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Abstract

Software engineering demands generality and abstraction, perfor-
mance demands specialization and concretization. Generative pro-
gramming can provide both, but developing high-quality program
generators takes a large effort, even if a multi-stage programming
language is used.

We present lightweight modular staging, a library-based multi-
stage programming approach that breaks with the tradition of syn-
tactic quasi-quotation and instead uses only types to distinguish
between binding times. Through extensive use of component tech-
nology, lightweight modular staging makes an optimizing compiler
framework available at the library level, allowing programmers
to tightly integrate domain-specific abstractions and optimizations
into the generation process.

We argue that lightweight modular staging enables a form of
language virtualization, i.e. allows to go from a pure-library em-
bedded language to one that is practically equivalent to a stand-
alone implementation with only modest effort.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Code Generation, Multi-stage programming, Domain-
specific languages, Language Virtualization

1. Introduction

Building and managing complex software systems is only possible
by generalizing functionality and abstracting from particular sce-
narios. Achieving performance, on the other hand, demands con-
cretizing configurations and specializing code to its particular envi-
ronment. Generative programming can bridge this gap by translat-
ing away abstraction overhead and effectively specializing generic
programs.

In some cases program generation is not only a means to ob-
tain peak performance but a necessity. Server-side web applications
need to output HTML and JavaScript. Programs that use GPU hard-
ware as a coprocessor need to load CUDA or OpenCL code dy-
namically. In very simple cases this entire embedded code can be
provided statically. But as soon as modularity is needed on the em-
bedded level, at least parts of the code have to be generated at run-
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time. In this case, code generation is heterogenous: the generator is
written in a language different from the generation target.

Code generation can be either static or dynamic. A static code
generation system that is widely used are C++ templates [39].
Dynamic code generation is inherently more flexible because code
can be specialized with respect to parameters only available at
runtime. It can be re-generated based on profiling information.
Multiple generated versions can be tested and the best one selected.
For achieving utmost performance, this adaptivity can be important
(see e.g. Spiral [33] or ATLAS [45]).

Support for building dynamic program generators in a system-
atic way is less widely available. Multi-stage programming lan-
guages [38] mitigate the burden to some extent but building “ac-
tive” libraries [42] or domain-specific languages (DSLs) that in-
corporate dynamic code generation takes a huge effort nonetheless.
Many successful generative toolkits such as ATLAS [45] use ad-
hoc techniques.

In this paper, we explore a dynamic code generation approach
that we dub lightweight modular staging (LMS). The concept of
staging goes back at least to Jgrring and Scherlis [23], who ob-
served that many computations can naturally be separated into
stages distinguished by frequency of execution or availability of in-
formation. Staging transformations aim at executing certain pieces
of code less often or at a time where performance is less critical.

The classical introductory example is to specialize the power
function for a given exponent. Doing so might be worthwhile if
a program will take many different numbers to the same power.
Considering the usual implementation,

def power(b: Double, x: Int): Double =

if (x == 0) 1.0 else b * power(b, x - 1)

we want to turn the base b into a staged expression. The central idea
of LMS (following [4]) is to reflect this change of binding time by
changing b’s declared type from Double to Rep[Double], meaning
that b represents a computation that will yield a Double in the next
stage. We also change the return type accordingly. In addition, we
need to be able to do arithmetic on b, which is no longer a plain
Double. The second idea of LMS is to package operations on staged
types as components. To make its required functionality explicit,
we wrap the power function in a trait:

trait PowerA { this: Arith =>

def power(b: Rep[Double], x: Int): Rep[Double] =
if (x == 0) 1.0 else b * power(b, x - 1)

A trait is similar to a class but can be used in mix-in composition
[31]. The notation this: Arith signifies that whenever an instance
of PoweraA is created, an instance of a concrete (but unspecified)
subclass of Arith (see Figure 3) must be mixed in, too. Inside the
trait PowerA, the this reference will have type PowerA with Arith
instead of just PowerA, making all members of Arith accessible
within PowerA as well. This is all we need to change.
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The main characteristics of lightweight modular staging can be
summarized as follows:

¢ binding-times are distinguished only by types; no special syn-
tactic annotations are required

given a sufficiently expressive language, the whole framework
can be implemented as a library (hence lightweight)

staged code is “very shallowly” embedded into the program
generator; staged expressions inherit the static scope of the
generator and if the generator is well-typed so is the generated
code

staged code fragments are composed through explicit opera-
tions, in particular lifted variants of the usual operators and con-
trol flow statements extended with optimizing symbolic rewrit-
ings

using component technology, operations on staged expressions,
data types to represent them, and optimizations (both generic
and domain-specific) can be extended and composed in a flexi-
ble way (hence modular)

likewise, different code generation targets can be supported
(heterogeneous staging); their implementations can share com-
mon code

in the homogeneous case, objects that are live within the gen-
erator’s heap can be accessed from generated code (cross-stage
persistence)

data types representing staged expressions can be hidden from
client code (making rewrites safe that preserve only semantic
equality) but exposed to modules that implement the rewriting

common subexpression elimination/value numbering is han-
dled globally within the framework; there is no danger of code
duplication

“unstaging”, i.e. compilation and loading of staged functions
is an explicit operation, independent of running the compiled
code; program generators have full control over when compila-
tion happens and how compiled code is re-used

Many of the listed points are found in other code generation ap-
proaches as well, but to the best of our knowledge, no existing sys-
tem combines them all. We believe that this combination occupies a
“sweet spot” in the design space (see Section 4 for a detailed com-
parison with related work) — most prominently by significantly
reducing the effort required to go from a naively implemented al-
gorithm to an optimizing program generator.

Lightweight modular staging provides many of the benefits of
using a dedicated multi-stage programming language [38] such as
MetaOCaml, in particular concerning well-formedness and type
safety, but goes beyond that in systematically preventing code du-
plication and providing a clean interface for incorporating generic
and customized optimizations.

LMS is a key technique in our work to develop high-performance
parallelizable DSLs. In previous work [5], we defined criteria for
what we call language virtualization, saying that a general-purpose
language is virtualizable iff it can provide an environment to em-
bedded languages that makes them essentially identical to cor-
responding stand-alone language implementations in terms of ex-
pressiveness (being able to express a DSL in a way which is natural
to domain specialists) performance (leveraging domain knowledge
to produce optimal code), and safety (domain programs are guar-
anteed to have certain properties implied by the DSL), while at the

same time requiring only modestly more development effort than
implementing a simple, pure-library embedding. '

One ingredient of LMS is a finally tagless [4] or polymorphic
[21] language embedding, which ensures expressiveness and safety.
Hofer et al. [21] show that a polymorphic embedding can be con-
structed from a pure embedding [22] with acceptable effort. LMS
offers a systematic way to also obtain performance (by means of
its optimization interface) while keeping the effort under control
(by enabling modular composition, re-use and extension of DSL
building blocks, including optimizations). The novel aspect is that
despite the component architecture, LMS uses a uniform (but ex-
tensible) language representation for all DSL components instead
of offering a choice of representations between which translations
or layerings would need to be defined. This is achieved by solving
the resulting “expression problem” [43] of independently adding
data type variants and operations via an encoding of multi-methods
(open generic functions) into a combination of mixin-composition
and pattern matching.

1.1 Organization

We present lightweight modular staging using Scala as the host lan-
guage. While we use a number of Scala’s advanced features exten-
sively (operator overloading, implicits, abstract types and type con-
structors, pattern matching, mixin-composition), LMS is not inher-
ently tied to Scala and could be implemented in other expressive
languages as well. Features that Scala lacks but other languages
provide (e.g. built-in multi-methods or transparent creation of for-
warder objects) could even simplify the implementation.

The rest of this paper is structured as follows: Section 2 de-
scribes the basic LMS setup in detail for a subset of language fea-
tures. Section 3 outlines how more features can be added. Section 4
discusses related work. Section 5 concludes.

2. Lightweight Modular Staging

In the same way as the power function shown in the introduction,
we can stage far more interesting and practically relevant programs,
such as the fast fourier transform (FFT). A staged FFT, imple-
mented in MetaOCaml, has been presented by Kiselyov et al. [27].
Their work is a very good showcase for how staging allows to trans-
form a simple, unoptimized algorithm into an efficient program
generator. Achieving this in the context of MetaOCaml, however,
required restructuring the program into monadic style and adding a
front-end layer for performing symbolic rewritings. Using our ap-
proach of just adding Rep types, we can go from the naive textbook-
algorithm to the staged version (shown in Figure 1) by changing
literally two lines of code:

trait FFT { this: Arith with Trig =>
case class Complex(re: Rep[Double], im: Rep[Double])

}

All that is needed is adding the self-type annotation to import arith-
metic and trigonometric operations and changing the type of the
real and imaginary components of complex numbers from Double
to Rep[Double].

Merely changing the types will not provide us with the desired
optimizations yet. We will see below how we can add the transfor-
mations described by Kiselyov et al. to generate the same fixed-size
FFT code, corresponding to the famous FFT butterfly networks (see
Figure 2). Despite the seemingly naive algorithm, this staged code
is free of branches, intermediate data structures and redundant com-
putations. The important point here is that we can add these trans-

"'a virtualizable language is also a universal language according to the

definition of Veldhuizen [42] but virtualization adds the effort criterium

2010/5/31



trait FFT { this: Arith with Trig =>
case class Complex(re: Rep[Double], im: Rep[Double]) {
def +(that: Complex) =
Complex(this.re + that.re, this.im + that.im)
def «(that: Complex) = ...

}

def omega(k: Int, N: Int): Complex = {
val kth = -2.0 * k * Math.Pi / N
Complex(cos(kth), sin(kth))

}
def fft(xs: Array[Complex]): Array[Complex] = xs match {
case (x :: Nil) => xs
case _ =
val N = xs.length // assume it’s a power of two
val (evenO, odd0) = splitEvenOdd(xs)
val (evenl, oddl) = (fft(even0), fft(oddo0))
val (even2, odd2) = (evenl zip oddl zipWithIndex) map {
case ((x, v), k) =
val z = omega(k, N) = vy
X +z, Xx-2)
}.unzip;
even2 ::: odd2
}
}

Figure 1. FFT code. Only the real and imaginary components of
complex numbers need to be staged.
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Figure 2. Computation graph for size-4 FFT. Auto-generated from
staged code in Figure 1.

trait Base {
type Rep[+T]

trait Arith extends Base {
implicit def unit(x: Double): Rep[Double]
def infix +(x: Rep[Double], y: Rep[Double]): Rep[Double]
def infix_=(x: Rep[Double], y: Rep[Double]): Rep[Double]

}
trait Trig extends Base {
def cos(x: Rep[Double]): Rep[Double]
def sin(x: Rep[Double]): Rep[Double]
}

Figure 3. Interface traits defining staged operations. infix_ meth-
ods not presently legal Scala, but can be encoded with implicits.
For simplicity, operations are defined for Double only.

trait BaseStr extends Base {
type Rep[+T] = String

trait ArithStr extends Arith with BaseStr {
implicit def unit(x: Double) = x.toString
def infix +(x: String, y: String) = "(%s+%s)".format(x,y)
def infix #(x: String, y: String) = "(%s*%s)".format(x,y)
}
trait TrigStr extends Trig with BaseStr {
def sin(x: String) = "sin(%s)".format(x)
def cos(x: String) = "cos(%s)".format(x)

}

Figure 4. Implementing the interface traits of Figure 3, represent-
ing staged code as strings.

formations without any further changes to the code in Figure 1, just
by mixing in the trait FFT with a few others.

Before considering specific optimizations, however, a closer
look at the definition of Rep and the traits Arith and Trig is
in order. The definitions are given in Figure 3. In trait Base, the
declaration type Rep[+T] defines an abstract type constructor [30]
(also called a higher-kinded type) Rep which we take to range
over possible representations of staged expressions. Since Rep is
abstract, no concrete representation is defined yet; the declaration
merely postulates the existence of some representation.

Trait Arith extends trait Base and contains only abstract mem-
bers, too. These postulate the existence of an implicit lifting of
Doubles to staged values and the usual arithmetic operations on
staged expressions of type Rep[Double]. The restriction to Doubles
is just to keep the presentation concise. Any suitable means to ab-
stract over numeric types, such as the “type class” Numeric from
the Scala standard library could be used to define Arithin a generic
way for a range of numeric types. Analogously to Double, we could
define arithmetic on matrices and vectors and implement optimiza-
tions on those operations in exactly the same way [5]. Trait Trig is
similar to Arith but defines trigonometric operations.

One way to look at Base, Arith and Trig is as the definition of
a typed embedded language. The embedding is ragless (i.e. method
resolution happens at compile time without runtime dispatch over-
head) [4] and polymorphic [21], in the sense that we are free to
pick any suitable concrete implementation that fulfills the given in-
terface.

From a safety point of view, keeping the actual representation
inaccessible from the program generator is very important. Other-
wise, the program generator could execute different code depend-
ing on the exact structure of a staged expression. Optimizations
that replace staged code with simpler but semantically equivalent
expressions would risk changing the meaning of the generated pro-
gram [37].

2.1 Representing Staged Code: as Strings (bad)

With the aim of generating code, we might be tempted to represent

staged expressions uniformly as strings. We could achieve this with

traits BaseStr and ArithStr shown in Figure 4 (we neglect Trig).

Figure 5 shows how these traits can be put to use to generate code (a

simple variant, that is) from two different staged power functions.

The basic task is to assemble the desired traits into an actual object:
object PowerStrA extends PowerA with ArithStr

Mixing in ArithStr will satisfy the previously defined self-type
requirement of PowerA since ArithStr extends Arith (BaseStr
and Base are analogous) and will install ArithStrs implementation
of the interface defined in Arith.

Figure 5 also reveals the main drawback of using strings or
any other solely expansion-based representation: unrestricted code
duplication. The generated code will re-evaluate the operation
(x0+x1) four times. Surprisingly, choosing a better algorithm can
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trait PowerA { this: Arith = trait PowerB { this: Arith =>

def power(b: Rep[Double], x: Int): Rep[Double] = def power(b: Rep[Double], x: Int): Rep[Double] =
if (x == 0) 1.0 else b * power(b, x - 1) if (x == 0) 1.0
} else if ((x&1) == 0) { val y = power(b, x/2); v =V }
else b * power(b, x - 1)
}
new PowerA with ArithStr { new PowerB with ArithStr {
println { println {
power (" (x0+x1)",4) power (" (x0+x1)",4)
}
} }
// result: // result:
((x0+x1) * ((x0+x1) * ((x0+x1) * ((x0+x1)*1.0)))) ((((x0+x1)*1.0) * ((x0+x1)*1.0) ) * (((x0+x1)*1.0) *((x0+x1)*1.0)))

Figure 5. Two algorithms to implement the power function. Using strings as code representation results in code duplication and undoes the
improvement obtained by re-using intermediate results.

new PowerB with ExportGraph with ArithExpOpt {
exportGraph {
power(fresh[Double] + fresh[Double],4)

new PowerA with ExportGraph with ArithExpOpt {
exportGraph {
power (fresh[Double] + fresh[Double],4)
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trait PowerB2 extends PowerB { this: Compile =>
val p4 = compile { x: Rep[Double] =>
power(x + x, 4)

trait PowerA2 extends PowerA { this: Compile =>
val p4 = compile { x: Rep[Double] =>
power(x + x, 4)

// use compiled function p4 ... // use compiled function p4 ...

new PowerA2 with CompileScala new PowerB2 with CompileScala
with ArithExpOpt with ScalaGenArith with ArithExpOpt with ScalaGenArith
// generated code: // generated code:
class Anon$1 extends ((Double)=>(Double)) { class Anon$2 extends ((Double)=>(Double)) {
def apply(x0:Double): Double = { def apply(x0:Double): Double = {
val x1 = x0+x0 val x1 = x0+x0
val x2 = x1*x1 val x2 = x1*x1
val x3 = x1*x2 val x3 = x2*x2
val x4 = x1#x3 x3
x4 }
} }
}

Figure 6. Using expression trees instead of strings and adding symbolic rewritings removes the = 1.0 operations, prevents code duplication
and mirrors algorithmic improvement in generated code. Code to output graph (top), code to generate and load Scala code (bottom).
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[ ArithExp ]4—[ ArithExpOpt ]

[ArilhExpOptFFT] [ ScalaGenArith ] | Arithmetic
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[ Trig ] 4—[ TrigExp ] - TrigExpOpt ScalaGenTrig | Trigonometry

Interface Core Implementation Optimizations Specific Opts Scala Code generation

Figure 7. Component architecture. Arrows denote extends relationships, dashed boxes represent units of functionality.
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make matters worse. The repeated-squaring power algorithm in
PowerB, which normally reduces the overall number of multipli-
cations to O(log x), generates less efficient code than the linear
algorithm in PowerA. Even if the target compiler would remove the
trivial = 1.0 operations, the seemingly clever algorithm would not
have had a positive effect. The problem is that instead of re-using
the results of intermediate computations, the computations them-
selves are duplicated. This effect of “undoing” value binding and
memoization is characteristic for all inherently syntactic staging
approaches and has been studied in the context of MSP languages
at length [13, 36].

Moreover, there is no evident way of implementing more elab-
orate optimizations that need to analyze staged expressions in a
semantic manner.

2.2 Representing Staged Code: as Graphs (good)

Instead of strings we choose a representation based on expression
trees, or, more exactly, a “sea of nodes” [7] representation that is
in fact a directed (and for the moment, acyclic) graph but can be
accessed through a tree-like interface. The necessary infrastructure
is defined in trait Expressions, shown in Figure 8.

There are two categories of objects involved: expressions, which
are atomic (subclasses of Exp: constants and symbols) and defini-
tions, which represent composite operations (subclasses of Def, to
be provided by other components). There is also a “gensym” oper-
ator fresh that creates fresh symbols.

The guiding principle is that each definition has an associated
symbol and refers to other definitions only via their symbols. In
effect, this means that every composite value will be named, sim-
ilar to administrative normal form (ANF) [18]. Trait Expressions
provides methods to find a definition given a symbol or vice versa.
The extractor object [15] Def allows to pattern-match on the def-
inition of a given symbol, a facility that is used for implementing
rewritings (see below).

Through the implicit conversion method toAtom, a definition
can be used anywhere an atomic expression is expected. Doing so
will search the already encountered definitions, which are kept in
an internal table (omitted in Figure 8), for a structurally equivalent
one. If a matching previous definition is found, its symbol will be
returned. Otherwise the definition is seen for the first time. It will
be associated with a fresh symbol and saved for future reference. In
effect, this simple scheme provides a powerful global value num-
bering (common subexpression elimination) optimization that ef-
fectively prevents generating duplicate code. Since all operations in
interface traits such as Arith are defined to return Rep types, defin-
ing Rep[T] = Exp[T] in trait BaseExp (see Figure 9) means that
conversion to symbols will take place already within those meth-
ods, making sure that the created definitions are actually registered.

We observe that there are no concrete definition classes pro-
vided by trait Expressions. Providing meaningful data types is
the responsibility of other traits that implement the interfaces de-
fined previously (Base and its descendents). For each interface trait,
there is one corresponding core implementation trait. Shown in
Figure 9, we have traits BaseExp, ArithExp and TrigExp for the
functionality required by the FFT example. Trait BaseExp installs
atomic expressions as the representation of staged values by defin-
ing Rep[T] = Exp[T]. Traits ArithExp and TrigExp define one
definition class for each operation defined by Arith and Trig, re-
spectively, and implement the corresponding interface methods to
create instances of those classes.

2.3 Implementing Optimizations

Some profitable optimizations, such as the global value numbering
described above, are very generic. Other optimizations apply only
to specific aspects of functionality, for example particular imple-

trait Expressions {
// expressions (atomic)
abstract class Exp[+T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

def fresh[T]: Sym[T]

// definitions (composite, subclasses provided
// by other traits)
abstract class Def[T]

def findDefinition[T](s: Sym[T]): Option[Def[T]]
def findDefinition[T](d: Def[T]): Option[Sym[T]]
def findOrCreateDefinition[T](d: Def[T]): Sym[T]

// bind definitions to symbols automatically
implicit def toAtom[T](d: Def[T]): Exp[T] =
findOrCreateDefinition(d)

// pattern match on definition of a given symbol
object Def {
def unapply[T](s: Sym[T]): Option[Def[T]] =
findDefinition(s)
}

}

Figure 8. Expression representation (method implementations
omitted).

trait BaseExp extends Base with Expressions {
type Rep[+T] = Exp[T]

trait ArithExp extends Arith with BaseExp {
implicit def unit(x: Double) = Const(x)
case class Plus(x: Exp[Double], y: Exp[Double])
extends Def[Double]
case class Times(x: Exp[Double], y: Exp[Double])
extends Def[Double]
def infix +(x: Exp[Double], y: Exp[Double]) = Plus(x, V)
def infix_=(x: Exp[Double], y: Exp[Double]) = Times(x, y)
}

Figure 9. Implementing the interface traits from Figure 3 using the
expression types from Figure 8.

trait ArithExpOpt extends ArithExp {
override def infix #(x:Exp[Int],y:Exp[Int]) = (x,y) match {
case (Const(x), Const(y)) => Const(x * y)
case (x, Const(1l)) => x
case (Const(1), v) => X
case _ => super.infix_*(x, vy)

3

}
trait ArithExpOptFFT extends ArithExp {
override def infix »(x:Exp[Int],y:Exp[Int]) = (x,y) match {
case (x, Def(Times(Const(k), y))) => Const(k) * (x * y))
case (Def(Times(Const(k), x)), y) => Const(k) * (x * y))

case (x, Const(y)) => Times(Const(y), x)
case _ => super.infix_*(x, V)

}

Figure 10. Extending the implementation from Figure 9 with
generic (top) and specific (bottom) optimizations.
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mentations of constant folding (or more generally symbolic rewrit-
ings) such as replacing computations like x * 1.0 with x. Yet other
optimizations are specific to the actual program being staged. In the
FFT case, a number of rewritings are described by Kiselyov et al.
[27] that are particularly effective for the patterns of code generated
by the FFT algorithm but not as much for other programs.

What we want to achieve again is modularity, such that opti-
mizations can be combined in a way that is most useful for a given
task. To implement a particular rewriting rule (whether specific
or generic), say, x * 1.0 — x, we have to provide a specialized
implementation of infix_= (overriding the one in trait ArithExp)
that will test its arguments for a particular pattern. How this can
be done in a modular way is shown by the traits ArithExpOpt
and ArithExpOptFFT, which implement some generic and program
specific optimizations (see Figure 10).

In essence, we are confronted with the classical expression
problem of independently extending a data model with new data
variants and new operations [43]. There are many solutions to
this problem but most of them are rather heavyweight. More
lightweight implementations are possible in languages that sup-
port multi-methods, i.e. dispatch method calls dynamically based
on the actual types of all the arguments. Figure 10 shows how we
can achieve essentially the same (plus deep inspection of the ar-
guments) using pattern matching and mixin composition, making
use of the fact that composing traits is subject to linearization [31].
We package each set of arithmetic optimizations into its own trait
that inherits from ArithExp and overrides the desired methods (e.g.
infix_x). When the arguments do not match the rewriting pattern,
the overridden method will invoke the “parent” implementation us-
ing super. When several such traits are combined, the super calls
will traverse the overridden method implementations according to
the linearization order of their containing traits.

Implementing multi-methods in a statically typed setting usu-
ally poses three problems: separate type-checking/compilation, en-
suring non-ambiguity and ensuring exhaustiveness. The described
encoding supports separate type-checking and compilation in as far
as traits do. Ambiguity is ruled out by always following the lin-
earization order and the first-match semantics of pattern matching.
Exhaustiveness is ensured at the type level by requiring a default
implementation, although no guarantees can be made that the de-
fault will not choose to throw an exception at runtime. In the par-
ticular case of applying optimizations, the default is always safe as
it will just create an expression object.

Comparing expression-graph realizations of the power function
(see Figure 6) to the previous realizations based on strings (see
Figure 5), we observe much better results. The generated code no
longer contains any trivial operations and no duplicate code. More-
over, the staged code produced by the repeated squaring algorithm
is exactly what one would expect. The optimized FFT computation
graph was already shown in Figure 2.

2.4 Generating Code

Code generation is an explicit operation. Figure 6 shows how it is
invoked for the power function. For the common case where gen-
erated code is to be loaded immediately into the running program,
trait Compile provides a suitable interface in form of the abstract
method compile (see Figure 11). The contract of compile is to “un-
stage” a function from staged to staged values into a function op-
erating on present-stage values that can be used just like any other
function object in the running program.

For generating Scala code, an implementation of the compila-
tion interface is provided by trait CompileScala. This trait extends
another trait, ScalaGenBase, whose subclasses are responsible to
linearize the internal dependency graph into a flat code representa-
tion and generate Scala code for individual definition nodes. Sub-

trait Compile extends Base {
def compile[A,B](f: Rep[A] => Rep[B]): A=>B

trait CompileScala extends Compile with ScalaGenBase =>
def compile[A,B](f: Exp[A] => Exp[B]) = {
val x = fresh[A]
val v = £f(x)
// emit header
for ((sym, node) <- buildSchedule(y))
emitNode(sym, node)
// emit footer
// invoke compiler
// load generated class file
// instantiate object of that class
}
}

Figure 11. Code generation interface and skeleton of Scala com-
pilation component.

trait ScalaGenBase extends BaseExp {
def buildSchedule(Exp[_])): List[(Sym[_], Def[_])] = ...
def emitNode(sym: Sym[_], node: Def[_]) =
throw new Exception("node_ " + node + "_not, supported™)

}
trait ScalaGenArith extends ScalaGenBase with ArithExp {

override def emitNode(sym: Sym[_], node: Def[_]) = node match {
case Plus(a,b) => println("val_%s_=_%a_+_%b".format(sym,a,b))
case Times(a,b) => println("val _%s_= %a,_x %b".format(sym,a,b))

case _ => super.emitNode(sym, rhs)

Figure 12. Scala code generation for selected expressions.

classes of ScalaGenBase are structured in a similar way as those of
Base, i.e. one for each unit of functionality (see Figure 12). Gen-
erating a valid schedule is straightforward in the code model we
have been considering so far (no staged branches or conditionals,
no staged function definitions): all that needs to be done is sort
the graph nodes in reverse topological order. More powerful code
models will need some form of dominator computation such as de-
scribed by Click [6]. Graph nodes unreachable from the final result
node are discarded from the schedule, i.e. any computation whose
result is never used is removed; another example of a powerful
generic optimization.

The overall compilation logic of CompileScala is relatively
simple: emit a class and apply-method declaration header, emit in-
structions for each definition node according to the schedule, close
the source file, invoke the Scala compiler, load the generated class
file and return a newly instantiated object of that class. Examples
of code generated for the power function are shown in Figure 6.

An alternative “code generation” strategy is outputting the inter-
mediate representations as GraphViz code, suitable for producing
graphical output. This is how the graphs in this paper were gener-
ated. The implementation is straightforward and a small example
of its use is also shown in Figure 6.

2.5 Pautting it all Together

In the previous sections, we have discussed the major ingredients of
lightweight modular staging, focusing mostly on individual compo-
nents. Figure 7 shows an overview of the traits encountered so far
and their relationships. Figure 6 already showed a simple end-to-
end implementation with the power function as example.

For the FFT, putting LMS to use is only slightly more complex.
One obstacle is that the FFT algorithm in Figure 1 expects an array
of Complex objects as input, each of which contains fields of type
Rep[Double]. When applying compile, however, we will receive
input of type Rep[Array[Double] ], assuming we want to generate
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trait FFTC extends FFT { this: Arrays with Compile =>
def fftc(size: Int) = compile { input: Rep[Array[Double]] =>
assert(<size is power of 2>) // happens at staging time
val arg = Array.tabulate(size) { i =
Complex(input(2+i), input(2xi+1))

val res = fft(arg)
updateArray(input, res.flatMap {
case Complex(re,im) => Array(re,im)
1))
}
}

Figure 13. Extending the FFT component from Figure 1 with
explicit compilation.

functions that operate on arrays of Double (with the complex num-
bers flattened into adjacent slots). Thus, we will extend trait FFT
to FFTIC (see Figure 13), importing support for staged arrays and
Compile. The implementation of staged arrays is straightforward
and omitted for brevity.

We can define code that uses compiled FFT “codelets” by em-
bedding it in a subtrait of FFTC:

trait TestFFTC extends FFTC {
val fft4: Array[Double] => Array[Double] = fftc(4)
val fft8: Array[Double] => Array[Double] = fftc(8)

// embedded code using fft4, fft8, ...

Constructing an instance of this subtrait (mixed in with the appro-
priate LMS traits) will execute the embedded code:
val OP: TestFFC = new TestFFTC with CompileScala
with ArithExpOpt with ArithExpOptFFT with ScalaGenArith
with TrigExpOpt with ScalaGenTrig
with ArraysExpOpt with ScalaGenArrays
We can also use the compiled methods from outside the object:

op.fft4(Array(1.0,0.0, 1.0,0.0, 2.0,0.0, 2.0,0.0))
— Array(6.0,0.0,-1.0,1.0,0.0,0.0,-1.0,-1.0)

Providing an explicit type in the definitionval OP: TestFFC = ...

ensures that the internal representation is not accessible from the
outside, only the members defined by TestFFC.

3. Adding More Features

Up to now we have been working with a very simple language
at the staged level. Prominent missing features are side effects,
control flow (conditionals, loops) and function definitions. There is
not sufficient space to explain their implementations in full detail.
Large parts are standard compiler technology and orthogonal to
the choice between LMS and a stand-alone compiler. We will visit
only the main points in this section to give an overall idea of how
implementations can be approached.

3.1 Side Effects and Control Flow

In Section 2, all staged code was pure. Many practical programs,
however, need to incur side-effects, especially if the goal of staging
is improved performance. We can extend the previous model to
include effectful computations in a relatively simple way. The basic
idea is to make all effects explicit and include effect-dependencies
in the graph-based representation besides the data dependencies.

We will maintain a current state in a mutable fashion, taking
the view that state is an abstraction of an effect history. How this
abstraction is actually defined can be controlled by mixing in a
suitable trait. In the simplest case, the current state is a list of
previous effects.

A suitable programming model is suggested by the notion of
monadic reflection and reification [16, 17]. An effectful operation
needs to be reflected at the point where its effect should occur. Re-
flection amounts to updating the current state in a mutable fashion

trait Parsers { this: Matching =>
type Input = List[Char]

abstract class Parser extends (Input => Result) {

def ~(p: =>Parser) = new Parser { // sequence

def apply(in: Rep[Input]) = this(in) switch {
case SuccessR(rest) => p(rest)

} orElse {
case _ => FailureR()
} end
def |(p: =>Parser): Parser = ... // alternative

implicit def acceptChar(c: Char): Parser = ...
implicit def acceptString(s: String) =
s.map(acceptChar) .reduceleft(_ ~ _)

trait TestParsers extends Parsers {
val phraseA = "scala" ~ ’_’ ~ "rules"
val phraseB = "scala" ~ ~ "rocks"
val main = phraseA | phraseB

3

Figure 14. Staged parser combinators. Matching alternatives with
a common prefix.

3
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Figure 15. Resulting computations. Generic value numbering op-
timization (disabled on the left) prevents unnecessary backtracking.

to include the new effect. Not surprisingly, an effect can thus be
seen as defining a state transition. How exactly this transition works
is again customizable. Optimizing rewritings on the effect level can
be implemented in the same manner as can be done for the value
level.

The counterpart of reflection is reification. Reifying the effects
of a block of code amounts to executing the code with an empty
current state, and returning a representation of the result value
together with the resulting state, e.g.:

def print(x: Exp[String]): Exp[Unit] = reflect(Print(x))
reify {

print("A")

print("B")

3+4

}
< Reified(Const(7), List(Print(Const("A"), Const("B"))))

Control flow can also be described in terms of effects (after all a
jump instruction modifies the program counter). To implement con-
ditionals, we can use the notion of an abort effect, possibly incurred
by the operation Test. A conditional expression if (c) a else b
will be represented as:

reflect(OrElse(reify { reflect(Test(c)); a }, reify(b)))

2010/5/31



trait Functions extends Base {
def lambda[A,B](f: Rep[A] => Rep[B]): Rep[A=>B]
def app[A,B](f: Rep[A=>B], x: Rep[A]): Rep[B]

trait FunctionsExp extends Functions with BaseExp {
case class Lambda[A,B](f: Exp[A] => Exp[B]) extends Def[A=>B]
case class Apply[A,B](f: Exp[A=>B], x: Exp[A]) extends Def[B]

def lambda[A,B](f: Exp[A] => Exp[B]) = Lambda(f)
def app[A,B](f: Exp[A=>B], x: Exp[A]) = Apply(f,x)

Figure 16. representing A-abstractions as Scala function values
(higher-order abstract syntax)

The OrElse operation is similar to ®-nodes in customary SSA
representations but captures the priority of the then-part.

This notion of representing conditionals extends naturally to
more complicated structures such as pattern matching. An inter-
esting aspect is that effect nodes are subject to the same value num-
bering optimization as data nodes. An example, which we present
without going into the details, is a staged implementation of parser
combinators (see Figure 14). Using similar combinators in their
unstaged form can be very expensive because of unnecessary back-
tracking. In the example, the grammar consists of two alternatives
that share a common prefix. Looking at the computation graph of
the staged program (see Figure 15), we observe that backtracking
is automatically removed.

Code generation for code including conditionals and side effects
is more involved than what is shown in Section 2. The graph
representation no longer corresponds to ANF since conditionals
can appear conceptually “within” other expressions. This is not
a problem if the code generation target language is expressive
enough. For targeting simpler languages however, more work needs
to be done. It should be fairly straightforward, though by no means
trivial, to extract a customary control flow graph (CFG) from the
representation described above (this has not been implemented
yet). With a CFG and a separation into flat basic blocks at hand,
almost any target should be feasible.

3.2 Functions and Recursion

Basic support for staged function definitions and function appli-
cations can be defined in terms of a simple higher-order abstract
syntax (HOAS) [32] representation, similar to those of Carette
et al. [4] and Hofer et al. [21] (see Figure 16). Alternatively, if
we are interested mainly in first-order functions (which is often
the case, since one goal of staging is to translate away the ab-
straction offered by higher-order functions at the meta-program
level), we can hide function definitions inside the representations
of conditionals or pattern matching. In the pattern matching inter-
face described above, pattern alternatives are reified as instances
of PartialFunction, which is a subclass of function values. One
avenue is to stage these pattern alternatives. The heuristic here is
that user-defined functions will do some form of matching on their
arguments anyways. If staged functions are implemented that way,
lambda and app do not leak into client code. An example is the
staged factorial function in Figure 17.

Whether we use lambda and app directly or not, the HOAS rep-
resentation has the disadvantage of being opaque: there is no im-
mediate way to “look into” a Scala function object. If we want to
analyze functions in the same way as other program constructs,
we need a way to transform the HOAS encoding into our flat
graph representation. For a HOAS term Lambda(f), we can call
f(fresh[A]) to “unfold” the function definition. The result is a
symbol that represents the entire computation defined by the func-
tion. But too eagerly expanding function definitions is problematic.
For recursive functions, the result would be infinite, i.e. the com-

trait Fac { this: Matching =>
def fac(n: Rep[Int]): Rep[Int] = n switch {
case n if n guard 0 => 1
} orElse {
case n => n * fac(n - 1)

Sym(3)
Test(Sym(2),00)

Sym(4)
Reify(Const(1.0),List(Sym(3)))

Sym(1)

Minus(Sym(8),Const(1.0))

OrElse(List(Sym(10), Sym(12)))

Sym(14)
Times(Sym(8),Sym(13))

Sym(7)
DefineFun(Pure(Sym(14)))

Figure 17. Staged factorial function (top). Computation unfolded
once (bottom).

putation will not terminate. What we would like to do is detect
recursion and generate a finite representation that makes the recur-
sive call explicit. However this is difficult because recursion might
be very indirect:
def foo(x: Rep[Int]) = {
val f = (x: Rep[Int]) => foo(x + 1)
) app(lambda(f), x)

Each incarnation of foo creates a new function f; unfolding will
thus create unboundedly many different function objects.

To detect cycles, we have to compare those functions. This, of
course, is undecidable in the general case of taking equality to be
defined extensionally, i.e. saying that two functions are equal if they
map equal inputs to equal outputs. The standard reference equality,
on the other hand, is too weak for our purpose:

def adder(x:Int) = (y: Int) => X +vVy

adder(3) == adder(3)
— false

However, we can approximate extensional equality by inten-
sional (i.e. structural) equality, which in most cases turns out to be
sufficient. Testing intensional equality amounts to checking if two
functions are defined at the same syntactic location in the source
program and whether all data referenced by their free variables is
equal. Fortunately, the implementation of first-class functions as
closure objects offers (at least in principle) access to a “defunction-
alized” [12] data type representation on which equality can easily
be checked. A bit of care must be taken though, because the struc-
ture can be cyclic. On the JVM there is a particularly neat trick. We
can serialize the function objects into a byte array and compare the
serialized representations:

serialize(adder(3)) == serialize(adder(3))
— true
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With this method of testing equality, we can implement controlled
unfolding. The result of unfolding the factorial function once (at
the definition site) is again shown in Figure 17 (bottom).

3.3 Cross-Stage Persistence

Cross-stage persistence (CSP) means making objects that are live at
the generator stage available to the generated program [38]. In gen-
eral, this is only applicable if the generated code is to be loaded and
executed while the previous stage is still available, and if the code
generation target allows to call back into the generator. This would
not be the case for, say, OpenCL GPU code produced from a gen-
erator written in Scala, but homogenous setups are fine. Restricted
forms of heterogeneous CSP are also feasible, e.g. for immutable
data that has a corresponding target-language counterpart.

In terms of implementation, general CSP can be achieved by
generalizing the implicit unit method from trait Arith (see Fig-
ure 3) to lift arbitrary values into the staged representation instead
of just Doubles:

implicit def unit[T](x: T): Rep[T]

For all lifted objects that are not primitives, we can then create a
corresponding definition node of class External:
case class External[T](x: T) extends Def[T]

Primitives retain their representation as objects of class Const.

During code generation, we map each External node to a
field in the generated Scala class. When instantiating the code
object, these fields are initialized with the corresponding external
references. This approach is similar to a classic closure conversion.

The Scala implementation does not currently provide an auto-
matic lifting of all operations for a given type of object. Opera-
tions must be “white-listed” by providing staged versions explic-
itly, which can be tedious if there is no pre-fabricated component
that can be readily mixed in. On the other hand this implies that
programmers have full control over what operations are available
to staged programs.

4. Related Work

Static meta-programming approaches include C++ templates [39],
and Template Haskell [34]. Building on C++ templates, customiz-
able generation approaches are possible through Expression Tem-
plates [40], e.g. used by Blitz++ [41]. An example of runtime code
generation in C++ is the TaskGraph framework [1]. Active libraries
were introduced by Veldhuizen [42], telescoping languages by [26].
Specific toolkits using domain-specific code generation and opti-
mization include FFTW [19], SPIRAL [33] and ATLAS [45].

This paper draws a lot of inspiration from the work of Kiselyov
et al. [27] on a staged FFT implementation. Performing symbolic
rewritings by defining operators on lifted expressions and perform-
ing common subexpression elimination on the fly is also central to
their approach. LMS takes these ideas one step further by making
them a central part of the staging framework itself.

Immediately related work on embedding typed languages in-
cludes that of Carette et al. [4] and Hofer et al. [21]. Chafi et al. [5]
describe how LMS is used in the development of DSLs for high-
performance parallel computing on heterogenous platforms.

Multi-Stage Programming Languages such as MetaML [38],
MetaOCaml [2] and Mint [44] have been proposed as a disci-
plined approach to building code generators. These languages pro-
vide three syntactic annotations, brackets, escape and run which
together provide a syntactic quasi-quotation facility that is similar
to that found in LISP but statically scoped and statically typed.

MSP languages make writing program generators easier and
safer, but they inherit the essentially syntactic notion of combin-
ing program fragments. On one hand, MSP languages transparently
support staging of all language constructs, where LMS components

have to be provided explicitly. On the other hand, the syntactic
MSP approach incurs the risk of duplicating code [3, 8, 13, 36].
Code duplication can be avoided systematically by writing the gen-
erator in continuation-passing or monadic style, using appropriate
combinators to insert let-bindings in strategic places. Often this is
impractical since monadic style or CPS significantly complicates
the generator code. The other suggested solution is to make ex-
tensive use of side-effects in the meta-program, either in the form
of mutable state or by using delimited control operators [10, 11].
However, side-effects pose serious safety problems and invalidate
much of the static guarantees of MSP languages. This dilemma is
described as an “agonizing trade-oft”, due to which one “cannot
achieve clarity, safety, and efficiency at the same time” [25]. Only
very recently have type-systems been devised to handle both stag-
ing and effects [24, 25, 44]. They are not excessively restrictive but
not without restrictions either. Mint [44], a multi-stage extension of
Java, restricts non-local operations within escapes to final classes
which excludes much of the standard Java library.

By contrast, lightweight modular staging prevents code dupli-
cation by handling the necessary side effects inside the staging
primitives, which are semantic combinators instead of syntactic
expanders. Therefore, code generators can usually be written in
purely functional direct style and are much less likely to cause
scope extrusion or invalidate safety assurances in other ways. Even
though less likely, scope extrusion can happen in the LMS setting
as well, e.g. if the argument of the function passed to compile es-
capes its dynamic scope. Combining LMS with the type system
of Westbrook et al. [44] would be an interesting avenue for future
research, if utmost security is strived for.

Another central characteristic of MSP languages is that staged
code cannot be inspected due to safety considerations [37]. This im-
plies that domain-specific optimizations must happen before code
generation. One approach is thus to first build an intermediate code
representation, upon which symbolic computation is performed,
and only then use the MSP primitives to generate code [27]. The
burden of choosing and implementing a suitable intermediate rep-
resentation is on the programmer. It is not clear how different rep-
resentations can be combined or re-used. In the limit, programmers
are tempted to use a representation that resembles classic abstract
syntax trees (AST) since that is the most flexible. At that point, one
could argue that the benefit of keeping the actual code representa-
tion hidden has been largely defeated.

Lightweight modular staging provides a systematic interface for
adding symbolic rewritings. Safety is maintained by exposing the
internal code structure only to rewriting modules but keeping it
hidden from the client generator code.

Compiled embedded DSLs, as studied by Leijen and Meijer
[28] and Elliott et al. [14], can also be implemented using MSP
languages by writing an explicit interpreter and adding staging an-
notations in a second step [9, 20, 35]. This is simpler than writing
a full compiler but compared to constructing explicit interpreters,
purely embedded languages have many advantages [22]. LMS al-
lows as simpler approach, by starting with a pure embedding in-
stead of an explicit interpreter. In simple cases, adding some type
annotations in strategic places is all that is needed to get to a staged
embedding [21]. If domain-specific optimizations are needed, new
AST classes and rewriting rules are easily added.

5. Conclusions

In this paper we have presented lightweight modular staging, a
library-based dynamic code generation approach. In particular
we have shown how LMS complements the notion of polymor-
phic DSL embedding [21] with a systematic interface for domain-
specific optimizations.
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