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Introduction 

Dynamic Programming Optimization (DPOP) is an algorithm proposed to solve distributed 

constraint optimization problems. In order to represent the multi-values functions 

manipulated in this algorithm, a data structure called Hypercube was implemented. A more 

efficient data structure, the Utility Diagram, was then proposed as an alternative to the 

Hypercube. DPOP also required the implementation of several operations (such as join, 

project, slice, split and reorder) on these two data structures. 

This project is a follow-up of Nacereddine Ouaret’s master thesis, which consisted in 

implementing all of these data structures and theirs associated operations. As DPOP may 

have to work on very large decision diagrams, and perform a lot of successive operations on 

them, having implementations which are efficient in term of speed and memory is critical. 

The aim of this project was therefore to seek for new ways to improve the already 

implemented functions for hypercubes and utility diagrams, both in term of execution time 

and memory consumption. 

This report will thus first present a quick overview of hypercubes, utility diagrams, and their 

associated operations (a more complete description of these objects, as well as the details 

about their original implementation, can be found in Nacereddine Ouaret’s report on 

Efficient Data Structures for Decision Diagrams). The second part will then cover various 

improvements made to their implementation during the course of this project. Finally, a 

variant for the methods used by hypercube, more economical in term of memory as it reuses 

existing hypercubes rather than creating new ones, will be presented. 
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1) Hypercubes, Utility Diagrams, and theirs operations 

 

1.1 Hypercubes 

A hypercube is represented by three parameters: its variables V, its domains D and its values 

U. V = {V1, ..., Vn} is the array of the variables contained in the hypercube, D = {D1, ..., Dn} is 

an array of domains ordered such that Di is the domain corresponding to the variable Vi. 

Each Di is an array where each entry is a possible value for Vi. Finally, U = {U1, ..., Um} is an 

array containing the utility values of the hypercube. There is a utility value for every 

combination of possible variables values (which means that m is equal to the product 

|D1|...|Dn|), and these values are ordered so that given a variables assignment, its 

corresponding index in the utilities array U can be found by a relatively simple formula. 

 

1.2 Utility Diagrams 

Hypercubes assume that for every combination of variables values, there is a utility value, 

but this may not be always the case. As a result, hypercubes are an inefficient method to 

represent sparse multi-values functions, and that is why utility diagrams were introduced to 

overcome this problem. With utility diagrams, a multi-valued function is represented by a 

graph, which provided a much more compact, and therefore efficient, way to encode the 

possible combinations of variables values. 

A diagram is thus composed of nodes and edges. Nodes are labeled by the names of their 

corresponding variables, except the terminal node which is just here to indicate that there 

are no more variables. The edges are labeled by a set of values that the variable 

(corresponding to the node from which the edge comes) can take. The diagram is 

constructed such that every possible path from the root to the terminal node in the graph 

corresponds to a possible variables assignment. 

The array of utility values then contains the values of the function and contains an entry for 

every path in the diagram which starts at the root and ends at the terminal node. Path 

numbers are generated according to a depth-first traversal of the diagram, assuming an 

order on the edges coming out of the nodes. 

Besides, in this implementation of utility diagrams, each edge is also characterized by a step 

parameter. This step value is an integer which can be recursively computed as the sum of 

these two values:  

- the step value of the previous edge in the list of edges of the parent node  

- the number of paths from the destination of the previous edge to the terminal node  

If this edge is the first of the list, its step value is then equal to 0.  

The important property of step values is that by computing the sum of steps on all edges of a 

given path, we directly obtain the index of the corresponding value in the utilities array. 
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1.3 Join 

Joining two multi-values functions consists in creating a new function which is equal to their 

sum, its variables list being the union of the variables of the two input functions.  

For hypercubes, we can then simply create the domains of the new hypercube: if the 

variable belongs to the two input hypercubes, its domain is equal to the intersection of the 

two original domains (if this intersection is empty, a null hypercube is returned); if the 

variable belongs to only one hypercube, this domain is simply kept in the new hypercube. 

The entries of the new utilities array are then obtained by computing the sum of the utility 

values corresponding to the same variables values in the original hypercubes. 

The principle of the operation is the same for utility diagrams, but as we cannot compute a 

global domain for each variable, the join is performed by recursively computing the 

intersection between the edges domains for each pair of nodes to join. 

1.4 Project 

Projecting some variables out of a decision diagram (hypercube or utility diagram) consists in 

reducing its dimension by removing these variables from its variables list. This also implies 

the reduction of the utilities array as for each of utilities values set obtained by fixing the 

variables to keep, and varying the variables to project out over their respective domains, 

only the maximum (or minimum, depending on a boolean parameter which is an additional 

argument of the function) is kept. 

1.5 Slice 

Slicing a decision diagram simply consists in reducing the domains of some of its variables, 

which also implies reducing the utilities array as only the values corresponding to 

combinations of variables values included in the provided sub-domains are kept. 

1.6 Split 

Splitting a utility diagram consists in removing the utility values that are greater (or lower, 

depending on a boolean parameter which is an additional argument of the function) than a 

provided threshold. For hypercubes, some variables domains have also to be reduced, and in 

most cases, some utility values smaller than the threshold have to be kept because of the 

assumption that there is a utility value for each possible combination of variables values. 

However, as there is not such assumption for utility diagrams, only the right values will be 

kept when splitting a utility diagram. The split operation can thus be used to obtain a utility 

diagram from a hypercube by having all values below (or above) a given threshold removed 

from the hypercube, which in most cases will produce a sparse multi-valued function. 
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2)  Improvements of the code 

The first step of this project was a preliminary warm-up phase consisting in small tasks, such 

as adding more commentaries when necessary, correcting some bugs and writing new 

boolean functions to be used by assertions (for example, checking that the variables order in 

two or more decision diagrams is consistent before joining them). 

Besides performing these few improvements, the main goal of this phase was primarily to 

get a good overview of the source code before really starting modifying it. Some parts of this 

phase, which are described in section 2.1 and 2.2, required however more time and thought. 

 

1.1 Test for augment method 

For utility diagrams, the augment method takes for arguments a list of variables values and a 

utility value, adds a new path corresponding to the input variables values to the utility 

diagram, and adds the input utility value at the place corresponding to this new path in the 

utilities array.  

This method is quite important as it is used in several other methods, and is not trivial to 

implement: when adding a new path, we have to check which part of this path already exists 

in the utility diagram, and create the part of this path which is not already present, then 

update the step values of all edges which have been modified by the introduction of this 

new path. 

For these reasons, the augment method had to be tested, in the same way methods such as 

join or project were, in order to make sure the augmentation of a utility diagram with a new 

path does not create some errors. A first test function for the augment method was already 

implemented and its principle was very simple: create a random utility diagram, add a 

random new path to this diagram with the augment method, then check that its associated 

utility value has effectively been added to this diagram. 

This test had the major drawback that it only tested whether the path was really added in 

the utility diagram, but not if this path was added at the right place or if the steps values 

were rightly updated. That is why a more complex test was implemented during the warm-

up phase. This new test function still creates a random utility diagram, then constructs step 

by step another utility diagram by augmenting it successively with every path in the original 

hypercube, and finally checks the two utility diagrams are identical. 

As it is more complete, this test first outputted many failures (whereas the first test was 

always successful), which helped spotting and correcting several errors in the code of the 

augment method that the first test was unable to detect.  
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1.2 Projection assignments for Utility Diagrams 

The projection function is special as it actually returns a ProjOutput object which consists in 

two fields: a space object which is the actual hypercube or utility diagram resulting from the 

projection, and an assignments data structure giving the optimal values of the projected out 

variables for each utility values of the new decision diagram. 

In order to represent the assignments object, a Hypercube cannot be used as it requires its 

utilities values to be comparable or addable, but the assignments are represented as an 

array list of variables values, which is not comparable. That is why a BasicHypercube class 

was created, which basically is a Hypercube class in which the utilities are neither addable 

neither comparable, and the computation of the assignments BasicHypercube was 

implemented for hypercubes. 

However, this was not implemented for utility diagrams, so another important part of the 

warm-up phase was to modify the project method so that we also keep track of the optimal 

variables assignments corresponding to utility values that are finally kept in the utility 

diagram. The representation of these assignments in the projection output represented a 

supplementary difficulty. 

Indeed, the first idea was to create a new class BasicUtilityDiagram, analogous to 

BasicHypercube, but for utility diagrams. However, doing so required to deeply modify the 

Node and Edge classes in order to make them compatible with this new class, which would 

have taken too much time within the scope of this project, so this solution was abandoned. 

Instead, the assignments are still represented with a BasicHypercube object, but as there 

may not exist a utility value for every variables values, a null value is used in the utility array 

when there is no path corresponding to these variables values in the utility diagram (see 

Figure 1 for an example of how the optimal assignments are represented for the result of a 

utility diagram projection). As a result, the utility array may be very sparse and a 

BasicHypercube is not the ideal way to represent the assignments for a utility diagram 

projection output either, so properly implementing the BasicUtilityDiagram class might be 

the next step in the future. 
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1.3 Join functions without assumptions about the variables order 

In the original implementations of the join function both for hypercubes and utility diagrams, 

it was always assumed that the variables order between the two decision diagrams is 

consistent (i.e. for instance, if variables X1 and X2 are present in both diagrams, and X1 is 

before X2 in the first diagram, X1 is necessarily also before X2 in the second diagram), which 

limits the usability of the join function. 

It is not such a problem for hypercubes, as the method changeVariablesOrder can always be 

used to reorder one of the hypercubes so that the variables order is finally consistent 

between the two hypercubes. However, this operation can be expensive; therefore a new 

implementation of the join operation that relaxes the assumption about the variables order 

and does not call the method changeVariablesOrder was implemented.  

The first part of this implementation was first to write a joinAnyOrder method which can join 

two hypercubes no matter the variables order, without having to pre-reorder one of the 

hypercubes. Theoretically, using joinAnyOrder between two hypercubes is faster than first 

using changeVariablesOrder on one of the hypercubes then joining them, however 

experimental results show that, practically, the difference is negligible as the 

changeVariablesOrder method is relatively cheap for hypercubes. 

The problem was however more serious for utility diagrams as no changeVariablesOrder 

method was implemented, and as a result, it was impossible to join two utility diagrams with 

inconsistent variables orders. The first step to correct this was therefore to implement a 

changeVariablesOrder for utility diagrams. This reordering algorithm is very simple: 

UtilityDiagram changeVariablesOrder(String[] new_order) 

01: r ← new empty utility diagram 

02: for every path p in the original utility diagram 

03:       q ← p reordered according to new_order 

04:       augment r with q 

05: return r 

 

Though making the joining of two diagrams possible no matter what their variables order 

are, this algorithm is quite naive and when the size of the utility diagram to be reordered 

grows, the execution time of this method quickly becomes very high. In order to improve 

that, a joinNoReorder method for utility diagrams, which performs the reordering in the 

same time as the join, and thus do not call the changeVariablesOrder method, was 

implemented, but the time taken by this method on big utility diagrams (i.e. with several 

thousands of utilities values) is also too high, so a more efficient implementation has to be 

found before its use can become really interesting. 
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1.4 Optimization of methods for Utility Diagrams 

For most methods for utility diagrams (with the notable exception of the projection function, 

in which a temporary array list is used to store the utility values while exploring the diagram 

to project), two passes through the utility diagram are needed: one to construct the 

resulting utility diagram, then one to construct the utilities array corresponding to the new 

utility diagram. Indeed, as a raw array is used to store the utilities values, it cannot be 

created before its size, equal to the number of solutions in the resulting diagram, is known, 

and contrary to the case of hypercubes, this size cannot be easily pre-computed. 

In order to optimize the concerned functions (join, slice and split), an idea was then to write 

a variant in which the utility diagram is walked through only once, and where the diagram 

and its utilities array are constructed in this same pass. That is why a “OnePass” variant was 

written for all these functions: an array list (which does not require knowing the size of the 

new utility diagram beforehand) is used to store the utility values that will be kept in the 

resulting diagram during its construction, and that list is finally converted into the resulting 

utilities array at the end of the algorithm. 

By using the accumulated steps value, it is easy to get the value corresponding to some path 

when the terminal node is reached. However, we have to make sure that these paths are 

explored in the right order so that the corresponding reached utilities values are inserted in 

the correct place in the array list, which is not always the case, especially with the join 

function (see Figure 2 for such a counter-example). 
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X X

Node n1 Node n2

{1,10} {2} {2} {10}

X

n1.join(n2)

{2} {10}

Figure 2 - With the classical implementation, edge {10} is created before edge {2} in the resulting node, 

as edge {1, 10} is explored before edge {2} in node n1, whereas the utilities values reached through

edge {10} are situated after utilities values reached by edge {2} in the resulting utilities array,

as edges are ordered by increasing lowest value.

  

 

 

which thus becomes : 

Node joinOnePass(Node node1, Node node2) 

... 

01: if(node1 and node2 correspond to the same variable) 

02:       r ← new node having the same name as node1, with no edges 

03:       l ← new empty sorted domains list 

04:       for every edge e1 of the outgoing edges of node1 and  e2 of the outgoing edges of node2 do 

05:             d ← intersection of the domains of e1 and e2 

06:             if (d is not null) 

07:                   insert d at the right place in l 

08:        for every domain d in l do 

09:                   e1 ← outgoing edge of node1 corresponding to domain d 

10:                   e2 ← outgoing edge of node2 corresponding to domain d 

11:                   dst ← join(destination of e1, destination of e2) 

12:                   if (dst is not null) 

13:                         add an edge to r having d as domain and dst as destination  

14:       if (r does not contain any edges) 

15:             r ←  null 

16:      return  r 

... 

Thus, in some cases, when exploring the edges leaving from a node, we have to first pre-compute 

the list of all potential resulting edges and sort them before recursively exploring them. For the 

join method for example, the following transformation had to be done to this part of the original 

algorithm: 

Node join(Node node1, Node node2) 

... 

01: if(node1 and node2 correspond to the same variable) 

02:       r ← new node having the same name as node1, with no edges 

03:       for every edge e1 of the outgoing edges of node1 and  e2 of the outgoing edges of node2 do 

04:             d ← intersection of the domains of e1 and e2 

05:             if (d is not null) 

06:                   dst ← join(destination of e1, destination of e2) 

07:                   if (dst is not null) 

08:                         add an edge to r having d as domain and dst as destination  

09:       if (r does not contain any edges) 

10:             r ←  null 

11:      return  r 

... 

 



Efficient Data Structures for Decision Diagrams 

 

 

 
12 

 

It is important to note that this problem only arises when edges are labeled by domains 

containing more than one variable values. If the edges were always labeled by a single 

variable value, the edges of the new node would systematically be created in the right order, 

so a more specialized version of joinOnePass, in which the pre-computation of the domains 

list is not needed, could be written: this function would only work on utility diagrams in 

which all edges are labeled by single-valued domains, but would be more efficient for this 

special case of diagrams. 

In order to compare the performance between different variants for a same operation, 

10.000 random utility diagrams were generated, and the time taken to perform a given 

operation on all of them was measured for each implementation of this operation (the input 

parameters of the method being also randomly generated). 

For slice and split, the gain is very small (about 5 %), which is not unexpected as for the split 

method, the creation of the utilities array is very cheap (it basically consists in just taking the 

original array and dropping all values above or below the input threshold). For join however, 

the execution time difference between the two implementations, presented in Figure 3, is 

much higher (about 25 %). 
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1.5 Implementation of joinProject 

In DPOP, sequences of operations often consist in successively joining a diagram with 

another one, then projecting out some of its variables. A method performing both join and 

project at once rather than in sequence would therefore definitely prove itself useful, and 

would potentially require less time and memory as some layers introduced by the join would 

not even have to be created if the projection then removes these layers. 

For these reasons, a new method joinProject was implemented both for hypercubes and 

utility diagrams: this method takes as arguments a diagram and a list of variables, and then 

returns the result that would be obtained if the diagram was first joined with the input 

diagram, and the given variables were then projected out. Figure 4 shows the execution time 

taken by joinProject on 10.000 random hypercubes, compared with the execution time of a 

join followed by a projection on these same random hypercubes. The experiments results for 

utility diagrams are presented in Figure 5; as the implementation of joinProject required only 

one pass through the diagram, it is actually fairer to compare it with joinOnePass, so the 

result of the application of joinOnePass followed by a projection has also been measured. 

These results showed a performance gain varying between 20% and 30% for joinProject. 
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3) Methods variants for Hypercubes 

Most of the methods used in the hypercube class, such as join, project, slice or 

changeVariablesOrder create and return a brand new hypercube, which may be quite 

inefficient if the original hypercube is no longer needed. As the utilities arrays can be very 

large, with thousands of elements, this might be quite memory consuming in a program like 

DPOP where a lot of successive operations have to be made on hypercubes. When calling a 

method which creates a new hypercube, rather than creating a new one and discarding the 

original one, it could be more useful to modify the existing one. Hence, implementing a 

variant for all these methods, which when possible does not require the creation of a new  

-possibly big- utilities array, but only modifies the existing one, might then solve this memory 

issue. 

In fact, with the exception of the join method, all methods always return a hypercube with 

fewer utilities, so the current utilities array can simply be reused: we just have to make sure 

that the attribute corresponding to the number of utilities is correctly updated, as because 

of these new methods, the actual number of utilities of the hypercube may be smaller than 

the real size of its utilities array. For instance, if we start from a hypercube with 100 

elements, then project out some of its variables so that there are only 50 elements left, the 

number of utility values of this hypercube will be updated to 50, but its utilities array will still 

have a size of 100, even if only its 50 first elements are actually relevant to the modified 

hypercube. A crucial difficulty in all these implementations is then that we need to make 

sure that we do not erase utilities values that will be needed later to complete the 

operation. 
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3.1 Slice 

Slicing a hypercube basically consists in selecting some parts of the utilities array that will be 

kept, and discarding the other blocks from the array. As a result, the modification of the 

utilities array into the result of the slice can be done by just copying specific blocks of the 

array in order to move the kept blocks over the dropped blocks. As these blocks are moved 

in the order (if a block is situated before another one in the array, it will be moved before) 

and always towards the left, this algorithm ensures that the erased parts are no longer 

necessary for the rest of the operation. 
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Figure 6 – The hypercube is sliced by moving the selected blocks towards the left

 

 

 

 

 

 

The main difficulty is to calculate the size and the number of the blocks to be copied. For 

this implementation, we look at the variables list from the end and search for the first 

variable whose domain is actually sliced, and the size of the blocks is then equal to the 

product of domains sizes of all variables covered before finding the first sliced variable (see 

Figure 6 for an example). But this computation is not always optimal, as in some cases (as 

displayed in Figure 7), two different blocks may very well be actually adjacent in the utilities 

array. In order to really find the optimal blocks, a more complex pre-computation would 

have to be made in order to represent the blocks sequence to be copied (see Figure 8 for 

an example of an irregular blocks sequence). 
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3.2 Project 

For the projection function, we simply cover linearly each possible original variables 

assignment. For each variables combination, the corresponding utility value in the original 

hypercube is taken, compared with the utility value corresponding to the same variables 

combination but without the projected out variables in the modified hypercube (which is 

always situated before the first value, as the utilities array is linearly modified), and possibly 

replace the latter with this new value (an example is presented in Figure 9). 
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Figure 9 – Projection of a variable from a hypercube

 

 

 

 

 

 

 

 

We can thus use the following algorithm: 

void applyProject(String[] projected_variables) 

01: For i from 0 to (number of utilities – 1) 

02:       v ← next variables assignments (corresponding to index i in the utilities array) 

03:       v’ ← remove values corresponding to projected out variables from v 

04:       i’ ← index corresponding to v’ in the modified array 

05:       u ← values[i] 

06:       u’ ← values[i’] 

07:       if (u > u’ or values[i’] == null) 

08:              values[i’] ← u 

09:       if (i > i’) 

10:             values[i] ← null 
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3.3 ChangeVariablesOrder 

Reordering a hypercube by only modifying the current utilities array is much more difficult, 

because the size of the array is not reduced, and therefore we have to be careful about not 

overwriting utility values when reordering them. 

For a given variables assignment, a temporary variable is used to store its associated utility 

value. Then the variables values are reordered according to the new order, and we look in 

the array for the emplacement corresponding to this new assignment in the array. The 

temporary value is then put in this place of the array, while the previous value situated at 

this position is stored in the temporary variable. Then the current variables assignment is 

reordered again, and this process is repeated until we encounter an already reordered utility 

value, which means a cycle has been covered and that we can start reordering the next 

utility value in the array (see Figure 10 for an example). 
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h.changeVariablesOrder({X3, X1, X2})

Figure 10 – Changing the variables order for a hypercube

Each reordering cycle is represented by a different colour
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The difficulty is then to find the value which has yet to be reordered in the array, which 

means we have to use a data structure in order to keep track of the reordered utility values. 

To do so, several solutions are possible, such as a boolean array with as many elements as 

the utilities array (however, the size of the boolean array in the memory is much smaller 

than the original array), but as this array may potentially be very large, a version of this 

algorithm using instead a integer HashSet was also implemented: each time a value is 

reordered, its index is added to the HashSet, and to know whether a value has already been 

reordered, we just have to check whether its index is present in this HashSet. 

As adding and searching for elements in the HashSet takes some time, it is important to keep 

its size as small as possible. An optimization of the code was then to remove indexes from 

the list when it is sure they will not be covered again in the utilities array (so their presence 

in the list is no longer necessary), which slightly improved the performances of this function, 

and gives the following algorithm: 

void applyChangeVariablesOrder(String[] new_order) 

01: already_reordered ← new empty HashSet 

02: For i from 0 to (number of utilities – 1) 

03:       if (i does not belong to already_reordered) 

05:              u ← values[i] 

06:              v ← variables assignment corresponding to index i in the utility array 

07:              v’ ← v reordered according to new_order 

08:              i’ ← index corresponding to v’ in the modified array 

09:              while (i != i’) 

10:                     add i’ to already_reordered 

11:                     swap values[i’] with u 

12:                      v ← variables assignment corresponding to index i’ in the original utility array 

13:                      v’ ← v reordered according to new_order 

14:                      i’ ← index corresponding to v’ in the modified array 

15:              values[i] ← u 

16:       else 

17:              remove i from already_reordered 

 

However, experimental results (see Figure 20 in section 3.6) showed that the boolean array 

implementation actually gives better result in term of both execution time and memory 

consumption, so it is this version of the algorithm that was finally kept. 
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3.4 Augment 

The augment function is a new method which for the moment is only used as an auxiliary 

function for the join method. The augment method takes as argument a list of new variables 

and theirs domains, and adds these variables to the hypercube, whose utilities array is 

extended by simply repeating its current utilities values. 

The major difference from the previous methods is that the number of utilities values is not 

reduced, but increased, so we first have to pre-compute the number of utilities values of the 

augmented hypercube (which is equal to the number of utilities of the original hypercube, 

multiplied by the product of the domains sizes of the new variables) then check that the 

current utilities array is large enough to contain all these values. If this not the case, it is not 

possible to augment the hypercube by just modifying its utilities array, so it is necessary to 

create a new hypercube. 

Otherwise, the augmentation is quite simple and just consists in copying the utilities values 

block in the array as much as necessary (in this case, the new variables are added at the 

beginning of the hypercube ; if they were added at the end, we would have to repeat each 

utility value individually as it is shown on Figure 11). 
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Figure 11 – Augmenting a hypercube with a new variable; the result is a little 

different depending whether the new variables are added at the beginning or at the end.
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3.5 Join 

With the previous functions, joining a hypercube with another one basically consists in a 

slice followed by an augmentation. The join can then be divided into at most three steps 

(which are illustrated on Figure 12): 
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Figure 12 – Three steps are needed to join two hypercubes 

 

- For each variable present in the first hypercube (and possibly in the second one), we 

compute the intersection between its domains in each hypercubes, and we slice the 

first hypercube according to these variables and theirs intersected domains.  

This step is needed only when the two hypercubes do not agree on the domain of at 

least one of their common variable: the hypercube must then be sliced so that only 

the values that are in the intersection are kept in the result. 

- The first hypercube is augmented with the variables present only in the second 

hypercube. It is at this point that a new hypercube may be created only if the utilities 

array size of the first hypercube is not large enough to contain all the utilities values 

of the join result.   

This step is needed only when the two hypercubes do not agree on the list of 

variables: the variables which belong only to the input hypercube must then be 

added to the current hypercube. 
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- The utilities values have finally to be updated by adding the corresponding values of 

the second hypercube. For each variables assignments of the modified hypercube, 

the corresponding utility value in the second hypercube is retrieved and is added to 

the correct utility value in the resulting utilities array. 

 

This function has been implemented in a way that works no matter what the variables 

orders of the two hypercubes are, so with this version of join, even if two hypercubes 

disagree on the variables order, they can nonetheless be joined together without needing a 

preliminary reordering. However, due to the use of the augment function, the final variables 

order of the resulting hypercube is fixed: the first variables will always be the variables 

present only in the second hypercube, followed by the variables present in the first 

hypercube. If we want the output to have a different variables order, a reordering with the 

changeVariablesOrder method is needed. 

 

The choice of the hypercube that will actually be modified is an interesting question. In order 

to increase the chance that the augment function will not require the creation of a brand 

new array, it is indeed smarter to first check which one of the two hypercubes has the 

largest utilities array, and then perform the necessary modifications on this hypercube.  

Thus, when joining two random hypercubes, experimental results show that if the 

hypercube which is modified is arbitrary (i.e. we simply take the hypercube on which the 

applyJoin method is called), the creation of a new utilities array is necessary in 75% of cases, 

whereas if the modified hypercube is the one with the largest utilities array, the proportion 

of cases where a new utilities array has to be created drops to 58%. 
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3.6 Experimental results 

In order to test the performances of these new operations implementations, 10.000 

randomly generated hypercubes have again be used in order to compare their execution 

time. The results for the slice, project, changeVariablesOrder and join are respectively shown 

on Figures 13, 14, 15, 16. 
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Figure 13 : Runtime improvement of applySlice vs. slice
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As expected, for changeVariablesOrder, the new implementation takes more time than the 

classical one, as the algorithm is much more complicated to set up. The performances of the 

different variants of applyChangeVariablesOrder are displayed: when a boolean array is used 

to keep track of the already reordered utilities, the execution time is much smaller than 

when a HashSet is used for this purpose, even with the optimization consisting in removing 

the no longer used indexes from the HashSet.  
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For slice and project methods, the time gain is very small (about 5-10 %), but for join, the 

gain is quite high, which is quite surprising insofar as because of the usual trade-off between 

memory and time, one would expect that improving memory consumption would result in 

larger runtimes.  

A possible explanation is that the most expensive part of the former implementations is to 

cover individually each element of the utilities arrays of the input hypercubes by calling the 

getUtilityValue method which needs to access the hypercube’s steps HashMap and then 

perform some computations on its values. In applySlice and applyProject however, the 

getUtilityValue is not needed as in the case of applySlice, the utilities are directly copied and 

moved by blocks, and in applyProject, the original array is just linearly covered. As for 

applyJoin, only the utilities array of the second hypercube has to be covered, as the utilities 

of the first hypercube are simply moved by blocks when this hypercube is sliced during the 

first part of the algorithm, contrary to the join method where both input hypercubes have to 

be covered with getUtilityValue in order to compute the utilities of the new hypercube. 

 

In order to test the performance in term of memory consumption, for each method the 

following algorithm has been used:  

01: For i from 1 to 10.000 

02:       input[i] ← generate a random hypercube with n variables 

03:       output[i] ← apply the method to test on input[i]  

 

When this scenario is run for a given number of variables n (n varying from 3 to 10), either 

the 10.000 instances are computed successfully, or the program runs out of memory. In the 

latter case, the current value of i is recorded so that we know how many instances were ran 

before the memory shortage occurred. For each method, a “score” value is computed this 

way:  

score = 3*(number of instances for 3 variables that were run before the program ran out of memory)  

             + 4*(number of instances for 4 variables that were run before the program ran out of memory) 

            + ... + 10*(number of instances for 10 variables that were run before the program ran out of memory) 

Thus, for any given method, we obtain a value ranging from 0 to 52, which accounts how 

well this method performed in term of memory consumption. The score values for slice, 

project and join are respectively displayed in Figures 17, 18 and 19 for different amounts of 

memory allocated to the JVM, and clearly show an improvement of the “apply” versions 

over the previous methods, especially for applyProject. 
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For the join function, the difference is quite small, which makes sense as it has already been 

previously established that in more than 50% of cases, the hypercube resulting from a join 

operation has a higher number of utilities than the original hypercubes and hence applyJoin 

nonetheless requires the creation of a new utilities array. However, if a join is performed on 

a hypercube whose number of utilities has already decreased (for example due to a project 

or slice operation), the probability that the join will not require the creation of a new array 

increases, so in the context of DPOP, where join are often applied after a projection, the 

performance gain of applyJoin might be a lot higher. 

In order to check which implementation of applyChangeVariablesOrder is better in term of 

memory consumption, the following test was used: for a given number of variables (varying 

between 11 and 15), 100 random hypercubes are generated and one of the versions of 

applyChangeVariablesOrder is applied on them; the number of reordering which failed due 

to a lack of memory is then counted. The results are shown on Figure 20 and clearly show 

that unlike what was originally expected, the implementation of applyChangeVariablesOrder 

which uses a boolean array tends to consume less memory than the other one. 
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Conclusion 

The experimental results have shown that the methods variants implemented during the 

course of this project definitely increase the performances of the various functions, both for 

hypercubes and utility diagrams. 

These improvements could be pushed further by writing more specialized versions of some 

methods (for example, a better joinOnePass for utility diagrams whose edges are only 

labeled by single values) or by combining several different improvements into a better 

function (for instance, implement a version of joinProject which does not require the 

creation of a new utilities array, as it has been done for the other operations in part 3). 

As the modifications presented in part 3 of this report have proven their efficiency for 

hypercubes, future work could be aiming at doing the same thing for utility diagrams. A first 

step could thus be to only reuse the utilities array (and still create a new diagram as it is 

done with the current implementation). The next step would then be to also reuse the 

diagram and modify it into the resulting diagram. Even if doing that might be too complex 

for operations such as join, it may for example be interesting for the slice function, which 

would basically just consist in removing some edges (the ones whose labels do not belong to 

the sliced domains) from the diagram. 


