

Efficient Data Structures

For Decision Diagrams

Supervisors:

Thomas Léauté

Radoslaw Szymanek

Professor:

Boi Faltings

Semester Project

Automn 2008 term

Stéphane Rabie

Efficient Data Structures for Decision Diagrams

2

Summary

Introduction ..3

1) Hypercubes, Utility Diagrams and theirs operations ..4

1.1 Hypercubes ...4

2.1 Utility Diagrams ...4

1.3 Join..5

1.4 Project ..5

1.5 Slice ...5

1.6 Split ..5

2) Improvements of the code ...6

2.1 Test for augment method ..6

2.2 Projection assignments for Utility Diagrams ...7

2.3 Join functions without assumptions about the variables order ...9

2.4 Optimization of methods for Utility Diagrams ... 10

2.5 Implementation of joinProject .. 13

3) Memory-efficient methods variants for Hypercubes ... 14

3.1 Slice .. 15

3.2 Project ... 17

3.3 ChangeVariablesOrder .. 18

3.4 Augment ... 20

3.5 Join... 21

3.6 Experimental results .. 23

Conclusion .. 28

Efficient Data Structures for Decision Diagrams

3

Introduction

Dynamic Programming Optimization (DPOP) is an algorithm proposed to solve distributed

constraint optimization problems. In order to represent the multi-values functions

manipulated in this algorithm, a data structure called Hypercube was implemented. A more

efficient data structure, the Utility Diagram, was then proposed as an alternative to the

Hypercube. DPOP also required the implementation of several operations (such as join,

project, slice, split and reorder) on these two data structures.

This project is a follow-up of Nacereddine Ouaret’s master thesis, which consisted in

implementing all of these data structures and theirs associated operations. As DPOP may

have to work on very large decision diagrams, and perform a lot of successive operations on

them, having implementations which are efficient in term of speed and memory is critical.

The aim of this project was therefore to seek for new ways to improve the already

implemented functions for hypercubes and utility diagrams, both in term of execution time

and memory consumption.

This report will thus first present a quick overview of hypercubes, utility diagrams, and their

associated operations (a more complete description of these objects, as well as the details

about their original implementation, can be found in Nacereddine Ouaret’s report on

Efficient Data Structures for Decision Diagrams). The second part will then cover various

improvements made to their implementation during the course of this project. Finally, a

variant for the methods used by hypercube, more economical in term of memory as it reuses

existing hypercubes rather than creating new ones, will be presented.

Efficient Data Structures for Decision Diagrams

4

1) Hypercubes, Utility Diagrams, and theirs operations

1.1 Hypercubes

A hypercube is represented by three parameters: its variables V, its domains D and its values

U. V = {V1, ..., Vn} is the array of the variables contained in the hypercube, D = {D1, ..., Dn} is

an array of domains ordered such that Di is the domain corresponding to the variable Vi.

Each Di is an array where each entry is a possible value for Vi. Finally, U = {U1, ..., Um} is an

array containing the utility values of the hypercube. There is a utility value for every

combination of possible variables values (which means that m is equal to the product

|D1|...|Dn|), and these values are ordered so that given a variables assignment, its

corresponding index in the utilities array U can be found by a relatively simple formula.

1.2 Utility Diagrams

Hypercubes assume that for every combination of variables values, there is a utility value,

but this may not be always the case. As a result, hypercubes are an inefficient method to

represent sparse multi-values functions, and that is why utility diagrams were introduced to

overcome this problem. With utility diagrams, a multi-valued function is represented by a

graph, which provided a much more compact, and therefore efficient, way to encode the

possible combinations of variables values.

A diagram is thus composed of nodes and edges. Nodes are labeled by the names of their

corresponding variables, except the terminal node which is just here to indicate that there

are no more variables. The edges are labeled by a set of values that the variable

(corresponding to the node from which the edge comes) can take. The diagram is

constructed such that every possible path from the root to the terminal node in the graph

corresponds to a possible variables assignment.

The array of utility values then contains the values of the function and contains an entry for

every path in the diagram which starts at the root and ends at the terminal node. Path

numbers are generated according to a depth-first traversal of the diagram, assuming an

order on the edges coming out of the nodes.

Besides, in this implementation of utility diagrams, each edge is also characterized by a step

parameter. This step value is an integer which can be recursively computed as the sum of

these two values:

- the step value of the previous edge in the list of edges of the parent node

- the number of paths from the destination of the previous edge to the terminal node

If this edge is the first of the list, its step value is then equal to 0.

The important property of step values is that by computing the sum of steps on all edges of a

given path, we directly obtain the index of the corresponding value in the utilities array.

Efficient Data Structures for Decision Diagrams

5

1.3 Join

Joining two multi-values functions consists in creating a new function which is equal to their

sum, its variables list being the union of the variables of the two input functions.

For hypercubes, we can then simply create the domains of the new hypercube: if the

variable belongs to the two input hypercubes, its domain is equal to the intersection of the

two original domains (if this intersection is empty, a null hypercube is returned); if the

variable belongs to only one hypercube, this domain is simply kept in the new hypercube.

The entries of the new utilities array are then obtained by computing the sum of the utility

values corresponding to the same variables values in the original hypercubes.

The principle of the operation is the same for utility diagrams, but as we cannot compute a

global domain for each variable, the join is performed by recursively computing the

intersection between the edges domains for each pair of nodes to join.

1.4 Project

Projecting some variables out of a decision diagram (hypercube or utility diagram) consists in

reducing its dimension by removing these variables from its variables list. This also implies

the reduction of the utilities array as for each of utilities values set obtained by fixing the

variables to keep, and varying the variables to project out over their respective domains,

only the maximum (or minimum, depending on a boolean parameter which is an additional

argument of the function) is kept.

1.5 Slice

Slicing a decision diagram simply consists in reducing the domains of some of its variables,

which also implies reducing the utilities array as only the values corresponding to

combinations of variables values included in the provided sub-domains are kept.

1.6 Split

Splitting a utility diagram consists in removing the utility values that are greater (or lower,

depending on a boolean parameter which is an additional argument of the function) than a

provided threshold. For hypercubes, some variables domains have also to be reduced, and in

most cases, some utility values smaller than the threshold have to be kept because of the

assumption that there is a utility value for each possible combination of variables values.

However, as there is not such assumption for utility diagrams, only the right values will be

kept when splitting a utility diagram. The split operation can thus be used to obtain a utility

diagram from a hypercube by having all values below (or above) a given threshold removed

from the hypercube, which in most cases will produce a sparse multi-valued function.

Efficient Data Structures for Decision Diagrams

6

2) Improvements of the code

The first step of this project was a preliminary warm-up phase consisting in small tasks, such

as adding more commentaries when necessary, correcting some bugs and writing new

boolean functions to be used by assertions (for example, checking that the variables order in

two or more decision diagrams is consistent before joining them).

Besides performing these few improvements, the main goal of this phase was primarily to

get a good overview of the source code before really starting modifying it. Some parts of this

phase, which are described in section 2.1 and 2.2, required however more time and thought.

1.1 Test for augment method

For utility diagrams, the augment method takes for arguments a list of variables values and a

utility value, adds a new path corresponding to the input variables values to the utility

diagram, and adds the input utility value at the place corresponding to this new path in the

utilities array.

This method is quite important as it is used in several other methods, and is not trivial to

implement: when adding a new path, we have to check which part of this path already exists

in the utility diagram, and create the part of this path which is not already present, then

update the step values of all edges which have been modified by the introduction of this

new path.

For these reasons, the augment method had to be tested, in the same way methods such as

join or project were, in order to make sure the augmentation of a utility diagram with a new

path does not create some errors. A first test function for the augment method was already

implemented and its principle was very simple: create a random utility diagram, add a

random new path to this diagram with the augment method, then check that its associated

utility value has effectively been added to this diagram.

This test had the major drawback that it only tested whether the path was really added in

the utility diagram, but not if this path was added at the right place or if the steps values

were rightly updated. That is why a more complex test was implemented during the warm-

up phase. This new test function still creates a random utility diagram, then constructs step

by step another utility diagram by augmenting it successively with every path in the original

hypercube, and finally checks the two utility diagrams are identical.

As it is more complete, this test first outputted many failures (whereas the first test was

always successful), which helped spotting and correcting several errors in the code of the

augment method that the first test was unable to detect.

Efficient Data Structures for Decision Diagrams

7

1.2 Projection assignments for Utility Diagrams

The projection function is special as it actually returns a ProjOutput object which consists in

two fields: a space object which is the actual hypercube or utility diagram resulting from the

projection, and an assignments data structure giving the optimal values of the projected out

variables for each utility values of the new decision diagram.

In order to represent the assignments object, a Hypercube cannot be used as it requires its

utilities values to be comparable or addable, but the assignments are represented as an

array list of variables values, which is not comparable. That is why a BasicHypercube class

was created, which basically is a Hypercube class in which the utilities are neither addable

neither comparable, and the computation of the assignments BasicHypercube was

implemented for hypercubes.

However, this was not implemented for utility diagrams, so another important part of the

warm-up phase was to modify the project method so that we also keep track of the optimal

variables assignments corresponding to utility values that are finally kept in the utility

diagram. The representation of these assignments in the projection output represented a

supplementary difficulty.

Indeed, the first idea was to create a new class BasicUtilityDiagram, analogous to

BasicHypercube, but for utility diagrams. However, doing so required to deeply modify the

Node and Edge classes in order to make them compatible with this new class, which would

have taken too much time within the scope of this project, so this solution was abandoned.

Instead, the assignments are still represented with a BasicHypercube object, but as there

may not exist a utility value for every variables values, a null value is used in the utility array

when there is no path corresponding to these variables values in the utility diagram (see

Figure 1 for an example of how the optimal assignments are represented for the result of a

utility diagram projection). As a result, the utility array may be very sparse and a

BasicHypercube is not the ideal way to represent the assignments for a utility diagram

projection output either, so properly implementing the BasicUtilityDiagram class might be

the next step in the future.

Efficient Data Structures for Decision Diagrams

8

X1

X2 X2 X2

X3 X3 X3

1

{0}
{1}

{2}

{0}

{0}

{2} {3}

{2}
{1}

{1}

6

7

8

9

U

X1

X3 X3 X3

1

{0}
{1}

{2}

{0} {2}
{1}

6

8

9

U

Utility diagram UD Utility diagram UD.project({X2})

X1

X3 0 1

BasicHypercube assignments

V D

0 1

{0} null

U

2

2

null null null null null{2} {3}

Figure 1 : Output representation for the result of a utility diagram projection

Efficient Data Structures for Decision Diagrams

9

1.3 Join functions without assumptions about the variables order

In the original implementations of the join function both for hypercubes and utility diagrams,

it was always assumed that the variables order between the two decision diagrams is

consistent (i.e. for instance, if variables X1 and X2 are present in both diagrams, and X1 is

before X2 in the first diagram, X1 is necessarily also before X2 in the second diagram), which

limits the usability of the join function.

It is not such a problem for hypercubes, as the method changeVariablesOrder can always be

used to reorder one of the hypercubes so that the variables order is finally consistent

between the two hypercubes. However, this operation can be expensive; therefore a new

implementation of the join operation that relaxes the assumption about the variables order

and does not call the method changeVariablesOrder was implemented.

The first part of this implementation was first to write a joinAnyOrder method which can join

two hypercubes no matter the variables order, without having to pre-reorder one of the

hypercubes. Theoretically, using joinAnyOrder between two hypercubes is faster than first

using changeVariablesOrder on one of the hypercubes then joining them, however

experimental results show that, practically, the difference is negligible as the

changeVariablesOrder method is relatively cheap for hypercubes.

The problem was however more serious for utility diagrams as no changeVariablesOrder

method was implemented, and as a result, it was impossible to join two utility diagrams with

inconsistent variables orders. The first step to correct this was therefore to implement a

changeVariablesOrder for utility diagrams. This reordering algorithm is very simple:

UtilityDiagram changeVariablesOrder(String[] new_order)

01: r ← new empty utility diagram

02: for every path p in the original utility diagram

03: q ← p reordered according to new_order

04: augment r with q

05: return r

Though making the joining of two diagrams possible no matter what their variables order

are, this algorithm is quite naive and when the size of the utility diagram to be reordered

grows, the execution time of this method quickly becomes very high. In order to improve

that, a joinNoReorder method for utility diagrams, which performs the reordering in the

same time as the join, and thus do not call the changeVariablesOrder method, was

implemented, but the time taken by this method on big utility diagrams (i.e. with several

thousands of utilities values) is also too high, so a more efficient implementation has to be

found before its use can become really interesting.

Efficient Data Structures for Decision Diagrams

10

1.4 Optimization of methods for Utility Diagrams

For most methods for utility diagrams (with the notable exception of the projection function,

in which a temporary array list is used to store the utility values while exploring the diagram

to project), two passes through the utility diagram are needed: one to construct the

resulting utility diagram, then one to construct the utilities array corresponding to the new

utility diagram. Indeed, as a raw array is used to store the utilities values, it cannot be

created before its size, equal to the number of solutions in the resulting diagram, is known,

and contrary to the case of hypercubes, this size cannot be easily pre-computed.

In order to optimize the concerned functions (join, slice and split), an idea was then to write

a variant in which the utility diagram is walked through only once, and where the diagram

and its utilities array are constructed in this same pass. That is why a “OnePass” variant was

written for all these functions: an array list (which does not require knowing the size of the

new utility diagram beforehand) is used to store the utility values that will be kept in the

resulting diagram during its construction, and that list is finally converted into the resulting

utilities array at the end of the algorithm.

By using the accumulated steps value, it is easy to get the value corresponding to some path

when the terminal node is reached. However, we have to make sure that these paths are

explored in the right order so that the corresponding reached utilities values are inserted in

the correct place in the array list, which is not always the case, especially with the join

function (see Figure 2 for such a counter-example).

Efficient Data Structures for Decision Diagrams

11

X X

Node n1 Node n2

{1,10} {2} {2} {10}

X

n1.join(n2)

{2} {10}

Figure 2 - With the classical implementation, edge {10} is created before edge {2} in the resulting node,

as edge {1, 10} is explored before edge {2} in node n1, whereas the utilities values reached through

edge {10} are situated after utilities values reached by edge {2} in the resulting utilities array,

as edges are ordered by increasing lowest value.

which thus becomes :

Node joinOnePass(Node node1, Node node2)

...

01: if(node1 and node2 correspond to the same variable)

02: r ← new node having the same name as node1, with no edges

03: l ← new empty sorted domains list

04: for every edge e1 of the outgoing edges of node1 and e2 of the outgoing edges of node2 do

05: d ← intersection of the domains of e1 and e2

06: if (d is not null)

07: insert d at the right place in l

08: for every domain d in l do

09: e1 ← outgoing edge of node1 corresponding to domain d

10: e2 ← outgoing edge of node2 corresponding to domain d

11: dst ← join(destination of e1, destination of e2)

12: if (dst is not null)

13: add an edge to r having d as domain and dst as destination

14: if (r does not contain any edges)

15: r ← null

16: return r

...

Thus, in some cases, when exploring the edges leaving from a node, we have to first pre-compute

the list of all potential resulting edges and sort them before recursively exploring them. For the

join method for example, the following transformation had to be done to this part of the original

algorithm:

Node join(Node node1, Node node2)

...

01: if(node1 and node2 correspond to the same variable)

02: r ← new node having the same name as node1, with no edges

03: for every edge e1 of the outgoing edges of node1 and e2 of the outgoing edges of node2 do

04: d ← intersection of the domains of e1 and e2

05: if (d is not null)

06: dst ← join(destination of e1, destination of e2)

07: if (dst is not null)

08: add an edge to r having d as domain and dst as destination

09: if (r does not contain any edges)

10: r ← null

11: return r

...

Efficient Data Structures for Decision Diagrams

12

It is important to note that this problem only arises when edges are labeled by domains

containing more than one variable values. If the edges were always labeled by a single

variable value, the edges of the new node would systematically be created in the right order,

so a more specialized version of joinOnePass, in which the pre-computation of the domains

list is not needed, could be written: this function would only work on utility diagrams in

which all edges are labeled by single-valued domains, but would be more efficient for this

special case of diagrams.

In order to compare the performance between different variants for a same operation,

10.000 random utility diagrams were generated, and the time taken to perform a given

operation on all of them was measured for each implementation of this operation (the input

parameters of the method being also randomly generated).

For slice and split, the gain is very small (about 5 %), which is not unexpected as for the split

method, the creation of the utilities array is very cheap (it basically consists in just taking the

original array and dropping all values above or below the input threshold). For join however,

the execution time difference between the two implementations, presented in Figure 3, is

much higher (about 25 %).

10

100

1000

10000

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 3 Runtime improvement of joinOnePass vs. join

join

joinOnePass

Efficient Data Structures for Decision Diagrams

13

1.5 Implementation of joinProject

In DPOP, sequences of operations often consist in successively joining a diagram with

another one, then projecting out some of its variables. A method performing both join and

project at once rather than in sequence would therefore definitely prove itself useful, and

would potentially require less time and memory as some layers introduced by the join would

not even have to be created if the projection then removes these layers.

For these reasons, a new method joinProject was implemented both for hypercubes and

utility diagrams: this method takes as arguments a diagram and a list of variables, and then

returns the result that would be obtained if the diagram was first joined with the input

diagram, and the given variables were then projected out. Figure 4 shows the execution time

taken by joinProject on 10.000 random hypercubes, compared with the execution time of a

join followed by a projection on these same random hypercubes. The experiments results for

utility diagrams are presented in Figure 5; as the implementation of joinProject required only

one pass through the diagram, it is actually fairer to compare it with joinOnePass, so the

result of the application of joinOnePass followed by a projection has also been measured.

These results showed a performance gain varying between 20% and 30% for joinProject.

10

100

1000

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 4 : Runtime improvement of

joinProject v.s. join + project for hypercubes

join then project

joinProject

10

100

1000

10000

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 5 : Runtime improvement of

joinProject v.s. join + project for utility diagrams

join then project

joinOnePass then

project

joinProject

Efficient Data Structures for Decision Diagrams

14

3) Methods variants for Hypercubes

Most of the methods used in the hypercube class, such as join, project, slice or

changeVariablesOrder create and return a brand new hypercube, which may be quite

inefficient if the original hypercube is no longer needed. As the utilities arrays can be very

large, with thousands of elements, this might be quite memory consuming in a program like

DPOP where a lot of successive operations have to be made on hypercubes. When calling a

method which creates a new hypercube, rather than creating a new one and discarding the

original one, it could be more useful to modify the existing one. Hence, implementing a

variant for all these methods, which when possible does not require the creation of a new

-possibly big- utilities array, but only modifies the existing one, might then solve this memory

issue.

In fact, with the exception of the join method, all methods always return a hypercube with

fewer utilities, so the current utilities array can simply be reused: we just have to make sure

that the attribute corresponding to the number of utilities is correctly updated, as because

of these new methods, the actual number of utilities of the hypercube may be smaller than

the real size of its utilities array. For instance, if we start from a hypercube with 100

elements, then project out some of its variables so that there are only 50 elements left, the

number of utility values of this hypercube will be updated to 50, but its utilities array will still

have a size of 100, even if only its 50 first elements are actually relevant to the modified

hypercube. A crucial difficulty in all these implementations is then that we need to make

sure that we do not erase utilities values that will be needed later to complete the

operation.

Efficient Data Structures for Decision Diagrams

15

3.1 Slice

Slicing a hypercube basically consists in selecting some parts of the utilities array that will be

kept, and discarding the other blocks from the array. As a result, the modification of the

utilities array into the result of the slice can be done by just copying specific blocks of the

array in order to move the kept blocks over the dropped blocks. As these blocks are moved

in the order (if a block is situated before another one in the array, it will be moved before)

and always towards the left, this algorithm ensures that the erased parts are no longer

necessary for the rest of the operation.

4 5 6 7

X1

X2

0

0

1

1

2 3

0 1 2 3 4 5 6 7

X1

X2

0

0 1

2

0 1 4 5

Hypercube h

V D

U U

V D

h.slice(X1, {0, 2})

This part of the array is no longer

relevant to the sliced hypercube

Figure 6 – The hypercube is sliced by moving the selected blocks towards the left

The main difficulty is to calculate the size and the number of the blocks to be copied. For

this implementation, we look at the variables list from the end and search for the first

variable whose domain is actually sliced, and the size of the blocks is then equal to the

product of domains sizes of all variables covered before finding the first sliced variable (see

Figure 6 for an example). But this computation is not always optimal, as in some cases (as

displayed in Figure 7), two different blocks may very well be actually adjacent in the utilities

array. In order to really find the optimal blocks, a more complex pre-computation would

have to be made in order to represent the blocks sequence to be copied (see Figure 8 for

an example of an irregular blocks sequence).

Efficient Data Structures for Decision Diagrams

16

8

X1

X2 0

0

1

1

2

0 1 2 3 4 5 6 7

Hypercube h

V D

U U

h.slice(X2, {0, 1})

X3

0 1

8 9 10 11 0 1 2 3 6 7 8 9

X1

X2 0

0

1

1X3

0 1

V D

Blocks used in the current implementation (4 different ones)

Optimal blocks (2 different ones)

9 10 11

Figure 7 – The used implementation will move 4 different blocks,

whereas only 2 would actually be needed

12 13 14 15

X1

X2 0

0

1

1

2

0 1 2 3 4 5 6 7

Hypercube h

V D

U

U

h.slice(X2, {0, 2, 3})

X3

0 1

8 9 10 11

0 1 4 5 6 7 8 9

X1

X2 0

0

2

1X3

0 1

V D

3

12 13 14 15

12 13 14 15

3

Figure 8 – In some cases, the optimal blocks sequence may be much more complex

Efficient Data Structures for Decision Diagrams

17

3.2 Project

For the projection function, we simply cover linearly each possible original variables

assignment. For each variables combination, the corresponding utility value in the original

hypercube is taken, compared with the utility value corresponding to the same variables

combination but without the projected out variables in the modified hypercube (which is

always situated before the first value, as the utilities array is linearly modified), and possibly

replace the latter with this new value (an example is presented in Figure 9).

null

X1 X2 X3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

X1 X3

0 0

0 1

1 0

1 1

2

3

6

7

null

null

null

V V

DD U U

Hypercube h h.project({X2})

Figure 9 – Projection of a variable from a hypercube

We can thus use the following algorithm:

void applyProject(String[] projected_variables)

01: For i from 0 to (number of utilities – 1)

02: v ← next variables assignments (corresponding to index i in the utilities array)

03: v’ ← remove values corresponding to projected out variables from v

04: i’ ← index corresponding to v’ in the modified array

05: u ← values[i]

06: u’ ← values[i’]

07: if (u > u’ or values[i’] == null)

08: values[i’] ← u

09: if (i > i’)

10: values[i] ← null

Efficient Data Structures for Decision Diagrams

18

3.3 ChangeVariablesOrder

Reordering a hypercube by only modifying the current utilities array is much more difficult,

because the size of the array is not reduced, and therefore we have to be careful about not

overwriting utility values when reordering them.

For a given variables assignment, a temporary variable is used to store its associated utility

value. Then the variables values are reordered according to the new order, and we look in

the array for the emplacement corresponding to this new assignment in the array. The

temporary value is then put in this place of the array, while the previous value situated at

this position is stored in the temporary variable. Then the current variables assignment is

reordered again, and this process is repeated until we encounter an already reordered utility

value, which means a cycle has been covered and that we can start reordering the next

utility value in the array (see Figure 10 for an example).

X1 X2 X3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

V

D U

Hypercube h

X3 X1 X2

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

2

4

6

1

3

5

7

V

D U

h.changeVariablesOrder({X3, X1, X2})

Figure 10 – Changing the variables order for a hypercube

Each reordering cycle is represented by a different colour

Efficient Data Structures for Decision Diagrams

19

The difficulty is then to find the value which has yet to be reordered in the array, which

means we have to use a data structure in order to keep track of the reordered utility values.

To do so, several solutions are possible, such as a boolean array with as many elements as

the utilities array (however, the size of the boolean array in the memory is much smaller

than the original array), but as this array may potentially be very large, a version of this

algorithm using instead a integer HashSet was also implemented: each time a value is

reordered, its index is added to the HashSet, and to know whether a value has already been

reordered, we just have to check whether its index is present in this HashSet.

As adding and searching for elements in the HashSet takes some time, it is important to keep

its size as small as possible. An optimization of the code was then to remove indexes from

the list when it is sure they will not be covered again in the utilities array (so their presence

in the list is no longer necessary), which slightly improved the performances of this function,

and gives the following algorithm:

void applyChangeVariablesOrder(String[] new_order)

01: already_reordered ← new empty HashSet

02: For i from 0 to (number of utilities – 1)

03: if (i does not belong to already_reordered)

05: u ← values[i]

06: v ← variables assignment corresponding to index i in the utility array

07: v’ ← v reordered according to new_order

08: i’ ← index corresponding to v’ in the modified array

09: while (i != i’)

10: add i’ to already_reordered

11: swap values[i’] with u

12: v ← variables assignment corresponding to index i’ in the original utility array

13: v’ ← v reordered according to new_order

14: i’ ← index corresponding to v’ in the modified array

15: values[i] ← u

16: else

17: remove i from already_reordered

However, experimental results (see Figure 20 in section 3.6) showed that the boolean array

implementation actually gives better result in term of both execution time and memory

consumption, so it is this version of the algorithm that was finally kept.

Efficient Data Structures for Decision Diagrams

20

3.4 Augment

The augment function is a new method which for the moment is only used as an auxiliary

function for the join method. The augment method takes as argument a list of new variables

and theirs domains, and adds these variables to the hypercube, whose utilities array is

extended by simply repeating its current utilities values.

The major difference from the previous methods is that the number of utilities values is not

reduced, but increased, so we first have to pre-compute the number of utilities values of the

augmented hypercube (which is equal to the number of utilities of the original hypercube,

multiplied by the product of the domains sizes of the new variables) then check that the

current utilities array is large enough to contain all these values. If this not the case, it is not

possible to augment the hypercube by just modifying its utilities array, so it is necessary to

create a new hypercube.

Otherwise, the augmentation is quite simple and just consists in copying the utilities values

block in the array as much as necessary (in this case, the new variables are added at the

beginning of the hypercube ; if they were added at the end, we would have to repeat each

utility value individually as it is shown on Figure 11).

X1

X2 0 1

Hypercube h

V D

0 1

0 1 2 3

U

X0

X1 0

0

1

1

h.augment(X0, {0, 1})

V D

X2

0 1

U

0 1 2 3 0 1 2 3

X1

X2 0

0

1

1

Possible variant for h.augment(X0, {0, 1})

V D

X0

0 1

U

0 0 1 1 2 2 3 3

Figure 11 – Augmenting a hypercube with a new variable; the result is a little

different depending whether the new variables are added at the beginning or at the end.

Efficient Data Structures for Decision Diagrams

21

3.5 Join

With the previous functions, joining a hypercube with another one basically consists in a

slice followed by an augmentation. The join can then be divided into at most three steps

(which are illustrated on Figure 12):

4 5

X1

X2 0 1

Hypercube h1

V D

0 1

0 1 2 3

U

2

4 5

X2

X3 0 1

Hypercube h2

V D

1 2

10 11 12 13

U

3

14 15

X1

X2 1

Step 1 : h1.slice(X2, {1 , 2})

V D

0 1

2 3

U

2

4 5

X1

X2 1

Step 2 : h1.augment(X3, {0 , 1})

V D

0 1

2 3

U

2

4 5

X3 0 1

2 3 4 5

X1

X2 1

Step 3 : utilities update

V D

0 1

12 15

U

2

14 17

X3 0 1

13 16 15 18

X3 = 0, X2 = 1

-> utility +10

X3 = 0, X2 = 2

-> utility +12

X3 = 1, X2 = 1

-> utility +11

X3 = 1, X2 = 2

-> utility +13

4

6 7 6 7

Figure 12 – Three steps are needed to join two hypercubes

- For each variable present in the first hypercube (and possibly in the second one), we

compute the intersection between its domains in each hypercubes, and we slice the

first hypercube according to these variables and theirs intersected domains.

This step is needed only when the two hypercubes do not agree on the domain of at

least one of their common variable: the hypercube must then be sliced so that only

the values that are in the intersection are kept in the result.

- The first hypercube is augmented with the variables present only in the second

hypercube. It is at this point that a new hypercube may be created only if the utilities

array size of the first hypercube is not large enough to contain all the utilities values

of the join result.

This step is needed only when the two hypercubes do not agree on the list of

variables: the variables which belong only to the input hypercube must then be

added to the current hypercube.

Efficient Data Structures for Decision Diagrams

22

- The utilities values have finally to be updated by adding the corresponding values of

the second hypercube. For each variables assignments of the modified hypercube,

the corresponding utility value in the second hypercube is retrieved and is added to

the correct utility value in the resulting utilities array.

This function has been implemented in a way that works no matter what the variables

orders of the two hypercubes are, so with this version of join, even if two hypercubes

disagree on the variables order, they can nonetheless be joined together without needing a

preliminary reordering. However, due to the use of the augment function, the final variables

order of the resulting hypercube is fixed: the first variables will always be the variables

present only in the second hypercube, followed by the variables present in the first

hypercube. If we want the output to have a different variables order, a reordering with the

changeVariablesOrder method is needed.

The choice of the hypercube that will actually be modified is an interesting question. In order

to increase the chance that the augment function will not require the creation of a brand

new array, it is indeed smarter to first check which one of the two hypercubes has the

largest utilities array, and then perform the necessary modifications on this hypercube.

Thus, when joining two random hypercubes, experimental results show that if the

hypercube which is modified is arbitrary (i.e. we simply take the hypercube on which the

applyJoin method is called), the creation of a new utilities array is necessary in 75% of cases,

whereas if the modified hypercube is the one with the largest utilities array, the proportion

of cases where a new utilities array has to be created drops to 58%.

Efficient Data Structures for Decision Diagrams

23

3.6 Experimental results

In order to test the performances of these new operations implementations, 10.000

randomly generated hypercubes have again be used in order to compare their execution

time. The results for the slice, project, changeVariablesOrder and join are respectively shown

on Figures 13, 14, 15, 16.

2

3

4

5

6

7

8

9

10

11

12

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 13 : Runtime improvement of applySlice vs. slice

slice

applySlice

0

5

10

15

20

25

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 14 : Runtime improvement of applyProject vs. project

project

applyProject

Efficient Data Structures for Decision Diagrams

24

As expected, for changeVariablesOrder, the new implementation takes more time than the

classical one, as the algorithm is much more complicated to set up. The performances of the

different variants of applyChangeVariablesOrder are displayed: when a boolean array is used

to keep track of the already reordered utilities, the execution time is much smaller than

when a HashSet is used for this purpose, even with the optimization consisting in removing

the no longer used indexes from the HashSet.

0

5

10

15

20

25

30

35

40

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 15 : Runtime improvement of applyChangeVariablesOrder and

its variants vs. changeVariablesOrder

changeVariablesOrder

applyChangeVariablesOrder

with a HashSet

optimized

applyChangeVariablesOrder

with a HashSet

applyChangeVariablesOrder

with a boolean array

0

100

200

300

400

500

600

700

3 4 5 6 7

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

Number of variables

Figure 16 : Runtime improvement of applyJoin vs. join

join

applyJoin

Efficient Data Structures for Decision Diagrams

25

For slice and project methods, the time gain is very small (about 5-10 %), but for join, the

gain is quite high, which is quite surprising insofar as because of the usual trade-off between

memory and time, one would expect that improving memory consumption would result in

larger runtimes.

A possible explanation is that the most expensive part of the former implementations is to

cover individually each element of the utilities arrays of the input hypercubes by calling the

getUtilityValue method which needs to access the hypercube’s steps HashMap and then

perform some computations on its values. In applySlice and applyProject however, the

getUtilityValue is not needed as in the case of applySlice, the utilities are directly copied and

moved by blocks, and in applyProject, the original array is just linearly covered. As for

applyJoin, only the utilities array of the second hypercube has to be covered, as the utilities

of the first hypercube are simply moved by blocks when this hypercube is sliced during the

first part of the algorithm, contrary to the join method where both input hypercubes have to

be covered with getUtilityValue in order to compute the utilities of the new hypercube.

In order to test the performance in term of memory consumption, for each method the

following algorithm has been used:

01: For i from 1 to 10.000

02: input[i] ← generate a random hypercube with n variables

03: output[i] ← apply the method to test on input[i]

When this scenario is run for a given number of variables n (n varying from 3 to 10), either

the 10.000 instances are computed successfully, or the program runs out of memory. In the

latter case, the current value of i is recorded so that we know how many instances were ran

before the memory shortage occurred. For each method, a “score” value is computed this

way:

score = 3*(number of instances for 3 variables that were run before the program ran out of memory)

 + 4*(number of instances for 4 variables that were run before the program ran out of memory)

 + ... + 10*(number of instances for 10 variables that were run before the program ran out of memory)

Thus, for any given method, we obtain a value ranging from 0 to 52, which accounts how

well this method performed in term of memory consumption. The score values for slice,

project and join are respectively displayed in Figures 17, 18 and 19 for different amounts of

memory allocated to the JVM, and clearly show an improvement of the “apply” versions

over the previous methods, especially for applyProject.

Efficient Data Structures for Decision Diagrams

26

10

15

20

25

30

35

50 Mb 100 Mb 200 Mb 500 Mb

S
co

re

Allocated memory

Figure 17 - Memory score

improvement for the slice function

slice

applySlice

10

15

20

25

30

35

40

45

50 Mb 100 Mb 200 Mb 500 Mb

S
co

re

Allocated memory

Figure 18 - Memory score

improvement for the project function

project

applyProject

2

4

6

8

10

12

14

16

50 Mb 100 Mb 200 Mb 500 Mb

S
co

re

Allocated memory

Figure 19 - Memory score

improvement for the join function

join

applyJoin

Efficient Data Structures for Decision Diagrams

27

For the join function, the difference is quite small, which makes sense as it has already been

previously established that in more than 50% of cases, the hypercube resulting from a join

operation has a higher number of utilities than the original hypercubes and hence applyJoin

nonetheless requires the creation of a new utilities array. However, if a join is performed on

a hypercube whose number of utilities has already decreased (for example due to a project

or slice operation), the probability that the join will not require the creation of a new array

increases, so in the context of DPOP, where join are often applied after a projection, the

performance gain of applyJoin might be a lot higher.

In order to check which implementation of applyChangeVariablesOrder is better in term of

memory consumption, the following test was used: for a given number of variables (varying

between 11 and 15), 100 random hypercubes are generated and one of the versions of

applyChangeVariablesOrder is applied on them; the number of reordering which failed due

to a lack of memory is then counted. The results are shown on Figure 20 and clearly show

that unlike what was originally expected, the implementation of applyChangeVariablesOrder

which uses a boolean array tends to consume less memory than the other one.

0

10

20

30

40

50

60

70

80

90

100

11 12 13 14 15

N
u

m
b

e
r

o
f

"
o

u
t

o
f

m
e

m
o

ry
"
 e

rr
o

rs

Number of variables

Figure 20 - Performances of the two versions of

applychangeVariablesOrder in term of memory consumption

HashSet implementation

Boolean array

implementation

Efficient Data Structures for Decision Diagrams

28

Conclusion

The experimental results have shown that the methods variants implemented during the

course of this project definitely increase the performances of the various functions, both for

hypercubes and utility diagrams.

These improvements could be pushed further by writing more specialized versions of some

methods (for example, a better joinOnePass for utility diagrams whose edges are only

labeled by single values) or by combining several different improvements into a better

function (for instance, implement a version of joinProject which does not require the

creation of a new utilities array, as it has been done for the other operations in part 3).

As the modifications presented in part 3 of this report have proven their efficiency for

hypercubes, future work could be aiming at doing the same thing for utility diagrams. A first

step could thus be to only reuse the utilities array (and still create a new diagram as it is

done with the current implementation). The next step would then be to also reuse the

diagram and modify it into the resulting diagram. Even if doing that might be too complex

for operations such as join, it may for example be interesting for the slice function, which

would basically just consist in removing some edges (the ones whose labels do not belong to

the sliced domains) from the diagram.

