Optimization of Embedded Atom Method Interatomic
Potentials to Simulate Defect Structures and Magnetism
in a-Fe

THESE N° 4775 (2010)

PRESENTEE LE 30 AOUT 2010

A LA FACULTE SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE DE METALLURGIE MECANIQUE
PROGRAMME DOCTORAL EN SCIENCE ET GENIE DES MATERIAUX

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Samuele CHIESA

acceptée sur proposition du jury:

Prof. A. Mortensen, président du jury
Prof. H. Van Swygenhoven, directrice de thése
Dr A. Curioni, rapporteur
Prof. E. Kaxiras, rapporteur
Dr F. Willaime, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Suisse
2010






Acknowledgements

Prof. Helena Van Swygenhoven-Moens, for continuous support to
this project and wise direction of my thesis.

Dr. Peter Derlet, for passionate supervision and for giving me per-
mission to use and modify his Fortran codes.

Dr. Sergei Dudarev, for illuminating discussions and advices.

The European Fusion Development Agreement and PSI, for funding
this work.

Prof. Jean-Louis Soulié for correcting the French version of the ab-
stract.

Dr. Mark Gilbert, for his efforts and collaboration to the problem of
the screw dislocation core structure.

Dr. Christian Brandl, for installing VASP and his unvaluable help in
the calculation of the third order elastic constants.

Dr. Andreas Elsener and Dr. Erik Bitzek, for their help at the be-
ginning of my PhD.

Ning Gao, for his contagious passion for molecular dynamics.

The MSS group, for interesting discussions during lunch time.
Thanks to all my friends and parents for letting me forget, from time
to time, about this work. And, last but not least, thanks to Camille
for everything else.






Abstract

Magnetism is largely responsible for the body centered cubic to face centered cubic
structural phase transition occurring in iron at 1185 K and to many anomalies in
the vicinity of the ferromagnetic to paramagnetic phase transition at 1043 K, as for
instance an anomalous softening of the tetrahedral shear modulus. Current atom-
istic models including magnetism are either limited to the treatment of perfect
lattice models or to zero temperatures, while research and development of candi-
date materials for future fission and fusion power plants requires the modeling of
irradiation induced defects in ferritic/martensitic steels at high temperatures. An
attempt to fill this gap is the Dudarev-Derlet potential, which includes zero tem-
perature magnetism in an embedded atom method formalism, together with a more
recent extension of the method to the inclusion of spin rotations at non zero tem-
perature with nearly half the computational speed of an embedded atom method
potential. In this work, we report on the optimization of the Dudarev-Derlet poten-
tial to the zero temperature bulk properties of the non-magnetic and ferromagnetic
bee and fee phases, including the third order elastic constants of the ferromagnetic
bee phase, the point defects formation and migration energies and the core struc-
ture of the screw dislocation with Burgers vector 1/2[111], either from experiments
or from density functional theory calculations, where we develop a method to fit
the core structure of the screw dislocation based on the Suzuki-Takeuchi model.
Three representative fits from the optimization of the Dudarev-Derlet potential are
compared with recent semi empirical potentials for iron, with density functional
theory and experiments. The migration energies of the self-interstitial range from
0.31 eV to 0.42 eV, compared to a density functional theory value close to 0.35
eV and an experimental value close to 0.3 eV, and the vacancy migration energies
range from 0.85 eV to 0.94 eV, compared to a density functional theory value close
to 0.65 eV. Clusters composed of parallel self-interstitials are oriented along (110)
if the number of interstitials composing the cluster is smaller or equal than 3, while
for bigger clusters the (111) orientation is more stable, in qualitative agreement
with density functional theory. Depending on which one of the three representative
fits is chosen, the formation entropy of one (110) dumbbell calculated by the ther-
modynamical integration method in the range from 300 K to 600 K varies from
0.28 kg to 4.02 k. The diffusion coefficient of the (110) dumbbell at 600 K ranges
from 1x107% cm?/s to 10x107% cm?/s, while at room temperatures the scatters
extends over three orders of magnitude. The main difficulties, common to all the
semi empirical potentials considered in this work, are related to the description
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of the fce phase and the migration mechanism of the screw dislocation. The semi
empirical potentials are unable to distinguish the anti-ferromagnetic fcc from the
low spin ferromagnetic fcc or the high spin ferromagnetic fcc. Considering the
equilibrium volume and the bulk magnetic moment, the high spin phase is the one
which most resembles the ferromagnetic fcc phase of the Dudarev-Derlet poten-
tials. Finally, for those fits with a non-degenerate core structure, we investigate
some fundamental aspects of the migration mechanism of the screw dislocation
with Burgers vector 1/2[111] at zero temperature and at zero applied stress, by
calculating the Peierls potential in the [211] direction between two structurally
equivalent soft cores. This confirms the existence of a stable core structure in the
middle of the migration path not observed in density functional theory, which is
actually found to be energetically degenerate with the soft core. The consequences
of this are discussed in terms of formation energies of double kinks in the [211]
direction.

Keywords: iron, magnetism, embedded atom method, interatomic potential, ra-
diation damage, optimization, third order elastic constants, formation free energy,
point defects, clusters, diffusion coefficient, screw dislocation core, Peierls poten-
tial, kinks, formation energy, formation volume, migration energy, Suzuki-Takeuchi
model, Frenkel-Kontorova model.



Résumé

Le magnétisme est largement responsable de la transition de phase entre la struc-
ture cubique centrée et la structure cubique a faces centrées, qui a lieu dans le
fer a une température de 1185 K, et de plusieurs anomalies a ’approche de la
température de transition entre 1’état ferromagnétique et paramagnétique a 1043 K,
comme par exemple une diminution anormale de la constante élastique tétragonale.
Les modeles atomistiques courants incluant le magnétisme sont, soit limités a des
réseaux cristallins, soit a des simulations statiques, alors que la recherche et le
développement de matériaux pour les nouveaux réacteurs a fission ou a fusion
nécessite une modélisation des défauts produits par l'irradiation, dans des aciers
ferritiques-martensitiques a haute température. Le potentiel de Dudarev et Derlet
est une tentative pour combler cette lacune. La caractéristique principale de ce
potentiel est d’inclure le magnétisme au zéro absolu dans un formalisme équivalent
au modele de 'atome entouré. Une adjonction récente permet a ce méme forma-
lisme de prendre en compte la rotation des spins a toute température. L’effet de
cette extension sur le temps de calcul est d’a peine le doubler. Dans ce travail,
nous avons optimisé le potentiel de Dudarev et Derlet par rapport aux propriétés
élastiques et d’équilibre des phases magnétiques ou non magnétiques des structures
CFC ou CC, en incluant aussi, mais seulement pour la phase magnétique CC, les
constantes élastiques de troisieme ordre, les énergies de formation et de migration
des défauts ponctuels, et la structure du coeur de la dislocation vis avec un vec-
teur de Burgers égal a 1/2[111]. Ces informations sont dérivées soit des expériences
soit de la théorie de la fonctionnelle de la densité. Pour controler la structure du
coeur de la dislocation vis on a développé une méthode basée sur le modele de
Suzuki et Takeuchi. Nous avons ensuite choisi trois représentations optimisées du
potentiel de Dudarev et Derlet pour pouvoir les comparer de facon plus détaillée a
d’autres potentiels interatomique semi-empiriques récemment développés, en utili-
sant la théorie de la fonctionnelle de la densité et les résultats expérimentaux. Nous
trouvons, pour les énergies de migration des défauts interstitiels une fourchette de
0.31 eV a0.42 eV, a comparer a une valeur proche de 0.35 eV fournie par la théorie
de la fonctionnelle de la densité et a une valeur expérimentale proche de 0.3 eV.
Nous trouvons pour le coefficient de diffusion des défauts interstitiels a 600 K une
plage de 1x107% cm?/s & 10x107% ¢cm?/s, alors qu’a la température ambiante la
variance s’étend sur trois ordres de grandeurs. Nous trouvons pour les énergies de
migration des lacunes une fourchette de 0.85 eV a 0.94 eV, a comparer a une valeur
proche de 0.65 eV obtenue par la théorie de la fonctionnelle de la densité. Les amas



i

constitués de défauts interstitiels paralleles sont orientés dans les directions (110)
si le nombre des défauts composant le amas est inférieur a trois, tandis que les
amas plus grands sont orientés de préférence dans les directions (111). L’entropie
de formation d’'un défaut interstitiel orienté selon (110) calculée par la méthode de
I'intégration thermodynamique entre 300 K et 600 K se trouve dans le domaine de
0.28 kg a 4.02 kg. Tous les potentiels semi-empiriques rencontrent des problemes
quand on les applique a la structure CFC et aux mécanismes de migration de
la dislocation vis. Par exemple, ces potentiels ne peuvent pas distinguer entre la
phase CFC anti ferromagnétique, la phase CFC ferromagnétique a bas spin, et la
phase CFC ferromagnétique a haut spin. Mais si on ne considere que le moment
magnétique et le volume d’équilibre, alors la phase CFC ferromagnétique a haut
spin est la plus proche de la phase CFC ferromagnétique des potentiels de Dudarev
et Derlet. Pour finir, nous avons examiné les fondamentaux du mécanisme de mi-
gration de la dislocation vis avec un vecteur de Burgers 1/2[111] au zéro absolu, et
sans aucune contrainte. Pour les potentiels présentant un coeur non dégénéré on a
calculé le potentiel de Peierls dans la direction [211] entre deux coeurs équivalents
de la dislocation vis. Cela confirme 'existence d’un coeur stable de la dislocation,
au milieu du chemin de migration, coeur qui n’a pas été observé par la théorie de
la fonctionnelle de la densité. Nous en avons discuté les conséquences quant aux
énergies de formation des décrochement.

Mots clef : fer, magnétisme, modele de I'atome entouré, potentiels interato-
mique, dommage produit par les radiations, optimisation, constantes élastiques
de troisieme ordre, énergie libre de formation, défauts ponctuels, amas, coefficient
de diffusion, coeur de la dislocation vis, potentiel de Peierls, décrochement, énergie
de formation, volume de formations, énergie de migration, modele de Suzuki et
Takeuchi, modele de Frenkel et Kontorova.
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Chapter 1

Introduction

The object of this work is a ‘magnetic’! interatomic potential recently developed
by Dudarev and Derlet [1]. The Dudarev-Derlet potential (DD potential) is a
way to incorporate zero temperature magnetism in an embedded atom method
formalism (EAM), which enables fast evaluation of forces for large scale molecular
dynamics (MD) simulations®. The DD potential includes two sets of parametriza-
tion, one corresponding to the ferromagnetic phase, and one corresponding to the
non-magnetic phase, which can then be fitted to properties obtained from spin-
polarized or non spin-polarized density functional theory calculations, and where
the parameters for the non-magnetic phase are obtained by setting to zero one of
the parameters for the ferromagnetic phase. The properties which are mostly fitted
to include the equilibrium lattice parameter, the second order elastic constants, the
energy difference between the zero temperature phases, the point defect formation
and migration energies, the cohesive energy or the surface energies, derived from
experiments and/or theoretical calculations.

Two fits for iron of the DD potential, labeled CS1 and CS2 (where CS stands
for Case Study), have been optimized to the zero temperature bee and fee phases,
as well as to the formation energy of the vacancy and of the self-interstitials point
defects [1] (see also errata in [3]). CS2 was the natural choice for subsequent
work, as it could best reproduce the formation energy of the self-interstitials from
spin-polarized density functional theory (DFT). In the same work, the embedding
functional of the DD potential was derived using a combination of Stoner theory
for itinerant band magnetism and Ginzburg-Landau theory for second order phase
transitions. The optimization database includes the recent DFT result that the
ground state self-interstitial is a (110) oriented dumbbell, with a formation energy

IThe quotes are to avoid confusion with magnetic potentials in electrodynamics
2An alternative way to include magnetism in the EAM formalism can be found in [2], but the
potential was neither fitted nor further developed.



Figure 1.1: Self-interstitials relaxed using CS2. Atoms are colored according to the
formula of the magnetic moment in [6].
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difference of 0.7 eV to the (111) orientation, which is in striking contrast to the
other non-magnetic bee transition metals, where the ground state is oriented along
(111) [4]. The database has also included from DFT that the ferromagnetic bec
phase is the ground state, followed in order of increasing equilibrium energy by
the ferromagnetic fcc phases®, the nonmagnetic fcc phase and the nonmagnetic
bee phase, and that, while the ferromagnetic bee is mechanically stable, the non-
magnetic bee is unstable with a negative value of the tetragonal shear modulus C”,
meaning that in some sense ferromagnetism helps stabilizing the bce structure. On
isotropic compression the energy difference between the ferromagnetic bee and the
nonmagnetic bee decreases until magnetism is suppressed and a phase transition
to closed-packed structures occurs [5].

A first extension of the DD potential was introduced in [6] and [7] with a simple
formula to approximate the local magnetic moment on atoms, which allows to gain
information not only about the non-magnetic and magnetic contributions to the
energy, but also on the magnetic moment distribution. In the same work, this
formula was then applied on bcc iron to get the magnetic moment distribution
in self-interstitials, see figure 1.1, and in perfect prismatic dislocation loops with
Burgers vectors b = 1/2[111] and b = [100]. The same formula was employed to

3 Anti-ferromagnetic, low spin ferromagnetic and high spin ferromagnetic



investigate the magnetic properties of pure amorphous iron [8], and of low index
surfaces and nano clusters [9]. The (111) and (110) surface properties are in relative
good agreement with DFT, but the (100) surface is not reproduced by any of the
semi empirical potentials. The reason for this was argued to be that the (100)
surface contains a strong peak of the surface electronic density of states near the
Fermi energy, while the electronic density of states of the other low index surfaces
does not differ significantly from the bulk. The properties of surfaces are of primary
importance for radiation damage studies of voids.

The DD potential was then further extended to so called spin-lattice dynamics
to treat magnetic temperature effects with two to six times the computational time
[10], which was applied in [11] to the study of surface magnetism in iron thin films.
The positions of the atoms and the directions of the atomic spins are treated as
classical independent variables and the equations of motion for the spin directions
are derived within a semi empirical classical approximation from a generalized
Heisenberg Hamiltonian, where the exchange coupling function is represented by a
pairwise function fitted to DFT data, and where the scalar part of the Hamiltonian
is given by the zero temperature parametrization of the DD potential, that is
the fit CS2. The local magnetic moment enters in the algorithm as an effective
mass in the equations of motion for the spin directions. The extension of CS2 to
spin-lattice dynamics enhances the thermal expansion coefficient, see figure 1.2,
but also produces an inflection point (not shown in the figure) in the volume
expansion curve at the Curie temperature which is not observed experimentally.
The predicted value for the Curie temperature, defined in that work by the full
loss of collinearity of the spin orientations, is in good agreement with experiments.

The DD potential and CS2 were developed within the european radiation dam-
age community, which is interested in multiscale modeling of ferritic/martensitic
stainless steels like EUROFER97 for fission and fusion reactor applications [12].
Molecular dynamics are used in this context to model bce iron and some simple al-
loys, like Fe-Cr, Fe-He, Fe-C and Fe-Cr-C. Because of this, most of the applications
of CS2 are related to radiation damage materials science, where semi empirical po-
tentials are mostly used to investigate

e the structure of the primary damage by cascade simulations [13],

e the stability, mobility and interaction dynamics of small clusters of point
defects for improvement of microstructural evolution models [14],

e and the interactions of dislocations with the defects produced during irradi-
ation, like voids, He bubbles and dislocation loops [15].

Semi empirical potentials for radiation damage materials science are thus required
to describe at best the point defect properties, like their formation energies and



Figure 1.2: Volume expansion of CS2 with spin-lattice dynamics from [10], or without
spin-lattice dynamics as calculated in this work. The volume expansion curve of the
Ackland-Mendelev potentials, also calculated in this work, does not include spin-lattice
dynamics.
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diffusivities. The past experimental controversy on the point defects properties
in bee iron [16] is only recently being resolved after DFT calculations became
available of their formation and migration energies and of their binding energies
with impurities [17]. As a consequence of this, only the most recently developed
semi empirical potentials for bce iron are consistent to the current understanding
of the point defects formation and migration energies.

More specifically, all iron semi empirical potentials fitted before 2001 do not
include that the formation energy difference between the (110) and the (111) ori-
ented dumbbell is as big as 0.7 eV, although some of them can correctly reproduce
that the dumbbell is oriented along (110) in the ground state. Because the ferro-
magnetic parametrization of CS2 may be seen as just any other EAM potential,
it can be in principle compared to any semi empirical potential for bee iron, but
here we will use only recent EAM potentials fitted to DF'T point defects properties
to benchmark the new fits of the DD potential. These benchmark potentials are
the potential number 2 in [18], which will be referred to as Mend03 in this thesis,
and an improved version in [19], which will be referred to as Mend04. Another
semi empirical potential that can be employed in large scale molecular dynamics
simulations and fitted to DFT point defect properties is the analytic bond order
potential for bee iron, published in [20] and referred to as ABO in this work, which



is a Brenner type interatomic potential including angular terms and originally de-
veloped to treat sp-bonded materials. In the following, we will review publications
where the fit CS2 has been compared to other semi empirical potentials or DFT.

In [21], CS2 was fitted in the intermediate interaction range! by requiring a
smooth interpolation between the short range universal screened Coulomb poten-
tial and the equilibrium potential and a good match with experimental threshold
displacement energies. It was then compared to Mend04 and ABO with respect to
cascade damage simulations in bcc iron up to 20 keV. The scatter in the number
of Frenkel pairs produced after thermalization of the cascades as a function of the
primary knock on atom energy is strongly reduced among these potentials when
compared to the scatter produced by older semi empirical potentials for iron. This
is attributed to the fact that these semi empirical potentials provide an incorrect
description of the self-interstitial formation energies as compared to more recent
semi empirical potentials. The scatter in the fraction of point defects in clusters is
however not reduced when compared to older semi empirical potentials.

The interaction of an edge dislocation with a nanometric void was fully char-
acterized in [22] using CS2 and Mend03, where it was also found that CS2 has a
negative thermal expansion coefficient.

Other work considered the formation energies of the bi-crystal symmetric grain
boundaries 33{112}, ¥3{111} and 35{013} in bec iron using CS2, Mend03, Mend04
and the Ackland potential [23]. The EAM potentials results are very similar to
DFT.

Mend03, Mend04, CS2 and the Ackland potential have been compared with re-
spect to self-interstitial clusters in bee Fe [24]. The formation free entropy of small
clusters of point defects oriented either along (100), (110) or (111) was calculated
by the quasi-harmonic approximation. It was found that CS2 gives negative for-
mation entropies and that Mend03, Mend04 and CS2 all agree that small clusters
with up to 4 or 6 self-interstitial atoms are more stable in the (110) orientation
than in the (111) orientation. As the size increases, the (111) orientation is al-
ways preferred. The formation energy of clusters with up to 1000 atoms was also
investigated by static calculations. These are perfect prismatic dislocation loops
with Burgers vector b = 1/2[111] or b = [100], which correspond to the experimen-
tally observed interstitial dislocation loops in bee iron. In the bee lattice, a (111)
dumbbell is very similar to a crowdion, because in the (111) direction atoms are

4In cascade damage simulations atoms are coming very close together and far from the equilib-
rium conditions for which the semi empirical potentials were fitted to. At very short interatomic
distances, say smaller than ~ 1.5 A in iron, the interaction is dominated by the universal screened
Coulomb potential, whereas at distances bigger than ~ 2.3 A the equilibrium potential can be
used, but not much is known about the transition between these two regimes, which is called the
intermediate interaction range.



close packed, and the point defect is spread over many atoms along this direction.
A (111) dumbbell or crowdion can migrate very fast along this direction, with
activation energies in the sub 0.1 eV range [25] corresponding to temperatures of
few degrees Kelvin. A (110) dumbbell is inherently more sessile, and needs to
rotate close to the (111) orientation to jump to a nearest neighbor site. This has
important consequences on microstructural evolution models for bee iron [14], as
shown in object kinetic Monte Carlo simulations [26], because the (111) oriented
dumbbells and its clusters migrate by fast one dimensional motion, in contrast with
the three dimensional migration mechanism with much higher activation energy of
the (110) dumbbell and its clusters.

The interaction of perfect prismatic dislocation loops with Burgers vector b =
1/2[111] or b = [100] with self-interstitial atoms was studied in [27] using CS2
and Mend04, and the reactions between pairs of b = 1/2[111] interstitial disloca-
tion loops in [28] using CS2 and Mend04. It was found that independent of the
potential used, when two clusters of comparable size collide, a sessile metastable
configuration consisting of non-parallel self-interstitial atoms is formed.

In [29] the elastic properties of the (110) dumbbell were investigated using CS2.
It was found that the dependence of the second order elastic constants on defects
concentrations is at odds with experiments.

In [30] the effect of temperature on the stability of dislocation loops in bec iron
was studied using anisotropic elasticity, and the CS2 and Mend04 potentials were
used to estimate dislocation core parameters.

The formation energy of the mesoscopic circular b = 1/2[111] and b = [100]
vacancy (closed, open, bubble) and interstitial loops, using almost exclusively CS2,
is the subject of [31].

Other work where CS2 was employed is: radiation damage in nanocrystalline
iron [32], atomistic kinetic Monte Carlo [33], positron annihilation at grain bound-
aries [34], Peierls stress for screw and edge dislocation [35] and stability of helium
bubbles through the use of published Fe-He potentials [36]. Cascade damage simu-
lations including the electron-phonon coupling have been performed using CS2 [37].
The number of simulated cascades is however not enough to draw any conclusions.

Another source for the present thesis is the work of Miiller, Erhart and Albe
[20]. After describing the fitting procedure of an analytic bond order potential for
iron (ABO in this work) the optimal fit is extensively compared to some widely
used EAM potentials, including CS2, Mend03 and DFT calculations. The focus
is on phase properties, including bulk properties of the bce, fce, hep, simple cubic
and diamond structures. The CS2 potential is reported to give a negative thermal
expansion coefficient at room temperature, which is linked to a negative pressure
derivative of the bulk modulus. All the semi empirical potentials are found to
overestimate the zero temperature equilibrium volume of the ferromagnetic fcc



phase. In addition, the ferromagnetic fcc phase of CS2 and of Mend03 is unstable
up to the melting point. Other properties investigated of the bce and fcc phases
include melting temperature, phonon dispersion curves, surface energies, point
defect formation and migration energies, and free energies. The formation volumes
of the (110) self-interstitial dumbbell is found to be negative for CS2, at odds
with the other semi-empirical potentials. In [20], the migration energies of point
defects were determined by fitting the diffusion coefficient obtained in a dynamical
calculation up to 2200 K for the vacancy and up to 1600 K for the dumbbell with
a rather small bece supercell, but no further details of the calculation method are
given. The migration energies of both the vacancy and the stable self-interstitial
so determined are found to be significantly underestimated with respect to the
static calculation. For instance a value of 0.18 eV for the self-interstitial migration
energy is given for the Mend03 potential, compared to a static calculation of 0.34
eV. This however contradicts results in [14], where static and dynamic estimates
of the migration barrier are found to be in excellent agreement, with a value close
to 0.3 eV.
To summarize, the work cited above revealed that

e (S2 shows anomalous anharmonic properties when compared to the other
semi empirical potentials. For instance the quasi-harmonic approximation
fails at very low temperatures, as shown in [38]. The most apparent effect
is that the expansion coefficient is negative up to ~ 600 K. Related to this
is a very low formation volume for the point defects. This is not the case
for Mend04 and ABO. Although the inclusion of spin orientation degrees of
freedom shifts the thermal expansion coefficient of CS2 up to positive values
the comparison with experiments is still not satisfactory [10], see also figure
1.2.

e The core structure of the b = 1/2[111] screw dislocation predicted by CS2 is
at odds with DFT calculations [39]. This is also the case for ABO, but not
for the Ackland-Mendelev potentials.

e The ferromagnetic fcec phase is unstable in molecular dynamics calculations
up to the melting point [20]. This is also the case for the Ackland-Mendelev
potentials, but not for ABO.

This work was partly funded by the European Fusion Development Agreement
to further investigate these problems and to optimize the DD potential to molecular
dynamic simulations of bce iron, but excluding spin-lattice dynamics, with priority
to those properties considered most relevant to radiation damage studies. In order
of importance these are:
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1. the point defects migration and formation energies,

2. the bulk properties of the bcc ferromagnetic phase, including anharmonic
behavior,

3. the b = 1/2[111] screw dislocation core structure and migration mechanism,
4. zero temperature magnetism in bcc iron.

The mobility of the b = 1/2[111] screw dislocation is important in the study of the
ductile to brittle transition temperature and magnetic effects are important when
simulating iron and its alloys at high temperatures. We will thus mainly focus on
the ferromagnetic bece phase, although we will also discuss problems related to the
description of the fcc phase.

The present thesis is organized as follows. In chapter 2 we discuss critically
an appropriate fitting strategy. We start by the formalism of the semi empirical
potentials considered in this work, that is the DD potential, the Ackland-Mendelev
potentials and ABO. We will then rationalize the anomalous anharmonic behavior
of CS2 in terms of third order elastic constants, which have been implemented in the
optimization software. To fit to the correct core structure of the screw dislocation,
we will develop and validate a method based on the Suzuki-Takeuchi model. We
will then discuss the non-magnetic and ferromagnetic properties of the bee and fec
phases and finally describe the optimization algorithm. Three representative fits,
labeled CS3-00, CS3-30 and CS3-33 are then discussed in more detail in chapter 3
with respect to the bulk properties of the non-mangetic and ferromagnetic bee and
fce phases and the static point defect properties, that is formation and migration
energies, formation volumes and clustering of parallel self-interstitials. We then
develop more complex methods to test and compare the new fits. These are a
molecular dynamics calculation of the diffusion coefficient of the (110) dumbbell
and a Monte Carlo calculation of the anharmonic contribution to the formation
free energy of the (110) dumbbell. Table 1.1 shows a summary of the fits of the
DD potential with the properties included in the optimization algorithm, some of
which, however, could not be fitted. In chapter 4 we have also investigated some
fundamental aspects of the mobility of the b = 1/2[111] screw dislocation. Finally,
we summarize the results in chapter 5.1 and give in the outlook some ideas for
further research.
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Table 1.1: Summary of the fits of the DD potential. The present work is referred to as

‘version 2009’.

version 2005

version 2009

fits

fit database

fit database

fit database

fit database

CS1, CS2

ferromagnetic,
non-magnetic
bee and fec
point defects

CS3-00, CS3-30,
CS3-33
ferromagnetic,
non-magnetic
bee and fee
point defects
third order elas-
tic constants
screw  disloca-
tion core
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Chapter 2

Fitting strategy

2.1 Formalism of the semi empirical potentials

Over the years, many semi empirical' potentials for bce iron have appeared in the
literature, see [13, 40] and references therein. Among the oldest the pair potential
of Johnson published in 1964 [41]. In a pair potential, the energy is a sum over
functions which depend only on the distance between pairs of atoms. The total

energy of atoms 1,2,..., N at positions ﬁl, ﬁg, cee Ry can be written as
|
E(Rl,Rg,...,RN) = §ZJZ_:1V(7"Z]), (21)
i#]

where 7;; is the distance between atom ¢ and j, and V' is a short range function,
that is it is non zero for a finite number of neighboring atoms only. Pair poten-
tials suffer from some important limitations, for example the unrelaxed vacancy
formation energy is equal to the cohesive energy, and at equilibrium zero pres-
sure, any pair potential satisfies the Cauchy relation K — 2/3C" = Cyy between
the anisotropic elastic constants, where K is the bulk modulus, C’ the tetragonal
shear modulus and Cyy the rhombohedral shear modulus. Because the Cauchy
relation is experimentally not satisfied by most of the transition metals, this was
adjusted by adding to the pair potential a volume dependent term in the energy,
which however makes it difficult to handle free surfaces and vacancies.

To overcome this problem, Daw and Baskes [42] (EAM) and Finnis and Sin-
clair [43] added to the pair potential an effective many body term, the so called
embedding functional. This is a function of an additional pair function, the so

lsemi indicates either that there exist some motivation for the functional form or that some

properties are fitted to ab initio calculations.

13
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called electronic density:

N N
Lo . 1
E(Rl,Rg,...,RN) = E F(p,;)+§ E V(T’Z‘j), (22)
i=1 ij=1
i#]

where the electronic density on atom ¢ is given by

Pi = Z f(Tij). (2.3)

j=1,...N
J#

In the EAM formulation of Daw and Baskes, the embedding function F' is de-

termined from the equation of states, while Finnis and Sinclair assumed that the

embedding function has a square root form,

F(p) = ~Ayp, (2.4)

which can be motivated by a scalar second moment approximation of the electronic
density of states within the tight binding model [44]. With these modifications it
was then possible to accurately fit the second order elastic constants, overcoming
the Cauchy pressure problem without adding any volume dependent term to the
energy. The short range functions V' and f are parameterized and fitted to basic
material properties like phase structures, equilibrium lattice parameter and second
order elastic constants. The fact that only short range interactions are taken
into account makes any application of EAM potentials very efficient and easy to
implement in parallel computing, allowing MD simulations with millions of atoms
up to nanoseconds, but at the price of accuracy, because interactions in solids are
actually long range. These functions are usually represented by splines, continuous
at the cutoff radius beyond which the function value is set to zero.

Finnis and Sinclair included in their work [43] also a set of parameterizations for
transition metals which are known in the literature as the Finnis-Sinclair potentials.
The functions V' and f are represented by simple polynomials with a cutoff between
the second and third neighbor shell and they were fitted to the equilibrium lattice
constant, elastic constants and cohesive energy. The Finnis-Sinclair potential for
iron was the first EAM potential to be used in a simulation of a displacement
cascade [45], and is up to now the most employed potential in cascade damage
simulations, with over thirty publications including reviews [13]. An improved
version of the Finnis-Sinclair potential for iron was published in 1997 [23] as the
Fe-Fe part of a Fe-Cu potential, which is referred to in this work as the Ackland
potential.

As already stated in the introduction, in 2001 DFT calculations confirmed the
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experimental findings [16] that the lowest energy self-interstitial configuration in
bee iron is actually the (110) dumbbell [17], with a migration energy close to 0.3
eV [46], but all the potentials developed previously do not reproduce this property.
Recent semi empirical potentials with improved point defects properties, and in
this work a benchmark to the new fits of the DD potentials, are the Ackland-
Mendelev potentials [18, 19] referred to as Mend03 and Mend04 in this work, the
analytic bond order potential [20], referred to as ABO in this work, and the fit
CS2 of the DD potential [1].

2.1.1 The Ackland-Mendelev potentials for bcc iron

Mend03 was the first published EAM potential for iron fitted to DF'T point defect
properties [18]. The embedding function is given by

F(p) = —/p +aps’p’, (2.5)
MO03

where apy° is a fitting parameter. The function V' was represented by a combi-
nation of third order splines and exponential functions at shorter range, and f by
third order splines. Four sets of parameters for V' and f were presented in [18],
called potential number 1, 2, 3 and 4. The potential number 2, that is Mend03,
reproduces at best the DFT point defect formation and migration energies. In the
range between 0 K and 20 K, however, Mend03 has a negative thermal expansion
coefficient, which led to the development of an improved version [19], referred to
as Mend04 in this work, with the modified embedding function

F(p) = —/p+ags'p® +apy'p'. (2.6)

The representation of the model functions V' and f is exactly the same as for
Mend03, and also the parameters of Mend04 are close to Mend03.

The ground state configuration of the self-interstitial is a (110) oriented dumb-
bell, with a formation energy of 3.5 eV and a migration energy of 0.34 eV [14].
The vacancy has a formation energy of 1.7 eV with a migration energy of 0.67 eV,
in rather good agreement with DFT. The Ackland-Mendelev potential was, up
to the present thesis, the only known semi empirical potential for iron to give a
non-degenerate core structure of the b = 1/2[111] screw dislocation [47], in agree-
ment with DFT. The Ackland-Mendelev potentials have a relatively long range of
interaction: the cutoff radius of CS2 and ABO is, respectively, 4.3 A, that is up
to the third neighbor shell, and 3.35 A, that is up to the second neighbor shell,
while it is 5.3 A for Mend03 and Mend04, that is up to the fifth neighbor shell.
The way these potentials were constructed by fitting to liquid iron configurations
from DF'T is rather obscure and does not explain why Mend03 and Mend04 are so
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successfull, which is a further motivation for the present work.

2.1.2 Analytic bond order potential for bcc iron

The analytic bond order potential was first proposed by Tersoff [48] to model
silicon, carbon and germanium and later refined by Brenner [49] to model hydro-
carbons and more generally multi component systems. The analytic bond order
potentials have been then derived for the o and m bond orders by a momentum ex-
pansion of the two-center, orthogonal tight-binding model [50]. They are thus best
suited for the description of covalent sp-bonds. After application to many semi-
conductors, the Brenner potential formalism has been also applied to transition
metals, including platinum and platinum-carbon [51] and bce tungsten, tungsten
carbide [52] and recently also bee iron [20]. The authors give some motivation for
applying a model originally developed for sp-bonds to transition metals, where the
properties depend significantly on the d-band, based on the fact that a Brenner
potential with no angular dependence is equivalent to an EAM potential. More
generally, the difference between the EAM and Tersoff-Brenner potentials is that
they can be derived from a scalar versus matriz second level recursion expansion
of the two-center, orthogonal tight-binding model.

The analytic bond order potential for bee iron (ABO in this work) is of the
Brenner form, and the configurational energy of atoms 1,2,..., N at positions
El, Eg, ceey Ry is given by

N
5 5 Sl bij + by
E(Rl, Rg, ceny RN) == 5 Z f (Tij) |:VR(7‘7;J') — %VA(TU) s (27)
1,7=1
i#j

with 7;; as before the distance between atom i and j. V' and V4 are represented by
exponential functions with four parameters and f€ is a cut-off function determined
by two parameters, one of which is the interaction range. Finally, the angular
dependent term is b;; with four adjustable parameters, which is a function of all
the angles 6;;, between the bonds ¢ — j and ¢ — k for all atoms k within the
interaction range of 7. Only the cosinus of the angles enters in b;;,

(- (1-1)

TijTik

cos (0;1) =

More details about the formalism and the parameters of the analytic bond order
iron potential as well as a detailed analysis of some basic properties and com-
parison with established EAM potentials (including CS2) can be found in [20].
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ABO is defined by ten parameters, which is quite smaller than the number of pa-
rameters required in the Dudarev-Derlet or Ackland-Mendelev potentials for iron,
typically from thirty to forty. This is done at the price of the complexity of the
fitting procedure and of the implementation, plus a somewhat lower computational
speed. ABO was fitted to DFT point defect formation energies and can reproduce
that the (110) self-interstitial is the ground state self-interstitial, with a formation
energy of 4.19 eV and a migration energy of ~ 0.22 eV. The formation energy
of the vacancy is 1.56 eV with a migration energy of 0.90 eV. The point defect
properties are thus not as close to the DFT predictions as the Ackland-Mendelev
potentials or CS2, because the priority in the fitting was given to phase properties,
and in particular to the competition between the bee and fee phases. ABO was
directly and successfully fitted to the a-y-0 transition temperatures by adjusting
the energy difference between the bce and fee phases at zero temperature. This ad
hoc adjustment is needed because these transitions are driven by local magnetic
moment fluctuations not yet explicitly included. There is thus at present no direct
evidence that a Brenner type potential is significantly more successful in describing
the many features of pure iron than a simpler EAM potential, because in principle
the same method to get the transition temperatures right could be applied to any
EAM potential.

2.1.3 The Dudarev-Derlet potential

The EAM density functional of the DD potential has been derived within the Stoner
theory for itinerant electron band magnetism and using the Ginzburg-Landau the-
ory for second order phase transitions, see an alternative derivation in appendix
A. The embedding function is [1]

F(p) = —Ay/p—BM(p), (2.9)

where A and B are positive parameters. The first term in (2.9) mimics a contri-
bution from electrons in a non-magnetic band, that is with the same total number
of spin up and down electrons, while the second term mimics the energy of band
splitting. The magnetic part of the embedding function is

1
M(p) = =1 = vp)In(2 = p)O (1 = p) (2.10)
where p is the relative electronic density and ©(z) is the Heaviside function which
is equal to zero for z < 0 and equal to one otherwise. This formalism thus explicitly
includes the suppression of magnetism for p > 1, that is at high compressions.
A very simple expression for the local ferromagnetic moment on atom i has
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been derived in [6]

Q=C<1— %)7@(1—/%/0(:) (2.11)

where (', p. and 7y are also model parameters fitted to the DF'T magnetic moment
distributions. These parameters have been fitted for CS2 to the bulk magnetic
moment dependence on isotropic volume changes from DFT [6], where p. was set
to 1 for consistency with the interpretation of M as the magnetic contribution to
the energy. We will develop here an alternative approach to fit these parameters, in
such a way as to get a magnetic moment which can be compared between different
fits of the DD potential, as explained in appendix A.

In the present work we do not employ the same parametrization of the model
functions as for CS2, that is third order splines. Instead we parameterize the
functions V' and f with fifth order splines

Vi(r) = Z V, (ry — 7’)5 e —r)g (ry —1), (2.12)
f(r) = Z fo (1) — r)5 e (rir)g (rl —r). (2.13)

In this way the model functions are continuous up to the fourth order, making it
easier to fit the third order elastic constants. The fitting parameters r{; and r are
the knot points; V,, and f, the knot coefficients; NV and N7/ the number of knot
points and the exponential factors Ay and Ay have been introduced to increase the
fitting flexibility.

The parameters of the DD potential given in [1] and in tables 3.7, 3.8 and
3.9 correspond to the magnetic parametrization. The non-magnetic parametriza-
tion is obtained by setting B=0 in the magnetic parametrization, because of the
interpretation of the term M(p) as the magnetic part of the embedding function.

Note also that within the ‘magnetic’ interatomic potential formalism the cohe-
sive energy and the energy per atom are different quantities. The cohesive energy is
defined as the energy per atom needed to separate all the atoms from the condensed
phase, and is given by

Econ = Eso — Evee = — (Epee + BM(0)) = — (Epec + B) (2.14)

where FEy.. is the energy per atom in the perfect bee lattice at the equilibrium
lattice constant and F, is the energy per atom of non-interacting atoms, that is
at a distance beyond the cutoff radius. While in Mend03, Mend04 and ABO E
vanishes, in the ‘magnetic’ interatomic potentials it is equal to the magnetic part
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of the energy functional evaluated at zero density and multiplied by the parameter
B.

2.2 Anomalous anharmonicity of CS2

(CS2 shows anomalous anharmonic properties when compared to the other semi
empirical potentials, the most apparent effect is that the expansion coefficient is
negative up to 600 K, see figure 1.2 on page 6, which is not the case for Mend04
and ABO, where the thermal expansion coefficient was also calculated by MD
simulations using the Parrinello-Rahman barostat method [53] from 0 K to 100 K,
see table 2.1 on page 25. In addition, in CS2 the quasi-harmonic approximation
fails at very low temperatures, as shown in [38].

These semi empirical potentials are almost exclusively employed in classical
molecular dynamics simulations, which is not very accurate at high temperatures,
because it is essentially a classical method neglecting electronic and magnetic con-
tributions, but it is also difficult to compare to low temperature experimental data,
because below the Debye temperature quantum effects must be taken into account.
What is needed to accurately fit semi empirical potentials is thus a classical extrap-
olation method which accounts for electronic and magnetic contributions, which
would give the appropriate experimental value for a comparison at zero tempera-
tures, but since this goes beyond the scope of this work, we apply a very simple
ad hoc strategy instead. We observe that, in the experiment reported in [54], the
true thermal expansion coefficient of pure iron shows a nearly perfect linear de-
pendence in the temperature range between 300 K and 850 K, we thus choose to
simply linearly extrapolate the experimental expansion coefficient from this range
to 0 K, and obtain for the relative volume expansion coefficient agy,=2.8x107°
1/K, see table 2.1 on 25. For comparison, the experimental value at 600 K is
Qayn=4.2x107° 1/K, that is 50% higher than the linear extrapolation at 0 K, but
in the source for the experimental data [54] it was not specified whether the exper-
imental samples was a single crystal, so very likely this experimental value refers
to a polycrystal.

All the semi-empirical potentials considered here have been fitted to essentially
the same second order elastic constants, see table 2.1 on page 25. The vibrational
thermal expansion coefficient can then be rationalized in terms of third order elastic
constants, see [55]. In this work we employ the definition of Brugger [56] for the
third order elastic constants

PE

Cyw =m0 ——F5—|
= o |,

(2.15)



20

where my is the mass density, F is the configurational energy and the derivatives are
taken with respect to (homogeneous) Lagrangian strains in the usual contracted
notation. Note that third order elastic constants are very sensitive on whether
one considers Euler or Lagrange deformations. For a cubic system there exist
six independent non zero third order elastic constants, in analogy with the case
of second order elastic constants where this number is reduced to three, and it is
possible to extract them by application of a set of six deformations, see for instance
[57]. For each deformation, the strain parameter is varied from -1% to 1%; the
energy curves so obtained are then fitted to fourth order polynomials and the third
order elastic constants are extracted from the coefficients of the polynomials. The
results are collected in table 2.1 on page 25. The third order elastic constants of
all the semi-empirical potentials are negative, except C1; of CS2, which is positive
and anomalously big. This is a clear indication that the anomalous behavior of
the thermal expansion coefficient calculated by MD can be rationalized in terms
of third order elastic constants. A direct comparison with the experimental third
order elastic constants must be taken with care, because these are measured at
room temperature and it is yet not possible to extrapolate these data to zero
temperature, due to the lack of measurements of third order elastic constants at
different temperatures.

Calculation of second and third order elastic constants using DFT have been
performed using the Vienna Ab Initio Simulation package VASP in the projected
augmented wave formalism. Exchange and correlation have been described within
the generalized gradient approximation by the Perdew-Burke-Ernzerhof functional
and the pseudopotential has been taken from the VASP library. The energy cutoff
for the plane wave basis set has been set to 400 eV. Electronic density relaxations
have been performed on primitive cells containing one atom with a convergence
criteria of 1x10~* eV, and the k-point sampling has been performed by a 35x35x35
Gamma centered Monkhorst-Pack grid. To get an accurate total energy we have
employed the tetrahedron method with Bloch corrections. The results are collected
in table 2.1 on page 25.

In general, anisotropic elasticity theory is fairly complex and most of the results
and expressions in dislocation theory, including dislocation-dislocation and defect-
dislocation interactions, have been derived within isotropic elasticity. We will now
consider, for simplicity, some third order effects on isotropic elasticity, that can be
related to third order elastic constants. The isotropic bulk modulus K, the shear
modulus p and the anisotropy factor H have been calculated by Voigt averages of
the anisotropic second order elastic constants, see [58]. This corresponds roughly
to averaging the single crystal elastic properties for a polycrystalline sample. Note
that the DFT isotropic bulk modulus K and shear modulus u, as calculated by
Voigt averages, are very close to experiments, but even if the anisotropy factor is
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underestimated by as much as 50%, the effect of this on results of DF'T simulations
has, to our knowledge, never been investigated. A simple relation to third order
elastic constants is given by the change of the isotropic elastic constants on volume
changes [59]

oK 1

VW ~ 9 (Cr11 4 6Ch12 + 2C23) (2.16)
Ikl L 300 £ 6Che + ot — Cug) (2.17)
o 3M 15 144 166 111 123) .

and the values of these derivatives are also collected in table 2.1 on page 25. A
comparison with experimental data is not straightforward, as third order elastic
constants refer to room temperature, while the calculations are at zero temper-
ature. We just note again that the derivatives of the bulk and shear modulus
predicted by CS2 are big compared to the other interatomic potentials. The de-
pendence of the isotropic elastic constants on volume changes is also shown in
figure 2.1 and compares well with the derivatives deduced from equations (2.16)
and (2.17). Figure 2.1 also reveals steep slope discontinuities of both the bulk and
shear modulus for CS2, one of which exactly located at the equilibrium volume per
atom, and an instability at higher compressions, which have been produced by the
use of third order splines to parameterize the model functions. These discontinu-
ities are additional sources of anharmonicity. The formation volumes of the (110)
self-interstitial and of the vacancy as predicted by CS2 are also low when compared
to Mend04 and ABO, see table 3.2 on page 41. This can also be intuitively related
to the anomalous third order elastic constants, as they impact the derivatives of
the elastic constants on compression.

On the basis of a continuum model the thermal expansion of a solid can be
calculated from third order elastic constants within standard Debye theory by
assuming linear dispersion of phonons, see [55]. In [55] it was also shown that
the thermal expansion coefficient calculated from third order elastic constants is
very close to the experimental coefficient. Since numerical techniques are required
to relate exactly the expansion coefficient to the third order elastic constants, we
just derive here a simplified analytic expression for the case of isotropic solids. As
explained in [55], the thermal expansion coefficient is given by

a=yxrCy/V (2.18)
where 7 is the Griineisen parameter, y; = —%% is the isothermal compressibility,
CYy is the specific heat at constant volume and V' is the volume of the system. In
the high temperature harmonic and classical limit, the specific heat from atomic
vibrational degrees of freedom is Cyy=3kp where kg is the Boltzmann constant. In
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Figure 2.1: Isotropic bulk modulus K and shear modulus p in GPa of the ferromagnetic
bee lattice as a function of the volume per atom in A%. The semi empirical potentials
are compared to experimental data at room temperature from [60] and zero temperature
DFT calculations from [61].
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the high temperature limit the Griineisen parameter v can then be written as

1
Y= 3N Z Va.p (2.19)
ap
where ) 51
ncyp
— - [ Z=—=ap 2.20
74727 3 ( alnv ) ) ( )
p is the polarization of the ¢ = 1,..., N modes and ¢, is the sound velocity of

the (¢, p) mode. By assuming an isotropic medium

Cg1 = CL (2.21)
Cg2 = Cr (2.22)
C¢3 = Cr (223)

where ¢y and ¢y are respectively the transverse and longitudinal sound velocities,
and thus using the previous equations

k’B <1_2V80T V@CL)

VK cr OV L AV

Ccr 6‘/ Cr, 6‘/ (224)

Qigo =

where V' is the volume of the system. The isotropic sound velocities are related to
the isotropic elastic constants by

K+ 3
o = 4|38 (2.25)
mo
1
= 2 2.26
cr o (2.26)

We have then calculated the expansion coefficient as given by the above equations
using the volume derivatives of the isotropic elastic constants in table 2.1 on page
25. Comparing this value derived within isotropic theory, and the expansion coef-
ficient obtained from low temperature MD, we see that for the EAM potentials the
contribution for the neglected anisotropy is approximately -1x107° 1/K, which in
the case of CS2 is however small enough to explain its negative value.

To conclude we see that the present simplified analysis of the interatomic poten-
tials in terms of third order elastic constants and isotropic elasticity is sufficient to
rationalize the anomalous behavior of CS2 regarding the thermal expansion coeffi-
cient, the formation volumes of point defects and the failure of the quasi-harmonic
approximation.
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Table 2.1: Bulk properties of the ferromagnetic bce lattice. The equilibrium lattice
constant a is given in A. The isotropic bulk modulus K and shear modulus p as well as
the anisotropic factor H and the third order elastic constants C;j;, are given in GPa. The
volume derivatives of the isotropic elastic constants have been calculated from (2.16) and
(2.17) using data from this table. The volume expansion coefficient « is given in units of
1x1075. It represents the relative volume change per degree Kelvin and was estimated
both by a NPT molecular dynamic simulation at zero pressure up to 100 K (dynamical)
and by the isotropic elastic approximation (2.24).

Exp. VASP Mend04 ABO  (CS2 (CS3-00 CS3-30 CS3-33

a 2.855% 2.8340 2.8533 2.8603 2.8655 2.8677 2.8665 2.8665
K 1730 178 178 169 173 173 173 173
1 94° 83 89 92 94 94 94 94
H 1370 64 134 169 140 140 140 140
Ciin -2876¢  -3290 -245 -2070 3500  -1760  -1600  -1625
Cii2 -542¢ -1230 -880 -935 -470 -720 -700 -570
Chag  -747¢ -480 -145 -290 -420 -995 -780 -780
Cies  -869¢  -870 -670 -670 -455 -650 -435 -435
Cies  -533¢  -1340 -825 -805 -830 -275 -240 -130
Cuze  -HDT¢ =530 -255 -485 -630 -740 -520 -510

VoK 46 83 45 61  -06 43 40  -34
Vow 47 44 206  -23 24  -38 23 24
o

Qg 2.8° 1.0 067 <10 35 2.0 2.4
G 55 6.0 2.0 39  -1.2 46 3.3 3.3

@ linear extrapolation at 0 K from data in [54]
b linear extrapolation at 0 K from data in [62]
¢ room temperature data from [56]

4 value taken from [20]
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2.3 Core properties of the b = 1/2[111] screw dis-
location.

For a more detailed explanation of the core properties of the screw dislocation,
and of the method used to control these properties in the optimization algorithm,
we refer the reader to chapter 4, the goal here is just to summarize the method we
have employed to control the core structure during the optimization.

To fit the core properties of the b = 1/2[111] screw dislocation we employ a
recent development of the multi-string rigid Frenkel-Kontorova model, see [63].
In this model one projects the perfect bee lattice onto the {111} plane. Every
point in the two dimensional projection represents an infinite string (or column) of
atoms in the [111] direction. The strings are allowed to move up and down along
the direction perpendicular to the plane, but not in the plane itself; the strings
themselves are rigid, that is atoms in a column are kept fixed relative to each
other. By appropriate displacement of the strings it is then possible, for instance, to
create a degenerate or a non-degenerate screw dislocation core. The interaction law
between strings up to the third nearest neighbor string is derived by rigidly moving
one or more strings, and by calculating the unrelaxed energy of the corresponding
three dimensional periodic configuration, employing any model for interatomic
interactions, as for instance DFT, Tight Binding or EAM. For short range EAM
potentials, extending up to the second nearest neighbor in the perfect bce lattice,
or with a very small component beyond the second nearest neighbor, the relevant
part of the string interaction is given by the nearest neighbor string interaction [63].
In this case, which is also the case of the semi-empirical potentials considered here,
the interaction law between strings can be derived by just moving one string of
atoms, so called single-string Frenkel-Kontorova model or Suzuki-Takeuchi model.
We call the unrelaxed energy as a function of the string displacement the single
string potential, which we denote o(d), where d is the displacement of the string in
units of the periodic distance between two (111) planes ai1; = b = v/3/2a. We also
show in chapter 4 that there is a correlation between the shape of the single string
potential and the ground state core structure of the screw dislocation. For this
reason, we have included the single string potential from DFT in the optimization
algorithm. In figure 2.2 we show the single string potentials of the semi empirical
potentials and of DFT.

2.4 Ferromagnetic properties

DFT within the generalized gradient approximation predicts that, at zero tem-
perature, the ferromagnetic bee phase is the ground state, followed in order of
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Figure 2.2: Sting potential. It is obtained by displacing a [111] row of atoms along the
[111] direction and by calculating the unrelaxed energy as a function of the row (or string)
displacement. We denote it by o(d) and measure it in units of eV per length of the row,
where d is the displacement of the string in units of the Burgers vector b = (v/3/2)a.
The DFT curve is taken from [64].
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increasing energy by the anti-ferromagnetic fcc, the low-spin ferromagnetic fec,
the high-spin ferromangetic fcc, the nonmagnetic fcc and the nonmagnetic bcc
[5]. The ferromagnetic bee is mechanically stable while the nonmagnetic bee is
unstable with a negative value of the tetragonal shear modulus C’. On isotropic
compression the energy difference between the ferromagnetic bee and the nonmag-
netic bee decreases and a phase transition to closed-packed structures occurs, see
figure 3.3 (b) on page 37.

It is well known that a second-moment approximation is not sufficient to de-
scribe the competition between the bee and the close packed fec and hep symme-
tries in transition metals [65]. To pick up the shape changes of the DOS from the
bee to a close packed phase it is necessary to include at least the fourth moment
contribution, which requires summation over four body terms [66]. We thus don’t
expect an accurate description of both the fcc and bee phases, a very small weight
is therefore given within the optimization algorithm to the bulk ferromagnetic and
non-magnetic fcec properties. It is also not possible, within the present ‘magnetic’
interatomic potential formalism, to distinguish the low-spin ferromagnetic fcc phase
from the high-spin ferromagnetic fcc phase. The only obvious requirement we set
is that the ferromagnetic bee be lower in energy than both the ferromagnetic and
non-magnetic fcc.

We note here that the ABO potential was fitted directly to the a-y-¢ transitions
in iron by adjusting the energy difference between the bee and fee phases. This is a
trick to compensate for the missing spin contributions to the free energy, as stated
by the developers of ABO in [20]. Because the DD potential can be extended to
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include spin directions [10], and the interest is here focused on defect properties in
the ferromagnetic bee, we do not make here any ad hoc adjustment.

The only property which can be rigorously derived within the ‘magnetic’ in-
teratomic potential formalism is the energy difference between the ferromagnetic
and non-magnetic bce on isotropic compressions, where the nonmagnetic phases
are obtained by setting the parameter B in (2.2) equal to zero. We nevertheless
also tried to optimize the value of

AC'=C, —C!

nm?

(2.27)

that is the difference in tetragonal shear modulus between the ferromagnetic and
non-magnetic bee phase, to the DFT value, see table 3.1 on page 38. A positive
value of AC” means that the magnetic functional effectively helps stabilize the
ferromagnetic bee lattice. We will see later however that the fitting flexibility of
the self-interstitial is strongly reduced by too much constraining AC’ to positive
values.

We have deliberately omitted the cohesive energy from the optimization algo-
rithm. Its value has no effect on bulk simulations, as for instance displacement
cascades simulations of neutron damage. Moreover, the energetics of free iron
atoms are governed by orbital magnetism and Hund rules, while the ‘magnetic’
interatomic potential is an analytical model for itinerant band magnetism. Also
note that in principle the cohesive energy can be corrected by modifying the low
density limit of the magnetic embedding function.

Formation energies and diffusivities of self-interstitial, vacancies and clusters
of them are of primary interest in radiation damage studies. DFT predicts that
in all the non-magnetic bee transition metals the (111) dumbbell has the lowest
formation energy with migration barriers in the sub 0.1 eV range. This is in
contrast with iron where the (110) dumbbell has ~ 0.7 eV lower formation energy
than the (111) dumbbell [4]. DFT treats ferromagnetism as a local exchange
interaction between spin up and down valence electrons and predicts that the local
magnetic moment at the core of (all) the self-interstitial point defects is strongly
reduced, see table 3.6 on page 65 for the specific case of the (110) dumbbell, for
the other orientations, see [17]. This suggests that the differences in the formation
energies between the (110) and the (111) self-interstitial dumbbell in iron and thus
the migration energy barrier may be related to itinerant electron magnetism. The
connection of ferromagnetism to point defect properties is yet not clear, since the
Tight Binding Bond Stoner Model, which was not optimized to the self-interstitial
formation energies, but can reproduce the local ferromagnetic moment in the core
of the dumbbell, and qualitatively also the bulk properties of the non-magnetic,
ferromagnetic and anti-ferromagnetic bee, fcc and hep phases, predicts a formation
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energy difference of only ~ 0.3 eV between the (110) and the (111) dumbbells [67].

2.5 Optimization algorithm

We have optimized the fitting parameters of the model functions (2.13) and (2.12)
as follows. The model functions are restricted to be short range including up to the
second or third neighbors shells in the ferromagnetic bee; furthermore V' is allowed
to have at most one local minimum and f is always restricted to be monotoni-
cally decreasing and positive, because of its interpretation as the contribution of a
spherical inter atomic bond to the local electronic density. The electronic density
parameters A and B are restricted to be positive.

Two consecutive simulated annealing and one run of the downhill non-linear
simplex algorithm are employed to optimize some properties not involving lattice
relaxations?, that is the experimental third order elastic constants, see table 2.1
on page 25, the unrelaxed vacancy formation energy?, the single string potential,
see chapter 4, as well as the bulk properties of the ferromagnetic and nonmagnetic
bee and fee, where the nonmagnetic phase is obtained by setting B=0 in (2.2) on
page 14. The value of the fitted properties is the same as in [1], except for the
third order elastic constants which were not included in the objective function of
the CS2 fit.

Because of the complexity of the optimization we have performed systematic
fits. For a particular choice of the objective function weights, we vary the cut off
radius of V from 3.0 A to 4.7 A and the cut off radius of f from 3.0 A to 4.0 A
in steps of 0.1 A. The minimum knot point was set to 2.6 A for both V and f
and the knot points were distributed uniformly up to the cutoff. The number of
knot points for both V' and f was set to 5, 6, 7 and 8. The equilibrium lattice
constant and second order elastic constants of the ferromagnetic bee were solved
exactly within the optimization algorithm thus reducing the number of free fitting
parameters by four. Penalty functions were applied to third order elastic constants
to constrain them within 50% of the experimental value. Fitting to third order
elastic constants exactly results in too great a constraint on the model.

We then relax all the self-interstitials and correct anomalies in the short range
until they are stable by adding a repulsive knot at 2.5 A in V. This does not
affect the bulk properties or the vacancy formation energy and prevents the re-
laxed dumbbell atoms to come too close to each other. Indeed if the short range

2Relaxations are just too slow to be implemented in the first stage of the optimization
3In general, the relaxed vacancy formation energy is smaller that the unrelaxed one, but
anyhow not significantly different, which is on the other hand the case for the self-interstitials.
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repulsion is too small, undesirable metastable configurations with the same ori-
entation may occur where the dumbbell atoms are separated by less than 1 A.
From experience in the fitting we have noted that modifying this repulsive knot
has the effect to change the relative formation energy of the dumbbell atoms. The
smaller the repulsions, the smaller the distance between the dumbbell atoms, and
the smaller the energy difference between the orientations. A higher repulsion in-
creases the distance between the dumbbell atoms and also the energy difference
between dumbbell orientations, but at the same time also the formation energies
are increasing.

In the first half of the fits (PD;) we apply penalty functions to AC” in (2.27)
on page 28. We try to fit it by constraining systematically its value to at least
30, in a first trial, and then to at least 50, 70, 90 and 110 GPa in subsequent
trials. The weights on the third order elastic constants have been also varied. In
the second half of the fits (PDs) we have included the value of the bulk modulus
on isotropic compressions at a volume per atom of ~ 9.5 A3 setting its value to
100, 200, 300 and 400 GPa in subsequent trials. Fits in PDy have been fitted to
the single string potential given by DFT, to be able to reproduce the correct core
properties of the b = 1/2[111] screw dislocation, but not to AC”. Fits in PD; have
not been optimized to the single string potential given by DFT.

To filter through we select fits with vacancy formation energies between 1.6 eV
and 2.3 eV and an energy difference between the equilibrium ferromagnetic bcc
and the ferromagnetic and non-magnetic fcc of at least 0.03 eV per atom; we refer
to this first selection as BS; and BS,, respectively obtained by filtering PD; and
PDs. We have then further reduced BS; and BS, by considering only fits with an
energy difference between the equilibrium ferromagnetic bee and fec of at least 0.1
eV per atom and we refer to this as FCC; and FCC,.

We can not fit AC’ to the DFT value without other properties being too much
compromised. The most serious is that the relative formation energies between the
(110) and the (111) dumbbell are then restricted to a maximum energy difference
of approximately 0.3 eV, see figure 2.3. This figure shows frequency counts of the
formation energy difference between the (110) and the (111) dumbbell for all the
fits generated within the optimization algorithm. The formation energies have
been determined by relaxing the self-interstitial using all the potentials in the fit
databases BS;, BSy. A negative value for the energy difference in this curve means
that the (110) dumbbell forms with lower energy than the (111) dumbbell. This
figure also shows that by selecting potentials with an energy difference between
the bee and the fee phases of less than 0.1 eV /atom, that is neither in FCC; nor
in FCCy, the energy difference between the dumbbells is also restricted.

We have thus selected fits from FCCsy by requiring a formation energy difference
between the (110) and the (111) dumbbells of at least 0.4 eV, as well as a positive
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Figure 2.3: Frequency counts of the formation energy difference between the (110) and
the (111) dumbbell for all the fits in the BS database generated within the optimization
algorithm. A negative value for the energy difference in this curve means that the
(110) dumbbell forms with lower energy than the (111) dumbbell. The FCC database is
obtained by selecting fits from the BS database with an energy difference between the
ferromagnetic bee and fee phases of at least 0.1 eV /atom. As explained in the text, BS;
refers to fits with a local minima in the model function V', whereas BSy refers to fits
with a purely repulsive function V.
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curvature midway in the single string potential. As will be shown later on in
chapter 4, a positive curvature in the single string potential favors a non-degenerate
ground state core structure for the screw dislocation. Since many potentials satisfy
these criteria, we have calculated by the nudged elastic band method (NEB) the
Peierls Barrier for migration of the screw dislocation and the migration energy of
the vacancy and (110) self-interstitial of all the fits, and from this selected three
representative potentials to be discussed in more detail in the following chapter.

The fits in database PD; have been also employed in [64] to demonstrate that,
in the case of second-moment potentials, there is a strong correlation between the
shape of the single string potential and the core structure of the b = 1/2[111] screw
dislocation. A similar proof will be given later at the end of chapter 4.

Beware that although this chapter is rather short and the optimization process
may seem at a first glance rather simple, it is actually a formidable task and
a great part of this thesis, almost one year of fitting. The modification of the
optimization software, for instance to include third order elastic constants or to
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control the shape of the model functions, is not easy. Moreover, the Fortran code
employed for CS2 was written to get a so called proof of principle potential, not
really a true universal optimization, which is needed to compete with the very
accurate benchmark potentials for iron of the last generation. For instance, the
previous fitting strategy did not include splitting of the optimization jobs on cluster
computers, but fits were generated on a single processor in an almost interactive
way. Thus a great part of this work was devoted to software development to
implement a strategy to split jobs on cluster computers and to build a database to
collect their properties and analyze them. To get the three optimal fits required
the generation of something like 10’000 accepted fits corresponding to weeks of
computing on the public PSI cluster, and the selection of the optimal fits was
actually the result of a long error and trial process, combined with an extensive
literature search for comparison with experiments or other theoretical methods.
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Chapter 3

Detailed properties of optimized
fits

We refer to the new optimized fits of the ‘magnetic’ interatomic potential as
CS3-00, CS3-30 and CS3-33. The parametrization of these potentials is given
in table 3.7, table 3.8 and table 3.9 at pages 67-69, and the parameters for the
local magnetic moment, see (2.11) on page 18, are in table 3.5 at page 63. CS3-00
and CS3-30 have been also published in [38].

Figure 3.1 shows the model functions of the EAM potentials. To make the
density function of Mend04 compatible with the relative electronic density of the
DD potentials, we have divided it by 40 so as to scale the relative electronic density
per atom of the bee lattice to 1.0 at a volume per atom of 9.0 A3, which roughly
corresponds to the volume at which magnetism should be suppressed. Except CS2
which has a deep local minima in V', the other EAM potentials have very simi-
lar model functions, although Mend04 features an additional attractive-repulsive
part close to the third nearest neighbor of the bcc lattice and a longer range of
interaction extending up to the fifth nearest neighbor.

3.1 Bulk properties

The bulk equilibrium properties of the ferromagnetic bee phase are summarized in
table 2.1 on page 25. The second order elastic constants are essentially the same
for all the potentials, the third order elastic constants are all negative and the
thermal expansion coefficient is now positive for CS3-00, CS3-30 and CS3-33, see
figure 3.2. Note that the third order elastic constants of the CS3 potentials are very
similar, although this was not intentional, since the selection of the fits was based
exclusively on the point defect properties, the string potential, the Peierls barrier
and the energy difference between the ferromagnetic bee and the ferromagnetic fee

33
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Figure 3.1: Model functions of the EAM potentials. The figure shows on the left the
pair potential V'(r) and on the right the density funcion f(r), where r is in A.
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phases. The bulk properties of the non-magnetic and ferromagnetic bee and fec
phases are summarized in table 3.1 on page 38, and figure 3.3 on page 37.

We will now refer to table 3.1 on page 38 in the following discussion.

CS2 underestimates the cohesive energy (2.14) and the CS3 potentials overes-
timate the cohesive energy, where the error is of the order of 10% to 50% in the
worst case. Given the extreme simplicity of the ‘magnetic’ interatomic potential
formalism this is actually not so bad. In principle, this could be corrected by mod-
ifying the low density limit of the magnetic part of the embedding function, see
also the discussion in appendix A.

The energy difference between the non-magnetic and the ferromagnetic bcc
could be fitted with an error of 20% to 50%, although the equilibrium volume
of the non-magnetic bce is generally underestimated, where the worst agreement
in terms of volume per atom is for CS3-33 and the best for CS2. None of the
potentials could anyhow come close to the DFT prediction that C’ is as low as
-110 GPa in the non-magnetic bce phase, but CS2 at least leads to a negative
value of C' in the non-magnetic bee phase. For the CS3 potentials, however, the
non-magnetic bce is mechanically stable at zero temperature, but note again that
the fitting of this properties was abandoned at the benefit of the defect properties
in the ferromagnetic bee lattice.

A direct comparison of the fcec phase with DFT is rather problematic, since the
semi-empirical potentials give only one fcc phase, with the exception of the ‘mag-
netic’ interatomic potential which also gives a non-magnetic fcec phase obtained by
setting B=0 in (2.9) on page 17. Even the DD potential is at present unable to
distinguish between the anti-ferromagnetic, low spin ferromagnetic and high spin
ferromagnetic fcc phases encountered in DFT, and gives only one ferromagnetic



35

Figure 3.2: Volume expansion curves without spin-lattice dynamics of the new fits, as
calculated in the present work using MD.

12.24 —A—CS3—00 ----------- —— o o]

1: - : ex:perimentf_—- e
*121._0_083‘30/,‘.'/A ,,,,,

120 nman
11.94

11.84-.i. L0077

Volume per atom [A’]

ol R

——T——7T——— 71— 71—
0 200 400 600 800 1000
Temperature [K]

and one nonmagnetic phase, although when considering the equilibrium ferromag-
netic moment and the equilibrium volume per atom of the ferromagnetic fcc phase,
these are closer to the DFT high spin ferromagnetic fcc phase, see figure 3.3 on
page 37 and table 3.1 on page 38. The CS3 potentials significantly overestimate the
equilibrium energy and underestimate the equilibrium volume of the non-magnetic
fcc. Moreover, the nonmagnetic fcc is, contrary to DFT, mechanically unstable
with a negative C’, see table 3.1 on page 38.

DFT gives a very small energy difference between the non-magnetic, anti-
ferromagnetic, low spin ferromagnetic and high spin ferromagnetic fcc phases, when
compared to the energy difference between the non-magnetic and ferromagnetic bee
phase, see figure 3.3 (b). The new fits fail to reproduce this feature, and give an
energy difference between the non-magnetic and ferromagnetic fcc phases of the
same order as the energy difference between the bce phases. We attribute this to
a deficiency of the second-moment approximation to resolve the shape change of
the electronic density of states for different lattice structures, which is essential
to determine an analytical solution within the Stoner Theory for itinerant band
magnetism. For the DD potential, a parabolic shape with a width related to the
second moment of the density of states was assumed. A change in higher moments
of the density of states, such as the change from bcc to fec, is however not included
in the parabolic approximation, because with EAM potentials one can only access
the second-moment contribution. The density of states of non-magnetic fcc iron
is indeed rather flat near the Fermi level, see for instance [67], as opposed to the
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non-magnetic bee density of states, with its characteristic peak near the Fermi
level.
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Figure 3.3: Equation of states of the magnetic and non-magnetic bee (in blue) and fec
phases (in red). For the DD potentials, the continuous line refers to the ferromagnetic
phase, and the dotted line to the non-magnetic phase.
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Table 3.1: Bulk properties of the ferromagnetic and non-magnetic bee and fee lattice.
The cohesive energy E o, and the energy per atom Ej are given in eV /atom, the equi-
librium volume Vj in A3 /atom, the equilibrium ferromagnetic moment ¢y in up/atom
and the anisotropic second order elastic constants in GPa. The energy per atom of
the non-magnetic bee and fee phases is the relative energy difference per atom to the
ferromagnetic bcc lattice.

DFT CS52 (CS3-00 CS3-30 (CS3-33

Ferromagnetic bce

Eeon 43% 25 5.3 5.1 5.8

Ey -8.3" -43  -11.7 -9.9 -13.9
Vo 11.4* 11.8 11.8 11.8 11.8
Co 2.32¢ 2.2 2.2 2.2 2.2

K 190¢ 173 173 173 173
Clg 96¢ 122 122 122 122
C’ 65° 52 52 52 52

Non-magnetic bce

Ey, 048 020 0.41 0.36 0.60
Vo 10.7¢ 10.5  10.1 10.1 9.4

K 2764 184 374 269 439
Cu 1417 102 209 93 208
C’ 1104 -22 55 51 25

Ferromagnetic fcc

Ey 0.15° 0.09 0.14 0.15 0.13
Vo 12.0¢ 11.8 124 12.2 12.3
Co 2.57¢ 2.06 248 2.34 247
K 170¢ 130 62 105 119
Clg 99 30 67 72

C’ <0 33 15 34 37

Non-magnetic fcc

Ey, 0.16% 0.21  0.60 0.61 0.70
Vo 10.4¢ 10.7 9.8 10.3 8.7

K 3174 295 238 118 558
Cy 2874 164 210 110 280
C’ 1257 71 -145 -120 -61

@ from [20]

b spin-polarized VASP calculation.

¢ high spin ferromagnetic fcc from [5]
4 from [1]
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Figure 3.4: Self-interstitial formation energies. For the DFT data both the formation

energy calculated at constant pressure from [4] (lower points) and that at constant volume
from [17] are shown.

3.2 Static point defect properties

The formation energies and the formation volumes of the vacancy and self-interstitial
point defects are summarized in table 3.2 one page 41 and figure 3.4.

For the semi empirical potentials in this work, the formation energies are ob-
tained by relaxing at constant volume a perfect bee supercell with one point defect,
see figure 3.5 for the unrelaxed self-interstitial configurations. The formation en-
ergy is then given by

E¢ = Eq — (N £ 1)E,, (3.1)

where F,q is the total energy of the relaxed supercell containing one point defect,
with a total of N+1 atoms for a self-interstitial and N —1 atoms for a vacancy, and
Ejy is the energy per atom of the (ferromagnetic) bee phase, see table 3.1 on page
38. The supercell containing the point defect is constructed from a perfect bce
supercell with the equilibrium lattice constant of the (ferromagnetic) bee phase,
see table 2.1. The supercell containing the point defect is thus under pressure. The
pressure is however small since a supercell containing N=432 atoms was employed.
The effect of pressure in the point defect formation energies of the semi-empirical
potentials considered here is thus small, of the order of ~ 3%. Note that this is
however not the case for the DFT formation energies, because they were calcu-
lated on much smaller supercells with N=128 atoms. In this case, the constat
volume formation energy of the dumbbells is ~ 0.3 eV higher than the constant
pressure formation energy, and for the vacancy the difference is ~ 0.1 eV. The
constant volume formation energies of the other self-interstitial defects have not
been published.

The values of the vacancy formation energy of CS2, CS3-30 and CS3-33 from
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Figure 3.5: Unrelaxed interstitial structures.
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table 3.2 on page 41 are within the DFT estimate, which is also within the experi-
mental range. CS3-00 gives a somewhat lower value closer to the vacancy formation
energy of Mend04. The CS3 potentials and ABO overestimate the DFT formation
energy of the self-interstitial dumbbells by ~ 0.3 eV. An important quantity in
radiation damage studies is the Frenkel Pair formation energy, given by the sum of
the vacancy and self-interstitial formation energies. The semi-empirical potentials
are scattered around the DF'T values with a deviation of ~ 0.5 eV. A comparison
with the experimental range for the formation energy of a Frenkel Pair, should be
taken with care because in our calculation we are neglecting the interaction energy
between vacancies, self-interstitial and impurities or other defects, but also possi-
ble errors in the low temperature calorimetric measurement, or in the estimation
of the total number of Frenkel Pairs.

In general, all the semi-empirical potentials can reproduce the DFT relative
formation energies of the (100), (110), (111) dumbbells and the crowdion, but
fail to reproduce the relative formation energies of the tetrahedral and octahedral
self-interstitial. Note that from DFT the tetrahedral has a lower formation energy
than the (111) dumbbell. Within our extensive fitting, it was however not possible
to get a closer match of the octahedral and tetrahedral relative formation energies.
The relative formation energies, and in particular the fact that the (110) is the
ground state configuration and not the (111) dumbbell, are very important in
radiation damage studies, because they determine to a great extent the activation
energies and mobilities of the self-interstitial. The reason for this is the well known
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Table 3.2: Properties of point defects in the ferromagnetic bee lattice. For the formation
and NEB migration energies (in eV) of the semi-empirical potentials the point defects
are relaxed in a supercell of the same volume (but with different volume per atoms)
as the reference perfect bee supercell. The exponential prefactor of the self-interstitial
diffusion coefficient is given in units of 1x1073 ¢cm?/s with an error from the fit of 20%.

CS3

Exp.* DFT Mend04 ABO (CS2 00 30 33
Ef . 1.7,2.0 1.93°2.02°c 1.71 1.56 207 170 195 1.95
El 6.3,6.6 6.0° 5.2 58 57 59 6.2 6.4
E B 0.3 0.344 0.30 0.22 0.25 0.37 0.40 0.33
ET am 0.3 - 0.34 - 0.28 0.36 0.42 0.31
Do jns 1.5 1.3 20 39 25
En g 055,111 0.64-0.71°  0.62 0.90 0.78 094 094 0.85
Biio) 1.10 - 1.30 1.40 0.45 145 140 1.55
Brac -0.05 - -0.15  -0.35 -0.15 -0.10 -0.15 -0.10

@ experimental data from [16]

b constant pressure calculation: the supercell of the point defect is at zero pressure 4]
¢ constant volume calculation: the supercell of the point defect is of the same size as
the reference perfect bee supercell [17]

¢ [68]

¢ [69]

fact that the (111) dumbbell has a low energy saddle point in the meV range for
migration in the (111) direction. On the other hand, the (110) dumbbell migrates
by a combined rotation and translation in the (111) direction, with a saddle point
orientation similar to the (111) dumbbell. The activation energy for migration of
the (110) dumbbell is thus correlated to the relative formation energy of the (111)
and the (110) dumbbell.

We have already seen before when discussing the formation energies of point
defects, that the presence of point defects changes the equilibrium volume of the
system.The volume change produced by a single point defect with respect to a
perfect lattice containing the same number of atoms is referred to as the forma-
tion volume of the point defect. To calculate it with semi-empirical potentials we
minimize the pressure on a N=>5488 atoms supercell containing either one vacancy
(N — 1 atoms) or one (110) dumbbell (N + 1 atoms), the volume change with re-
spect to the N atoms perfect bee supercell and induced by the point defect is the
relaxation volume AV, which is related to the trace of the elastic dipolar tensor of
the point defect [17] and which is given here relative to the volume per atom Vj of
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the ferromagnetic bee phase at zero temperature,

AV

b= (3.2)

The formation volume relative to Vj is then given by  — 1 for a self-interstitial
and 3 + 1 for a vacancy [17]. The relaxation volumes are collected in table 3.2
on page 41. We note that experimental values are in rather good agreement with
the semi-empirical potentials, except CS2 which significantly underestimates the
relaxation volumes of the (110) dumbbell. Note that in experimental literature
there is sometimes a confusion between relaxation volume and formation volume.

As a further test of the new fits we consider small clusters of self-interstitial
point defects. We have seen that the (110) dumbbell is the lowest energy self-
interstitial predicted by all the semi-empirical potentials considered in this work,
in agreement with DFT. There is however also a tendency to form clusters of
self-interstitial, because the energy of a self-interstitial in a cluster is lower than
the energy of an isolated self-interstitial. DFT calculations also showed that as
the cluster gets bigger in size, containing more and more self-interstitial defects,
the (111) orientation becomes energetically favored, and this happens already at
a cluster size of approximately five self-interstitials [70]. We have thus studied
the relative stability of these two orientations in clusters containing up to six self-
interstitial dumbbells oriented either along (110) or along (111) using ABO, CS2,
the CS3 potentials and Mend04. To get the zero temperature lowest energy con-
figurations we employ a cubic shaped perfect bee cell containing 5’488 atoms, and
one (110) or (111) dumbbell. A second dumbbell with parallel orientation is added
at all bee lattice positions within 5.0 A from the first self-interstitial. Among all
relaxed configurations preserving the original ((110) or (111)) symmetry, we select
the one with the lowest energy. A parallel dumbbell is again added to the lowest en-
ergy configuration containing two dumbbells at all positions within 5.0 A from the
center of mass of the two self-interstitial clusters, and the resulting configurations
containing three parallel dumbbells are relaxed to find the lowest energy configu-
ration of a three self-interstitial, symmetry preserving cluster. This procedure is
then iteratively repeated to find the ground state formation energies of (110) or
(111) clusters containing up to six self-interstitial. Note that the position of the
self-interstitial defects in the ground state cluster configurations is the same for all
the semi-empirical potentials. The energy differences between the (110) and (111)
ground state clusters have been plotted in figure 3.6. The comparison is made
between clusters containing the same number of point defects. A negative value
in the formation energy means that the cluster composed of (111) self-interstitial
is more stable. In general, the DFT prediction that large clusters favor the (111)
orientation is confirmed by all the semi-empirical potentials. Note however that,
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for the DFT calculation, much smaller cells, with ~ 100 atoms, were employed.
The precise cluster size at which the transition occurs varies between three clus-
tered self-interstitial for ABO, four clustered self-interstitial for CS2 and the CS3
potentials, and five self-interstitial for Mend0O4. Surprisingly, the new fits give very
similar relative formation energies, in contrast with ABO and Mend04, although
the third order elastic constants of the CS2 and CS3 potentials are very different.
This may exclude elasticity to explain this behavior, leaving as an explanation the
different cutoff radius and/or form of the interatomic interactions, that is so called
core effects.
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Figure 3.6: Relative formation energy of small parallel clusters. A negative value in the
energy means that the cluster composed of (111) self-interstitials is more stable. The
ground state configurations of clusters composed of M=1,...,6 parallel self-interstitials
oriented either along (110) or (111) is obtained iteratively by adding a parallel self-
interstitial to the ground state configuration of size M — 1 at every lattice position
within 5 A from the center of mass of the M — 1 cluster. The so obtained relaxed ground
state configurations of all the semi empirical potentials are exactly the same: for the [011]
cluster the center of mass of the dumbbells lyes on a {011} plane, that is a prismatic
loop, and for the 1/2[111] cluster it lyes either on a {011} or equivalently on a {101}
plane, and in this case the Burgers vector is neither parallel nor perpendicular to the
habit plane.
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3.3 Diffusion of point defects

3.3.1 Introduction

The diffusion coefficient is a proportionality constant between the flux of point
defects and the gradient in the concentration of the point defects, which is usually
assumed to be independent of concentration, and to follow a simple Arrhenius law
for its temperature dependence

D = Dye~Fa/lksT) (3.3)

where Dy is the diffusion coefficient at infinite temperature and E 4 is the activation
energy for diffusion. Our MD calculation of the diffusion coefficient of the self-
interstitial in the temperature range between 300 K and 700 K shows a very good
fit to the Arrhenius law. For self point defects, deviations from the Arrhenius law
are first expected at temperatures which are very high compared to the migration
energy [30]. We have also calculated the activation energy for migration of the (110)
dumbbell and of the vacancy by the nudged band elastic method, see table 3.2 on
page 41. The self interstitial migration energy deduced from fitting the diffusion
coefficients obtained by MD to (3.3) and from the static calculation are found to
be in rather good agreement in this temperature range. The vacancy migration
barrier is too big for a straightforward MD computation of the diffusion coefficient
in bee iron, also because at higher temperatures magnetic effects should be taken
into account.

The diffusion coefficient of the self point defects is a very important quantity in
radiation damage theory [71]. For instance, the diffusion coefficients of vacancies,
self-interstitial and clusters of them are used as input in microstructural evolution
models like mean-field rate theory or kinetic Monte Carlo. For instance, in a recent
object kinetic Monte Carlo study [26], the migration energy of the vacancy was set
to 0.65 eV and the migration energy of the self-interstitial to 0.3 eV, both with an
exponential pre factor of Dy=3.73x1073cm?/s.

Experimental estimates of the self point defect diffusivities are difficult. In
contrast to the case of impurities, there exist no direct way of measuring the
diffusion coefficient of self point defects. For instance, the diffusivities of the self
point defects can be related to the self diffusion coefficient by

Dger = DyvCy + DiCh (3.4)

where Dy 1 is the diffusivity of the vacancy or self-interstitial and Cy 1 is the concen-
tration of vacancies or self-interstitials. In unirradiated a-iron and at intermediate
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temperatures the concentration of self-interstitials is always negligible, and a mea-
surement of the self-diffusion coefficient can thus be related to the diffusion coeffi-
cient of the vacancies, assuming a good knowledge of the concentration of vacancies,
which is however not precisely the case. In a-iron, the self diffusion coefficient was
measured at temperatures close to the Curie point. Experimental estimates give
for the pre exponential factor for self diffusion Do values from 1 cm?/s to 1x10?
cm? /s and an activation energy for self diffusion Fyq¢ between 2.6 eV and 3.11 eV,
while recent DFT estimates in pure iron give Dy o=6.7x10"tcm?/s, using har-
monic transition state theory, and FEg;=2.88 eV, using NEB [69]. Thus, because
the activation energy for self diffusion is given by the sum of vacancy formation
and migration energy, and assuming a value of 2.0 eV for the vacancy formation
energy, we see that experimental estimates of the vacancy migration energy are at
least scattered between 0.6 eV and 1.11 eV. The situation is even more complicated
by a still unresolved controversy in the interpretation of resistivity recovery exper-
iments after low temperature electron irradiation, giving a value for the migration
energy of the vacancy of either 0.55 eV or 1.1 eV [16]. The experimental value for
the migration energy of the self-interstitial close to 0.3 eV is undisputed [16]. DFT
gives a value for the migration energy of the vacancy in pure bcc iron between 0.64
eV and 0.71 eV [69], and a value for the migration energy of the self interstitial of
0.34 eV [68]. Current understanding is that the higher experimental value for the
vacancy migration energy are related to a high sensibility of the vacancy diffusion
coefficient to impurities, in particular to carbon, which from DFT has a binging
energy to the vacancy close to 0.4 eV. On the other hand the self-interstitial seems
to be only weakly interacting with carbon, which may explain why the theoretical
value for the migration energy of the self-interstitial in pure iron is so close to
the experimental value [72]. This finding was recently confirmed by comparison of
ab initio based rate theory modeling of helium desorption experiments in a-iron.
Only through the inclusion of carbon, either directly or effectively, it was possible
to reproduce experiments satisfactorily, where the effective value for the vacancy
migration energy in the presence of carbon must be set to 0.83 £ 0.08 eV.

The dynamical calculation of the diffusion coefficient was performed by stan-
dard NPT molecular dynamics at constant zero pressure on a periodic bee supercell
containing one dumbbell over a simulation time of 20 ns and with a time step At
of 1 fs. To check the effect of cell size, the simulation was repeated on two super-
cells containing 1’025 and 15’361 iron atoms, that is with side lengths of ~ 2.2 nm
and ~ 4.5 nm respectively. For Mend04, only the small supercell has been used,
because the activation energy of the (110) dumbbell by molecular dynamics was
already estimated elsewhere, and agrees very well with our calculation [14]. To
calculate the diffusion coefficient, we identify the position of the two dumbbell
atoms at every time step by the instantaneous center of mass of the two highest
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Figure 3.7: Diffusion coefficient of isolated self-interstitial defects, calculated using either
the small supercell with side length of 2.2 nm (empty stars) or the bigger supercell with
side length of 4.5 nm (full circles). At a given temperature, we do not consider the
diffusion coefficient if during the 20 ns simulation a jump of the self-interstitial occurs
which exceeds half the simulation cell size. Diffusion coefficients lower than 0.1x1076
cm? /s are hidden from the figure, because the number of jumps (less than 100) is too
low for statistical accuracy.

10 : :
] : : 2 e
—#—Mend04 CS3-33. . I,' .
@ - % - CS2 : Toreagt ok
5 - %= CS3-00 :
1) —#%— CS3-30
o --%-- CS3-33
€ 19
2 ]
Q
ha':} .
S Mend04
S cs2 ﬁ\\/ '
:g N i K ] / ',1?
R XF ENE iy ' f‘-"'.f AR EAAAR
1/300 1/400 1/500 1/600 1/700
1/T [1/K]
energy atoms in the supercell
. Ry(t) + Ryt
Ry(t) = M’ (3.5)

where R, (t),ég(t) are the positions of the two atoms with the highest energy
over all the atoms in the supercell at time ¢, and ¢ = mAt after m MD steps.
As explained in [73], we shift the trajectory of Ry(t) to correct for zero drift
velocity. The results are shown in figure 3.7 using either the small supercell (empty
stars) or the bigger supercell (full circles). At a given temperature, we do not
consider the diffusion coefficient if during the 20 ns simulation a jump of the
self-interstitial occurs which exceeds half the simulation cell size, see later for
more details. Diffusion coefficients lower than 0.1x107% ¢m?/s are hidden from
the figure, because the number of jumps (less than 100) is too low for statistical
accuracy. We note that the scatter between the semi empirical potentials is most
important at low temperatures, where the difference can extend over many orders
of magnitude, but at 700 K the scatter is strongly reduced to less than one order
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of magnitude, with a diffusivity between 1x107% cm?/s and 10x107% cm?/s. For
the case of the vacancy, assuming that the pre exponential factor be the same
for all the semi empirical potentials, we expect from the static calculations of the
activation energies, which range from 0.62 eV for Mend04 to 0.94 eV for CS3-00,
a scatter of four orders of magnitudes at room temperatures and of two orders of
magnitudes at 600K. Within our extensive fitting, it was not possible to get a value
for the vacancy migration energy closer to the DFT value, but the CS3 potentials
overestimate the DFT vacancy migration energy by 0.1 eV to 0.2 eV.

3.3.2 Details of the MD calculation of the diffusion coeffi-
cient of the self-interstitial

At low temperatures, the self-interstitial performs few diffusive jumps during the
simulation time, which do not allow a precise enough determination of the diffu-
sion coefficient to extract the activation energies, because the diffusion coefficient
is proportional to the mean square displacement over time, and thus requires good
statistics. At high temperatures, on the other hand, the jumps events are very fre-
quent, but the self-interstitial point defect is also migrating very fast over distances
comparable to the periodic supercell size.

A self-interstitial is substantially different than an interstitial impurity, because
the diffusion of the self-interstitial does not mainly involve displacement of one
atom over the jump distance, as in the case of impurities, but relatively small
displacements of many atoms. Diffusion of impurities is in comparison easier to
handle, because the position of the impurity atom is unambiguously known at every
time step. On the other hand, the precise location of the self-interstitial dumbbell
is sometimes not clearly defined because of thermal fluctuations. Although the
center of mass ﬁh(t) of the two highest energy atoms can be employed to calculate
the diffusion coefficient, since thermal fluctuations are averaged out, it cannot
be straightforwardly related to the position of the dumbbell at every time ¢ and
thus to the length of the jumps. In a standard MD code, if an atom crosses the
boundary, it will be automatically shifted by the periodic lattice vectors. Since
however at high temperature the precise location of the dumbbell, especially when
it is migrating, is not precisely known, it is difficult to estimate when the point
defect is approaching the periodic boundary. If this is not properly taken into
account the diffusion coefficient will depend on the supercell size.

We now describe a method to partially overcome this problem. The method
gives an estimate for the size of the jumps and can identify a situation (which
always occurs at high temperatures) where the jump length is comparable to the
supercell size. In this case the interaction with the periodic images of the point
defect cannot be neglected any more. Since this is very difficult if not impossible
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to correct, we will just neglect all simulations where the point defect jump lengths
become comparable to the supercell size. If one does calculate the diffusion coeffi-
cient when the jump lengths are comparable to the supercell size, one would very
likely underestimate the diffusion coefficient.

At zero temperature the position of the two dumbbell atoms is unambiguously
given by the two highest energy atoms R, and R,. As the temperature is increased,
the dumbbell starts oscillating so strong from its local minima, that at some times
one or both of the two highest energy atoms do not correspond with the two
dumbbell atoms any more, but for instance to a nearest neighbor of the dumbbell
atoms. This may occur also without the onset of a diffusive jump and is just an
effect of thermal fluctuations. On the other hand, when a diffusive jump occurs,
there is a very high chance that for some time the two highest energy atoms will
not correspond with the dumbbell atoms, also because during the migration the
point defect itself is not clearly defined. A way to handle this is by looking at the
distance between the two highest energy atoms

I, = )R’l A (3.6)

Let us then consider a reference lattice as given by the perfect bee supercell, with
a lattice constant corresponding to the thermal expansion given by MD. We refer
to the atomic positions in the reference lattice as ﬁl,bcm R ﬁN,bcc' We say that at
time ¢ the dumbbell atoms are localized at the reference lattice position R}-’bcc if the
distance between the two highest energy atoms [}, is smaller than an appropriate
maximum distance ly. Now, it is clear that [y must be smaller than the bce nearest
neighbor distance av/3/2, because if I, is bigger than this, then the two highest
energy atoms cannot correspond to the two dumbbell atoms. The distance be-
tween the dumbbell atoms, and the distance from one dumbbell atom to its next
nearest neighbor, are however very close and smaller than the bcc next nearest
neighbor distance. [y must therefore be set smaller than this. A good choice is to
set the maximum distance for localization [y equal to the distance between the two
dumbbell atoms for a relaxed interstitial in the reference lattice. Consider then
what happens at very low temperatures when the two highest energy atoms always
correspond to the two dumbbell atoms. The distance between the two dumbbell
atoms [, will oscillate around [y, and the dumbbell atom will be most of the time
not localized, according to our definition. The way out of this is to define a char-
acteristic thermal vibration time 7. If the dumbbell is not localized for a time
smaller than 7, after which it is again localized at the last position, then we con-
sider this as an oscillation of the dumbbell, the dumbbell has not actually moved
from the last position. As already mentioned, when the temperature is increased,
and the oscillations are stronger, it happens at some times that the two highest
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energy atoms do not correspond at all with the dumbbell atoms. The distance [},
may anyhow be smaller than [y because the distances between the dumbbell atoms
and the next nearest neighbors are very close, and according to our definition the
dumbbell may be localized at a different reference lattice position. Only if this
is a diffusive jump, however, will this occur for a time bigger than 7. Otherwise
the next fluctuation will probably localize the dumbbell again at the next to last
position.

Based on these considerations, let us now specify the algorithm we have devel-
oped to analyze diffusive jumps of self-interstitial defects up to moderate temper-
atures. Let the output of the algorithm after some iterations be

(Batin) oo (1) (3.7)

which means that from the start time ¢} to the final time tlf,q the dumbbell was

oscillating at position f_{'z-,bcc, and it was oscillating here for p; times before the
current time ¢t. Let us now assume that at

t= max {t o A (3.8)

the dumbbell is not localized, that is l;, > o, and that at time t,. > t it gets
localized again at the reference lattice posmon RJ beey » that is Iy < [y and R] bee
is the closest reference lattice point to Rh(tloc). Then the algorithm makes the
following choice

o if t)o. — t;pj < 7 then wait until the dumbbell gets delocalized again at time
tdeloc and then set

t;pj = tdelocs (39)

o if t). — t;pj > 7 then wait until the dumbbell gets delocalized again at time
tdeloc, then set

tpe1 = tioc (3.10)
tips1 = ldeloc- (3.11)

This operation is an update of (3.7) and is repeated for the entire simulation time.
The first choice corresponds to an oscillation of the dumbbell at lattice position
j. The second choice corresponds to the localization of the dumbbell at a new
reference lattice position. At the end of the algorithm we then just consider the

time intervals with
tg,q - tzq > T (312)
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to give the position of the dumbbell.

To suppress the dumbbell from crossing the periodic boundary we shift the
position of every atom in the supercell at every time step m so that the center of
mass of the siz highest energy atoms is kept exactly at the center of the periodic
supercell, and the effect of the shift is correctly accounted for in Ry (t). The reason
why we employ the six highest energy atoms is just that at zero temperature this
corresponds to the two dumbbell atoms and its four next nearest neighbors, and
as the temperature is increased the center of mass of the six highest energy atoms
fluctuates less around the position of the dumbbell than the two highest energy
atoms.

We have then analyzed all the MD simulations with the above algorithm by
setting 7=1 ps and [y equal to the distance between the dumbbell atoms in the
reference lattice. We have checked the algorithm by comparing at every time t
the position of Ry (t) and we have found that Ry (¢) fluctuates around the position
predicted by the algorithm, as can be seen in figure 3.10 on page 53, where we
compare Eh(t) calculated in the small supercell and using CS3-33 at 600 K with
the position predicted by the algorithm. We have also compared the diffusion coef-
ficient calculated with Ry, (t) or with the position given by the algorithm, and found
perfect agreement between these two values. The algorithm in thus validated.

When the position of the dumbbell as predicted by the algorithm changes to
a new lattice site it means that the dumbbell is now oscillating for a time longer
than 7 at the new position. It is thus possible and very interesting to extract
information about the distance traveled by the interstitial between two successive
localizations at different lattice sites, which we call a jump of the self-interstitial.
Figure 3.8 shows the frequency count of the jump distances (or lengths) calculated
in the small supercell unsing CS3-33 at 600 K. Each peak in the figure corresponds
to a neighboring shell in the perfect bcce lattice, and the height of the peak gives
how many times over the 20 ns simulation the self-interstitial has displaced in a
given neighboring shell. With 55% of the total number of jumps, the most frequent
event is the displacement of the self-interstitial to the nearest neighbor position,
that is the first neighbor along the (111) direction. Almost 15% of the jumps are to
the second nearest neighbor along the (111) direction, and 5% of the jumps are to
the third nearest neighbor along the (111) direction. We thus see that, according
to our algorithm, most of the jumps occur along the (111) directions, and the
distance traveled by the self-interstitial between successive localizations is bigger
than the nearest neighbor distance. The displacement of the (110) dumbbell can be
thought as an excitation of the crowdion self-interstitial, which then decays again
to a (110) dumbbell. The relative height of the peaks depends on temperature,
and on the choice of the semi empirical potential. At lower temperatures, the most
probable event is the diffusion to the next nearest neighbor, and as the temperature
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Figure 3.8: Frequency count of the jump distances (or lengths) calculated in the small
supercell unsing CS3-33 at 600 K. Each peak in the figure corresponds to a neighboring
shell in the perfect bce lattice, and the height of the peak gives how many times over
the 20 ns simulation the self-interstitial has displaced in a given neighboring shell.
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increases diffusive events to neighbors along the (111) direction, as well as to other
neighbors, become more likely. This is a general behavior of all the semi empirical
potentials considered in this work.

In figure 3.9 we show the maximum jump length over our 20 ns MD simulations.
The left side of the figure refers to the small simulation cell with a side length of
2.2 nm, while the right side refers to the bigger cell with a side length of 4.4 nm.
Simulations in the shaded area of the figure, which corresponds to jumps exceeding
half the supercell size, are not considered, because in those cases the self-interstitial
may have crossed the periodic boundary without notice. Moreover, the jump length
becomes comparable to the distance between the periodic images of the dumbbell.
At low temperatures, on the other hand, we need at least 100 jumps over the 20
ns for statistical accuracy. Only diffusion coefficient of simulations satisfying these
criteria are shown in figure 3.7 on page 46, and have been employed to get the
activation energies by linear (1/T-log) fit. The activation energies so obtained are
in rather good agreement with the static NEB calculation, see table 3.2 on page
41.

An alternative way to identify the position of the dumbbell is by counting
the number of atoms occupying each Wigner-Seitz cell, and by identifying the
position of the self-interstitial as the cell containing two atoms [14]. This method
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is more accurate but also more expensive, especially if it has to be employed after
every time step. It is moreover not clear whether this method is more successful
in tracking the position of the dumbbell when it is quickly jumping along the
(111) directions, and thus avoid the dumbbell from crossing the periodic boundary
without notice. One would however probably need to employ this more accurate
method in the study of the vacancy diffusion coefficient.

25

< "E 20+
£= £
2 5 | ¥
@ s 5] S
‘_El / // é’ 15 / v
ol 4
= -:-';;‘7/%5/49/,. Z = ] I~ "
= € = b/
S E 104 2
E E /*—*7 p
E > D
2 —+—cs300 | § 4] o " gl
—0—CS3_30 - >~
: —v—CS3_33 1=
" 300 400 500 600 700 800 300 400 500 600 700
temperature [K] temperature [K]

Figure 3.9: Maximum jump length over our 20 ns MD simulations. The left side of the
figure refers to the small simulation cell with a side length of 2.2 nm, while the right
side refers to the bigger cell with a side length of 4.4 nm. Simulations in the shaded
area of the figure, which corresponds to jumps exceeding half the supercell size, are not
considered in the calculation of the activation energy for diffusion.
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Figure 3.10: Validation of the algorithm to locate the position of the dumbbell. In

black the position of the center of mass Ry, of the two highest energy atoms in the small
supercell, using CS3-33 at 600 K. The green line is the average position of the dumbbell

given by the algorithm.
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3.4 Formation free energy of the (110) dumbbell,
harmonic and anharmonic contributions

The formation free energy of the (110) dumbbell has been calculated using Mend03,
Mend04, CS2, CS3-00 and CS3-30 and comparing the harmonic, quasi-harmonic
and thermodynamic integration methods. This work has been published in [38].
The calculations do not consider CS3-33, because at that time when the calculation
for the other potentials was performed, it was not yet selected as an optimal fit.
(CS3-33 is expected to perform very similar to the other semi-empirical potentials.

3.4.1 Introduction

The vibrational properties of defects give information about how a defect behaves
at finite temperature within a molecular dynamics simulation and can be used to
investigate the stability of defects through a comparison of the formation free en-
ergies. These vibrational properties are generally calculated within the harmonic
approximation to the crystal potential enabling a straightforward determination
of thermodynamic quantities such as the vibrational free energy, entropy, and heat
capacity. Moreover through an analysis of the low frequency modes, information
can be gained at possible transition pathways for structural migration or transfor-
mation of defects. Work of this nature has been done to investigate the relative
stability as a function of temperature of (110) and (111) single interstitials as
well as small clusters of interstitials forming either glissile prismatic loops [24]
or so-called ‘self-trapped’ sessile structures [28]. Work comparing the harmonic
vibrational properties of vacancies, single interstitial and small interstitial loops
for the above mentioned empirical potentials has however revealed a wide spread
in the defect formation entropies and therefore the temperature behavior of the
corresponding formation free energies. A recent ab initio calculation of the har-
monic vibrational properties of the (110) and (111) dumbbell interstitials in bce
Fe [74] now provides additional data through which a quantitative assessment of
an empirical potential can be made.

It is however unclear to what extent the harmonic term contributes to the to-
tal free energy of the defect. For a perfect lattice containing inversion symmetry,
third order anharmonic contributions are expected to cancel at low temperatures
and it is only at the fourth order that anharmonic contributions will begin to be
present. At higher temperatures where the atomic vibrations increasingly deviate
away from the perfect lattice configuration a non-negligible anharmonic contri-
bution to the vibrational entropy and corresponding free energy will increasingly
occur [75]. For the case of interstitials, which break the lattice symmetry at and
around the core of the defect and also involve large local compressive strains, little
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knowledge exists about the magnitude of the anharmonic contribution to the free
energy. Additionally, the harmonic approach to estimating the free energy becomes
problematic when defect diffusion occurs at a time scale comparable to the char-
acteristic vibrational period of the defect. In this regime, where a diffusion event
(a so-called lattice “hop”) may no longer be considered a rare event, the defect
cannot reach local thermal equilibrium before the next migration and the concept
of a harmonic ground state becomes meaningless.

The main goal is to investigate the anharmonic contribution to the total for-
mation free energy of the single (110) dumbbell interstitial by comparing the usual
harmonic result with the anharmonic free energy obtained using a thermodynamic
integration technique.

3.4.2 Harmonic, quasi-harmonic and anharmonic contribu-
tion to the free energy

Harmonic method

The most popular method to calculate vibrational free energy of a particular atomic
configuration is based on the harmonic approximation. Within this approximation,
the potential energy function (2.2) of a periodic system of N atoms is expanded
to second order near a local minima obtained either by conjugate gradient or
molecular statics structural relaxation methods. This local minimum defines the
zero temperature ground state structure of the atomic configuration. Let the
atomic coordinates of this local minima be given by B, ..., R, and let @y, ..., @y
be small displacements of the atoms away from this local minima. Then we have

—, - — R 1
E(R(l) + Uy, - .. ) R?V + uN) ~ Elocal + 5 Z ufDZVU;/, (313)
i7j:17"'7N
WV=x,Y,z
where p, v = x,y, z refer to the Cartesian coordinate (polarization) directions,
i,j =1,..., N are the atomic indices and Ej,cqy = E(RY,..., RY) is the local en-

ergy minima. The translational invariant force matrix is given by

DI = N — 5 Z AR (3.14)
k

where A is the Hessian matrix of rank 3N defined by

PE(R,,...,Ry)
OR!ORY q

0 B0
RY,...RY,

m

(3.15)
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The classical vibrational free energy within the harmonic approximation is then
given by [75]
3N-3

hw,,
F(T,N) = Eioca1 + kBT In 3.16
(T.3) = B + T 3 (22 (3.16)

where w, = 4/ dﬁn, n = 1,...,3N are the vibrational frequencies of the system

calculated from the eigenvalues d,, of the force matrix D. The sum in (3.16)
excludes the zero frequency translational modes and thus spans the positive 3N —3
frequencies. Here M is the mass of an Fe atom, A Planck’s constant and kg
Boltzmann’s constant.

When considering either a perfect lattice or a defect structure, the correspond-
ing atomic configuration is relaxed at a particular volume to obtain the force
matrix. The chosen volume can be the 0 K equilibrium value or a value obtained
from zero-pressure finite temperature dynamical simulations. Performing a har-
monic expansion at the chosen volume will result in the vibrational frequencies
depending implicitly on that volume - this approach is referred to as the quasi-
harmonic approximation. In what follows, the harmonic free energy will refer to a
harmonic expansion at the 0 K equilibrium volume whose temperature dependence
arises explicitly via (3.16). On the other hand, a quasi-harmonic free energy at a
given temperature 7" arises from a harmonic expansion at a volume obtained from
zero-pressure dynamical simulations performed at temperature 7" where (3.16) is
evaluated only at T

Estimation of the anharmonic contribution to the free energy: the
Frenkel-Ladd method

The free energy of a system is defined entirely by its Hamiltonian H, = H; [(75, )],
and cannot be expressed as a simple ensemble average such as can be done for
internal energy, heat capacity and stress. However by constructing the Hamiltonian

H(\) = (1 — A\ Hy + M, (3.17)

where Hy = Hy [(7;, ;)] is a reference Hamiltonian, the difference in free energy can

be expressed in terms of a thermodynamic integration over an ensemble average
[76] with respect to H(\)

F— Fy = /1 dEX) )\ /1<8H(A)>Ad)\ - /1(]{1 CHadh,  (3.18)

d\ O\
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where

(H, — Hoy = ZLA / Ay - pndr, -y (Hy — Ho)exp[-BH(N)]  (3.19)
in which, Z, is the corresponding partition function of H(A) = (1 — X\)Hy + AH,
and 5 =1/(kgT).

Equation (3.16) can then be used to determine the total free energy, Fi, of
an N atom configuration, by choosing a Hy = Hy [(75, p;)] for which Fj is known,
and calculating (H; — Hy) either via a molecular dynamics or an ensemble Monte
Carlo (MC) simulation. In the present work we employ as a reference Hamiltonian,
Hy; the harmonic expansion around a local minima, see equation (3.13) and use
the Monte Carlo numerical technique to determine the ensemble average. In this
way, Monte Carlo simulations will yield F; — Fj via equation (3.18), which is the
anharmonic contribution to the free energy. Adding the harmonic contribution
(3.16), to this then gives the total free energy of the atomic system.

3.4.3 Results

Formation free energy of the (110) interstitial dumbbell
The formation free energy of a self-interstitial at temperature 7T is defined as

AF(T) = Fon(T, N +1) — 21

Foee(T, N), (3.20)

where F(T) = Fpp(T, N + 1) and Fy.(T, N) are, respectively the absolute free
energy of the periodic super-cell containing N 4+ 1 atoms including the single inter-
stitial and of the perfect bee periodic super-cell containing N atoms. The formation
free energy may depend sensitively on whether the two supercells have the same
volume, the same volume per atom or the same pressure.

In the present section the free energy of the (110) dumbbell is calculated using
the harmonic, the quasi-harmonic and the thermodynamic integration methods.
For all cases a periodic simulation cell consisting of 2’001 atoms for the interstitial
configuration and 2’000 atoms for the bce reference lattice is employed to ensure
minimal super-cell size effects. For the harmonic calculation we relax the (110)
dumbbell configuration using molecular statics in a simulation cell that has a fixed
volume per atom equal to that of the 0 K equilibrium bce volume per atom. For the
quasi-harmonic calculation, the (110) dumbbell is further relaxed at fixed volumes
per atom corresponding to the 300, 400, 500 and 600 K equilibrium bce volume
per atom obtained from zero pressure molecular dynamics simulations using the
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Figure 3.11: (H; — Hp) for the (110) interstitial dumbbell as a function of the thermo-
dynamic integration parameter A for the temperatures 300 and 600 °K for the empirical
potentials (a) Mendelev-2003, (b) Mendelev-2004, (c¢) CS3-00, (d) CS3-30, and (e) CS2.
At values of A close to unity, (Hy — Hp), does not converge for all empirical potentials
due to diffusion of the defect.
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Parrinello-Rahman barostat method. Table 3.4 on page 62 shows the tempera-
ture dependent equilibrium bcc energies per atom and volumes for the empirical
potentials used, and we see that for the case of the CS2 potential thermal contrac-
tion rather than thermal expansion occurs for the considered temperature range.
Table 3.4 also displays the relaxed defect formation energies of the (110) dumbbell
interstitial at these temperatures and corresponding fixed volumes per atom. For
all empirical potentials a decrease in the relaxed formation energies occurs with
increasing temperature.

For the thermodynamic integration free energy calculation, these fixed volumes
per atom configurations are used in constant volume ensemble MC simulations at
the corresponding temperatures to determine (H; — Hy), for A=0.00, 0.05, 0.1,
.ory 095, 1.00 using the Frenkel-Ladd method outlined in the previous section. To
obtain a high level of precision the ensemble averages are performed using ~ 108
accepted Monte Carlo steps. Each trial Monte Carlo step involved a randomly
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chosen atom being randomly displaced by a maximum distance of 0.1 A. We note
that by keeping the volume fixed the present calculations do not consider free
energy contributions arising from volume fluctuations. Due to the translational
invariance of the full Hamiltonian, Hy; = H; [(7;, p;)], and therefore also of H(\) at
A = 1, the center of mass of the system is also coupled to an artificial harmonic
oscillator to minimize fluctuations in H; — Hy as A approaches 1. The resulting
free energies are then accordingly corrected using the known analytical result for
the free energy of a harmonic oscillator to yield the total free energy of the defect.

Figure 3.11 displays (Hy — Hy), for the interstitial defect, as a function of the
temperatures 300 and 600 K. Data for all potentials are shown. Each data point
represents the average of approximately 300’000 to 500’000 accepted Monte Carlo
steps. For the 300 K calculation good convergence is seen for all values of A\ and
the thermodynamic integration may be easily performed. On the other hand, for
the 600 K calculation, (H; — Hy), does not converge for A values at and close
to unity indicating large fluctuations in H; — Hy occur during the MC sampling.
The origin of such fluctuations lies in the interstitial defect undergoing diffusion,
where inspection of the 600 K atomic configurations derived from the Monte-
Carlo simulations reveals that the (110) dumbbell has moved to a rotated (110)
dumbbell centered at a different site. This occurs naturally in the full Hamiltonian
of the system Hy = H [(7}, p;)] whilst being entirely suppressed in the reference
(harmonic) Hamiltonian Hy = H, [(7;, p;)]. At values of A close to unity, diffusion
is therefore allowed resulting in large values of Hj since the defect is far away from
the Harmonic minimum. This is a fundamental limitation of the Frenkel-Ladd
method. Although diffusion is present in the 600 K simulations, the (110) dumbbell
interstitial defect will spend most of its time in its ground state configuration and
the lack of convergence encountered in figure 3.11 can be remedied by standard
cubic-spline extrapolation of (H; — Hy), to values of A near 1.

Figure 3.12 displays the harmonic, quasi-harmonic and total formation free
energies as a function of temperature for the potentials considered. There are
significant differences across the empirical potentials due firstly to the different
zero temperature formation energies, see table 3.4 on page 62, and secondly the
different temperature dependencies of the free energy. The latter being particularly
the case for CS2, see figure 3.12 (b), where the harmonic and quasi harmonic
formation free energies increase with increasing temperature. When comparing the
harmonic, quasi-harmonic and total formation free energies for a given potential,
we see that the harmonic values generally overestimate the free energy. For the
CS2 potential (in figure 3.12 (b)) the over estimation is considerable indicating it’s
strongly anharmonic nature, whereas for the Ackland-Mendelev (in figure 3.12 (a))
and CS3 (in figure 3.12 (c)) potentials the anharmonic correction is relatively small
and indeed negligible for the CS3-30 potential.
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Figure 3.12: The formation free energy of the (110) dumbbell interstitial derived from
the harmonic, quasiharmonic, and thermodynamic integration techniques using (a) the
Mendelev-2003 and Mendelev-2004 empirical potentials, (b) the CS2 empirical poten-
tials, and (c) the CS3-00 and CS3-30 empirical potentials. The solid lines represent the
harmonic, the triangled data represent the quasiharmonic, and the filled circles represent
the total free energy.

a) b) c)

3'6I'I'I'I'I'I5'2I'I'I'I'I'I4"3|'I'I'I'l'l

3 - - - p—
5 p——

35 | J 48| - e —9—p___
42 k -
5] \:‘: Jaat o] | e
1 T 141 F , -
A= ™
33 - \ =1 40 B & L ‘1"'5':‘.

formation free energy (eV)

b - ‘\‘____
[ g ] an] $— 0= 140 |- N
32 F —Mendelev2003 | | | - MP-CS3-00 ®
+ = Mendelev-2004 - [ =———MP-CS3-30 1
3.1|.|.|.|.|.13'2—|.|.|.|.|.|'3|g1.|.|.1.|.|
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
temperature (K) temperature (K) temperature (K)

Formation entropies

The temperature dependence of the vibrational free energy may be largely un-
derstood from knowledge of the vibrational entropy. Thermodynamically, entropy
may be obtained from the free energy via

OF

(3.21)
For a direct measure of the total formation entropy, the results contained within
figure 3.12 are fitted to AF(T) = AEy — ASyT, where AEj is the 0 K formation
energy of the (110) dumbbell taken from table 3.4 on page 62 and ASy is the
formation entropy at fixed volume per atom. We note that the formation entropy of
a defect structure is defined analogously to the formation free energy, see equation
(3.20). In columns one to four of table 3.3 we show the results of this method
applied to all three free energy estimates. Whilst absolute entropy can only be
positive, the formation entropy of a defect can be negative and simply indicates
that the defect lowers the entropy relative to that of the surrounding lattice.

Within the harmonic and quasi-harmonic approximation, the vibrational en-
tropy may be easily obtained by explicitly differentiating (3.16). Table 3.3 also
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lists for all potentials the harmonic formation entropy at 300 K at fixed volume
(ASp), constant volume per atom (ASy ) and zero hydrostatic pressure (ASp). For
the case of fixed volume and constant volume interstitial structures, the reference
is the equilibrium bcc lattice for the corresponding potential. Data from the lit-
erature are also shown, in particular the constant pressure calculation of Marinica
and Willaime [24] and a recent DFT calculation of Lucas and Schéublin [74].

Harmonic Quasi- Thermo-  Harmonic Harmonic Harmonic
method  harmonic  dynamic ASy ASy ASp
method  integration
CS2 -26.58 -12.71 -0.28 -23.66 -26.59 -24.73
(-21.04)
Mend03 1.80 4.08 5.67 2.94 1.62 1.27
(2.84)
Mend04 2.55 4.20 4.92 1.81 2.72 4.02
CS3-00 0.71 1.31 4.02 -5.39 0.53 3.13
CS3-30 -0.63 -0.34 0.28 -4.17 -0.65 0.69
DFT [74] 0.24

Table 3.3: Formation entropies in units of kp
parentheses for comparison results from [24].

of the (110) interstitial dumbbell. In
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Table 3.4: Equilibrium bee volume per atom (A3) and energy per atom (eV) as a function
of temperature for the empirical potentials considered in the present work. Also shown
are the (110) interstitial dumbbell formation energies (eV) as a function of temperature
for atomic configurations whose volume per atom is set to the corresponding equilibrium
bce volume per atom.

bee equilibrium  bec energy (110) dumbbell

Temperature volume per atom per atom formation energy
(K) (A?) (eV) (eV)
CS2
0 11.7768 -4.3160000 3.65
300 11.7381 -4.3159312 3.63
400 11.7135 -4.3158156 3.61
500 11.6972 -4.3157079 3.60
600 11.6912 -4.3156619 3.60
Mend03
0 11.6393 -4.12243923 3.52
300 11.6845 -4.12234347 3.51
400 11.7141 -4.12217542 3.51
500 11.7472 -4.12189093 3.50
600 11.7859 -4.12142889 3.49
Mend04
0 11.6393 -4.01298646 3.53
300 11.7001 -4.01280968 3.51
400 11.7295 -4.01259930 3.51
500 11.7602 -4.01229416 3.50
600 11.7948 -4.01186661 3.49
CS3-00
0 11.7768 -11.64735826 4.19
300 11.9001 -11.64683629 4.13
400 11.9297 -11.64650881 4.12
500 11.9595 -11.64610405 4.11
600 11.9889 -11.64562897 4.09
CS3-30
0 11.7768 -9.89319216 4.23
300 11.8387 -9.89301704 4.21
400 11.8573 -9.89289711 4.20
500 11.8755 -9.89274959 4.19

600 11.8941 -9.89256858 4.18
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3.5 Fitting parameters of the local ferromagnetic
moment

For CS2 the parameters for the local ferromagnetic moment were previously op-
timized to reproduce the bulk magnetic moment as a function of homogeneous
volume changes computed with DFT [6]. In the present work we try a new ap-
proach where we focus on the variation of the Stoner exchange energy

Ex(¢) — Ex(Co) = ifs (G —¢) (3.22)
which is related to the magnetic moment ( via the Stoner parameter Is, and where
(o is the equilibrium value of the magnetic moment per atom. A comparison of
the local magnetic moment between different dynamical models seem to us only
meaningful if they are related in a similar way to a change in the total energy
of the system. For this reason we have optimized the parameters C, p. and v in
(2.11) such that the magnetic moment is related to the Stoner exchange energy
via a Stoner parameter of I ~0.7 eV/(atom p3), which is in the theoretical and
experimental range of bec iron, that is from 0.4 to 0.8 eV /(atom p3) [67, 77]. We
also require an equilibrium ferromagnetic moment per atom in the bce phase of
(0=2.2 pp, which is close to the experimental value. Moreover, we keep an eye
on the ferromagnetic moment distribution in the core of the (110) self-interstitial.
For more details, see (A.36), (A.38), (A.39) and (A.40) in appendix A.

In table 3.6 we show the local ferromagnetic moment in the core of the (110)
self-interstitial for the optimal parameter set. The magnetic moment in the core
of the self-interstitial is indeed strongly reduced, see figure 3.14.

Figure 3.13 shows the dependence of the bulk ferromagnetic moment on ho-
mogeneous volume changes. It is evident from this picture that for moderate
compressions the magnetic moment is almost linearly related to the isostatic pres-
sure. As explained in the appendix A, however, the comparison is only meaningful
for positive values of the magnetic moment { > 0. Note again that the present
parametrization does not reproduce the Stoner exchange energy as given in figure

CS2  (CS3-00 CS3-30 CS3-33
C 3.2959 4.6869 4.2309 4.4511
pe  0.88 0.70 0.75 0.66
0 0.3 0.3 0.3 0.3

Table 3.5: Parameters to set in equation (2.11), on page 18. C'is given in units of ug,
pe and v are dimensionless
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Figure 3.13: Bulk ferromagnetic moment as a function of volume per atom changes using
the optimal parameter set of table 3.5, the inset shows the ferromagnetic moment as a
function of pressure.
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A.2 exactly, but only the relative ordering and the order of magnitude are retained.
We have done this to improve the description in the core of the dumbbell, and in
particular not to allow the moment to become zero. Considering the exchange
energy in (A.38) ezactly, the value of the magnetic moment at 10 GPa would have
been (=2.11 up for CS2, (=1.85 up for CS3-30, (=1.76 up for CS3-33 and (=1.65
pup for CS3-00. Thus we see that compared to a magnetic moment giving an exact
description of the Stoner exchange energy (A.38) with a Stoner parameter of 0.7
eV/(atom p3), the present parametrization slightly underestimates the magnetic
moment on compressions for CS2, and overestimates it for the CS3 potentials.

The DD interatomic potential formalism offers for the first time the possibility
to study the magneto-elastic effect on million atom simulations at a very cheap
computational cost. The effect on the b = 1/2[111] edge dislocation core is quite
significant. In the compressive region of the core, that is the lower half plane on
figure 3.15 (a), the magnetic moment is reduced down to ~ 1.7 up, while in the
tensile region of the core in the upper half plane the magnetic moment increases
up to ~ 2.5 pp. On the other hand, the magneto-elastic effect on the b = 1/2[111]
screw dislocation is negligible, see figure 3.15 (b). This is due to the lack of a
strong hydrostatic stress variation in the case of the screw dislocation.
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Figure 3.14: Magnetic moment on self-interstitial using CS3-30 and the new parametriza-

tion.
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11T o 187 171 195 185  1.88
[1T1] nn 2.52 2.16 2.18 2.17 2.18
[Tll] nn 2.52 2.16 2.18 2.17 2.18
mean 1.7 1.8 2.0 1.8 1.9
bce 2.3 2.2 2.2 2.2 2.2

@ data from Ref. [17]

Table 3.6: Local ferromagnetic moment on atoms in the core of the (110) dumbbell
self-interstitial in units of up. The total number of atoms in the core of the dumbbell
considered in this table is ten: the two dumbbell atoms along [110], four equivalent
nearest neighbors of the dumbbell along [111] and [111], and four equivalent nearest
neighbors of the dumbbell along [111] and [111] from the center of the bec cell. The
mean magnetic moment is then obtained by weighted average over the core atoms.
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Figure 3.15: Local ferromagnetic moment on b=1/2[111] edge and screw dislocations.
The structures have been relaxed using CS3-30. The local ferromagnetic moment is
colored according to the legend, the lower value in blue correspond to ~ 1.5 up, the
higher value in red to ~ 2.5 up. CS2 and the other fits of the DD potential lead to

similar results.

A kA R 2 EE R R

L R B B N R B N




Table 3.7: Optimal parameter set for CS3-00.

CS3-00
A 18.42439658215181
B 6.318801651265125
Knot point fn rf
1 1.415806965777580 3.600000000000000
2 -3.172941853042061 3.457142857142857
3 2.518779011423245 3.314285714285715
4 1.5223391656998341E-002 3.171428571428572
5 -2.668402591084014 3.028571428571428
6 5.300933735220243 2.885714285714286
7 -6.253127207203284 2.742857142857143
8 4.354340872738243 2.600000000000000
Knot point |78 rY
1 0.1671995832644735 3.640000000000000
2 5.748723734256789 3.457142857142857
3 1.238260767101568 3.285714285714286
4 -27.80866986307653 3.114285714285714
5 47.11807523555423 2.942857142857143
6 -27.30051838220325 2.771428571428571
7 -0.1513119116248357 2.600000000000000
8 40.00000000000000 2.500000000000000
Y 1.67606860
Av 1.54501120

A and B are given in eV, r} and rY in A, f, in 1/A% V,, in eV/A5, \; and Ay in 1/A.
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Table 3.8: Optimal parameter set for CS3-30.

A
B

Knot point

0 3 O O W N+

Knot point

0 3 O Ol Wi

As
Av

14.96128089567820
4.754553632722176

fn
2.403773687542704

-5.616539002612204
4.518414772417062
0.4511822086528371
-3.719791696378764
3.176870270223375

-0.5435529434135428

4.835150824080221

Vn
4.852979304356857
-7.762255546111966
0.2118336138629596
-1.592481362817459
0.1193277971484847
23.52407656927417
-7.298957800246290
-1.386774762653686

2.04390805
0.19900397

T
3.600000000000000
3.457142857142857
3.314285714285715
3.171428571428572
3.028571428571428
2.885714285714286
2.742857142857143
2.600000000000000

T’V

3.400000000000000
3.285714285714286
3.171428571428571
3.057142857142857
2.942857142857143
2.828571428571429
2.714285714285714
2.600000000000000

A and B are given in eV, rf and 7 in A, f, in 1/A® V,, in eV/AS, Ay and Ay in 1/A.



Table 3.9: Optimal parameter set for CS3-33.

CS3-33

Knot point

N O Ol = W N

Knot point

OO UL i W+

> >
< =

21.51448001905501
8.093616756568505

fn
0.5743629513080918
-1.856080700992208
2.419382074727780
-1.690722245925826
1.124207032421987

-0.9378621160151912

1.072376272490842

Va

3.9561191249708196E-004

0.7398586039192809
0.4779268352403156
-3.295383945850647
6.719355483414380
1.599123795740709
-5.098972177684258
40.00000000000000

0.83959175
1.02153257

v
3.700000000000000
3.516666666666667
3.333333333333333
3.150000000000000
2.966666666666667
2.783333333333333
2.600000000000000

TV

4.000000000000000
3.766666666666667
3.533333333333333
3.300000000000000
3.066666666666667
2.833333333333334
2.600000000000000
2.500000000000000

A and B are given in eV, rf and r} in A, f, in 1/A% V,, in eV/A5, \; and Ay in 1/A.
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Chapter 4

Properties of the b =1/2(111]
screw dislocation.

In the following we will explain in details how to construct and analyze the screw
dislocation structures employed in this work. All the atomic configurations are
first transformed in a convenient orthogonal system. The axis orientations and
corresponding periodic vectors for the bee lattice best suited to study the screw
dislocation are as follows

r — [121]
y — [1OT]
z — 1/2[111].

The so defined bce supercell contains six atoms. In this supercell, the atoms lie on
three (111) planes containing two atoms each, and the distance between the planes
is b/3 = 1/(3)a/6. We will now refer to the left side of figure 4.1. This shows a
projection of the bec lattice on the (111) plane. The atoms are colored according to
which (111) plane they belong to. Lets say the yellow atoms belong to the upper
(111) plane (closest to the reader), the blue to the middle and the pink to the
bottom plane. The right side of the figure shows a 3D view in the [101] direction.
Each bunch of atoms corresponds to a ‘triangle’ of [111] rows of atoms, indicated
in the left side of this figure by left or right circular arrows. It can be seen that the
‘Right hand bce’ structure forms an helical structure of atoms turning in the right
hand sense, while the ‘Left hand bee’ structure forms an helical structure of atoms
turning in the left hand sense. Looking at a particular ‘triangle’ in the left side of
the figure, the arrow is always following the sense pink-blue-yellow, that is from
the bottom atomic plane to the upper atomic plane. Neighboring ‘triangles’ thus
correspond to helical structures of atoms in the [111] direction rotating in opposite
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Figure 4.1: Construction of screw dislocation cores. The left side of the figure shows a
view of the bec lattice from the [111] direction, where atoms are colored according to
which (111) plane they belong, the right side a view of a ‘triangle’ of nearest neighboring
[111] rows from the [101] direction.

Left Right
« @ B ) A% N5 e ke hand hand Soft Hard
c e G ® G o @ e bcc bcc core core
[111]
[0 o o C;)DQ;.) e O o A

[111]

directions.
A screw dislocation with Burgers vector b=1/2[111] can be generated by shifting
every atom in the positive z direction by

where the dislocation line center is the point Cy = (Ci 4, C1,) and 6y is the angle
with the atom at P = (P,, P,) in the xy plane. Equation (4.1) is the isotropic
displacement field of a screw dislocation with Burgers vector b [58]. Isotropic
elasticity is a good approximation at high distances m = ||C} — P|| from the
dislocation line, that is for vy > b. The atoms in the region where r; is of the
order of the Burgers vector b are however strongly distorted from the perfect lattice
position and cannot be treated by the elastic approximation. The anisotropic
solution for the displacement field, which is not available in analytical form, would
give a better description in the intermediate range of r1, but it will still not be
sufficient for the atoms in the core. A lattice interatomic model, like EAM, Bond
Order Potentials, Tight Binding or DF'T are needed to find a better approximation
of the minimum energy configuration in the core of the screw dislocation.

If the core center (' is set as in the figure, that is in the center of a ‘triangle’
of rows oriented like the ‘Left hand bcc’, the structure of the core after application
of the strain field (4.1) will depend on the sign of the strain field, and results
in either a so called soft (or easy) core configuration, setting (—) in (4.1), or a
hard core configuration, setting (+) in (4.1). Of course the choice of a nearest
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neighboring ‘triangle’ will change the helicity and thus a (+) will result in a soft
core and a (—) in a hard core. In a soft core, the atoms in the ‘triangle’ of rows
closest to the dislocation line have now opposite helicity as before and are thus
strongly distorted with respect to neighboring rows. Taken alone, that is without
considering the neighbor rows, the central row atoms in the soft core are still in a
perfect bee orientation, while, on the other hand, the atoms composing the central
rows of the hard core are lying in the same plane, so that the absolute distance
between the atoms is strongly reduced.

A very clever way of displaying the displacement field of the screw dislocation is
by so called differential displacement maps® introduced by Vitek [78], like the one
in figure 4.2. The arrows pointing between neighboring rows of atoms represent the

Figure 4.2: Differential displacement map of a non-degenerate core.
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relative displacement caused by the dislocation in the [111] direction. By relative
displacement it is meant the displacement caused by the dislocation with respect
to the perfect bee lattice. The perpendicular displacements correspond to the edge
component of the displacement field and are usually very small compared to the
screw component. The scale of the arrows is such that a displacement of b/3 is put
equal to the side length of a ‘triangle’, that is ||1/3[121]|| = v/6a/3. The absolute
direction of the arrows gives the sign of the displacement.

Energy minimization of the screw dislocation using EAM potentials can lead,
depending on the potential employed, to a so called degenerate or polarized soft
core structure, like the ones shown in Figure 4.3. The displacement of atomic

ITo generate such maps we have employed the freeware software ddplot, which we have
downloaded from cnls.lanl.gov/~groger/codes/ddplot/ddplot.html maintained by Roman
Groger.
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rows in the {110} planes (or equivalently the (112) directions) is no longer sym-
metric with respect to the dislocation center. This core structure results from
the displacement of the three central rows by a constant value of b/6, either in
the positive or negative direction of the dislocations Burgers vector. As a con-
sequence two polarized structures with the same energy exist. Other interatomic
models predict that this degenerate or polarized structure is either unstable or
metastable with respect to the non-degenerate (or non-polarized) structure shown
in figure 4.2. Recent DFT calculations have suggested that the minimum energy
configuration in all bee transition metals, based on the analysis of the y-surface,
is non-degenerate [39], and this was confirmed by explicit structure relaxations in
bee iron [39, 47] and Mo and Ta [79]. The same result was found using the Bond
Order Potentials for W and Mo [80]. The consequences of possible polarizations of
the core structure on plasticity in iron is a matter of current research and debate
[81]. Static calculations of the Peierls stress dependence on the direction of the
applied shear stress employing EAM potentials with either a non-degenerate or a
degenerate ground state core structure, lead to very different results [82]. Chal-
lenging HRTEM experimentally studies are ongoing to determine the ground state
core configuration [83, 84].

Figure 4.3: Differential displacement maps of degenerate cores.
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4.1 Fundamental properties of the migration mech-
anism of the screw dislocation

The main goal of atomistic simulations of the screw dislocation is to understand
its mobility laws, and more generally low temperature plasticity in bce metals. A
mobility law is basically a relation between the applied stress and the velocity of
the dislocation. The research is focused on the screw dislocation, as non-screw
dislocations are much more mobile, and move with an applied stress an order of
magnitude lower than the screw dislocation [81]. A mobility law for bce transition
metals should depend also on the strain rate and the temperature, because of the
observed strong dependence of the yield stress on strain-rate and temperature in
bce metals. A first model for the mobility of screw dislocations is due to Dorn
and Rajnak [85]. This continuum model assumes that the dislocation can move
by kink pair nucleation only along one direction. The effect of the discrete lattice
on the core of the dislocation is taken into account by assuming a so called Peierls
energy potential. The Peierls potential is assumed in the shape of an energy barrier
between two energetically equivalent minima, akin to an inverted parabola. The
activation energy for kink pair nucleation can then be calculated as a function of
the applied shear stress, by assuming an isotropic line tension model, and that
the dislocation bows continuously forth and back between the two minima to form
a kink pair. The Peierls stress is then defined as the stress at which the kink
pair formation energy is zero, or the stress required to move the dislocation at
zero temperature. This model has been widely used to experimentally determine
the kink pair formation energy. The kink pair formation energy so determined
are scattered between 0.53 eV and 0.83 eV [85, 86, 87| for high purity a-iron. In
[88] this model was extended to the case of a two dimensional Peierls potential
(that is a potential surface now defined in the xy plane of figure 4.1 on page
72). The potential surface was assumed to be a simple periodical function, with
minima at the soft core positions, and maxima at the hard core positions. Under
an applied shear stress, the dislocation may now form kink pairs of any shape
towards the nearest neighbor soft core configurations in the (121) directions. For
an applied shear stress resulting in a force on the dislocation close to the [121]
direction, they considered three kink pairs in the [121], [211] and [112] directions.
The dislocation velocity is then expressed as the average over these three types of
translations, weighted by the probability to thermally activate each kink pair. In
spite of its simplicity, this model is a great improvement, as it incorporates the
strong plastic anisotropy of the bcc lattice. This model has then been employed in
a multiscale modeling approach of plastic deformation of Mo and W [89, 90, 91].
The Peierls surface has more or less the same functional form as in [88], but the
parameters defining the surface are now determined by self-consistent fitting of the
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Peierls stress found in atomistic calculations using Bond Order Potentials, which
give a non-degenerate core structure consistent with DF'T calculations. The Peierls
surface does now implicitly depend on the applied stress. Because the Peierls stress
is found to depend strongly on components of the applied stress perpendicular to
the Burgers vector, the hydrostatic component of the applied stress has thus a
strong effect on the core of the screw dislocation.

In this work we are limiting our investigation to some sampling of the Peierls
surface at zero stresses by atomistic modeling, that is the one dimensional Peierls
potential and the formation energies of kinks in the (211) direction, and the rel-
ative energies of different core structures. Up to now only the Ackland-Mendelev
potentials were able to give a non-degenerate core structure of the screw disloca-
tion. In this work, we have developed a method to fit the core structure, see later
in section 4.2, and in the new fits of the DD potential CS3-00, CS3-30 and CS3-33
the non-degenerate core structure has lower energy than the degenerate core struc-
ture. We will see that all the EAM potentials with a very stable non-degenerate
core predict however an additional minima in the (zero stress) Peierls surface. This
minima corresponds to a so called split core, which can be obtained by applying
the initial (unrelaxed) strain field

o (P) = %uz(el) + L) (4.2)

2
where #; and 6, are the angles as in figure 4.1, and u, is the isotropic strain field
of the screw dislocation from (4.1), see figure 4.4 for the differential displacement
field of the unrelaxed and relaxed split core. We have found that very surprisingly
under zero applied stress the relaxation of this structure gives the same energy as

the soft core for all the potentials with a stable ground state non-degenerate core,
that is Mend03, Mend04, CS3-30 and CS3-33.

4.1.1 Emnergy minimization of screw dislocation core struc-
tures

To investigate the core structure of the b = 1/2[111] screw dislocation we employ a
cylindrical bee supercell at the equilibrium lattice constant a, see table 2.1 on page
25 with the symmetry axis of the cylinder oriented along the [111] direction, as in
figure 4.5. The cylinder has a radius Ry of 5 nm and a height Ay corresponding
to four Burger vectors b, that is ~ 1 nm. The so obtained supercell contains
approximately 6’576 atoms. Periodic boundary conditions are applied along the
[111] direction and only the atoms within a radius Ragom of 4 nm from the cylinder
axis are allowed to move, while the other atoms at the boundary of the cylinder
are kept fixed. The soft non-degenerate and degenerate core, the hard core and the



77

Figure 4.4: Differential displacement map of the unrelaxed and relaxed split core.
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split core structures have been relaxed in this supercell. The soft and hard cores
were obtained by displacing the atoms in the supercell according to the isotropic
displacement field (4.1). The initial configuration for the degenerate core was
obtained by relaxing the soft core using CS2, and then relaxing the so obtained
configuration with another potential. The configuration of the split core is obtained
by applying the displacement field (4.2) to the cylinder. These structures are then
relaxed using the conjugate gradient algorithm until the force on every atom in
less that 0.01 eV/A. Figure 4.5 also shows the core structures after relaxation. The
color represents the energy of the atom in eV. Only atoms with an energy of 0.05
eV bigger than the equilibrium energy F},.. are shown. These are the atoms that
contribute mostly in the energy difference between the structures. Atoms in blue
have an energy close to Ej.., and atoms in red have an excess energy of 0.2 eV or
more with respect to Fy... Compared to the split and degenerate core structure,
in a non-degenerate core the excess energy is more concentrated. The central rows
of the hard core have an excess energy of 0.4 eV/atom. This is a general result
that applies to all the potentials.

We now want to make some points on how to calculate the energy differences
between these structures, which is a non trivial task, because dislocation displace-
ment fields are long range. In our cylindrical simulation cell, the boundary atoms
are fixed to the initial isotropic displacement field (4.1), and do not move during
the structure relaxation. Because, however, atoms in the active region are dis-
placed, the total energy of the boundary atoms changes after relaxation. Let us
call BB the total energy of all the atoms in the static boundary after relaxation,
and E* the total energy of all the atoms in the active region after relaxation. Even
if the boundary atoms are fixed, the energy of the boundary is changing during
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Figure 4.5: Construction of the cylinder supercell for the screw dislocation.
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the relaxation, because atoms in the active region and close to the boundary are
displaced. For the soft and hard cores, the boundary atoms are fixed to exactly
the same positions, corresponding to the isotropic displacement field (4.1). The
boundary energy difference between the two core structures is thus zero before re-
laxation. We consider the energy difference EP — E2 between the boundaries of the
two core structure as the absolute error in the energy difference between the two
core structures given by Ef*— E2. For the split core the situation is different, as the
initial displacement field is not exactly the same as for the soft or hard core, thus
also the displacement of the boundary atoms is not exactly the same. The error
EP — EP was anyhow always found to be < 10 % of Ef* — E5. Another problem
is that the total energy of the system, typically ~ 5 eV per atom, or ~ 5’000 eV /b
for a cylinder radius of ~ 5 nm, is much bigger than the energy differences between
the structures, typically of the order of 0.1 eV /b. Thus, increasing the radius of
the cylinder too much will inevitably cause numerical problems. A way to improve
the precision of this calculation would be to use the anisotropic displacement field
and so called flexible boundary condition to couple the boundary atoms with an
elastic continuum.

Table 4.1 gives the so computed energy differences between dislocation struc-
tures. Sometimes the structure is unstable with respect to the conjugate gra-
dient relaxation. The first column gives the energy difference between the non-
degenerate and the degenerate core structure and the second column the differ-
ence between the hard core configuration and the ground state soft core structure.
As explained before, we estimate an error of at least 0.01 eV/b. We note that
potentials with a deep hump in the single string potential have generally stable
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Table 4.1: Energy differences between core structures of the screw dislocation in eV /b.
The first column gives the energy difference between the degenerate and non-degenerate
core, in case they are both (meta-)stable, and the second column the energy difference
between the hard and ground state soft core, in case they are both (meta-)stable. It is
indicated whether some structures are unstable by the conjugate gradient algorithm.

Edeg - Enon-deg Ehard - Esoft

CS2 non-deg unst. 0.14
CS3-00 0.01 0.17
CS3-30 0.07 0.21
CS3-33 deg unst. hard unst.
Mend04 deg unst. hard unst.
ABO -0.39 0.44
DFT deg unst. 0.02-0.03¢
@ from [92]

non-degenerate cores, the only exception is CS3-00, where the two core structures
have almost the same energy. CS2 and ABO, on the other hand, clearly favor a
degenerate core structure, see figure 2.2 on page 27, and later in section 4.2 for
more details. It is interesting to note that CS2, CS3-30, CS3-33 and ABO overes-
timate the hard to soft core energy difference from DF'T by an order of magnitude
and we mention again that, for potentials with a stable non-degenerate core, the
split core has, within the error of the calculation method, the same energy as the
non-degenerate core.

Although DFT is a more accurate description of interatomic bonding, and an
accurate description is needed since the energy differences between the structures
are very small, it is nevertheless limited to small simulation cells, which, if not a
major problem for localized defects like self-interstitial, needs proper treatment for
extended defects like the screw dislocation. The main drawback of a cylindrical su-
percell containing a single screw dislocation is that in DF'T one cannot separate the
energy contribution of the dislocation from the energy contribution of the surface,
because DF'T only gives the total energy of the system. To create a fully periodic
supercell, one has to include pairs of screw dislocations, a so called dipole, with
opposite Burgers vector, so that the total Burgers vector in the supercell is zero,
but a dipole is inherently a metastable configuration, as dislocations with opposite
Burgers vector tend to attract and annihilate. Another drawback is that, because
the dislocations are very close to each other in a typical DFT supercell containing
100-200 atoms, an analysis based on anisotropic elasticity theory is necessary to
estimate the interaction energy of the periodic array of screw dislocations. For
instance, the hard to soft core energy difference calculated in the periodic dipole
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configuration using DFT was found to strongly depend on the dipole arrangement,
as many two dimensional array configurations of screw dislocations are possible. A
correction based on anisotropic elasticity recently produced a converged value for
the hard to soft energy difference [92], which is given in table 4.1. Note however
that the core energy itself may be a very sensitive function of the applied local
stress, and this can probably not be investigated using anisotropic elasticity.

4.1.2 The Peierls potential in the (211) directions

The (211]) Peierls potential can be defined as the minimum energy path at zero
temperature and stress to move the dislocation line from two equivalent soft core
configurations in the [211] direction, or, referring to figure 4.1 on page 72, from a
soft core centered at C; to a soft core at Cy, without the formation of any kink on
the dislocation line. For simplicity?, we only calculate the Peierls potential using
semi-empirical potentials with ground state non-degenerate cores, that is CS3-00,
CS3-30, CS3-33 and Mend04 (Mend03 is expected to give very similar results).
To calculate the minimum energy path between the two equivalent soft cores we
have used the NEB method [93], using the improved tangent estimate technique
as described in [94]. In the NEB method, the transition path is defined as a set
of Ny, configurations, so called ‘images’ of the system. An initial guess for the
transition path is given by a linear interpolation between the displacement fields
of the two soft cores centered at C; and C5. The displacement of atom P in the
‘image’ number n is thus initially given by

o) (4.3)

)Py

un(P) =i (P)(1 -

where u; and us are the isotropic displacement fields for the screw dislocation
centered respectively at C'; and C, see figure 4.1 on page 72, and n =0, ..., Ni,.
If the atoms in every ‘image’ configuration would be allowed to relax, then every
‘image’ would relax to some local minima, as for instance a soft core at C; or a
soft core at C5. The trick in the NEB method is to link the ‘image’ configurations
together by means of penalty functions by defining a distance between ‘image’
configurations, as to prevents them to relax to the initial or final configurations.
To calculate the (211) Peierls barrier by the NEB method we have used the same
cylindrical supercells as in subsection 4.1.1, and also in this case the change in total
energy of the boundary atoms along the path was very small. The Peierls potential
of the semi empirical potentials calculated in this work and the DFT calculation

2The calculation of the Peierls barrier with an interatomic model giving a degenerate core
structure is slightly more complicated, because one should consider both transition paths between
the same polarizations and transition paths between opposite polarizations.
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Figure 4.6: The (211) Peierls potential (left figure) and typical core structures en-
countered along the transition path when using EAM potentials with very stable non-
degenerate cores, that is CS3-30, CS3-33 and the Ackland-Mendelev potentials (right
figure).
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calculated in [47] are shown in figure 4.6. There is a qualitative difference between
the DFT potential, which has a single hump shape [47], and the potential of the
semi empirical potentials, which have a double hump shape. Inspection of the
midway configuration reveals it to be the split core, when considering the semi
empirical potentials, but the midway configuration from DFT was found to be
more similar to the hard core configuration [47]. The barrier of CS3-00 reveals
that the non-degenerate soft core configuration is unstable, which can be readily
attributed to the small energy difference between the degenerate and the non-
degenerate core structures for CS3-00, compared to the other potentials, see table
4.1 on page 79. The core structure corresponding to the minimum of the Peierls
potential of CS3-00 can be identified as a sort of merged structure between a non-
degenerate and a degenerate core. Although all the new fits have a very similar
single string potential, see figure 2.2 on page 27, which favors the non-degenerate
structure, the (211) Peierls potentials are very different from each other, thus it
seems to be no correlation between the single string potential, and the height of
the Peierls potential. The main common feature is the split core configuration,
which is not only a feature of Mend03, Mend04, CS3-30 and CS3-33, but of all
the fits of the DD potentials with non-degenerate core structure and acceptable
bulk and point defect properties as generate by the optimization algorithm. An
analysis within the multi string Frenkel-Kontorova model suggests that this may
be due to the relatively short range of the interactions in semi empirical potentials
compared to DFT [63].

To check the effect of the boundary conditions in the DFT calculation, the
soft cores were first relaxed, either on a cluster, akin to our cylinder and periodic
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in one direction, or on a fully periodic dipole supercell, and the difference in the
transition path between these two settings is of the order of 0.005 eV /b [47]. The
Peierls potential was calculated with the drag method, where the atoms in every
‘image’ configuration are constrained to move in an hyperplane perpendicular to
the initial path, but this is not a serious constrain, as it was found that, using
the Ackland-Mendelev potential, the NEB and the drag method give very similar
results. Also note that the midway configuration has been found to be similar
to an hard core configuration, thus the energy should be corrected to account for
anisotropic effects, as in the case of the DFT calculation of the hard to soft core
energy difference [92], see also subsection 4.1.1.

4.1.3 Kinks in the (211) directions

A kink is defined as a step in the dislocation line in its glide plane. A kink pair is
formed by two equal steps but in opposite directions. The two kinks in a kink pair
are not equivalent because of symmetry breaking [95], and are referred to as right
(or vacancy) kink and left (or interstitial) kink, see figure 4.7 and figure 4.8 on page
85. Kinks can be characterized by a kink height hx and a kink length [, as in
the figures. The screw dislocation is believed to migrate by the nucleation of kink
pairs between energetically equivalent core structures, the kinks then migrate very
fast along the dislocation line, resulting in the net movement of the dislocation by
hg. In the screw dislocation, in principle kinks can form in every direction, since
the dislocation can glide in any plane containing its line. For instance kinks may
also form in the (211) directions across the hard core configuration [96]. The kink
pair formation energy is however proportional to the height hg, so that in general
short kinks are favored, this is the reason why we will limit ourselves to kinks in
the (211) direction, as the goal here is to compare the semi-empirical potentials,
rather than to investigate the dislocation mobility. In previous atomistic studies,
kinks have always been assumed to form between equivalent soft core structures,
that is, referring to figure 4.1 on page 72, between a soft core at ('} and a soft
core at Cy with a kink height of hx = 21/2b/3 [97, 96]. Yet, ignoring the DFT
results, the fact that the split core configuration and the non-degenerate core are
energetically equivalent suggests an alternative mechanism of migration, that is by
the nucleation of double kinks from the soft core to the split core, with a kink height
of hy = \/§b/ 3. This mechanisms has been indeed observed in MD simulations
(82, 98] using Mend04. Although the split core was found to be systematically
unstable in the molecular dynamic simulation, so that just after nucleation of one
half height double kink, another half height double kink in the same direction
was nucleated, shifting the dislocation line segment in the nearest neighbor soft
core configuration along the (211) direction, it may not be excluded that at lower
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stresses, strain rates or temperatures the split core may be more stable in molecular
dynamic simulations.

Kink pair in the (211) directions and of full height, hx = 21/2b/3
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Figure 4.7: Construction of kink pairs in a cylinder supercell. The left figure is the
cylinder supercell containing a double kink, where only atoms with an energy bigger
than FEpe.+0.05 eV are shown. In the right picture a detail of the two different kinks
composing the kink pair viewed from the [101] direction.

A kink pair can be studied in the same type of cylindrical supercell as before,
see subsection 4.1.1 and figure 4.7. The double kink was created by applying the
isotropic displacement field of the screw dislocation (4.1). In the upper half of
the cylinder (z > 0), the dislocation line center was shifted by hyx = 2v/2b/3
along (211) with respect to the dislocation line center in the lower half of the
cylinder (z < 0). The dislocation line in the lower half is set at the center of
the cylinder: the two kinks are thus separated by a distance of half the cylinder
height, hcy1/2. Because kinks are interacting in the direction of the dislocation line,
to get converged values the height of the cylinder h.y; must be at least 80 b [96].
In the same cylinder we also relax a screw dislocation without kinks. The kink
pair formation energy is then calculated as the total energy difference (calculated
without boundary atoms, see subsection 4.1.1 on page 76) between the dislocation
with a kink pair and the straight dislocation. As in the case of the energy difference
between the soft and the split core, the displacement field of the boundary atoms
is not the same for the straight and kinked dislocations, but in this case the misfit
is extended to 40 b in the dislocation line direction. Considering a typical energy
difference of 0.01 eV /b due to the misfit, this gives rise to a total energy difference
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between the boundary atoms of the order of 0.4 eV. It is thus necessary to check
the convergence of the kink pair formation energy, and for this we employ cylinders
of different radii and height as in table 4.2. We see in the left side of figure 4.9
that although the energy difference in the boundary atoms is slowly converging,
the formation energy of the kink pair is actually converged, with small fluctuations
that are probably due to the high numerical precision required: an error of 0.01
eV in the kink pair formation energy corresponds to the same accuracy in the total
energy, which means that the energy per atom must be determined with a precision
of typically 1 peV.

Ratom Rcyl hfcyl Natom
(nm) (nm)

1 3 4 80b 84640
2 4 5 80 b 132560
3 5 6 80 b 190640
4 6 7 80 b 260080
bt 4 5 100 b 165700

Table 4.2: The five cylinder supercell configurations employed for convergence test of
the kink pair formation energy.

Kink pair in the (121) directions and of half height, hyx = \/2b/3

A kink pair between the soft core configuration and the split core configuration
can be studied in the same type of cylindrical supercell as before, see subsection
4.1.1 and figure 4.8. In the upper half of the cylinder (z > 0), we apply the
displacement field of a split core (4.2). The kink pair formation energy is then
calculated as before, employing the cylinders in table 4.2 to check convergence, see
also the right side of figure 4.9. The kink pair formation energies, both half and
full height, calculated using CS3-00 are not converging, which is very likely due
to the fact that in this case the non-degenerate core structure is actually not the
ground state configuration.

The kink pair formation energy is proportional to the height of the Peierls
potential, see figure 4.6 on page 81. The potential with the biggest barrier, CS3-
33, has also the biggest kink pair formation energy. The kink pair formation energy
is also clearly proportional to the height of the kink, where the formation energy
of the half height kink pair is approximately half the formation energy of the full
height double kink. In general, we see that the results strongly depend on fine
details of the interatomic interactions.
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Figure 4.8: Construction of kink pairs of half height in a cylinder supercell. The left
figure is the cylinder supercell containing a double kink of half height, where only atoms
with an energy bigger than Ey..+0.05 eV are shown. In the right picture a detail of the
two different kinks composing the kink pair of half height viewed from the [101] direction.
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Figure 4.9: Convergence of kink pairs formation energies of full height, left figure, or
half height, right figure, as a function of the cylinder radius Ratom. The total energy
difference between the boundary atoms of the supercell with a kinked screw dislocation
and of the supercell with a perfect screw are also shown.
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Single kinks in the (121) directions and of full height, hx = 21/2b/3

It is interesting to investigate the influence of the boundary conditions on the
kink formation energies. In the following we will thus construct a fully peri-
odic quadrupolar screw dislocation arrangement following [47], and then apply
the method developed in [99] to calculate the formation energies of single kinks.

We will now refer to figure 4.10 to explain how we have constructed the quadrupole.
As in figure 4.1 on page 72 the unit cell contains 6 atoms, with periodic vectors

T = [121]
7 = [107]
Z = 1/2[111].

The first step to set up a screw dislocation dipole is to cut a supercell with periodic
vectors

C; = (2m,+1)7

_)

Cy = (2m,+1)/27 +(©2m,+1)/2Y
- —

Cys = m, 72,

where m,,m, and m, are integer numbers. 5; is actually a periodic vector of the
bece lattice, as can be easily checked. As shown in figure 4.10, it is now possible to
set two dislocation centers separated by 5; /2, such that one center corresponds to a
‘Left handed bec’ (V), and the other center to a ‘Right handed bee’ (A). Applying
now a negative isotropic strain field to the ‘Left handed bec’, that is (4.1) on page
72 with (=), and a positive isotropic strain field to the ‘Right handed bec’, that
is (4.1) with (4), we can create two soft core dislocations with opposite Burgers
vector in the same supercell, so that the net Burgers vector is zero. The so created
periodic structure corresponds to a rectangular array of screw dislocations, where
next nearest neighbor dislocations have opposite sign, see the left hand side of the
figure. The dimensions in the array are

om, + 1
dx:%\/éa

2 1
dy _ my2+ \/5@7

and the values for m, and m, must be chosen in such a way as to make the array
as close as possible to a square. Following [100] and [47], we add a tilt component
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Figure 4.10: Construction of a dipole of screw dislocations in the quadrupolar periodic
arrangement. The left side of the figure shows a view of the bee lattice from the [111]
direction, where atoms are colored according to which (111) plane they belong. Also
shown is the position of the two easy cores with opposite Burgers vector and the shape
of the dipole supercell with zero total Burgers vector. On the right side we show how
the dipole supercell generates a quadrupolar periodic arrangement of screw dislocations
by applying periodicity.
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to the supercell, and define the new supercell vectors

= —
Cl - 01
_; = (Cy+ 1/2?
= —
03 - 03.

The component along the Burgers vector direction is added in order to set the
mean plastic strain in the supercell introduced by the dipole to zero. This helps
stabilizing the structure so that the two dislocations do not annihilate, as in this
way the local stress acting on the dislocation cores is set to zero [101]. A supercell
containing a dipole and relaxed using CS3-33 is shown in the left side of figure
4.11, where the atoms are colored according to their potential energy. It is not
trivial to add a single kink because the kink vector 41/37 is not a periodic vector
of the bec lattice. However the vectors

Kn = 1/37 —2/3%7 =a(0,—-1,0)
K, = —1/37 —1/37 =a(-1/2,1/2,-1/2),
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Figure 4.11: Construction of single kinks. The left figure shows one of the relaxed dipole
supercells containing two perfect screw dislocations employed in this work. Atoms are
colored according to their energy as in figure 4.8. In the right side a detail of the two

. — — —
different kinks viewed from the [101] direction, as obtained by adding Kr or KL to Cs.

(o1 .(_._). TPV leftKink  Right Kink
[121] . , .- . : 3

111] KL KR Side view

[i01]

are periodic vectors of the perfect lattice, and can be thus added to the supercell
vectors without creating any further defects. It is thus possible to create single

kinks by simply adding ?R) or [—(Z to C_)‘g These new periodic vectors define a
supercell containing a different number of atoms than the dipole supercell with no
kinks, and it is thus necessary to add or remove one (111) layer of atoms [99], or
equivalently remove or add two (111) layer of atoms. In the right side of figure 4.11
we show the left and right kinks that we have constructed following this recipe.

The convergence on supercell size of the single kinks formation energies has
been studied in [99] to explore the feasibility of DFT calculations of the single
kinks formation energies, which is challenging, as for small supercells the con-
vergence is slow. Here we consider only supercells which are big enough to give
converged results. We check anyhow convergence by calculating the single kinks
formation energies on three different supercells, as we vary the distance between
the dislocations in the xy-plane and height of the supercell in the Burgers vector
direction. The same considerations as for the calculation of formation energies in
the cylinder supercell apply, in particular we note that because of the great num-
ber of atoms and the small energy considered, a precision of the order of 1 pueV
per atom is required. The kink formation energies discussed in this subsection are
summarized in table A.1.

The first important fact already noted in [99] is that the (full height) single
kink formation energies of all the semi-empirical potentials with ground state non-
degenerate cores are asymmetric, with formation energies for the vacancy single
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Table 4.3: The three dipole configurations employed for convergence test of the single
kinks formation energies.

my my My, dx dy Natoms
(nm) (nm)  dipole left kink right kink
1 17 31 40 1229 1277 63240 62186 62713
2 17 31 60 1229 1277 94860 93806 94333
3 27 47 40 19.31 19.26 152280 149742 151011

kink that may be as low as 0.1 eV, and much higher formation energies for the
interstitial single kink. Moreover the sum of the vacancy and interstitial full height
single kinks formation energies is not exactly equal to the full height double kink
formation energies for any of the semi-empirical potentials. For Mend04, our re-
sult exactly agrees with previously published results, where the sum of the single
kink formation energies was found to be 0.65 eV, and the double kink formation
energy was found to be 0.75 eV, see [12]. Our calculation is thus validated. The
discrepancy between the direct calculation of the double kink formation energy for
a screw dislocation in a cylinder and the value calculated by summing the single
kinks formation energies for a screw dislocation in a periodic dipole configuration
may be related to the long range displacement field of the screw dislocation, in
particular to the interaction of the dislocation with the cylinder surface or with its
periodic images in the quadrupolar array.

We hope that the selection of potentials presented here, with different heights
and “flavors” of the Peierls barrier, may be useful to further investigate the migra-
tion mechanism of the screw dislocation.

single kinks double kinks
interstitial vacancy int 4+ vac full height half height
CS3-30 0.57 0.19 0.76 0.77 0.34
CS3-33 0.65 0.28 0.93 1.00 0.60
Mend04 0.57 0.08 0.65 0.75 0.44

Table 4.4: Summary of kink formation energies in eV. The single kinks are of full height
and are calculated in the dipole supercell, that is with full periodic boundary condi-
tions, and the double kinks are calculated in the cylinder supercell, that is with periodic
boundary conditions only along the dislocation line. The sum of interstitial and vacancy
single kinks formation energies calculated in the dipole is not equal to the double kink
formation energy of full height calculated in the cylinder.
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4.2 Suzuki-Takeuchi model for the core struc-
ture of the screw dislocation

In this section we analyze the structure of the soft core within the Suzuki-Takeuchi
model [102], which is a one dimensional model where the [111] atomic rows are
allowed to move only in the [111] direction. The model makes the following as-
sumptions:

1. string or rows of atoms can move in the [111] direction, but are fixed in
the {111} plane. Each string 7 is thus solely characterized by its position z;
along the [111] direction. This assumption is justified for the 1/2[111] screw
dislocation, because the edge component is negligible.

2. The strings are rigid, that is the distance between atoms in each string is the
same as in the perfect lattice. This assumption is justified for a perfect line
dislocation without any impurities in the core and under zero applied stress.

3. The energy of the system is determined by a pairwise interaction between
nearest neighbor strings. Let the displacement of string ¢ be given by

2 = 20 4 s, (4.4)
where 2P is the position of the string in the perfect lattice and s; is an
additional displacement. The energy of strings ¢+ = 1,..., N is then given by

1
Estr(la"'aN):é ' Z U(Zl_zj) (45)
i=1,....,IN
7 n.n. of ¢
The function U defining the inter string interaction is a periodic function
with a period given by the Burgers vector b of the 1/2[111] screw dislocation,
because of this it is appropriate to measure U in units of eV /b.

This assumption is also appropriate for the EAM potentials considered in
this thesis: the embedding function on atom k can indeed be expanded as

F(pr) 2 F(po) + FN (po)(pr — po)- (4.6)

where pg is a reference density, which may be taken for example as the density
in the perfect lattice, and the expansion is valid in the limit that p; is close
to this reference value, and this is actually the case for a screw dislocation
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described by EAM potentials. The reason for this is that in a soft core screw
dislocation the local hydrostatic pressure distribution is almost the same as
in the perfect lattice. A pairwise interaction law thus seems appropriate at
least for the EAM potentials, because the minimum distance to the atoms
in a next nearest neighbor string is v/2a ~ 4.05 A, that is the third neighbor
distance in the perfect bee lattice, and as can be see in figure 3.1 on page 34,
the interaction at this distance is very small for the EAM potentials.

It is then possible to extract the inter string interaction U as follows. Take a
perfect bee lattice and displace only one string, that is

21 = z})c‘ﬂ—s )
z; = 20 for j# 1. (4.8)

Because three of the nearest neighbor string are displaced by +1/3b with respect
to string number 1, and the other three nearest neighbor strings are displaced by
—1/3b, the energy change from the perfect lattice is given by

0(s) = Estr — Estr. bee = 3U(1/3b+ s) +3U(—1/3b + s) + Uy, (4.9)

where Uy = —3(U(1/3b) + U(—1/3b)) is a constant, which we can set to zero for
simplicity. We call o(s) the single string potential. By employing the periodicity
of U it is easy to show that

o(s+1/3b) = 3U(=1/3b+s)+3U(s), (4.10)
o(s —1/3b) = 3U(1/3b+s) +3U(s), (4.11)

and thus, by combining with the previous equation,

U@%zéh@+lﬁ@+a&—lﬁ@—a&ﬂ. (4.12)
The inter string interaction derived in this way from DFT was applied to the
study of solid solution softening or hardening [103, 104], by investigating how the
interstring interaction is affected by the presence of solute atom impurities.

In the right side of figure 4.12 we show how we have calculated the single string
potential o(s) with the EAM potentials. In the left side we show typical shapes of
the single string potential, that is either with a single or double hump structure.
We characterize the shape of the single string potential o(s) by its curvature at
s =1/2b,

00 (s)

2
s s=1/2b

CcL2 = (4.13)
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Figure 4.12: Construction of the single string potential. As shown in the right side a
single [111] row of atoms is displaced along the [111] direction, the single string potential
o(d) is the given by the unrelaxed energy per atom in the string normalized so that
o(0) = 0. The left side shows typical shapes of o(d), either a single hump with negative

curvature C;/ ? < 0, or a double hump with positive curvature C;/ Z>0.
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A negative curvature is associated with a single hump potential, and a positive
curvature with a double hump potential. In [64] we have shown that whether an
EAM interatomic potential predicts a degenerate or non-degenerate core structure
is related to C+/2. To show this we have employed all the fits generated within
the optimization of the DD potential. For each fit, we determine the structure of
the 1/2[111] screw dislocation by relaxing a non-degenerate and a degenerate core
structure in the same cylinder supercell as in section 4.1.1 on page 76. Depending
on the fit, the non-degenerate core may be stable and the degenerate core unstable,
or the non-degenerate core may be unstable and the degenerate core stable, or both
may be stable. In the last case we determine which structure is the ground state
by calculating the energy difference, as in section 4.1.1. For each fit we have also
calculated the curvature of the string potential C+%. The result is shown in figure
4.13. In the left side we see that most of the fits have a negative curvature and
a positive curvature clearly favors a non-degenerate core structure. The right side
of the figure shows the same data but in terms of the probability that, given a
fit with a curvature Cy/ 2, the ground state core structure be degenerate or non-
degenerate. For negative curvatures between -30 eV /b* and -20 eV /b? there is a
high probability to get a degenerate core structure, and for positive curvatures
between 0 eV /b? and 30 eV/b* there is a high probability to get a non-degenerate
core structure. We have found, however, no correlation between the curvature and
the energy difference between the structures.
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Figure 4.13: Correlation between single string potential and core structure. The left
figure shows frequency counts for all the fits generated in this work for the occurrence
of a ground state degenerate or non-degenerate core structure of the 1/2[111] screw

dislocation as a function of the curvature of the single string potential C;/ %, The right
figure gives the corresponding probability that a given fit have a ground state degenerate

. 1/2
or non-degenerate core structure as a function of Cg/ .
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In the following, we will link the curvature C+* to an instability in the non-
degenerate core structure. We will now refer to figure 4.14, which shows the dis-
placement field of a non-degenerate and of a degenerate core. The position of the
central rows in the perfect lattice is given by

Z})cc

bce
211

bce
A1I1

, (4.14)
1
= +-b 4.15
+3b (4.15)
1
—5b. 4.16
3 (4.16)

Application of the isotropic strain field of the screw dislocation (4.1) on page 72
with (—) generates a soft core dislocation. The position of the strings then becomes

iso

iso
211

iso

2111

1

—— 4.1
L (117)
1 1

——b—<b 4.1
b (118)
1

—Zp—2p (4.19)
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Figure 4.14: The figure shows the differential displacement maps of the degenerate and
non-degenerate core structures of the 1/2[111] screw dislocation. The bcc lattice is
viewed from the [111] direction, where atoms are colored according to which 111 plane
they belong. The numbers indicate columns of atoms employed in the text.
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The displacement field of the non-degenerate core is actually very similar to the
isotropic displacement field. The main difference with the degenerate core is that
the central rows are shifted by £b/6, that is

q o= #°+b/6 (4.20)
211 = ISO + b/6 (421)
2111 = Zﬁ}) + b/6, (422)

while the other strings have not been displaced appreciably from the initial isotropic
displacement field. Because the two shifts are equivalent, this gives rise to two
degenerate polarizations of the core. We will now investigate the stability of the
non-degenerate core with respect to a simultaneous displacement of the central
rows, that is

2(u) = 24w (4.23)
zn(u) = zﬁo +u (4.24)
amn(u) = #2924 u (4.25)
z; = ;-SO for j # 1, 11, II1. (4.26)

The change in energy of the system will be then determined exclusively by the
interaction of the central rows with their nearest neighbor strings.
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Figure 4.15: Detail of figure 4.14 without displacement field and with the position of
the dislocation line C; and the angles «, 3 and v between the dislocation line and the
strings 2, 3 and I as employed in the text.

I I
e eC 0O e

Because of symmetry considerations, it is sufficient to consider the change in
energy due to the interaction of string number I with string number 2, 3, 4 and 5.
The next step is to determine the position of string number 2, 3, 4 and 5 in the
isotropic displacement field. The positions in the bece lattice are given by

1

25 = b = -3 (4.27)
1

2% = 22 = +§b (4.28)

Referring to figure 4.15 for the angles «, 5 and ~, the position of the strings in
the isotropic displacement field then becomes

Zy =20 = —%b — %b (4.29)
oy =20 = +%b - O‘;rﬁb (4.30)
Zy =20 = —%b _af 57:_ 276 (4.31)
z =280 = —I—lb - wb. (4.32)

3 2
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so that the relative displacement of the string is

1 1 o

1 1 o+
zi(u) — z3 = U_Zb_§b+ 27rﬁ

1 Oz—i—ﬂ—i-Z’yb

b (4.34)

1
_ - . 4.
z1(u) — 24 u— b+ 3 + o (4.35)
1 1 a+ 268+ 2y
_ = u—-b— b+ —"2 "7, 4.
z1(u) — zs5 u 4b 3b + o b (4.36)
It is easy to see that
2m
= = 4.37
a 5 (4.37)
2
a+B+y :-f, (4.38)
and using this in the previous equations we get
1
zi(u) — 29 = u-+ éb (4.39)
L7
— = u—=-b——b 4.40
aw) =2 = u—zb—L (1.40)
(u) ch (4.41)
zi(u) — 24y = u+ b+ — .
! ! 3 2rm
1
zi(u) —z5 = u— §b. (4.42)

The change in energy when displacing the central rows by u from their initial
positions, given by isotropic displacement field, will thus be proportional to

Aﬂw=UW+1m+Um—3m+Um_é

gl 1 gl
- —b+ —0). (44
c G b 2Wm+lxu+ b+2ﬂm (4.43)

3

It is easy to check that the first derivative of the energy change with respect to u
is zero, because the function U is symmetric. The second derivative at © = 0 is
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given by
D*AE(0) 1 1 o
2 = U (b)) + 20 (b4 b
Ds? (6 )+ (3 ton )
1 1 v 1 1 v 1 v
= OV 4 o@D (Lb) 4+ < |oP(zb— =b) — P (cb+ b)| .
3007 307 (G + 5 10 (5b = 5o = o (3h 4 50h)
1 1 2 a1y
~ —OY2 4 Z5@00) = 2B (Zp)Lp
3 430 0 =307 (b

In the last row we have made a Taylor expansion because 7v/(27) ~ 1/20 is rel-
atively small, and because the model functions, and thus also ¢, are continuous
up to the fifth order. Note that, by symmetry, 0®(0) = 0. The term o (0)
is positive and is expected to be almost independent on the particular fit of the
DD potential, because all the fits considered here have exactly the same second
order elastic constants. The last term is expected to be small, as it is a first order
term in v/(27). In case CY? is negative, then o®(4b) is negative and the third
term contributes to the stability of the non-degenerate core. We have thus also
shown analytically how C+/? is linked to the stability of the non-degenerate core,

in addition to the correlation found previously in the fits of the DD potential.
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Chapter 5

Conclusions

5.1 Summary

Three new fits of the DD potential have been successfully optimized to second and
third order experimental elastic constants of a-iron, and to point defect and screw
dislocation core structure properties from DFT. The new fits have been compared,
in the perspective of radiation damage studies, with modern semi empirical poten-
tials for bee iron. In general all the semi empirical potentials suffer from similar
limitations.

The relative formation energies, which are correlated to the migration proper-
ties, of the dumbbell type self-interstitial defects can be reproduced from DF'T, but
not the relative formation energies of the octahedral and tetrahedral type. The
mean absolute value for the formation energy of self-interstitials is overestimated
by ~ 0.3 eV by the ABO and the CS3 potentials with respect to DF'T, but this does
not seem to have any significant effect in cascade damage simulations, as shown in
[21]. The value for the migration energy of the (110) dumbbell is scattered around
the DF'T and experimental value by about ~ 0.1 eV. The semi-empirical potentials
generally overestimate, with the exception of Mend04, the DFT vacancy migra-
tion energy by 0.1 to 0.2 eV. The semi-empirical potentials also underestimate,
with the exception of CS2, CS3-30 and CS3-33, the vacancy formation energy by
0.2 to 0.3 eV. The experimental formation volumes of the point defects are well
reproduced, with the notable exception of the CS2 potential, which clearly un-
derestimates the formation volume on the (110) self-interstitial defect. Also with
respect to the energy difference between small clusters of self-interstitial oriented
along (110) or (111) the semi-empirical potentials show the general behavior that
by increasing the size of the cluster, the (111) orientation becomes energetically
more favored, in agreement with DFT.
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The 0 K cohesive energy of the DD Potential was found to be a different quan-
tity than the 0 K equilibrium energy per atom, contrary to the other semi-empirical
potentials, where these are the same quantity. This property of the DD Potential is
consistent with spin-polarized DFT, where the cohesive energy and the equilibrium
energy per atom are different quantities. The cohesive energy was not included in
the objective function of the optimization algorithm. Nevertheless, the cohesive
energy of the new fits is not dramatically out of range compared to the experimen-
tal and DFT value, and moreover can be corrected by modifying the low density
limit of the embedding function. The ferromagnetic bce is the ground state for all
the new fits of the DD potential, followed in order of increasing energy by the fer-
romagnetic fcc, the non-magnetic bee and the non-magnetic fcc. The parameters
of the formula for the local ferromagnetic moment were fitted to both the DFT
local magnetic moment distribution in the (110) dumbbell core and the bulk ferro-
magnetic moment as a function of volume. The bulk moment in the ferromagnetic
bee was fitted to 2.2 up for all the fits of the DD potential. The bulk moment
of the ferromagnetic fcc phase was found to be ~ 2.5 up for the CS3 potentials
with an equilibrium volume per atom ~ 10% bigger than that of the ferromagnetic
bee, and thus resembles the high spin ferromagnetic fcc found in DFT. The ground
state fcc phase predicted by DFT is however anti-ferromagnetic with an equilib-
rium volume per atom ~ 10% smaller than that of the ferromagnetic bee. The
elastic properties of the other phases, and in particular C’, are at odds with DFT
calculations. The energy difference between the non-magnetic and ferromagnetic
bece is generally well reproduced. The energy difference between the non-magnetic
and ferromagnetic fcc is overestimated. The bulk properties of the ferromagnetic
bee are generally well reproduced by the new fits: the thermal expansion coeffi-
cient of the new fits is now closer to the experimental linear extrapolation at 0 K.
The linear extrapolation is appropriate in this case since molecular dynamics is a
classical method.

The diffusion coefficient has been estimated by an MD simulation of the (110)
dumbbell in the range from 300 K to 700 K. In this range the diffusion coefficient
shows an exponential dependence which can be well described by standard rate
theory using the activation energy for migration calculated by static methods. At
room temperature there is a significant scatter in the diffusion coefficient between
the semi-empirical potentials. This difference can be well explained by the differ-
ences in the migration energies, where in order of increasing migration energy, the
diffusion coefficient decreases, the pre-exponential factor thus plays a minor role.
This is particularly evident when looking at Mend04 and CS3-33, both with an
activation energy of ~ 0.3 eV, very close to DF'T and the experimental value, and
both with very similar diffusion coefficients over the entire temperature range. At
600 K, the scatter in the predictions of the semi-empirical potentials falls within
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the range from 1x107% cm? /s to 10 x107% cm?/s. At room temperatures the scat-
ter extends over three orders of magnitude. For the vacancy, assuming the same
pre exponential factor for all the semi empirical potentials, the vacancy diffusion
coefficient is scattered by four orders of magnitude at room temperature, an by
two orders of magnitude at 600 K.

The formation free energy of the (110) dumbbell has been calculated by the
harmonic, quasi-harmonic and thermodynamical integration method in the range
from 300 K to 600 K. The formation free entropy of the self-interstitial given by
the semi-empirical potentials is seen to fall within a bandwidth of 30 kg when
using the harmonic method, within 20 £z when using the quasi-harmonic method,
and within 6 kg when using the thermodynamical integration method. The ther-
modynamical technique is limited by the onset of diffusion, but can be employed
when diffusion can still be considered a rare event, and the point defect has time
to thermalize between the jumps. The formation free energy of the (111) dumbbell
could not be calculated, because it is unstable at all temperatures.

Because of the above, the question as to whether the (111) configuration be-
comes favored at higher temperatures cannot be answered. As emerged from the
analysis of diffusion, moreover, at temperatures approaching 600 K the (110) self-
interstitial is frequently rotating, and every time it migrates it comes closer to the
(111) orientation, but also to the other self-interstitial geometries, like the octa-
hedral and tetrahedral, which are almost energetically degenerate with the (111)
dumbbell. It is thus clear that as the temperature is increased, the dumbbell will
spend less and less time oriented along (110), until, very likely, at sufficiently high
temperatures the orientation cannot be determined any longer. We thus propose
that only at low temperatures it is possible to consider the different orientations
of a single dumbbell as distinct entities. At higher temperatures, with frequent
diffusion events, the orientation of the point defect becomes more and more unde-
termined.

We have also derived new expressions for the magnetic moment, the Stoner
parameter and the Stoner exchange energy in the DD potential formalism based
on a more exact derivation. The Stoner parameter of the new fits is significantly
higher than the Stoner parameter of CS2. We have thus discussed a way to optimize
the parameters for the magnetic moment is such a way that this can be related to
the Stoner exchange energy by a similar Stoner parameter for all the DD potentials,
such as to allow a more meaningful comparison between these models. This has
been partly discussed in the appendix, together with a detailed derivation of the
DD potential formalism.

The occurrence of degenerate versus non-degenerate ground state core struc-
tures of the b = 1/2[111] screw dislocation could be explained within the Suzuki-
Takeuchi model. For the short range semi-empirical potentials considered in this
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work, the structure is determined entirely by the single string potential and the
interactions between next nearest neighbor strings. By fitting to the DFT single
string potential, it was possible to control the core structure of the screw disloca-
tion to be non-degenerate, in agreement with DF'T. This is however not enough to
reproduce, even qualitatively, the DFT (211) Peierls potential. The Peierls poten-
tial of the semi-empirical potentials shows a double hump structure with a midway
configuration energetically degenerate with the soft core, in addition to this, even
if all the potentials have a very similar single string potential, the potentials lead
to very different values for the Peierls barrier. Because of the existence of an addi-
tional minima it is possible to define either a full height double kink, which is the
type of kink investigated in the literature, or an half height double kink, which has
never been considered before. The half height double kink is for every potential the
lower energy path for migration of the screw dislocation, with a formation energy
of approximately half that of the full height double kink.

5.2 Outlook

In this section we want to conclude this work with some remarks about ongoing
development of the DD potential and some ideas for further research:

e The new fits of the DD potential presented in this work are not yet suited for
cascade damage simulations, because one first needs to fit the intermediate
interaction range, and this development is being carried out by the European
Fusion Development Agreement.

e It would be useful to test the new fits with the spin lattice dynamics al-
gorithm, in particular to investigate the thermal expansion curve and the
dependence of the anisotropic elastic constants on temperature. It would
be then also very interesting to see what is the effect of including the spin
degrees of freedom to the formation free energy of the self-interstitial and to
the diffusion coefficient, which can be calculated by the dynamical methods
described in this work, and also to repeat both calculations for the vacancy.
This would give for the first time an estimation of the magnetic fluctuation
contribution to fundamental point defect properties.

e The migration mechanism of the screw dislocation should be better charac-
terized. It would be interesting to calculate the Peierls stress dependence
on the type of applied stress, considering also the isostatic component, the
dependence of the Peierls stress on temperature, and to perform molecular
dynamics calculations to further investigate the kink pair formation mecha-
nism, or more generally to perform a multiscale comparison with experiments
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to investigate whether the details of the zero stress and zero temperature
migration mechanism are actually so important. Research is ongoing to un-
derstand why the Peierls potential predicted by the semi empirical potentials
is so different from the Peierls potential calculated from DFT.

e One should investigate whether it is possible to stabilize the fcc phase at least
at higher temperatures by letting some parameters of the DD potential vary
with temperature, as for instance the magnetic parameter B. Since at high
temperatures the fcc phase is paramagnetic, one should also try to perform
spin lattice dynamics on this system. Also it would be interesting to extend
the DD potential to include the fourth moment of the electronic density of
states to try improving the description of the fcc phase at zero temperatures.

e The DD potential formalism should be extended beyond pure elements to
describe magnetism in alloys, and then applied for instance to the study of
magnetic effects in binary Fe-Cr and Fe-Ni systems. As a guidance to this,
one may refer to the recent development of a Tight Binding Stoner model
for binary Fe-Cr systems [105].

e We suggest to further develop the fitting strategy to include some improved
statistical analysis of the generated fits and to be then able to correlate the
model parameters, the objective function weights and the fitted properties,
so as to speed up the fitting process, and to get more easily some informa-
tion about the accuracy and flexibility of any given embedded atom method
potential.
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Appendix A

The DD potential formalism

We now derive the DD potential formalism in a similar way as in the original
derivation [1]. The first part of the derivations are fully equivalent, the only differ-
ence is that here we do not approximate (A.23) to the fourth order. We show that
neglecting the sixth order has a negligible effect near equilibrium, but not at low
densities, although this regime corresponds anyhow to the very limits of the main
assumptions leading to the DD potential. We then derive new expressions for the
magnetic moment, the Stoner exchange energy and the Stoner parameter, as given
by the DD potential formalism, without approximating (A.23) to the fourth order.
We then compare the so derived Stoner exchange energy and Stoner parameters
as predicted by the fits of the DD potential, and discuss a way to define a local
magnetic moment which allows comparison between the different fits of the DD
potential.

Consider a general expression for the band energy of electrons assuming that
the form of the density of states per atom per spin does not depend on the magnetic
moment ¢

€ €

Etot(N,g):/ TED(E)dE—i—/ ' ED(E)E — Is¢*/4 (A.1)

—0o0 —0o0

The first two terms give the energies of the filled majority and minority spin sub-
bands given by integrals of the density of states up to the Fermi energies €z and
er| of spin up and down electrons. The last term

Ex(C) = —iISCQ (A.2)

is the electron Stoner exchange energy with a constant Stoner parameter Ig in
units of eV per p%. This form is subject to the charge neutrality condition [44]
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asserting that in a metal the total number of electrons per atom remains constant
€FT €F|
N = / D(E)dE +/ D(E)dE = constant. (A.3)

The magnetic moment per atom ( is given by the difference between the occupation
numbers of spin up and down states

= /_ ZT D(E)AE — /_ Zi D(E)E. (A4)

Note that in equation A.1-A.4 the Fermi energies themselves are functions of the
total number of electrons in the band /N and the magnetic moment (. The equilib-
rium condition of this model requires that the chemical potentials of spin up and
down electrons be equal, that is

_ aEtOt(Ny C) _ aEtOt(N7 C) _
Hr aNT 6Nl s

(A.5)

The stability condition requires that if some electrons change spin orientation for
instance from up to down, then there is a restoring force in the opposite direction,
in this case to change the spin from down to up. In mathematical terms the
following equations must be satisfied

9 (1 — )
—————=>0 A6
o (A.6)
9 (1 — )
— = < 0. A7
o (A7)
It can be very easily shown by substituting % = iN + a% and % = % — a% in

the above equations that the equilibrium and stability conditions are equivalent to

aFftot (N7 C) _
0?Eiot (N, C)

With the total number of electrons per atom /N being constant the stability of the
system is thus only determined by the magnetic moment (. It can be shown [1]
that a condition that relates the Fermi energies of the spin up and down sub-bands
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to the equilibrium value of the magnetic moment is

EFT(N,C) —EFL(N>C)
Is

¢= , (A.10)
and here it can be seen that ( = 0 is always an equilibrium point. Because the
stability condition of any equilibrium point is given by

1 1 1

= + —1s >0, A1l
2 | Dlery T Dlery) (A1)

we see that if

1
D(EF) Is <0, (A12)
then the non-magnetic solution { = 0 is unstable. This criterion has proved very
effective in explaining the onset of ferromagnetism across the transition metal
elements [77].

The model described above needs the specification of the non-magnetic den-
sity of states and the total number of electrons per atoms and either the equi-
librium magnetic moment per atom ( or the Stoner parameter Ig. Calculations
of the non-magnetic density of states based on the full potential LMTO and the
tight-binding approximation developed in [67] were used in [1] to test this model
at equilibrium. In both cases it could be shown that the non-magnetic configu-
ration of bee iron is unstable assuming respectively Is =0.78 eV /(atom p3) and
Is =0.66 eV/(atom p3), and that the instability gives rise to the formation of a
symmetry broken magnetic configuration with ¢ ~ +2.26u5 which is very close to
the experimental value. The assumption for the Stoner parameter is justified since

the experimental and theoretical value for pure a-iron lies in the range from 0.4 to
0.8 eV/(atom p3) [67, 77].

To derive a semi-empirical magnetic potential we assume that the density of
states D(FE) has a scalable form

D@%:%F(%). (A.13)

If we choose the origin of the energy axis at the Fermi energy of the non-magnetic
state we find that the total number of electrons occupying the band equals

sz/opwmﬂ (A.14)

We see that the number of electrons per atom N remains independent of W, as
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required by the local charge neutrality condition. We now further assume that near
the origin (or, equivalently, in the vicinity of the Fermi energy of the non-magnetic
state) the density of states D(F) is approximated by a parabola

D(E) = . F (%) ~ a—b(%)2

where a > 0 and b > 0 are constant factors independent of W. Formula A.15
is valid within the interval of energies where |E| < W/a/b, because outside this
interval the parabola takes negative values. Since the parabolic term in A.15 gives
the leading contribution to the density of states near the Fermi energy of the non-
magnetic state we are now dealing with a density of states which is symmetric
around the Fermi level of the non-magnetic state.

(A.15)

Let the non-magnetic density of states be symmetric around the non-magnetic
Fermi level, that is D(E) = D(—FE), then from A.3 it follows that

/OEFTD(E)dE = —/OEFlD(E)dE = /60 D(E)dE. (A.16)

Because the density of states is a positive quantity then either €z > 0 > €p| or
err < 0 < €py, but from the symmetry of the density it follows

€y = —€p| = A, (Al?)

where we have defined a new parameter A which is appropriate to treat the model
in the case that the density of states in assumed symmetric around the non-
magnetic Fermi level. We now show that in this case the problem of finding a
solution for A.1 via minimization over ( is fully equivalent to a minimization over
A, because
a¢
oA

and the density of states is positive.

a% /_ z D(E)E = 2D (A) (A.18)

To find a solution we now assume a simplified non-magnetic density of states

o —3BE% if |B| < Apax = /2,

(A.19)
0 otherwise

Dp(E) = {
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« and [ are positive quantities and we look for minima of the total energy

Bu(8) = Brana(8) = 3152 =2 [ " EDA(B)E + () (A.20)

—0o0

for A € (—Anax, +Amax), where the magnetic moment is then given by
A 3
(= / Dp(E)dE = aA? — 55& (A.21)
~A

and the band part of the total energy is

0

Epana(A) = 2/ EDp(E)dE + /A EDp(E)dE + /_A EDp(E)dE. (A.22)

—00

The first term is a negative contribution that does not depend on A and we will
thus ignore this term for the moment since it plays no role in the minimization:
we thus need to minimize the function

F(A) = —IgB2A° + 3 (215a - g) A+ (a — Isa?) A2, (A.23)

It turns out that the problem of finding the extrema of f is exactly solvable with
some elementary mathematics which is not the case to reproduce here, but involves
only differentiation, solution of second order equations and some algebra. The
derivative of f vanishes at the following values of A

A = 0 (A.24)
1

A = +4/—(Isax—1 A2

5 Usa 1 (429

A4,5 = :l:Amax (A26)

and by evaluating the second derivative of f at these values of A gives

P f(Ar)

W >0 if and only if CY[S S 1 (AQ?)
(D) . . 3
AT 29 < < —. .
AL 0 if and only if 1 <alg< 5 (A.28)

If % < alg then there is no minima in (—Apax, +Amax) and the minimal value is
taken at the border of the interval. For every set of positive parameters «, 3 and
Is there exists thus a well defined minima of f. The first solution A; corresponds
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to a non-magnetic state since the magnetic moment vanishes. For the other two
solutions the state is magnetic since the magnetic moment does not vanish. The
total energy of the system defined by the density of states A.19 is thus given by

0 0 if OéIS S 1
By = 2/ EDp(E)dE +{ —3725 (Isa —1)° if l1<als <3
> —%ISQT; + %%2 otherwise

(A.29)

Considering now a density of states which is approximated by (A.15) near the
non-magnetic Fermi level, we arrive at the embedding functional

F(p) = —Ay5 — BM(p) (A.30)
where
0 if p>1
M(p)=1¢ =3/ (1—/p)° it 1<p<i (A.31)
N % otherwise

This was derived by substituting in (A.29)

a = a/W, (A.32)
B = b/(3W?), (A.33)
B = 1/215%3, (A.34)
P = ]VSV—G (A.35)

In the last equation p is the local electronic density, which can be written as a
sum over pair functions. We thus assume here that the energy may be written
as a sum over local contributions, and that the square of the width of the local
electronic density of states W2 may written as a sum over pair functions, which
is the usual assumption of any EAM or Finnis-Sinclair potential. A is a further
constant obtained by collecting the remaining constant terms.

The magnetic functional (2.9) on page 17 is very similar to the one derived
here (A.31). The only difference in the previous published derivation [1] is that
the function f in (A.23) was approximate to the fourth order in A, and then
the solution was obtained within Ginzburg-Landau theory for second order phase
transitions. The embedding functional was then further approximated using a
smooth function. In figure A.1 we have compared these two magnetic functionals,
and we see that they are almost identical in the region p > 0.3 and differ somehow
only at low densities. At least for all the fits considered in this work, the equilibrium
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Figure A.1: Comparison of the magnetic part of the embedding functions M as derived
in [1] (DD potential) and as derived in this appendix.
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value for the density in the bcc lattice varies between 0.48 for CS2 to 0.60 for
(CS3-30, thus both functionals are to be considered equivalent for situations not
involving free surfaces. Note that anyhow the low density regime corresponds to
the limits of validity of the parabolic approximation, that is when the minimum
of fis at Apax: it is thus not very surprising to find a difference in the functionals
right in this region where a simple parabolic approximation of the density of states
becomes very questionable.

By making the same substitutions (A.35) we obtain from (A.21) the magnetic
moment

0 if

V24, /%\/g@ /1 — \/g otherwise

This new expression gives us the opportunity to determine explicitly the Stoner
parameter of the DD potential, which is then simply given by

ok
IN IV
= =
VAN
[a—y

(A.36)

24B
Is = —5po(1 = v/po) (A.37)
0

where (j is the equilibrium magnetic moment per atom and pg is the equilibrium
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Table A.1: Stoner parameters of the DD potentials. First column is the equilibrium
density per atom, second column the magnetic moment per atom in units of g, third
column the fitting parameter B and last column the Stoner parameter in eV /(atom u%)

po G B Is
CS2 048 2.2 1.642 1.20
CS3-00 0.598 2.2 6.32 4.25
CS3-30  0.59 2.2 475 3.22
CS3-33 0.545 2.2 8.09 5.72

electronic density per atom. Assuming (; = 2.2 as the equilibrium magnetic mo-
ment per atom, the Stoner parameter can the be calculated for each fit of the DD
potential, see table A.1, where the Stoner parameter is given in units of eV /(atom
13). We see that the CS3 fits strongly overestimate the Stoner parameter, which
from experiments and theoretical calculations should be in the range from 0.4 to
0.8 eV/(atom p3). When looking at figures 3.3 on page 37 we note however that
the CS3 fits are very close in predicting the energy difference between the non-
magnetic and ferromagnetic bce phases as a function of volume per atom from
DFT calculations. Because the Stoner parameter was derived from the parabolic
approximation, we thus conclude that the present form of the DD potential is not
accurate enough to capture the correct dependence of the Stoner exchange energy
on the magnetic moment, when higher priority is given to the bulk and defect
properties in the optimization, including anharmonic effects. The relative Stoner
exchange energy, as given by the DD potential, is

Bx(0) ~ Bx(Go) = 715 (@ = ) = 6B (m(1 — v7w) —p(1 - V7). (A39)
which is represented in figure A.2 by the continuous lines as a function of hydro-
static pressure. Note again that only the energy difference between the magnetic
and non-magnetic bee phases was included in the fitting, but not the Stoner ex-
change energy. We would now like to define, in the spirit of a very genuine empirical
approach like in most of this work, an effective magnetic moment ¢* that can be
related to the Stoner exchange energy (A.38) using the same Stoner parameter [
for all the semi empirical potentials. We thus need to equate the Stoner exchange
energy as given by ¢* and I}, to the one given by (A.38),

w2 s Is
(CF =5 (1 _ ]—) e (A.30)

It is easy to see that if [{ < Ig, then a solution only exists for ¢ > 1/1 — %Co, and
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Figure A.2: Relative exchange energy as a function of hydrostatic pressure. The contin-
uous line is the value given by (A.38) and the dotted line the value given by the optimal
parametrization.
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that
: I3
("=0for ( =4/1—=2(. (A.40)
Is
We have then employed this equations as a guidance to optimize the three pa-
rameters of the previously published formula for the local ferromagnetic moment
(2.11) on page 18, with (,=2.2up and I$=0.7 eV /atom: the parameter p., at which
the magnetic moment in formula (2.11) vanishes, is approximately determined by
(A.40), and the other two parameters are then fitted to get a good match with
(A.40). The parameters so obtained are given in table 3.5 and have been employed
in chapter 3 to compare the magnetic moment predicted by the fits of the DD
potential. The dotted lines in figure A.2 give the exchange energy as predicted by
the optimal parametrization. The reason why the match is not exact is that we
have also considered the magnetic moment distribution in the core of the (110)
self-interstitial as given from DFT to determine the parameters, see table 3.6 on
page 65.
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