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Abstract—We consider here a single sender-destination multi- but it seems that the achievability is only valid under degraded
relay channel. The links connecting the nodes are supposed tohypothesis. In [13] the capacity of a general stationary and
be erasure where symbols are received correctly without any qrqqdic broadcast erasure channel is derived which leads to

error, or lost. We consider that the nodes are not able to use any imole i itv b d. Thi itv b d b
interference cancellation mechanism. The interference might be a simpie linear capacity bound. IS Capacity bound can be

suppressed through using separated physical channel or thought @chieved optimally through a simple time sharing mechanism

a time-sharing mechanism. This model is realistic for many called Priority Encoding Technique. In [10] the capacity of

practical scenarios in the context of wireless networks. the single relay erasure channel under degraded hypothesis
In previous works, the capacity region of broadcast erasure s derived and a coding scheme based on a practical MDS

channels as well as the capacity of the single-sender relay channel . . . . .
(under degraded and non-degraded hypothesis) has been derived.COde is proposed to achieve this capacity without need to

This paper extends the previous results to the more general case@ny side informatic_)n. In [9], the _Ca_pacity of the single relay_
of multi-relay channels. We derive the cut-set bound for a general erasure channel without the restriction of degraded hypothesis

(stationary ergodic) multi-relay erasure channel, and we show s derived using image size theorem [3] and it is shown that
that it can be reached through a practical linear coding scheme 4 simple variation of the same coding scheme achieve the
based on MDS codes. : : : -
capacity. This means that the capacity of the single relay

erasure channel is known to be achievable under general
hypothesis of stationarity and ergodicity, and without any

Formally, a relay channel is a network consist of sendemdggraded hypothesis or side information. Finally in [11],
receivers and a number of intermediate nodes which participatgpacity region for the single relay case is derived under
in the communication by relaying the packets from the sendefieap relay hypothesis [12], where the nodes cannot receive
to the receiver. The capacity region of the relay channemultaneously from more than one source and use a temporal
remains unknown in the general case. Until now, most etheduling to suppress interference.
the researches have focused on the case of error channéh this paper, we extend the previous works to the situation
with interferences between sender and relay transmission. Bi&ingle sender-receiver multi-relay channels for two different
capacity of the simple case of relay channel, composed okeenario : frequency assignment scenario which channel sep-
unique intermediate node, is presented in [2], [14] under tleation is obtained through using different physical channels
physically degraded hypothesis. The extension of the resald time devision scenario which a temporal scheduling is
to the multi-relay channel, under the degraded hypothesised to suppress interference. A cut-set bound is derived for
is presented in [6]. In these works interference cancellatidhese different scenarios and it is shown that almost all point
mechanisms is used by nodes to attain the capacity regionof this bound can be reached by a simple and practical coding

However; in many wireless channel architectures intescheme. Cut-set bound can not be achieved in the frequency
ference cancellation mechanism can not be used and #ssignment scenario and where the transfer rate is limited by
classical approaches as proposed in [14], [7] are not applicalthee receiver side bound. We believe that in this specific case,
Moreover, from the viewpoint of the packet layer, where afhe cut-set bound is a looser bound and a tighter bound have
plications stand, channel appear as an erasure channel. Setadére driven. However, it is out of objective of this paper
sends packets that might be received by destination nodesl it might be presented in a longer paper. We first present
or be erased because of transmission errors, collisions,tloe theoretical bound in section Il and then a coding scheme
buffer overflows. This important fact is sometime overlookedchieving the theoretical bounds is presented in section lll.
in the information theoretical literature and it results in a lot
of simplification in analysis. In [5] a simple form capacity
bound is derived under perfect side information hypothesis atin this section we show the cut-set bound of a single sender-
the decoder. The side information is provided in the form afestination multi-relay channel. We use the subscripts to
the exact erasure pattern owarery link in the network. The denote node and superscripts to denote time. Let’s consider a
capacity bound is achieved through a random coding schemset of N nodes ' = {1, .., N}, communicating over a general

I. INTRODUCTION

Il. INFORMATION THEORETICAL BOUNDS



Vector Erasure Channel. For the special case of non-correlatedetermines ars — d cut.
erasure channel where erasure are not spatially correlated, 8ad the appendices for the praof

under the hypothesis that erasure probability do not dependrpe cyt-set bound might be simplified thanks to the erasure
on the sent symbol, the channel could be characterized By re of channels. The Shearer theorem presented thereafter

an erasure probability matri¥* = (pj;)nxn, Where pj; s very helpful for the analysis of erasure channels.
is the erasure probability of a transmission between nodes . )
i and j at the u-th transmissionpy, = Prob{Y = e} Theorem 2 (Shearer Theorem [1])Let X™ be a collection

This comes from the erasure nature of the channel and g random variables and’™ be a collection ofn boolean
fact that symbols sent over the channel are not interferirfgndom variable, such that for each1 < i < n, £ {Z;} =
The received symbols separation is obtained though usihg- C- If X"(2") is @ sub-collection containing the's
different physical channel (interface card) or through a tim&ndom variableX; if Z; = 1. Then E{H (X"(Z"))} >
sharing mechanism (that could be centralized or distributed @& (XM) B.

CSMA/CA access mechanisms). As explained in [1] we Mighiq theorem can be extended to conditional entropy as well.
drop the superscript for the stationary and ergodic erasur; .an be shown thanks to this theorem that the mutual

channels without loss of generality. information over a stationary and ergodic point to point erasure

Let's suppose that there is a single communication taki%glannel with an erasure proceZshave a very simple form
place between a single sender-destination pait). Corre- given by [13];

sponding to this sender-destination pair is a mes3&geAll _
the nodes inV — {s,d} are the relay nodes and are to be I(X™Y")=nCH(X) (1)

used to aid the communication. Now let's assume that nOdv(\a/ﬁere E{Z} =1- C is the average erasure probability on
in A are divided into two setsS and the complemens$©. ' ef = g p y

(res ) is the number of nodes i (resp.S%) and the channel. In other word the capacity of a stationary and
s (TESP. e c . (\resp.o7) ang, ergodic channel is simplg’ symbol. Thanks to this result we
;i =1,.,ns (resp.l; ,j = 1,.,ns) is node: in S have °

(resp.j in S°) where,l{ = s and*.. = d. We definex* '

(resp. X“*°) as the message sent by nadim S (resp.; in Theorem 3 (Cut-set bound of erasure multi-relay channel)
S°) at tiJme u. Therefore, X“* = {X"* i € [1,n°]} (resp. The capacity region of a single sender-destination erasure

X = {X¥* j € [1,n*]}) is the message vector sent pyrhannel is bounded by :

nodes inS (resp.S°) at timew. Let Y;".* ,i =1,..,n, and R < min{R°}
j =1,..,ns the message rerceived ﬁy nodén S¢ if X3° ¢
is sent over the channeY}.® = {Y;flf,i € [1,ns]} is
therefore the vector messajge received by node$“iif X} s nge
is sent and,Y**" is the vector message received by nodes R < Z(l - Hpij)
in S if X* = {X"?,X"® } are sent over the channel. The =0 j=1

rate of flow of information from sender to the destination iand
bounded by the following theorem. R < max {min{Rc}}
t C

for the frequency assignment scenario such tRats defined
as :

Theorem 1 (Cut Set bound of multi-relay channe)The ¢ yhe time devision scenario wherge is defined as :
cut-set bound of a relay channel with a single source- .

destination pair(s, d) is bounded by : .
pait(s, d) Y RO<Y ti-(1=]]py)
R< ngn{Rc} i=0 j=1
pi,; is the loss probability from nodgin the setS to the node

for the frequency assignment scenario; such tRais defined j in the setS¢ and C determines ars — d cut. O

as:
Ns
RC < ZI(X?'Y?C) [1l. ACHIEVABILITY AND CODING METHOD
i=0 In this section a coding scheme which attains the cut-set
and bound of theorem3 is presented. We first describe the simplest
R< maix {mcin{RC}} case of one intermediate node, as shown in figurel. we will

then show that how this coding scheme can be generalized
for the time division scenario where, the maximization occut@ the more general case of multi-relay. For the sake of

over all possible mode proportioft;}7<, . t; is the asymptotic simplification let's assumg, p», andp as the packet loss rate
proportional of time that the nodé$ acts as a sender. between sender-relay, relay-receiver, and sender-receiver. The

Moreover, R¢ is defined as : cut-set bound can be expressed @ = min{(1 —p1p), (1 —
. p) + (1 — pa)} for the frequency assignment scenario and
RE< t - I(X5 YY) R = sup; min{t; - (1 — p1p),ts - (1 = p) + t2 - (1 — p2)}

“—o for the time division scenario. We first describe the coding



Yo Xg that [Irxk|Arxm|Bexi] 1S the generator of an MDS code
guarantee that every packet received from the relay will reduce
the ambiguity about the initial message. The decoding process
can be hold on the receiverif(1—p)+I(1—p2) > k. The rate
of information can be transfered by the channel is therefore

YR bounded by R = R® = £ < min{(1-p1), (1-p2)+(1—p)}
Xs ' for the frequency assignment scenario (maximum can be
reached by choosing = n) and by : R = t; - R® =
sup,{min{t; (1 — p1),¢1(1 — p2) + t1(1 — p)}} for the time
devision scenariot; is the proportion of time thaf acts as
scheme for the degraded hypothesis when the relay fode? sender and, is the proportion of time thak transmit over
has to receive all information send by the sender. We will théfannel.
extend it to the non-degraded hypothesis when the relay node
receives only a part of information and it is not able to decod® Coding scheme description: Non Degraded case
initial symbol sent by the sender.

Before going to the details let's describe the characteristicstlﬂ thtlstr?ecélon V\ée (;N'” prese?t Coqlfﬂg schg m;.?f appllcatt))le
of the class of Maximal Distance Separable (MDS) cogdythout the degraded assumption. The main diterence be-
een this situation with the degraded case is that in the non-

[15] that will be used thereafter. Let's suppose a systemaﬂ/g L . . . .
(n, k) MDS code takingt information symbols and generating egraded situation the receiver might have some information

n encoded symbols. Now this code has the property t?;]t‘w have not been received by the relay, where under the

the initial k information symbols can be retrieved from an egraded assumption all information available at receiver are

combination ofk encoded symbols out of the symbols also available at the relay. We will show that in the time
constituting the blocki.e the MDS code can retrieve up todevision scenario the cut-set bound is achievable, however; for

n — k erasure in a block of. packets. A MDS code can the frequency assignment scenario the bound can be attained

achieve the capacity of a stationary and ergodic point to poﬂzt(1 Tplp) <{@=p)+p(1 —p2)}, i p2 <p1.
erasure channel asymptotically with a block size— oo if Let's suppose that the sender use(:a k) MDS code
its rate R is less than the capacity of the channel. Maxime{llkaMkX("—k)]' Under the general erasure relay channel

Distance Separable (MDS) code leads to sphere packing cogg&nario defined previously if an asymptotically large number
for erasure channels. n of packet is sent by the sender, a numbét — p) (resp.

n(l — p1)) packets are received at receiver (resp. relay). Out
A. Coding scheme description: Degraded case of these packetsi(1 — p)(1 — p;) are received at both the
Lets suppose that we have designed (@an+ m + I, k) relay and sender andp;(1 — p) (resp.np(1 — p1)) only at
MDS code with an encoding matripdy, | As xm|Brxi]. At the receiver (resp. the relay). Relay has to forward a sufficient
the sender we encode these packet with (the= k + m,k) number of packets only received by it to eliminate ambiguity
MDS code with encoding matril; x| Axxm] leading to at receiver. However, the relay and receiver are not aware of
m redundant packet and a raf¢® = Tkl These redundant Which packets they respectively received. The solution consists
packets will help the receiver and the relay to retrieve tH¥ forwarding all received packets at the relay to the receiver,
erased packets over the channel. Under the condition th&t the relay assumes that thé1 — p;) packets received at
R® < (1 —p;) a MDS code will asymptotically with largé the relay are information packets.
andn, ensure perfect communication between the sender anddowever, the relay is not able to send all of these packets
relay, as the MDS codes achieve the capacity of the erast@ethe receiver as it can not send with a rate more ttian
channel. Such a code will therefore validate the conditions pf) over the relay to destination channel. Moreover, it only
the degraded situation. receivedn(1—p;) packets from the sender. The solution is that
Following the coding structure proposed in [14] the relahe relay chooses randomky’ = min{n(1 — p;),n(1 — pa)}
should transfer only side information’s (indices) reducing thgackets from its received packets and sends them over the
ambiguity at the receiver. Every packet of an MDS code can bbannel using &n, k*) MDS code| B« x (,—+)] - The receiver
used as an index that will reduce the ambiguity about the initieduld retrieve packets sent by relay if ,asymptotically with
message. We therefore generate at the relay some reduntirgek™ andn, k* < n(1—p2). As said before, only percent
packets coming from multiplying the message by the encodinf) these packets has not been yet received by the receiver.
matrix By;. At the receiver side we will receive asymptoti-Asymptotically for largen andk, i.e. k*, if n(1—p)+k*p > k
cally with largen, aroundn(1 — p) packets from the senderthe initial packets sent by sender can be recovered successfully
andl(1 — p,) packets from relay. The receiver have to decodd the destination.
the MDS code with generator matriX, x| Axxm|Bixi). The R = £ = min{(1 — pip), (1 — p) + p(1 — p2)} for
k message packets can be recovered if we receive from serttler frequency assignment scenario aRd= min{t;(1 —
and relay at least packets. Using this coding scheme relayp), t1(1 — p) + t2(1 — p2)} for the time devision scenario.
only send useful index information to the receiver. The fadtherefore the cut-set bound can be attained for the time

Fig. 1. Relay Channel



devision scenario while, for the frequency assignment scenacmding scheme based on MDS codes. Reed Solomon codes
the cut-set bound is achievableps < p,. are MDS codes and can be used for applying the proposed
C. Multi-relay coding scheme. This scheme can be easily implemented in

. . ctual WIFI based wireless networks and it does not need
The presented scheme for the single relay hypothesis can}]

tended i traiahtf d o th ifi-relay hvbot ?/new physical layer architecture as needed for interference
extended in a straightforward way to the multi-relay hypo lk?ncellation method.

esis. We just do the same things for all nodes in the channel.
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it receives at least packets from the channel. We first proof the first part of theorem for frequency assign

It is worth notable that in the single relay hypothesis the nt scet)nario Let's coﬁlsider thif is uniformlq distr?;)utedg
codeword packets sent by the sender are independent. ThreT}S—r his res e.ctive rangd, 2, .., 27R°} y
fore; each codeword received at the relay is an independgx? P P '
linear equation of the information symbols. However; Fornrc = H(W)
multi-relay channel t_he probablllty_that all the _transmltted = IW;Y' 7“’Ynsc)JFH(W‘Yﬁ ’“’Ynsc)
codewords by nodes in channel are independent is not actually .

. . . £ <
one. To handle this problem relay nodes constraints a reception < IWEYY Y™ ) + ey,
matrix whgre, rows of this matrix are encoding vectors of S IW Y YY) e,
each received packet. If the reception of a packet increases no gyt yl® | yue1st
the rank of this matrix it is an independent codeword packet 2=t (r | L )
i i i —H(Y" |Y" YU W) + ne
and therefore is useful. A packet which does not increase the 3 e ) n
rank of this matrix contains information previously received @ ngyusty _ g yust
; . Dou H(Y" ) — H(Y" |
by the relay and it has to be dropped. By this scheme the YI© yu-1% pp xus xus
probability that two nodes have the same set of blocks and ( U A ) ) + nen
. .. e c c c
pick the same set of coefficients and construct the same block = S H(Y®) - H(Y" |X",X") + ne,
goesfto ze[ré)])if the size of fiellf, is sufficiently large (for the = 3 I(XU Y XE) 4 e,
proof see [8]).

A,\
IS INE

—~
)
~

where (a) follows from Fano’s inequality, (b) from the chain

IV. CONCLUSION rule (c) from the definition of mutual information, (d) from
We presented the capacity region of the erasure multire fact that removing conditioning increase the first term and
relay channel and show that it is achievable by a practicadnditioning reduces the second term, and (e) from the fact



that Yu*° depends only orX*® and X?SC property of the nodeS send messages and nodeandR receive the message
channel [2]. MoreoverI(X“S;Y“SL|X“5C) can be simplified with a specified probability that depends on the distance and
as following : transmission power. In this mode the relay channel appears as
I(xuS;YuSC‘XuSC) I(X3S, ., XY s;Yus°|Xusc) an erasure broadcast chanr(é(s(ml);YR(ml),Yg(ml) as
s w5~ s . s defined in [13]. In the second mode,; R acts as the sender
- I(ch o Xn YRS Yis T andS andD are in the receiving mode. In this case the channel
| X5 ) appears as a point to poi_nt erasure chankey ,,,); _Y_g(m)).
) T(XE, . Xu s yes .y ) In modem3, S andR are in sending state and collision occurs.
_ I(X“S-Y“SCj ! e In this mode the nodes do not receive any information. In
’ the last modeny, all the nodes are in receiving state and no
< S [(XgS;YZ@SC) information is transferred through the packets. Let suppose that
. ’ thet; is the proportion of time that the wireless network is in
(f) follows from the definition Ole“fS , (9) from the fact that statem,;. Clearly Z%:l t; = 1, meaning that the scheduling
Y« is the received vector messageXt*® is sent over the mechanism do a time-sharing between the different modes.
channel. Moreover; based on the definition of relay channelThe previous description might be generalized in a straight-
[4] xXus’ only depends on the past received symbolydf_ forward way to a network with more than one intermediate
Therefore at the transmission timethe received vectoy:*~  nodes. In this setting any possible assignment of state value
only depends onX** and is conditionally independentm fromto each node define a transmission medgthat is active a
'_X;uSC (a|so note that}(usc is sent over a channel differentproportionti of time. We will assume for the sake of tractable
from X** and so they have not any interfere), and (h) dbeoretical analysis that the scheduling is deterministic, mean-
said before, the nodes send out over the physically separdft@ithat the scheduling is defined in advance independently of
channels. From the point of view of the nodes therefore, th@nsmission results. In [12] a cut-set bound is derived for the
relay channel seems as a set of point to point channels.aghievable rate over a general multi-mode relay channels :
such a scenario, it is not difficult to show that the maximuiheorem 4 (Cheap relay channel Cut-set Bound [12])
of I(X“*;Y“*") achieves ifX?, sent byl;, is independent Consider a general network withV nodes and a finite
from X7, sent byl?, for i # j € [0,n. — 1]. Thus the mutual number of states)/. Now suppose that state of network is a
information can be then v!rittenc by the summation. deterministic function for every network useas m, and is
By replacingl (X", Y** |X%“* ) in the previous inequality fixed and is known to all nodes then
we have :

M
nRe <Y Y XY ) e, S RIS tad (X5 Y IXE)

= YT, (X5 Y |Q = u) + ney iesjese =1
(3) ne s 5 for all S c {1,2,..,N}, where the set of all nodes are
- 2iZond(Xigi Yiz |Q) + nen partitioned intE) two dis}joint setS and S¢ by cut-set. The
) Yoo nd (X5 Yl§SC|Q) + e, portion of time that network operate in mode is defined as
(k) n . 156 tm = limy_ o Ny (v) /v. FOr @any statem, n,,, (v) is defined as
< eI (X% YT the number of state which is equalitoin the firstv network

(i) follows from the introduction of a new time sharing randonyses].

variable Q uniformly distributed on{1,2,...,n}, (j) follows Lets considert; as the proportion of time thaf is int he
by defining X;,* N X, Y5 2 Y,:* as the new random sending mode and, is the proportion of time thaR is the
variable where) — X,;° N Y, and (k) from the Markov transmitter. For the cuts; andC'; shown in figurel we have :

chain properties. The proof is therefore completed for the re* < {¢,1( fm1);Yf121)|X?:711))

frequency assignment scenario. It is notable that this bound I(XS X

can be also derived by using the image size theorem [3]. 25 (ma) C(mez) (m2) .
APPENDIX B { tlI(kal);Y((gm1)) + tQI(X((mQ);Y‘(mQ)) }

Now let's assume the time division scenario. In this cad@ C1 and in the modem, (resp. m.), {li = &} (resp.

each node in the channel might be in one of these twdi = /X)) acts as sender and, [ =D} (resp.{S,D})

states: sending (S) and receiving (R). The scheduling algorittfff the receivers. Faf; and in the moden, (resp.my),

defines different transmission mode for the relay network Byi = S} (resp.{l3 = R}) acts as the sender arf®, [{ * =

assigning to each node a state (R or S). Collisions occur i é (resp.{S,D}) are the receivers. Therefore we have :
mode if two or more senders are assigned to the S state by R < ¢ - I(X$ Y5
the scheduler. For the sake of simplification let’'s consider the . o , ca

. . . -2 < . S. Ss . 5: ss
simplest case of single-relay channel whe$eis the sender, R® <k I(Xl’Yll )+t I(XQ’le )
R is the relay, andD is the destination (see figure 1). In thisThe same arguments can be used for the multi-relay case
case, the scheduler defines four different modes. In moegde which leads us to the cut-set bound.
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