time comparison.

To summarize, LCR exhibits a higher response time than other protocols when
there is only one sender. When there are multiple senders, LCR’s response time
equals or outperforms those of other protocols. More precisely, it exhibits better
response time than Spread and JGroups (when the load is higher than 20Mb/s),
and similar response time than JGroups (when the load is below 20Mb/s), but
contrarily to the latter, it ensures uniform delivery of messages and the response
time does not degrade when the input load increases.

6.4 Fairness

We evaluate the fairness of LCR, JGroups and Spread as follows: we setup a sys-
tem with 5 processes, of which 3 are senders. Each sender continuously broadcasts
messages. At the end of the measurement phase, every process computes the per-
centage of messages it delivered that were issued by each of the 3 senders (called
p1, p2 and p3). In the case of JGroups, process p1 is also the sequencer. The results
are depicted in Figure 17. We can first observe that both LCR and Spread are fair:
each process delivers 33% of messages from each sender. Concerning LCR, this is
due to the fact that it implements the fairness mechanism described in Section 5.2.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 25

Concerning Spread, this is due to the fact that, on average, each sender owns the
token for the same amount of time. We can also observe that JGroups is not fair.
This comes from the fact that processes p2 and p3 first need to send their messages
to the sequencer p1, whereas the latter can directly broadcast the messages it pro-
duces. This induces a significant unbalance: 50% of the messages that are delivered
have been broadcast by p1.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

p1 p2 p3

Co
m

pl
et

ed
 b

ro
ad

ca
st

s
(%

)

Sending process

LCR
Spread

JGroups

Fig. 17. Fairness assessment of the LCR, Spread and JGroups protocols. Experiments were

performed with 5 processes and 3 senders.

6.5 CPU Usage

The last performance metric we evaluate is the CPU usage of LCR, Spread and
JGroups under high load. During the experiment, the CPU usage of all active
protocol threads was periodically logged, added up and averaged. We study both
the 1-to-n and n-to-n cases.

The experiment in Figure 18 plots the CPU usage measured in a system with
5 processes, of which one broadcasts 10kB messages. The X axis represents the
message size (in kB). The Y axis represents the CPU consumption (in %). To
ease the comparison between the various protocols, the three graphs use the same
scale. In the case of JGroups, the sender was not sequencer in order to be able to
isolate the CPU consumption of the sequencer, the sender and receiver processes,
respectively. The first remark we can make is that among the three protocols,
JGroups has the highest CPU consumption. In particular, the sequencer process
consumed more than 55% of the CPU in all experiments we performed. The sender
performs also significantly more work than receiver processes due to the fact that it
needs both to send and receive the messages it broadcasts. Spread and LCR have
a CPU usage that is very reasonable: it is systematically below 30% with messages
bigger than 1kB. In LCR, it is interesting to notice that the sender has less work

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Rachid Guerraoui et al.

to do than other processes. The reason is that the sender does not receive messages
to forward; it only receives acks. In contrast, the sender and the receivers in Spread
use the same percentage of CPU time. Finally, it is interesting to note that Spread
uses more CPU than LCR for large messages.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1kB 2kB 5kB 10kB

CP
U

us
ag

e
(%

)

Message size

Sender
Receivers

(a) LCR

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1kB 2kB 5kB 10kB
CP

U
us

ag
e

(%
)

Message size

Sender
Receivers

(b) Spread

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1kB 2kB 5kB 10kB

CP
U

us
ag

e
(%

)

Message size

Sequencer
Sender

Receivers

(c) JGroups

Fig. 18. CPU usage during high load 1-to-n broadcasts of the LCR, Spread, and
JGroups protocols.

The experiment in Figure 18 plots the CPU usage measured in a system with 5
processes, each broadcasting 10kB messages. As was the case with only one sender,
we observe that JGroups consumes more CPU than other protocols. Interestingly,
the consumption of the sequencer is a bit lower than what it was in the previous
experiment. We explain this by the fact that in this experiment, the sequencer
itself broadcasts messages, thus reducing the number of messages it gets from other
processes, and thus its CPU consumption. We can also remark that Spread and
LCR have a slightly higher CPU usage than in the previous case. This is explained
by the fact that both protocols handle more messages (they achieve higher through-
put) in the n-to-n case than in the 1-to-n case, thus requiring higher CPU usage.
Finally, we observe that, similarly to the previous case, LCR consumes less CPU
than Spread when messages are larger.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 27

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

1kB 2kB 5kB 10kB

CP
U

us
ag

e
(%

)

Message size

LCR

(a) LCR

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

1kB 2kB 5kB 10kB

CP
U

us
ag

e
(%

)

Message size

Spread

(b) Spread

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

1kB 2kB 5kB 10kB

CP
U

us
ag

e
(%

)

Message size

Sequencer
Others

(c) JGroups

Fig. 19. CPU usage during high load n-to-n broadcasts of the LCR, Spread, and
JGroups protocols.

7. SUMMARY

We have presented LCR, a uniform total order broadcast protocol that can be used
as the main communication block of a replication scheme to achieve software-based
fault-tolerance.

LCR is the first uniform total order broadcast protocol that is throughput op-
timal in failure-free periods. In short, throughput optimality captures the ability
to deliver the largest possible number of message broadcasts, regardless of message
broadcast patterns. This notion is precisely defined in a round-based model of
computation which accurately captures message passing interaction patterns over
clusters of homogeneous machines interconnected by a fully switched LAN. LCR is
based on a ring topology and only relies on point-to-point inter-process communi-
cation. LCR is also fair in the sense that each process has an equal opportunity
of having its messages delivered by all processes. Performance benchmarks showed
that LCR had a very high throughput in all cases, while exhibiting very reasonable
response time. Moreover, benchmarks showed that LCR has a low CPU usage.

LCR has been designed for homogeneous clusters, in which machines are con-
nected by a fully-switched, dedicated network. The ring topology it relies on would
clearly not be adequate in an environment where nodes would not be homogeneous,

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Rachid Guerraoui et al.

or where the network would not be dedicated. We believe that an interesting re-
search challenge is to understand how ring-based communication patterns can be
combined with other communication patterns (e.g., tree, multicast) to ensure high
performance in heterogeneous settings.

8. ACKNOWLEDGEMENTS

We would like to thank Idit Keidar for her insightful comments on this paper. Fur-
thermore, we are very grateful towards Yair Amir, Bela Ban, Emmanuel Cecchet,
and Dejan Kostić for the useful discussions on the topic.

REFERENCES

Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J., and Stanton, J. 2004. The spread

toolkit: Architecture and performance. Tech. rep., CNDS-2004-1, Johns Hopkins University.

Amir, Y., Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A., and Ciarfella, P. 1995.

The Totem single-ring ordering and membership protocol. ACM Transactions on Computer
Systems 13, 4, 311–342.

Anceaume, E. 1997. A lightweight solution to uniform atomic broadcast for asynchronous sys-

tems. In Proceedings of the 27th International Symposium on Fault-Tolerant Computing (FTCS

’97). IEEE Computer Society, Washington, DC, USA.

Armstrong, S., Freier, A., and Marzullo, K. 1992. Multicast transport protocol. RFC 1301,
IETF.

Baldoni, R., Cimmino, S., and Marchetti, C. 2006. A Classification of Total Order Specifica-

tions and its Application to Fixed Sequencer-based Implementations. to appear in Journal of

Parallel and Distributed Computing.

Ban, B. 2007. JGroups – A Toolkit for Reliable Multicast Communication.
http://www.jgroups.org.

Bar-Noy, A. and Kipnis, S. 1994. Designing broadcasting algorithms in the postal model for

message-passing systems. Mathematical Systems Theory 27, 5, 431–452.

Bar-Noy, A. and Kipnis, S. 1997. Multiple message broadcasting in the postal model. Net-

works 29, 1, 1–10.

Birman, K. and Joseph, T. 1987a. Exploiting virtual synchrony in distributed systems. In
Proceedings of the eleventh ACM Symposium on Operating systems principles (SOSP’87).

ACM Press, New York, NY, USA, 123–138.

Birman, K. and Joseph, T. 1987b. Reliable communication in the presence of failures. ACM
Trans. Comput. Syst. 5, 1, 47–76.

Birman, K. and van Renesse, R. 1993. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press.

Carr, R. 1985. The tandem global update protocol. Tandem Syst. Rev. 1 , 74–85.

Cecchet, E., Marguerite, J., and Zwaenepoel, W. 2004. Cjdbc: Flexible database clustering
middleware.

Chandra, T. and Toueg, S. 1996a. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 43, 2, 225–267.

Chandra, T. and Toueg, S. 1996b. Unreliable failure detectors for reliable distributed systems.

J. ACM 43, 2, 225–267.

Chang, J.-M. and Maxemchuk, N. 1984. Reliable broadcast protocols. ACM Trans. Comput.

Syst. 2, 3, 251–273.

Cristian, F. 1991. Asynchronous atomic broadcast. IBM Technical Disclosure Bulletin 33, 9,
115–116.

Cristian, F., Mishra, S., and Alvarez, G. 1997. High-performance asynchronous atomic broad-

cast. Distrib. Syst. Eng. J. 4, 2 (jun), 109–128.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Throughput Optimal Total Order Broadcast for Cluster Environments · 29

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian,

R., and von Eicken, T. 1993. LogP: Towards a realistic model of parallel computation. In
Principles Practice of Parallel Programming. 1–12.

Défago, X., Schiper, A., and Urbán, P. 2003. Comparative performance analysis of ordering

strategies in atomic broadcast algorithms. IEICE Trans. on Information and Systems E86-
D, 12, 2698–2709.

Défago, X., Schiper, A., and Urbán, P. 2004. Total order broadcast and multicast algorithms:

Taxonomy and survey. ACM Comput. Surv. 36, 4, 372–421.

Dunagan, J., Harvey, N. J. A., Jones, M. B., Kostic, D., Theimer, M., and Wolman, A. 2004.

Fuse: Lightweight guaranteed distributed failure notification. In Proceedings of 6th Symposium
on Operating Systems Design and Implementation (OSDI ’04).

Ekwall, R., Schiper, A., and Urban, P. 2004. Token-based atomic broadcast using unreli-

able failure detectors. In Proceedings of the 23rd IEEE International Symposium on Reliable
Distributed Systems (SRDS’04). IEEE Computer Society, Washington, DC, USA, 52–65.

Ezhilchelvan, P., Macedo, R., and Shrivastava, S. 1995. Newtop: a fault-tolerant group

communication protocol. In Proceedings of the 15th International Conference on Distributed

Computing Systems (ICDCS’95). IEEE Computer Society, Washington, DC, USA.

Friedman, T. and Renesse, R. V. 1997a. Packing messages as a tool for boosting the perfor-

mance of total ordering protocls. In Proceedings of the 6th International Symposium on High

Performance Distributed Computing (HPDC ’97). IEEE Computer Society, Washington, DC,
USA.

Friedman, T. and Renesse, R. V. 1997b. Packing messages as a tool for boosting the performance

of total ordering protocls. In HPDC ’97: Proceedings of the 6th IEEE International Symposium

on High Performance Distributed Computing. IEEE Computer Society, Washington, DC, USA,
233.

Fritzke, U., Ingels, P., Mostefaoui, A., and Raynal, M. 2001. Consensus-based fault-tolerant

total order multicast. IEEE Trans. Parallel Distrib. Syst. 12, 2, 147–156.

Garcia-Molina, H. and Spauster, A. 1991. Ordered and reliable multicast communication.
ACM Trans. Comput. Syst. 9, 3, 242–271.

Gopal, A. and Toueg, S. 1989. Reliable broadcast in synchronous and asynchronous environ-

ments (preliminary version). In Proceedings of the 3rd International Workshop on Distributed

Algorithms. Springer-Verlag, London, UK, 110–123.

Guerraoui, R., Kostic, D., Levy, R. R., and Quéma, V. 2007. A High Throughput Atomic

Storage Algorithm. In The 27th IEEE International Conference on Distributed Computing

Systems (ICDCS’07). Toronto, Canada.

Guerraoui, R., Levy, R. R., Pochon, B., and Quéma, V. 2006. High Throughput Total Order
Broadcast for Cluster Environments. In IEEE International Conference on Dependable Systems

and Networks (DSN’06). Philadelphia, PA, USA.

Hadzilacos, V. and Toueg, S. 1993. Fault-tolerant broadcasts and related problems. 97–145.

Jones, R. 2007. Netperf. http://www.netperf.org/.

Kaashoek, F. and Tanenbaum, A. 1996. An evaluation of the amoeba group communication
system. In Proceedings of the 16th International Conference on Distributed Computing Systems
(ICDCS ’96). IEEE Computer Society, Washington, DC, USA.

Kim, J. and Kim, C. 1997. A total ordering protocol using a dynamic token-passing scheme.
Distrib. Syst. Eng. J. 4, 2 (jun), 87–95.

Luan, S. and Gligor, V. 1990. A fault-tolerant protocol for atomic broadcast. IEEE Trans.

Parallel Distrib. Syst. 1, 3, 271–285.

Lynch, N. A. 1996. Distributed Algorithms. Morgan-Kaufmann.

Malhis, L., Sanders, W., and Schlichting, R. 1996. Numerical performability evaluation of a

group multicast protocol. Distrib. Syst. Enj. J. 3, 1 (march), 39–52.

Moser, L., Melliar-Smith, P., and Agrawala, V. 1993. Asynchronous fault-tolerant total
ordering algorithms. SIAM J. Comput. 22, 4, 727–750.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Rachid Guerraoui et al.

Ng, T. 1991. Ordered broadcasts for large applications. In Proceedings of the 10th IEEE In-

ternational Symposium on Reliable Distributed Systems (SRDS’91). IEEE Computer Society,
Pisa, Italy, 188–197.

Peterson, L., Buchholz, N., and Schlichting, R. 1989. Preserving and using context infor-

mation in interprocess communication. ACM Trans. Comput. Syst. 7, 3, 217–246.

Rodrigues, L., Fonseca, H., and Verssimo, P. 1996. Totally ordered multicast in large-scale
systems. In Proceedings of the 16th International Conference on Distributed Computing Sys-

tems (ICDCS ’96). IEEE Computer Society, Washington, DC, USA.

Schneider, F. B. 1990. Implementing fault-tolerant services using the state machine approach:

a tutorial. ACM Comput. Surv. 22, 4, 299–319.

Stanton, J. R. 2002. A Users Guide to Spread. http://www.spread.org/docs/guide/users guide.pdf.

Urbán, P., Dfago, X., and Schiper, A. 2000. Contention-aware metrics for distributed algo-

rithms: Comparison of atomic broadcast algorithms. In Proceedings of 9th IEEE International

Conference on Computer Communications and Networks (IC3N 2000). 582–589.

van Renesse, R. and Schneider, F. B. 2004. Chain replication for supporting high throughput
and availability. In OSDI’04: Proceedings of the 6th conference on Symposium on Operating

Systems Design & Implementation. USENIX Association, Berkeley, CA, USA, 7–7.

Vicente, P. and Rodrigues, L. 2002. An indulgent uniform total order algorithm with opti-
mistic delivery. In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems

(SRDS’02). IEEE Computer Society, Washington, DC, USA.

Whetten, B., Montgomery, T., and Kaplan, S. 1994. A high performance totally ordered

multicast protocol. In Selected Papers from the International Workshop on Theory and Practice
in Distributed Systems. Springer-Verlag, London, UK, 33–57.

Wilhelm, U. and Schiper, A. 1995. A hierarchy of totally ordered multicasts. In Proceedings of

the 14TH Symposium on Reliable Distributed Systems. IEEE Computer Society, Washington,
DC, USA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

