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S-ROCK: CHEBYSHEV METHODS FOR STIFF STOCHASTIC
DIFFERENTIAL EQUATIONS∗
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Abstract. We present and analyze a new class of numerical methods for the solution of stiff
stochastic differential equations (SDEs). These methods, called S-ROCK (for stochastic orthogonal
Runge–Kutta Chebyshev), are explicit and of strong order 1 and possess large stability domains in
the mean-square sense. For mean-square stable stiff SDEs, they are much more efficient than the
standard explicit methods proposed so far for stochastic problems and give significant speed improve-
ment. The explicitness of the S-ROCK methods allows one to handle large systems without linear
algebra problems usually encountered with implicit methods. Numerical results and comparisons
with existing methods are reported.
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1. Introduction. The importance of numerical methods for stochastic differen-
tial equations (SDEs) cannot be overemphasized as SDEs are used in the modeling of
many biological, chemical, physical, and economical systems. In this paper we pro-
pose a new class of explicit numerical methods for the solution of stiff SDEs written
in the Stratonovich form as1

dY = f(t, Y ) dt + g(t, Y ) ◦ dW (t), Y (t0) = Y0,(1.1)

where Y (t) is a random variable with value in R
d, f : [0, T ] × R

d → R
d is called the

drift function, g : [0, T ] × R
d → R

d is called the diffusion function, and W (t) is a 1-
dimensional Wiener process, t ≥ 0. We emphasize that our method is also applicable
to SDEs with an m-dimensional Wiener process, however, with a possible reduction
of the order of convergence. We will assume that both f and g are continuous and
uniformly Lipschitz continuous with respect to the second variable and satisfy a linear
growth condition and that Y0 is independent of the Wiener process W (t) and has a
finite second order moment. Under these assumptions, the existence and uniqueness
of a (mean-square-bounded) strong solution can be shown (see, for example, [26, sect.
5.2] for details).

As for deterministic ordinary differential equations (ODEs), stiffness is a central
issue for the numerical treatment of SDEs. Stiffness is concerned with (local) proper-
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land (stephane.cirilli@unige.ch).

1The Stratonovich integral is chosen here for its “ordinary chain rule” property. Recall that any
Itô stochastic differential equations can be converted in Stratonovich form. Thus, the numerical
methods proposed in this paper apply to general SDEs.

997



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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ties of the SDE which can affect the stability of a numerical method. For ODEs, it is
well known that stiffness leads to step size restrictions when using traditional explicit
solvers, and implicit methods are usually advocated for such problems [15]. The good
stability properties of implicit methods are obtained at the cost of solving nonlinear
equations at each step. Although efficient in many situations, this approach can be
expensive especially for large systems. The development of explicit methods for the
numerical solution of stiff ODEs has been considered by many researchers. Successful
methods, so-called Chebyshev methods, have been constructed for dissipative prob-
lems [1],[2],[19],[21],[30]. Other types of explicit methods have been proposed for stiff
problems with scale separation [9],[11],[13].

For SDEs, one can consider three classes of methods: explicit methods, semi-
implicit methods (implicit only in the drift term), and fully implicit methods. The
latter methods have to be considered with care due to the possible unboundedness
of the solution [6],[25]. Such fully implicit methods have been constructed for stiff
problems where some components of a stiff multidimensional system have a small or
vanishing drift term for which semi-implicit methods cannot improve the stability of
the numerical solution [25].

In this paper, we focus on mean-square stable SDEs (to be defined below), and for
such problems semi-implicit methods are applicable [18],[17]. However, as mentioned
above, due to the implicitness and linear algebra problems, such methods can be
costly. Explicit methods for stochastic problems with multiple scales which can be
separated into fast and slow components have been proposed in [31],[10]. For stiff
stochastic problems without scale separation, efficient explicit methods for stiff mean-
square stable problems have not been considered to the best of the authors’ knowledge.
We propose here a new class of explicit methods of strong order 1 with large stability
domains in the mean-square sense called S-ROCK (for stochastic orthogonal Runge–
Kutta Chebyshev methods) first introduced in [8]. ROCK methods are a class of
second and fourth order explicit Chebyshev methods based on orthogonal stability
functions introduced in [1] and [2], respectively, for the efficient numerical solution
of stiff ODEs. The S-ROCK methods discussed in this paper extend Chebyshev
methods to stiff SDEs. Due to their explicitness, they are as easy to implement as
standard explicit methods for SDEs (as, for example, the well-known Euler–Maruyama
method). At the same time, due to their extended stability properties, these methods
are well suited for stiff mean-square stable SDEs.

The paper is organized as follows. In section 2 we recall the convergence and
stability concepts that we need in what follows. In section 3 we introduce the S-ROCK
methods discuss the order and the stability of these methods. At the end of section 3
the general case of SDEs with multidimensional Wiener processes is discussed. Finally,
in section 4 we present numerical examples and comparison with other methods to
illustrate the behavior of the S-ROCK methods.

2. Stability and convergence for stochastic methods. We consider one-
step methods for the numerical solution of the SDE (1.1) of the form

Yn+1 = Φ(Yn,Δt, J1,n, . . . , Jl,n),(2.1)

where Jj,n = Wj(tn+1) − Wj(tn) and Wj(t) is a Wiener process. The increment
Wj(t)−Wj(s) is normally distributed with mean zero and variance t−s, and Jj,n can

be evaluated by computing
√

ΔtNj (Nj are independent standard Gaussian random
vectors with distribution N (0, 1)).
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An early method introduced for SDEs is the so-called Euler–Maruyama method
[22] given by2

Yn+1 = Yn + Δtf(Yn) + Jng(Yn).(2.2)

This method has a low order of convergence, and several authors [23], [27] proposed
higher order methods (in a sense to be defined below). As an example, we consider
the method introduced by Platen [27], given by a two-stage scheme

Kn = Yn + Δtf(Yn) + Jng(Yn),(2.3)

Yn+1 = Yn + Δtf(Yn) + Jn
1

2
(g(Yn) + g(Kn)).(2.4)

We recall the concepts of accuracy and stability for the numerical integration of SDEs.
A method is said to have a strong order ρ (respectively, weak order of υ) if there exists
a constant C such that

E (|YN − Y (τ)|) ≤ CΔtρ (strong), |E(h(YN )) − E(h(Y (τ))| ≤ CΔtυ (weak)(2.5)

for any fixed τ = NΔt ∈ [0, T ] and Δt sufficiently small and for all functions h : R
d →

R, 2(υ+1) times continuously differentiable and for which all partial derivatives have
polynomial growth.

Remark 2.1. Note that, for every function h satisfying a Lipschitz condition,
|E(YN ) − E(Y (τ))| ≤ CΔtρ implies |E(h(YN )) − E(h(Y (τ)))| ≤ CΔtρ, and, thus,
strong global convergence of order ρ implies weak global convergence of order ρ.
However, the weak global order obtained in this manner may not be optimal.

It is useful for numerical purposes to have a relationship between the global
convergence as described in (2.5) and the local convergence, i.e., the convergence
after one step when the initial solution for the numerical method (2.1) is taken on the
exact solution. This relation given by Milstein is as follows (see [24],[5]).

Theorem 2.2 (Milstein 1987). Suppose that g and f , the drift and diffusion,
respectively, of the SDE (1.1), are continuous on [0, T ] × R

d and sufficiently smooth
and satisfy a uniform Lipschitz condition

|f(t, y) − f(t, z)| + |g(t, y) − g(t, z)| ≤ L|y − z| ∀t ∈ [0, T ], y, z ∈ R
d,(2.6)

and suppose further that the one-step method (2.1) satisfies the following local order
conditions:

E (|Y1 − Y (t0 + Δt)|) ≤ CΔtρ+1/2,(2.7)

|E(Y1) − E(Y (t0 + Δt))| ≤ CΔtρ+1,(2.8)

and then the method converges with a strong global order ρ.
Remark 2.3. For methods with integer local strong order and which depend only

on 1 Wiener increment J1, the condition (2.8) will automatically be satisfied if (2.7)
holds, since the expectation of any stochastic integral involving an odd number of
Wiener increments will vanish (see [20],[5] for more details).

Going back to our two examples, it can be shown, by comparing the Taylor series
expansion of the numerical methods and the true solution (see [20]), that the Platen
method has strong order 1 and that the Euler–Maruyama method does not converge

2When working with one Wiener increment J1,n, we will write it simply as Jn.
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towards the Stratonovich SDE (1.1) (it converges to the solution of the Itô problem
dY = f(t, Y ) dt + g(t, Y ) dW (t)).

The above convergence concepts concern the convergence of a numerical method
for small step sizes Δt → 0. For many applications, the efficiency of a numerical
method over a long time interval will also depend on its stability properties. Widely
used measures of stability for SDEs are mean-square stability, which measures the
stability of moments, and asymptotic stability (in the large), which measures the
overall behavior of sample functions [16]. In this paper we focus on the first stability
concept. For a linear autonomous system of SDEs the former concept is stronger than
the latter (see [4, Chap. 11]) or [16]). We notice that asymptotic stability of numerical
methods has been studied recently by several authors [18],[28].

Consider the SDE (1.1) with f(t, 0) = g(t, 0) = 0 and with a nonrandom initial
value Y0. The steady solution Y ≡ 0 is said to be mean-square stable if there exists
δ0 such that

lim
t→∞

E
(
|Y (t)|2

)
= 0 for all |Y0| < δ0.(2.9)

As for deterministic ODEs, where a large body of stability studies is based on the
linear test equation y′ = λy, a lot of insight into the behavior of numerical methods
for stochastic problems can be gained by studying the stochastic test problem [29],[18]

dY = λY dt + μY ◦ dW (t), Y (t0) = Y0,(2.10)

where λ, μ ∈ C. The solution of (2.10), Y (t) = Y0 exp(λt + μW (t)), is mean-square
stable if and only if 
λ + 
μ2 < 0 (see, for example, [4],[26]).

We denote the stability region of the test problem by

SSDE := {λ, μ ∈ C;
λ + 
μ2 < 0}.(2.11)

Following [29] we will say that a one-step method (2.1) is mean-square stable (for the
problem (2.10)) if

lim
n→∞

E
(
|Yn|2

)
= 0.(2.12)

Applying the Euler–Maruyama method to the above linear test equation produces

Yn+1 = (1 + Δtλ + Jnμ)Yn.(2.13)

Squaring the modulus of (2.13), taking the expected value, and using E(Jn) = 0,
E(J2

n) = Δt gives E(|Yn+1|2) = (|1 + p|2 + |q|2)E(|Yn|2), where p = Δtλ, q =
√

Δtμ.
Thus, the Euler–Maruyama method is mean-square stable if and only if R(p, q) = |1+
p|2+|q|2 < 1. A similar treatment can be done for the Platen method. More generally,
a one-step method (2.1) applied to the test equation (2.10) typically produces

E(|Yn+1|2) = R(p, q)E(|Yn|2),(2.14)

where R(p, q) ≥ 0 and the method is seen to be mean-square stable for the problem
(2.10) if and only if R(p, q) < 1. The stability domain of a numerical method can
thus be defined as

S := {p, q ∈ C;R(p, q) < 1},(2.15)
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Fig. 2.1. Mean-square stability domains for the Euler–Maruyama (EM) method, the Platen
(PL) method, and the RS method.

the sets of pairs of complex numbers p, q for which the method is (mean-square)
stable. In Figure 2.1 we plotted the stability domain of the Euler–Maruyama (EM)
and Platen (PL) methods for λ, μ ∈ R. We also plotted the stability domain of the
so-called RS method [7, p. 187], a two-stage method constructed with the aim of
improving its stability property. We will further discuss this method in section 4. As
a dashed line we sketched the boundary of the domain for which the test equation is
mean-square stable (the left part of the parabola is the stable region).3 We see that
the three methods cover only a small part of the stability region of the exact solution.
Thus, for stiff problems (e.g., λ, μ large) very small step sizes Δt are required for a
stable numerical solution. Notice that the stability region of the RS method along
the p-axis is twice as big as the corresponding region of the EM or PL methods.

In the next section we will construct explicit methods with stability domains
covering a much larger region of the left part of the dashed parabola (the true stability
region).

3. S-ROCK: Stochastic Chebyshev methods.

3.1. Chebyshev methods for deterministic problems. Chebyshev methods
(which will be generalized with the S-ROCK methods for stochastic problems) are a
class of explicit one-step methods with extended stability domains along the negative
real axis. The basic idea for such methods goes back to the 1960s with Saul’ev,
Franklin, and Guillou and Lago (see [15, sect. IV.2] and the references therein) and
is as follows: Consider a sequence of forward Euler methods Ψh1

, . . . ,Ψhm
with a

corresponding sequence of time steps h1, . . . , hm, and define a one-step method as the
composition ΨΔt = (Ψhm ◦ · · · ◦ Ψh1)(y0) with step size Δt = h1 + · · · + hm. Next,
given m, optimize the sequence {hi}mi=1 so that

|Pm(x)| =

∣∣∣∣∣
m∏
i=1

(1 + hix)

∣∣∣∣∣ ≤ 1 for x ∈ [−lm, 0],

with lm > 0 as large as possible. The solution of this problem is given by shifted
Chebyshev polynomials

Pm(x) = Tm(1 + x/m2),
(3.1)

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x) − Tj−2(x), j ≥ 2;

3We notice that some authors use the scaling (p, q) = (Δtλ,Δtμ2) for stability region diagrams
for which the stability region of the test problem becomes a wedge [29], [18].
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Fig. 3.1. Stability region for shifted Chebyshev polynomials of degree m = 6.

i.e., the optimal sequence of {hi}mi=1 is given by hi = −1/xi, where xi are the zeros of
Pm(x), and the maximal stability domain on the negative real axis increases quadrat-
ically with the number of stages and is given by lm = 2m2 (see Figure 3.1). Recall
that m, the number of stages of the method, represents the numerical work per step
(functions evaluation). Thus, if for the stable numerical integration of an initial value
problem from t0 = 0 to tm = T, N functions evaluation is needed for the forward
Euler method, the above Chebyshev method will need only

√
N functions evaluation.

If one takes an arbitrary order of the sequence of step size h1, . . . , hs, internal
instability within a single integration step Δt can occur, and the numerical method
will be useless. To overcome this problem, one can either use a special ordering of
the sequence of steps as suggested in [21] or use the three-term recurrence relation of
the Chebyshev polynomial as suggested in [19]. Following [19], we consider a m-stage
numerical method given by

k0 := y0,

k1 := y0 +
Δt

m2
f(k0),

kj :=
2Δt

m2
f(kj−1) + 2kj−1 − kj−2,

y1 := km.

(3.2)

Applied to the test problem y′ = λy, this method gives for the internal stages

kj = Tj(1 + Δtλ/m2)y0, j = 0, . . . ,m,(3.3)

and produces after one step y1 = Rm(Δtλ)y0, where Rm(x) = Tm(1 + x/m2) is
a polynomial of degree m. Rm(x) is called the stability function of the numerical
method. Since Rm(x) = 1+x+O(x2), the method is of order one; i.e., the global error
after n steps is O(Δt) for all sufficiently smooth (deterministic) initial value problems.
A method of order 2 based on a linear combination of Chebyshev polynomials has
been given in [19],[30], and the ROCK methods of order 2 and 4 based on quasi-
optimal orthogonal polynomials combining the approaches of [30] and [21] have been
proposed in [1],[2].

It was already observed by Guillou and Lago [14] that the stability requirement
|Rm(z)| ≤ 1, z ∈ C (weakly stable polynomials), should be replaced by |Rm(z)| ≤
q < 1 (strongly stable polynomials). Indeed, for the points xi ∈ R

−, where R(xi) =
Tm(1+xi/m

2) = ±1, the stability domain has zero width (see Figure 3.1). If one sets

Rm(z) =
1

Tm(ω0)
Tm(ω0 + ω1z), ω0 = 1 +

η

m2
, ω1 =

Tm(ω0)

T ′
m(ω0)

,(3.4)
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Fig. 3.2. Stability region for shifted Chebyshev polynomials of degree m = 6 with damping.

then the above polynomials oscillate approximately between −1 + η and 1 − η. The
stability domain along the negative real axis is a bit shorter, but the damping ensures
that a strip around the negative real axis is included in the stability domain (see
Figure 3.2). A modification of the method (3.2) allows one to construct a Chebyshev
method with damping. All of the methods proposed in [1],[2],[19],[21],[30] are realized
with damping.

3.2. S-ROCK: Chebyshev methods for stochastic problems. In this sec-
tion we introduce our new stochastic methods. We know that, for deterministic prob-
lems, Chebyshev methods can increase their stability domains quadratically (along
the negative real axis) with the number of stages (see section 3.1). The idea here
is to use the aforementioned properties of the Chebyshev polynomials to handle the
stiffness of the problem and to incorporate the Wiener process in a two-stage finishing
procedure similarly as high order is realized with the ROCK methods (see [1],[2]).

In order to simplify the presentation we consider (1.1) in autonomous form4

dY = f(Y ) dt + g(Y ) ◦ dW (t), Y (t0) = Y0, Y (t) ∈ R
d.(3.5)

To motivate the methods, we consider (3.2) with m = 2 and incorporate Wiener
increments in the following way:

K0 := Yn,

K1 := Yn +
Δt

4
f(K0) + Jnαg(K0),(3.6)

K2 :=
Δt

2
f(K1) + 2K1 −K0 + Jn(βg(K0) + γg(K1)),

Yn+1 := K2,

where α, β, and γ are real parameters and Jn = W (tn+1)−W (tn). The Taylor series
expansion of this numerical method is given (up to first order terms) by

Y1 = Y0 + J0f0 + J1(2α + β + γ)g0 + J2
1αγ(g′g)0 + R1,(3.7)

where R1 contains higher order terms. In this formula we used the notation J0 =∫ t

t0
ds1, J1 =

∫ t

t0
◦dWs1 . For the exact solution of (3.5) we obtain the expansion

Y (t) = Y0 + J0f0 + J1g0 + J11(g
′g)0 + Re,(3.8)

4An SDE can always be written in autonomous form by adding another component representing
the time.
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Fig. 3.3. Mean-square stability domains for the stochastic ROCK methods with m = 2, 3, and
4 stages.

where J11 =
∫ t1
t0

∫ s1
t0

◦dWs2 ◦ dWs1 . By comparing the two expansions and using J2
1 =

2J11 we find that this method will be of (local) strong order 1 if and only if

2α + β + γ = 1 and αγ =
1

2
.(3.9)

By Theorem 2.2 and Remark 2.3 it follows that the method will also be of global
strong order 1 if and only if conditions (3.9) are satisfied.

In (3.9) we have a degree of liberty. We choose α as a free parameter, optimize its
value in order to maximize the mean-square stability region, and find α = 1

2 , β = −1,
and γ = 1. For these values and for λ, μ real, we obtain the mean-square stability
function

R2(p, q) = 1 + 2(p + q2) +
5

4
p2 + 2pq2 +

3

4
q4 +

1

4
p3 +

3

8
p2q2 +

1

64
p4.(3.10)

The stability domain (see Definition 2.15) of the above method is drawn in the left
frame of Figure 3.3. Recall that p = Δtλ and q =

√
Δtμ. Here and in what follows,

we will plot the stability region in the real (p, q) plane, where on the horizontal axis
we plot the p variable and on the vertical axis we plot the q variable. We observe in
Figure 3.3 (left frame) that the stability domain contains the interval [−l2, 0], where
l2 = 8. The value l2 is the maximum value on the (real negative) p-axis that an explicit
two-stage stochastic numerical method can reach. This follows from the optimality
of the Chebyshev polynomial T2(1 + x/s2) (see section 3.1). Although the stability
domain is optimal on the p-axis (compare with Figure 1), this is not satisfactory since
the width of the stability domain in the q direction vanishes in some regions. This
drawback will be overcome later by using damping techniques. We first generalized
the method (3.6) for arbitrary stages and consider for m > 2 the m-stage stochastic
ROCK methods defined by

K0 = Yn,

K1 = Yn +
Δt

m2
f(K0),

Ki =
2Δt

m2
f(Ki−1) + 2Ki−1 −Ki−2, i = 2, . . . ,m− 2,

Km−1 =
2Δt

m2
f(Km−2) + 2Km−2 −Km−3 + Jnαg(Km−2),

Yn+1 = Km =
2Δt

m2
f(Km−1) + 2Km−1 −Km−2 + Jn(βg(Km−2) + γg(Km−1)).

(3.11)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S-ROCK METHODS FOR STIFF STOCHASTIC PROBLEMS 1005

We observe that, for g ≡ 0, these methods are identical to the deterministic methods
(3.2).

Theorem 3.1. For m ≥ 2, the methods (3.11) have strong global order one if
and only if

2α + β + γ = 1 and αγ =
1

2
.(3.12)

The mean-square stability function is given, for λ and μ real, by

(3.13)

Rm(p, q) = T 2
m

(
1 +

p

m2

)
+ q2

(
γTm−1

(
1 +

p

m2

)
+

(
2pα

m2
+ 2α + β

)
Tm−2

(
1 +

p

m2

))2

+ (αγ)2q2Tm

(
1 +

p

m2

)
Tm−2

(
1 +

p

m2

)
+

3

4
(αγ)2q4T 2

m−2

(
1 +

p

m2

)
.

Proof. Expanding the deterministic stages of (3.11) in Taylor series gives by
induction for 1 ≤ j ≤ m− 2

Kj = Yn + Δt
aj
m2

f(Yn) + O((Δt)2),(3.14)

where the coefficients aj satisfy the recurrence aj = 2 + 2aj−1 − aj−1, a1 = 1, a0 = 0.
For the last two stages similarly as in (3.7) we have

(3.15)

Km−1 = Yn + Δt
am−1

m2
f(Yn) + Jnαg(Yn) + O((Δt)Jn),

Km = Δt
am
m2

f(Yn) + Jn(2α + β + γ)g(Yn) + J2
nαγg

′(Yn)g(Yn) + O((Δt)3/2).

By induction we verify that aj = j2. Similarly as for the previous two-stage method,
by comparing the above expansion and the expansion for the exact solution (3.8) and
invoking Theorem 2.2 and Remark 2.3, we see that the methods (3.11) have strong
global order one if and only if (3.12) holds. For the mean-square stability function,
we apply the method (3.11) to the test problem (2.10), use the recurrence relation of
the Chebyshev polynomial for the deterministic stages j = 1, . . . , s − 2, and obtain
Km−2 = Tm−2

(
1 + p

m2

)
Yn, where p = Δtλ, and for the last two stages

(3.16)

Km−1 =
(
Tm−1

(
1 +

p

m2

)
+ αμTm−2

(
1 +

p

m2

)
Jn

)
Yn,

Km =

(
Tm

(
1 +

p

m2

)
+ μ

(
γTm−1

(
1 +

p

m2

)
+

(
2pα

m2
+ 2α + β

)
Tm−2

(
1 +

p

m2

))
Jn

+ αγμ2Tm−2

(
1 +

p

m2

)
J2
n

)
Yn,

where p = Δtλ. Squaring and taking the expectation, using E(Jn) = 0, E(J2
n) = Δt,

E(J3
n) = 0, and E(J4

n) = 3Δt, and setting q =
√

Δtμ gives (3.13).
As for the two-stage method (3.6), we chose the parameters α = 1/2, β = −1, γ =

1. In Figure 3.4 we plotted the mean-square stability (MS) domain of the method
(3.11) for different stage numbers m. We see that for m = 2, 3, 4 these methods have
a strip [−lm, 0] included in their stability domain Sm, with lm = 2m2. This is true
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0

1

2m = 3

−30 −20 −10 0

−2

−1

0

1

2
m = 4

Fig. 3.4. MS domain for the stochastic ROCK methods with m = 2, 3, 4 and η = 0.05.

in general. Setting q = 0, the mean-square stability condition for the method (3.11)
reduces to Tm(1+ p

m2 )2 ≤ 1, the stability condition for the deterministic method (3.2),
fulfilled if and only if p ∈ [−2m2, 0]. Thus we obtain the following.

Lemma 3.2. For an m-stage numerical method (3.11) we have

[−lm, 0] ⊂ Sm1,(3.17)

where lm = 2m2. This is the optimal real negative strip that an explicit m-stage
stochastic method can contain in its stability domain.

In what follows we show how to construct m-stage methods of strong order 1
with mean-square stability regions covering the mean-square stability domain {p, q ∈
R; p+q2 < 0 and p ∈ [−c·m2, 0]} for a given c (depending on the damping parameter).
In order to have a strip around the p-axis included in the mean-square stability region
of the numerical methods, we will modify the methods (3.11) by considering damping
techniques. Inspired by (3.4) we define the stochastic ROCK method with damping
for m ≥ 2 by

(3.18)

K0 = Yn,

K1 = Yn + Δt
ω1

ω0
f(K0),

Kj = 2Δtω1
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2,

j = 2, . . . ,m− 2,

Km−1 = 2Δtω1
Tm−2(ω0)

Tm−1(ω0)
f(Km−2) + 2ω0

Tm−2(ω0)

Tm−1(ω0)
Km−2 −

Tm−3(ω0)

Tm−1(ω0)
Km−3

+ αJng(Km−2),

Yn+1 = Km = 2Δtω1
Tm−1(ω0)

Tm(ω0)
f(Km−1) + 2ω0

Tm−1(ω0)

Tm(ω0)
Km−1 −

Tm−2(ω0)

Tm(ω0)
Km−2

+ Jn(βg(km−2) + γg(km−1)),

where

ω0 = 1 +
η

m2
, ω1 =

Tm(ω0)

T ′
m(ω0)

.(3.19)

We observe that for η = 0 these methods are similar to (3.11). Notice that
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the stability polynomials defined in (3.4) satisfy the recurrence relation

Pj(z) =
1

Tj(ω0)
Tj(ω0 + ω1z)

=
2

Tj(ω0)
(ω0 + ω1z)Tj−1(ω0 + ω1z) −

1

Tj(ω0)
Tj−2(ω0 + ω1z)(3.20)

= 2zω1
Tj−1(ω0)

Tj(ω0)
Pj−1(z) + 2ω0

Tj−1(ω0)

Tj(ω0)
Pj−1(z) −

Tj−2(ω0)

Tj(ω0)
Pj−2(z).

The order of convergence of these methods is given by the following theorem.
Theorem 3.3. For m ≥ 2, the methods (3.18) have strong global order 1 if and

only if

2ω0α
Tm−1(ω0)

Tm(ω0)
+ β + γ = 1 and αγ =

1

2
.(3.21)

Proof. The proof can be obtained by using (3.23) and following the lines of the
proof of Theorem 3.1.

We choose the set of parameters

α =
1

2w0

Tm(ω0)

Tm−1(ω0)
, β = − 1

2α
, γ =

1

2α
,(3.22)

which reduces to the set of parameters derived in (3.21) for methods without damping
(i.e., for η = 0). The mean-square stability function, for the above choice of α, β, γ
and λ, μ real, is given by

Rm(p, q) =
T 2
m(ω0 + ω1p)

T 2
m(ω0)

+ q2Tm(ω0 + ω1p)

Tm(ω0)
· Tm−2(ω0 + ω1p)

Tm−2(ω0)

+
3

4
q4T

2
m−2(ω0 + ω1p)

T 2
m−2(ω0)

+ q2

(
Tm−2(ω0 + ω1p)

Tm−2(ω0)

(ω1

ω0
p + 1

)
(3.23)

+
1

2α

(
Tm−1(ω0 + ω1p)

Tm−1(ω0)
− Tm−2(ω0 + ω1p)

Tm−2(ω0)

))2

.

This can be checked as for (3.13) by applying the method (3.18) to the test problem
(2.10), using the recurrence relation (3.23), squaring the results, taking the expec-
tation, and using E(Jn) = 0, E(J2

n) = {Δt}, E(J3
n) = 0, and E(J4

n) = 3{Δt} (see
Theorem 3.3). Let us now choose a damping parameter η = 0.05 and plot the mean-
square stability domains for s = 2, 3, 4 in Figure 3.4. We see that compared to Figure
3.3 (where η = 0) the stability domain along the negative real axis is now a bit shorter,
but we have a strip around the negative real axis included in the stability domains.
We study next how the mean-square stability domains of the methods (3.18) depend
on the damping parameter. We first show that, for any fixed η ≥ 0, the quadratic
growth of the stability region along the negative real axis is preserved.

Proposition 3.4. Let η ≥ 0. For all m, the m-stage numerical method (3.18)
has a mean-square stability region Sη

m satisfying

[−lηm, 0] ⊂ Sη
m,(3.24)

with lηm ≥ c(η)m2, and where c(η) depends only on η.
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Proof. If we set q = 0 in (3.23), we obtain for the mean-square stability condition

|Rm(p, 0)| ≤ 1 ⇐⇒ |Tm(ω0 + ω1p)| ≤ |Tm(ω0)|,

where ω0, ω1 are defined in (3.19). Using well-known properties of the Chebyshev
polynomials, we first observe that Tm(ω0 + ω1p) has its m real zeros in the interval
D0 = [−(1+ω0)/ω1, (1−ω0)/ω1]. In D0 we have |Tm(ω0 +ω1p)| ≤ 1, i.e., |Rm(p, 0)| <
1. From the above stability condition, we have Rm(p, 0) = 1 ⇐⇒ Tm(ω0 + ω1p) =
±Tm(ω0). The latter equality holds for p = 0 and p = −2ω0/ω1. The interval D1 =
[−2ω0/ω1, 0] ⊂ D0, and, since the polynomial Rm(p, 0) is strictly monotone outside
D0, it follows that |Rm(p, 0)| ≤ 1 ⇐⇒ p ∈ D1, and thus lηm = 2ω0/ω1.

Using Taylor expansion we have

Tm(ω0) = Tm

(
1 +

η

m2

)
=

m∑
j=1

γj
j!
ηj , γj =

T
(j)
m (1)

m2j
=

j−1∏
i=0

(1 − (i/m)2)

(2i + 1)
.(3.25)

The above sum is monotone and converges for m → ∞. We define c(η) = 1/(
∑∞

j=1
γj

j!

ηj). By noting that T
′

m(ω0) ≥ m2, we obtain

lηm = 2
ω0

ω1
= 2

(
1 +

η

m2

) Tm
′(ω0)

Tm(ω0)
≥ 2

(
1 +

η

m2

)
c(η)m2 ≥ 2c(η)m2,(3.26)

and the proof is complete.
We next study the limit η → ∞. We see in the following proposition that, in this

case, the growth along the negative real axis becomes linear.
Proposition 3.5.

lηm → 2m for η → ∞.(3.27)

Proof. Using formula (3.25) for Tm(ω0), Tm
′(ω0) we obtain

lηm = 2m2

(
1

η
+

1

m2

) O( 1
η ) + γm

(m−1)!

O( 1
η ) + γm

m!

,(3.28)

and the result follows.
Let Sη

m be the mean-square stability region of an m-stage method (3.18). We
observe that, for increasing damping parameters η, the strip around the negative real
axis included in the stability domain increases in the q-direction (compare Figures
3.3 and 3.4). We know from Propositions 3.4 and 3.5 that the maximum strip in
the p-direction decreases when η increases. Consider next the following subset of the
stability domain SSDE of the test equation (2.10):

SSDE,d = {(p, q) ∈ [−d, 0] × R; |q| ≤
√
−p}.(3.29)

The task is now to find, for a given stage number m, a value of η such that SSDE,dη
m
⊂

Sη
m, with dηm as large as possible. This is done numerically and reported in Table 3.1.

Such stability domains are plotted in Figure 3.5 for m = 4, 7, 10. We define the class
of S-ROCK methods by the numerical methods (3.18) with the optimal dηm value.

In Table 3.2 we give for the S-ROCK methods listed in Table 3.1 the effective
numerical work given by the ratio m/dηm (work against stability).
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Table 3.1

Optimal damping values for S-ROCK methods.

m η dηm lηm m η dηm lηm
3 2.2 5.9 9.6 5 12.0 11.2 13.5
7 13.0 20.4 22.9 10 14.3 38.7 41.3
25 20.3 197.6 200.7 50 27.2 679.5 683.2
75 32.1 1405.1 1409.1 100 36.0 2358.0 2362.3
150 42.1 4908.1 4912.7 200 46.7 8276.5 8281.3

10 −5 0

−2

0

2

−20 −15 −10 −5 0

−4

−2

0

2

4

−40 −30 −20 −10 0

−6

−4

−2

0

2

4

6

Fig. 3.5. MS domain for S-ROCK methods with (m = 4, η = 11.0), (m = 7, η = 13.0), and
(m = 10, η = 14.3).

Table 3.2

Work versus stability for S-ROCK methods.

m m/dηm m m/dηm m m/dηm m m/dηm m m/dηm
3 0.51 5 0.45 7 0.31 10 0.26 25 0.12
50 0.07 75 0.05 100 0.04 150 0.03 200 0.02

Let SEM , SPL, and SRS be the stability domains of the EM, PL, and RS methods,
respectively, and consider the subset of the stability domains defined in (3.29); then
SSDE,dEM

⊂ SEM , SSDE,dPL
⊂ SPL, and SSDE,dRS

⊂ SRS , with dEM = 1, dPL = 31,
and dRS � 0.56 and with a work/stability ratio given by 1, 2, and 3.57, respectively.
We see the improvement obtained with the S-ROCK methods. Compared to the
Platen or the RS methods (with the same order of accuracy as the S-ROCK method),
we obtain a ratio up to 100 times (respectively, 179 times) smaller (for m = 200).
Finally let us observe that dηm � lη for large m and that dηm = c(η) ·m2, where c(η)
is monotonically decreasing from 0.66 to 0.21 as m increases from 3 to 200.

Remark 3.6. Here we have restricted ourselves to S-ROCK methods with m ≤ 200.
Using the methods with a higher stage number is possible and improves the efficiency
discussed above. In some numerical experiments considered in section 4 we will use
m > 200. However, due to rounding errors and internal instability, very large m
should be avoided [30].

Multidimensional Wiener process and weak convergence. The deriva-
tion and the order analysis of the S-ROCK methods for SDEs with multidimensional
Wiener processes

dY = f(t, Y ) dt +
M∑
k=1

gk(t, Y ) ◦ dWk(t), Y (t0) = Y0,(3.30)
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where f(Y ), gk(Y ) ∈ R
d, and Wk(t) are independent Wiener processes, is discussed

in [3]. It is well known that, in this case, the multiple stochastic integral

J11 =

∫ t

tn

∫ s

tn

◦dWs1 ◦ dWs

cannot be expressed in a simple form using only a Wiener increment of the type
Jk =

∫ t1
t0

◦dWk(s). It is shown in [3] that the S-ROCK methods applied to (3.30)

have order 1/2 in the strong sense and order 1 in the weak sense. However, if the
diffusion terms satisfy a commutativity condition

gk(t, Y (t))′gr(t, Y (t)) = gr(t, Y (t))′gk(t, Y (t)) ∀ k, r = 1, . . . ,M,

then the S-ROCK methods have strong order 1 [3].

4. Numerical experiments. We give here several examples to illustrate the
performance of the proposed numerical methods. We will compare the S-ROCK
method with the method of Platen given in (2.3) and the RS method.

Example 1. We consider the nonlinear SDE given by

dY =
λ

2
(1 − Y 2)dt +

μ

2
(1 − Y 2) ◦ dWt, Y (0) = Y0.(4.1)

This equation has an exact solution (see [20, Chap. 4.4]) given by

Y (t) =
(1 + Y0)exp(λt + μW (t)) + Y0 − 1

(1 + Y0)exp(λt + μW (t)) − Y0 + 1
.(4.2)

Note that linearizing about the stationary solution Y (t) ≡ −1 leads to the test equa-
tion (2.10).

In what follows, we consider real parameters (λ, μ) with λ negative. To study the
mean-square stability, we choose a starting value Y0 = −0.9 close to the stationary
solution. A stable solution reaches the fixed point Y (t) ≡ −1 after a transient (see
Figure 4.1). It follows from stability results in [12, Chap. 5] (see also [16]) that the
fixed point Y (t) ≡ −1 is mean-square stable if λ + μ2 < 0.

0 0.2 0.4 0.6 0.8 1
−1

−0.98

−0.96

−0.94

−0.92

−0.9

−0.88

t

Y

λ=−4, μ=2, Y
0
=−0.99

Fig. 4.1. Exact solution and numerical approximation for one Brownian path (PL method with
moderately stiff parameters).
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Fig. 4.2. Stiffness versus function evaluations for RS, PL, and S-ROCK (with stage number
m = 6, 9, 23, 32, 100.

We solve numerically (4.1) with the three methods PL, RS, and S-ROCK over
0 ≤ t ≤ 1. To estimate the error in the strong sense at time T = 1 for given step size
Δt, we choose n such that nΔt = 1 and approximate

estrongΔt := E|yn − y(T )| ≤ Tol,(4.3)

by averaging the endpoint error over N = 105 numerically generated paths. The
sampling error, which is known to decay as 1/

√
N , is negligible here.

We fix a tolerance Tol = 10−1, vary the values of λ and μ, and determine the step
size (chosen as Δt = 2−p) for PL and RS so that the required precision is obtained. We
know that the linearized solution about Y (t) ≡ −1 is stable if and only if 
λ+
μ2 < 0.
We choose the real parameters (λ, μ) close to the boundary of the stability region μ =√
−λ− 1 and increase the stiffness by choosing λ = −50,−100,−500,−1000,−5000.

For the S-ROCK methods, we chose the step size to obtain the required accuracy and
a stage number so that the numerical solution is stable.

We see in Figure 4.2 that the S-ROCK methods perform significantly better
than the PL or the RS method as the stiffness increases. At the maximum stiff-
ness (λ = −5000), the step size of Δt = 2−13 and Δt = 2−14 has to be chosen (for
stability reasons) for the PL and RS, to solve (4.1), whereas a step size of Δt = 2−2

can be chosen for the S-ROCK method. Note that for PL and RS the step sizes,
determined by the stability requirement, are much smaller than needed to obtain the
desired accuracy. As a consequence, the errors are always much smaller than the given
tolerance. For the S-ROCK method, a step size governed by the accuracy requirement
can be chosen to solve this problem.

Example 2. For the second example we consider a stochastic partial differential
equation, the heat equation with noise, given by

du(t, x) =
(
DΔu(t, x)

)
dt + ku(t, x) ◦ dWt,(4.4)

where (t, x) ∈ [0, T ] × [0, 1], D is the diffusion coefficient, and k is a noise parameter.
We choose u(0, x) = 1 as the initial condition, and mixed boundary conditions are

given by u(t, 0) = 5, ∂u(t,x)
∂x |x=1 = 0. For simplicity we set D = k = 1 in what follows.
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Fig. 4.3. Numerical solution of the problem (4.6) with the PL method (one trajectory, N = 40).

We discretize the space interval in N + 1 equidistant points xi = 0, . . . , N , with
h = xi+1 − xi = 1/N, x0 = 0, xN = 1, and obtain a system of N SDEs given by

dY i
t =

Y i+1
t − 2Y i

t + Y i−1
t

h2
+ Y i

t ◦ dWt, j = 1, . . . , N,(4.5)

where Y 0
t = 5, Y N+1

t = Y N−1
t are given by the boundary conditions. The determin-

istic part of the linear system above is known to have eigenvalues distributed around
the negative real axis in the interval (−4/h2, 0). Thus, a necessary condition for the
stability of a numerical method is Δt · (4/h2) ∈ S. This condition is well known to be
prohibitively restrictive as N increases or, equivalently, as the spatial discretization
is refined. Equation (4.5) can be rewritten as

dYt = (AY + B)dt + kY ◦ dWt,(4.6)

where Y = (Y 1, . . . , Y N−1)T , B = (5/h2, 0, . . . , 0)T , with initial conditions given by
Y0 = (1, . . . , 1)T and

A =
1

h2

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −1

⎞
⎟⎟⎟⎟⎟⎠ .(4.7)

The exact solution of (4.6) is given by Y (t) = Φ(t)Y0 + Φ(t)
∫ t

0
Φ(s)−1Bds, where

Φ(t) = exp(At + IW (t)),(4.8)

where I is the N×N identity matrix (see [4, Chap. 8] for details). We solve numerically
(4.6) with the three methods PL, RS, and S-ROCK over 0 ≤ t ≤ 5 for various values
of N = 40,100,500, thus increasing the stiffness. We sketched in Figure 4.3 one
trajectory of a numerical solution.

For the numerical comparison, we choose an initial integration step Δt = 0.5·10−6

to have a theoretical strong error smaller than < 10−1. As in the previous example,
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Table 4.1

Function evaluations for the stable integration of the problem (4.6) (value for one trajectory).

N = 40 N = 100 N = 500

PL 4.9152 · 104 3.93216 · 105 1.2582912 · 107

RS 3.2768 · 104 2.62144 · 105 8.388608 · 106

S-ROCK 2.816 · 103, s = 42 7.616 · 103, s = 117 8.2432 · 104, s = 320

Table 4.2

Step size for the stable integration of the problem (4.6).

N = 40 N = 100 N = 500

PL 5 · 2−14 5 · 2−17 5 · 2−22

RS 5 · 2−13 5 · 2−16 5 · 2−21

S-ROCK 5 · 2−6 5 · 2−6 5 · 2−8

we estimate the error estrongΔt by averaging the endpoint error over 104 realizations.

For the PL and RS methods, we always run into instability, i.e., estrongΔt >> 1 for
the aforementioned initial step size and for the chosen spatial discretization. We thus
decrease the step size, chosen here as Δt = 0.5 ·2−r, r = 6, 7, . . . , until estrongΔt ≤ 10−1.

For the S-ROCK methods, the initial step size ensures estrongΔt ≤ 10−1 provided that
the stage number is adapted. For the numerical experiments with N = 500 the value
of m to have a stable integration with Δt = 0.5 · 10−6 is quite large (m > 500), and
we therefore reduced the step size to Δt = 0.5 · 10−8 (see Remark 3.6). For various
N , we report in Table 4.1 the number of function evaluations and in Table 4.2 the
corresponding step sizes needed to have a stable numerical solution.

We see for the PL and RS methods, as in Example 1, that the step sizes are
determined by the stability requirement and are much smaller than predicted by the
order of convergence of the methods. This behavior for classical explicit methods is
expected for stiff problems. Since the diffusion term is small compared to the drift
term, we also see that the RS method performs better. This can be explained as
follows. For the RS method, the stability domain along the p-axis is twice as big as
the corresponding region for the PL method, while the number of function evaluations
per step is 4/3 times the number of function evaluations of the PL method. Finally,
we see the tremendous improvement obtained with the S-ROCK method as the spatial
discretization is refined.

Acknowledgments. The authors are grateful to Ernst Hairer and Gerhard Wan-
ner for helpful discussions and to Weinan E and Des Higham for useful comments on
the draft of this paper.
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