

HOW MULTIDISCIPLINARY SCIENTIFIC RESEARCH MAY HELP BREAK THE SAILING SPEED RECORD

M. Calmon & al., EPFLHydroptère Design Team

- l'Hydroptère
 - □Lift of hydrofoils, complete balance of weight □Drag reduction, high performances
- Sailing speed records
 - □Channel, 2005
 - □Outright 500m & 1NM
 - □Back to offshore
- ■Complex problems to solve
 - □Trans-disciplinary project
 - □EPFL scientific partnership
- New challenges
 - □Versatility
 - □Reliability
- Future projects
 - □l'Hydroptère.ch
 - □l'Hydroptère Maxi

Load case & sailing conditions

CAD & FE Model

Global deformations & vibration modes

Failure criteria

Material design & mechanical testing

LMAF
Laboratory of Applied Mechanics
and Reliability Analysis

l'Hydroptère Design Team

CVLab
Computer Vision Laboratory

LMH Hydraulic Machines Laboratory

■4 sub-systems:

- □Stress & positioning sensors (HBM digiCLIP)
- □Navigation unit (B&G WTP2)
 □Inertial unit (IXSEA Octans)
- □Video system (Cosworth Pi VIDS2)
- **■**CAN-bus
- ■Data logger & ruggedized computer
 - □Cosworth Pi Sigma LLB
 - □Lemer Pax Posibox
- Motivation
 - □Real-time load analysis
 - □Feedback on dynamic behavior

Foil Immersion Detection

- Motivation
 - □Platform motions with reference to water surface
 - □Refined foil loads
- Measurement system integration
 - □Synchronization

Foil Immersion Detection

- ■Refraction-based principle

 □Move along the foil leading edge

 □Look for a change of slope
- Algorithm keypoints
 - □Functional maximization □Kullback-Leibler divergence

$$F(d,\theta) = \frac{D_{KL}(P,Q) + D_{KL}(Q,P)}{2}$$
$$= \frac{1}{2} \sum_{i=0}^{255} P(i) \log \frac{P(i)}{Q(i)} + Q(i) \log \frac{Q(i)}{P(i)}$$

- □Changing light conditions
- □ Reflections
- □Blurred images by spray drops

Cross-Beam Torsion

Manufacturing Processes

- Shipyard practice (Decision SA)
- Processing methods studies
 - □Heating rate
 - □Applied pressure
 - Draping sequence
- ■Part quality control
 - □Micrographic visual inspection □Curing stage (DSC, DMA)

Sound composite

Process-induced porosity

Monolithic Parts

- Off-axis plies in thick laminates
- ■Role on failure mechanisms
- ■4-pt bending
- Design rules

Figure 6-4: Examples of some of the specimens tested. Front and side views

Sandwich Structures

- Behaviour identification
- Anisotropic honeycomb (Nomex Flexcore)
- Preliminary tests
 - □Tension, compression and shear for the skins
- ■4-pt bending
 - □Several span lengths
 - □Core shear modulus
- Structural model updating

Threaded Joints

- Joining metallic to composite parts
- Joint strength influenced by:
 - □Stacking sequence
 - □Insert
 - □Screw
 - **□Glue**
 - ■Thread length
- Special testing device
 - □Screw pulling-out

Bonding

- Joining Titanium to composite parts
- Surface treatment investigations
- Fracture strength measurements

 □ Griffith's critical strain energy release rate G_{lc}
- Accelerated aging tests
- ■Cohesive zone model in Abaqus
 - □Previous fracture test
 - □Extended failure criteria test

Hydrodynamic Phenomena

Cavitation

- □Formation of vapour cavities in low pressure zones
- □Almost impossible to avoid with high speeds
- □Alteration of hydrodynamic performances
- □Vibrations

■Ventilation

□Air from above the free surface sucked into low pressure zones below the surface □Drop in lift

$$\sigma = \frac{p - p_y}{\frac{1}{2}\rho V^2}$$

Experimental Context

- EPFL high speed cavitation tunnel
 - □150mm square test section
 - □Pressure controlled from 0.02 to 1.6MPa
 - □Inlet flow velocity up to 50m/s
 - □Angle of attack control
 - □5-axis balance for force measurement
 - □Strobe, digital camera
 - □Flash lamps, high speed video camera
- ■l'Hydroptère specific tests
 - □1/10th scaled models of foil and rudder/stabilizer
 - □Developed turbulent boundary layer (V>15m/s)
 □ adjustment for cavitation similitude above 50kt

Experimental Cavitation

- Attached cavitation
- Angle of attack dependence
- ■Low angles (left):
 - □Long thin cavity starting downstream leading edge (sheet cavitation)
 - "Smooth" flow, low vibrations
- High angles (right):
 - \Box Cavitation inception even for higher σ
 - □Cavity detachment moves upstream until leading edge
 - □Pulsed cavities (cloud cavitation)
 - □Lift fluctuations, high vibrations

 σ = 0.25

Simulated Cavitation

Numerical context

□3D RANS solvers ANSYS FLUENT & CFX

 \square Realizable k- ε turbulence model

□Multi-phase simulation with VOF method

Cavitation models

□Low pressure "contouring"

DEFLUENT Mixture model

□CFX three phase flow model

Simulation validations

□Experimental tests in EPFL cavitation tunnel

□Visual comparisons

□Hydrodynamic loads variations

High σ =0.49 and low cavitation (—) Low σ =0.31 and strong cavitation (—) (- - - Simulation, — Experiments)

Simulated Ventilation

- Numerical context
 - □3D RANS solvers ANSYS FLUENT & CFX
 - \square Realizable k- ε turbulence model
 - □Multi-phase simulation with VOF method
- Simulation validations
 - ■No new experimental tests
 - □Visual comparisons during sea trials
 - □Bibliography test case
- ■Hoerner, Fluid-Dynamic Drag, 1965
 - □Dingee experiments, 1953
 - Davidson Laboratory, NJ, USA
 - □Slender surface-piercing strut
 - □Loads variation according to angle of yaw

Simulated Real Case

- •Numerical context
 - □3D RANS solver ANSYS CFX
 - \square Realizable k- ε turbulence model
 - □Multi-phase simulation with VOF method
- Three-phase simulations
 - □Cavitation
 - □Flat free surface (ventilation)
 - □Steady state conditions
- Optimization process
 - ■Manual iterations
 - □High lift/drag ratio
 - □Low tendency to ventilation
 - □Low tendency to cavitation

Foil shape optimization

- Optimization process
 - □Multi-objective procedure
 - □Evolutionary algorithms
 - □Towards a more tolerant design
- Numerical context
 - □3D URANS solver ANSYS CFX
 - □Single phase flow
 - SST turbulence model
- Test case
 - □2D hydrofoil in tunnel test section
 - □Constant upstream velocity
 - □Pitch motion
- Optimization parameters
 - □Lift/drag ratio in nominal conditions
 - □Tendency to separation
 - □Tendency to cavitation

Optimization Validations

Experimental validation

□Lift and drag measurements

□2 profiles: initial, Pareto-optimal solution

Observations

□Qualitative agreement

 \Box Drag increase postponed to higher α

□Quantitative discrepancies

□Drag underestimated

□Too late stall

Further tests

□RANS/exp. comparisons

□NACA0009 profile

□Same observations

Profile drag coefficient; comparison between initial profile (—) and Pareto-optimal profile (—)

(- - - URANS simulation, — experiment)

Large Eddy Simulation (LES)

•Numerical context

□OpenFOAM solver □Large scales of the flow □α=11°, V=5m/s

Observations

□Unsteady detached flow and vortex streets □From the leading edge and far before stall

■Validation

□Cavitation visualization

□PIV

□Drag value

- Optimization simulations with HPC
 - □Licensing constraints
 - □Open-source software solutions (OpenFOAM...)
- Fluid-structure interaction
 - □Dynamic behaviour of sandwich structures in waves (slamming)
- Fluid-structure instabilities (divergence, flutter)
 - □Foil alone
 - □Whole platform
- Advanced Measurements systems
 - □Visual cross beam torsion finalization
 - □FBGS use investigations
 - Identification and monitoring developments
 - Dynamic stability visual alarms

J.M.Bourgeon, S.Dyen, D.Moyon, D.Schmäh, R.Amacher, D.Colegrave

M.Calmon, M.Farhat, P.Fua, K.Startchev, G.Bonnier, J-A Månson, V.Michaud, A.Sigg, M.Oggier, M.O.Deville, O.Braun, M.Sawley, L.Blecha, J.Cugnoni

And students:

M.Tinguely, M.Reclari, D.Burgstaller, A.Ratouis, P.Gaillard, O.Pacot, C.Dufour, C.Legris, R.Gubler, M.Henry, K.Lilla, J.Michalik, L.Monnard, J.Ostlund, A.Varol, F.Dujonc, G.A.Benvenuti, L.Genolet, M.Ferrario, C.Brière, B.Golaz...