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Abstract— We consider here a single sender-destination multi-
relay channel. The links connecting the nodes are supposed to
be erasure where symbols are received correctly without any
error, or lost. We consider that the nodes are not able to use any
interference cancellation mechanism. The interference might be
suppressed through using separated physical channel or thought
a time-sharing mechanism. This model is realistic for many
practical scenarios in the context of wireless networks.

In previous works, the capacity region of broadcast erasure
channels as well as the capacity of the single-sender relay channel
(under degraded and non-degraded hypothesis) has been derived.
This paper extends the previous results to the more general case
of multi-relay channels. We derive the cut-set bound for a general
(stationary ergodic) multi-relay erasure channel, and we show
that it can be reached through a practical linear coding scheme
based on MDS codes.

I. I NTRODUCTION

Formally, a relay channel is a network consist of senders,
receivers and a number of intermediate nodes which participate
in the communication by relaying the packets from the sender
to the receiver. The capacity region of the relay channels
remains unknown in the general case. Until now, most of
the researches have focused on the case of error channel
with interferences between sender and relay transmission. The
capacity of the simple case of relay channel, composed of a
unique intermediate node, is presented in [2], [14] under the
physically degraded hypothesis. The extension of the result
to the multi-relay channel, under the degraded hypothesis,
is presented in [6]. In these works interference cancellation
mechanisms is used by nodes to attain the capacity region.

However; in many wireless channel architectures inter-
ference cancellation mechanism can not be used and the
classical approaches as proposed in [14], [7] are not applicable.
Moreover, from the viewpoint of the packet layer, where ap-
plications stand, channel appear as an erasure channel. Sender
sends packets that might be received by destination nodes
or be erased because of transmission errors, collisions, or
buffer overflows. This important fact is sometime overlooked
in the information theoretical literature and it results in a lot
of simplification in analysis. In [5] a simple form capacity
bound is derived under perfect side information hypothesis at
the decoder. The side information is provided in the form of
the exact erasure pattern overevery link in the network. The
capacity bound is achieved through a random coding scheme,

but it seems that the achievability is only valid under degraded
hypothesis. In [13] the capacity of a general stationary and
ergodic broadcast erasure channel is derived which leads to
a simple linear capacity bound. This capacity bound can be
achieved optimally through a simple time sharing mechanism
called Priority Encoding Technique. In [10] the capacity of
the single relay erasure channel under degraded hypothesis
is derived and a coding scheme based on a practical MDS
code is proposed to achieve this capacity without need to
any side information. In [9], the capacity of the single relay
erasure channel without the restriction of degraded hypothesis
is derived using image size theorem [3] and it is shown that
a simple variation of the same coding scheme achieve the
capacity. This means that the capacity of the single relay
erasure channel is known to be achievable under general
hypothesis of stationarity and ergodicity, and without any
degraded hypothesis or side information. Finally in [11],
capacity region for the single relay case is derived under
cheap relay hypothesis [12], where the nodes cannot receive
simultaneously from more than one source and use a temporal
scheduling to suppress interference.

In this paper, we extend the previous works to the situation
of single sender-receiver multi-relay channels for two different
scenario : frequency assignment scenario which channel sep-
aration is obtained through using different physical channels
and time devision scenario which a temporal scheduling is
used to suppress interference. A cut-set bound is derived for
these different scenarios and it is shown that almost all point
of this bound can be reached by a simple and practical coding
scheme. Cut-set bound can not be achieved in the frequency
assignment scenario and where the transfer rate is limited by
the receiver side bound. We believe that in this specific case,
the cut-set bound is a looser bound and a tighter bound have
to be driven. However, it is out of objective of this paper
and it might be presented in a longer paper. We first present
the theoretical bound in section II and then a coding scheme
achieving the theoretical bounds is presented in section III.

II. I NFORMATION THEORETICAL BOUNDS

In this section we show the cut-set bound of a single sender-
destination multi-relay channel. We use the subscripts to
denote node and superscripts to denote time. Let’s consider a
set ofN nodes,N = {1, .., N}, communicating over a general



Vector Erasure Channel. For the special case of non-correlated
erasure channel where erasure are not spatially correlated, and
under the hypothesis that erasure probability do not depend
on the sent symbol, the channel could be characterized by
an erasure probability matrixPu = (pu

ij)N×N , where pu
ij

is the erasure probability of a transmission between nodes
i and j at the u-th transmission,pu

ij = Prob{Y u
ji = e}.

This comes from the erasure nature of the channel and the
fact that symbols sent over the channel are not interfering.
The received symbols separation is obtained though using
different physical channel (interface card) or through a time-
sharing mechanism (that could be centralized or distributed as
CSMA/CA access mechanisms). As explained in [1] we might
drop the superscriptu for the stationary and ergodic erasure
channels without loss of generality.

Let’s suppose that there is a single communication taking
place between a single sender-destination pair(s, d). Corre-
sponding to this sender-destination pair is a messageW . All
the nodes inN − {s, d} are the relay nodes and are to be
used to aid the communication. Now let’s assume that nodes
in N are divided into two sets,S and the complementSc.
ns (resp.nsc ) is the number of nodes inS (resp.Sc) and,
lsi ,i = 1, .., ns, (resp. ls

c

j ,j = 1, .., nsc ) is node i in S
(resp.j in Sc) where,ls1 = s and ls

c

nsc = d. We defineXu
i

s

(resp.Xu
j

sc

) as the message sent by nodei in S (resp.j in
Sc) at time u. Therefore,Xus = {Xu

i
s, i ∈ [1, ns]} (resp.

Xusc

= {Xu
j

sc

, j ∈ [1, nsc

]}) is the message vector sent by
nodes inS (resp.Sc) at timeu. Let Y u

i,lsj

sc

,i = 1, .., nsc and
j = 1, .., ns, the message received by nodei in Sc if Xu

j
s

is sent over the channel.Yu
lsj

sc

= {Y u
i,lsj

sc

, i ∈ [1, nsc ]} is
therefore the vector message received by nodes inSc if Xu

j
s

is sent and,Yusc

is the vector message received by nodes
in Sc if Xu = {Xus,Xusc

} are sent over the channel. The
rate of flow of information from sender to the destination is
bounded by the following theorem.

Theorem 1 (Cut Set bound of multi-relay channel) The
cut-set bound of a relay channel with a single source-
destination pair(s, d) is bounded by :

R ≤ min
C
{Rc}

for the frequency assignment scenario; such thatRc is defined
as :

Rc ≤
ns∑
i=0

I(Xs
i ;Ysc

lsi
)

and
R ≤ max

t

[
min
C
{Rc}

]
for the time division scenario where, the maximization occurs
over all possible mode proportion{ti}nc

i=1 . ti is the asymptotic
proportional of time that the nodelsi acts as a sender.
Moreover,Rc is defined as :

Rc ≤
ns∑
i=0

ti · I(Xs
i ;Ysc

lsi
)

C determines ans− d cut.
See the appendices for the proof2.

The cut-set bound might be simplified thanks to the erasure
nature of channels. The Shearer theorem presented thereafter
is very helpful for the analysis of erasure channels.

Theorem 2 (Shearer Theorem [1])Let Xn be a collection
of n random variables andZn be a collection ofn boolean
random variable, such that for eachi, 1 ≤ i ≤ n, E {Zi} =
1 − C̃. If Xn(Zn) is a sub-collection containing theith
random variableXi if Zi = 1. Then E {H (Xn(Zn))} ≥
C̃H(Xn) 2.

The theorem can be extended to conditional entropy as well.
It can be shown thanks to this theorem that the mutual
information over a stationary and ergodic point to point erasure
channel with an erasure processZ have a very simple form
given by [13]:

I (Xn;Y n) = nC̃H(X) (1)

where,E {Zi} = 1− C̃ is the average erasure probability on
the channel. In other word the capacity of a stationary and
ergodic channel is simplỹC symbol. Thanks to this result we
have :

Theorem 3 (Cut-set bound of erasure multi-relay channel)
The capacity region of a single sender-destination erasure
channel is bounded by :

R ≤ min
C
{Rc}

for the frequency assignment scenario such thatRc is defined
as :

Rc ≤
ns∑
i=0

(1−
nsc∏
j=1

pij)

and
R ≤ max

t

[
min
C
{Rc}

]
for the time devision scenario where,Rc is defined as :

Rc ≤
ns∑
i=0

ti · (1−
nsc∏
j=1

pij)

pi,j is the loss probability from nodei in the setS to the node
j in the setSc and C determines ans− d cut. 2

III. A CHIEVABILITY AND CODING METHOD

In this section a coding scheme which attains the cut-set
bound of theorem3 is presented. We first describe the simplest
case of one intermediate node, as shown in figure1. we will
then show that how this coding scheme can be generalized
to the more general case of multi-relay. For the sake of
simplification let’s assumep1, p2, andp as the packet loss rate
between sender-relay, relay-receiver, and sender-receiver. The
cut-set bound can be expressed as :R = min{(1− p1p), (1−
p) + (1 − p2)} for the frequency assignment scenario and
R = supt1 min{t1 · (1 − p1p), t1 · (1 − p) + t2 · (1 − p2)}
for the time division scenario. We first describe the coding
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Fig. 1. Relay Channel

scheme for the degraded hypothesis when the relay nodeR
has to receive all information send by the sender. We will then
extend it to the non-degraded hypothesis when the relay node
receives only a part of information and it is not able to decode
initial symbol sent by the sender.

Before going to the details let’s describe the characteristics
of the class of Maximal Distance Separable (MDS) codes
[15] that will be used thereafter. Let’s suppose a systematic
(n, k) MDS code takingk information symbols and generating
n encoded symbols. Now this code has the property that
the initial k information symbols can be retrieved from any
combination ofk encoded symbols out of then symbols
constituting the block,i.e the MDS code can retrieve up to
n − k erasure in a block ofn packets. A MDS code can
achieve the capacity of a stationary and ergodic point to point
erasure channel asymptotically with a block sizen → ∞ if
its rateR is less than the capacity of the channel. Maximal
Distance Separable (MDS) code leads to sphere packing codes
for erasure channels.

A. Coding scheme description: Degraded case

Lets suppose that we have designed an(k + m + l, k)
MDS code with an encoding matrix[Ik×k|Ak×m|Bk×l]. At
the sender we encode these packet with the(n = k + m, k)
MDS code with encoding matrix[Ik×k|Ak×m] leading to
m redundant packet and a rateRs = k

n . These redundant
packets will help the receiver and the relay to retrieve the
erased packets over the channel. Under the condition that
Rs < (1− p1) a MDS code will asymptotically with largek
andn, ensure perfect communication between the sender and
relay, as the MDS codes achieve the capacity of the erasure
channel. Such a code will therefore validate the conditions of
the degraded situation.

Following the coding structure proposed in [14] the relay
should transfer only side information’s (indices) reducing the
ambiguity at the receiver. Every packet of an MDS code can be
used as an index that will reduce the ambiguity about the initial
message. We therefore generate at the relay some redundant
packets coming from multiplying the message by the encoding
matrix Bk×l. At the receiver side we will receive asymptoti-
cally with largen, aroundn(1 − p) packets from the sender
andl(1− p2) packets from relay. The receiver have to decode
the MDS code with generator matrix[Ik×k|Ak×m|Bk×l]. The
k message packets can be recovered if we receive from sender
and relay at leastk packets. Using this coding scheme relay
only send useful index information to the receiver. The fact

that [Ik×k|Ak×m|Bk×l] is the generator of an MDS code
guarantee that every packet received from the relay will reduce
the ambiguity about the initial message. The decoding process
can be hold on the receiver ifn(1−p)+l(1−p2) > k. The rate
of information can be transfered by the channel is therefore
bounded by :R = Rs = k

n ≤ min{(1−p1), (1−p2)+(1−p)}
for the frequency assignment scenario (maximum can be
reached by choosingl = n) and by : R = t1 · Rs =
supt{min{t1(1 − p1), t1(1 − p2) + t1(1 − p)}} for the time
devision scenario.t1 is the proportion of time thatS acts as
a sender andt2 is the proportion of time thatR transmit over
channel.

B. Coding scheme description: Non Degraded case

In this section we will present coding schemes applicable
without the degraded assumption. The main difference be-
tween this situation with the degraded case is that in the non-
degraded situation the receiver might have some information
that have not been received by the relay, where under the
degraded assumption all information available at receiver are
also available at the relay. We will show that in the time
devision scenario the cut-set bound is achievable, however; for
the frequency assignment scenario the bound can be attained
if (1− p1p) ≤ {(1− p) + p(1− p2)}, i.e., p2 ≤ p1.

Let’s suppose that the sender use a(n, k) MDS code[
Ik×k|Ak×(n−k)

]
. Under the general erasure relay channel

scenario defined previously if an asymptotically large number
n of packet is sent by the sender, a numbern(1 − p) (resp.
n(1 − p1)) packets are received at receiver (resp. relay). Out
of these packetsn(1 − p)(1 − p1) are received at both the
relay and sender andnp1(1 − p) (resp.np(1 − p1)) only at
the receiver (resp. the relay). Relay has to forward a sufficient
number of packets only received by it to eliminate ambiguity
at receiver. However, the relay and receiver are not aware of
which packets they respectively received. The solution consists
of forwarding all received packets at the relay to the receiver,
i.e., the relay assumes that then(1 − p1) packets received at
the relay are information packets.

However, the relay is not able to send all of these packets
to the receiver as it can not send with a rate more than(1−
p2) over the relay to destination channel. Moreover, it only
receivedn(1−p1) packets from the sender. The solution is that
the relay chooses randomlyk∗ = min{n(1− p1), n(1− p2)}
packets from its received packets and sends them over the
channel using a(n, k∗) MDS code

[
Bk∗×(n−k∗)

]
. The receiver

could retrieve packets sent by relay if ,asymptotically with
largek∗ andn, k∗ < n(1−p2). As said before, onlyp percent
of these packets has not been yet received by the receiver.
Asymptotically for largen andk, i.e.k∗, if n(1−p)+k∗p > k
the initial packets sent by sender can be recovered successfully
at the destination.

R = k
n = min{(1 − p1p), (1 − p) + p(1 − p2)} for

the frequency assignment scenario andR = min{t1(1 −
p1p), t1(1 − p) + t2(1 − p2)} for the time devision scenario.
Therefore the cut-set bound can be attained for the time



devision scenario while, for the frequency assignment scenario
the cut-set bound is achievable ifp2 ≤ p1.

C. Multi-relay

The presented scheme for the single relay hypothesis can be
extended in a straightforward way to the multi-relay hypoth-
esis. We just do the same things for all nodes in the channel.
Let’s consider that the sender hask information symbol to send
over the channel. It uses the encoding matrixB0

k×n (known
by all the nodes) and sendXn over the channel.

If a relay node receives sufficient numbers (more exactlyk)
of independent codeword packets from the environment it is
able to decode the information symbols sent by the sender.
This node is therefore in the degraded situation. The de-
coded block is re-encoded by using a random linear encoding
function where, the coefficients of the encoding function are
drawn uniformly fromFq. The encoding vector (the vector of
coefficients of the encoding function) of codeword packets are
sent along with them, in their headers. This information would
help the decoding and encoding process in the other nodes
of the channel. In order to reduce the possibility of sending
useless codeword packets over the channel, the encoding
vector of the generated codeword packets have to be chosen
independent from those received by the node.

If a relay node has not receives sufficiently number of
independent codewords from the environment the decoding
process can not be hold. This node is therefore in the non-
degraded situation. In this case the relay node assumes that the
received packets are information packets. It chooses randomly
k∗i packets of the received packets and thereafter re-encodes
them by using a random linear encoding function and sends
the results over the channel.k∗i depends on the amount of the
independent codewords received at the node.

This process is continued until the final destination that will
be able to decode information symbols sent by the sender if
it receives at leastk packets from the channel.

It is worth notable that in the single relay hypothesis the
codeword packets sent by the sender are independent. There-
fore; each codeword received at the relay is an independent
linear equation of the information symbols. However; For
multi-relay channel the probability that all the transmitted
codewords by nodes in channel are independent is not actually
one. To handle this problem relay nodes constraints a reception
matrix where, rows of this matrix are encoding vectors of
each received packet. If the reception of a packet increases
the rank of this matrix it is an independent codeword packet
and therefore is useful. A packet which does not increase the
rank of this matrix contains information previously received
by the relay and it has to be dropped. By this scheme the
probability that two nodes have the same set of blocks and
pick the same set of coefficients and construct the same block
goes to zero if the size of fieldFq is sufficiently large (for the
proof see [8]).

IV. CONCLUSION

We presented the capacity region of the erasure multi-
relay channel and show that it is achievable by a practical

coding scheme based on MDS codes. Reed Solomon codes
are MDS codes and can be used for applying the proposed
coding scheme. This scheme can be easily implemented in
actual WIFI based wireless networks and it does not need
any new physical layer architecture as needed for interference
cancellation method.
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APPENDIX A

We first proof the first part of theorem for frequency assign-
ment scenario. Let’s consider thatW is uniformly distributed
over his respective range{1, 2, .., 2nRc}.

nRc = H(W )
= I(W ;Y1sc

, ..,Ynsc

) + H(W |Y1sc

, ..,Ynsc

)
(a)

≤ I(W ;Y1sc

, ..,Ynsc

) + nεn
(b)
=

∑n
u=1 I(W ;Yusc

|Y1sc

, ..,Yu−1sc

) + nεn
(c)
=

∑n
u=1 H(Yusc

|Y1sc

, ..,Yu−1sc

)
−H(Yusc

|Y1sc

, ..,Yu−1sc

,W ) + nεn
(d)

≤
∑n

u=1 H(Yusc

)−H(Yusc

|
Y1sc

, ..,Yu−1sc

,W,Xus,Xusc

) + nεn
(e)
=

∑n
u=1 H(Yusc

)−H(Yusc

|Xusc

,Xus) + nεn

=
∑n

u=1 I(Xus;Yusc

|Xusc

) + nεn

where (a) follows from Fano’s inequality, (b) from the chain
rule (c) from the definition of mutual information, (d) from
the fact that removing conditioning increase the first term and
conditioning reduces the second term, and (e) from the fact



that Yusc

depends only onXus and Xusc

property of the
channel [2]. Moreover;I(Xus;Yusc

|Xusc

) can be simplified
as following :

I(Xus;Yusc

|Xusc

) = I(Xu
1

s, .., Xu
ns

s;Yusc

|Xusc

)
(f)
= I(Xu

1
s, .., Xu

ns

s;Yu
ls1

sc

, ..,Yu
lsns

sc

|Xusc

)
(g)
= I(Xu

1
s, .., Xu

ns

s;Yu
ls1

sc

, ..,Yu
lsns

sc

)

= I(Xus;Yusc

)
(h)

≤
∑ns

i=0 I(Xu
i

s;Yu
lsi

sc

)

(f) follows from the definition ofYu
lsi

sc

, (g) from the fact that

Yu
lsi

sc

is the received vector message ifXu
i

s is sent over the
channel. Moreover; based on the definition of relay channel
[4] Xusc

only depends on the past received symbols ofYsc

.
Therefore at the transmission timeu, the received vectorYu

lsi

sc

only depends onXu
i

s and is conditionally independent from
Xusc

(also note thatXusc

is sent over a channel different
from Xu

i
s and so they have not any interfere), and (h) as

said before, the nodes send out over the physically separated
channels. From the point of view of the nodes therefore, the
relay channel seems as a set of point to point channels. In
such a scenario, it is not difficult to show that the maximum
of I(Xus;Yusc

) achieves ifXs
j , sent bylsj , is independent

from Xs
i , sent bylsi , for i 6= j ∈ [0, nc − 1]. Thus the mutual

information can be then written by the summation.
By replacingI(Xus;Yusc

|Xusc

) in the previous inequality
we have :

nRc ≤
∑ns

i=0

∑n
u=1 I(Xu

i
s;Yu

lsi

sc

) + nεn

=
∑ns

i=0

∑n
u=1 I(Xi

s
q;Ylsi

sc

q
|Q = u) + nεn

(i)
=

∑ns

i=0 nI(Xi
s
Q;Ylsi

sc

Q
|Q) + nεn

(j)
=

∑ns

i=0 nI(Xi
s;Ylsi

sc

|Q) + nεn
(k)

≤
∑ns

i=0 nI(Xi
s;Ylsi

sc

)

(i) follows from the introduction of a new time sharing random
variableQ uniformly distributed on{1, 2, ..., n}, (j) follows

by definingXi
s ∆= Xi

s
Q, Ylsi

sc ∆= Ylsi
sc

Q
as the new random

variable whereQ → Xi
s → Ylsi

, and (k) from the Markov
chain properties. The proof is therefore completed for the
frequency assignment scenario. It is notable that this bound
can be also derived by using the image size theorem [3].

APPENDIX B

Now let’s assume the time division scenario. In this case
each node in the channel might be in one of these two
states: sending (S) and receiving (R). The scheduling algorithm
defines different transmission mode for the relay network by
assigning to each node a state (R or S). Collisions occur in a
mode if two or more senders are assigned to the S state by
the scheduler. For the sake of simplification let’s consider the
simplest case of single-relay channel where,S is the sender,
R is the relay, andD is the destination (see figure 1). In this
case, the scheduler defines four different modes. In modem1

nodeS send messages and nodesD andR receive the message
with a specified probability that depends on the distance and
transmission power. In this mode the relay channel appears as
an erasure broadcast channel

(
XS(m1);YR(m1),Y

S
D(m1)

)
as

defined in [13]. In the second modem2 R acts as the sender
andS andD are in the receiving mode. In this case the channel
appears as a point to point erasure channel(XR(m2);Y

R
D(m2)

).
In modem3, S andR are in sending state and collision occurs.
In this mode the nodes do not receive any information. In
the last modem4, all the nodes are in receiving state and no
information is transferred through the packets. Let suppose that
the ti is the proportion of time that the wireless network is in
statemi. Clearly

∑M
m=1 ti = 1, meaning that the scheduling

mechanism do a time-sharing between the different modes.
The previous description might be generalized in a straight-

forward way to a network with more than one intermediate
nodes. In this setting any possible assignment of state value
to each node define a transmission modemi that is active a
proportionti of time. We will assume for the sake of tractable
theoretical analysis that the scheduling is deterministic, mean-
ing that the scheduling is defined in advance independently of
transmission results. In [12] a cut-set bound is derived for the
achievable rate over a general multi-mode relay channels :

Theorem 4 (Cheap relay channel Cut-set Bound [12])
Consider a general network withN nodes and a finite
number of states,M . Now suppose that state of network is a
deterministic function for every network usev as mv and is
fixed and is known to all nodes then∑

i∈S,j∈Sc

Rij ≤
M∑

m=1

tmI
(
XS

(m), Y
Sc

(m)|X
Sc

(m)

)
for all S ⊂ {1, 2, .., N}, where the set of all nodes are
partitioned into two disjoint setS and Sc by cut-set. The
portion of time that network operate in modem is defined as
tm = limk→∞ nm(v)/v. For any statem, nm(v) is defined as
the number of state which is equal tom in the firstv network
uses2.
Lets considert1 as the proportion of time thatS is int he
sending mode andt2 is the proportion of time thatR is the
transmitter. For the cutsC1 andC2 shown in figure1 we have :

Rc1 ≤ { t1I(Xs
(m1)

;Ysc1

(m1)
|Xsc1

(m1)
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Rc2 ≤ { t1I(Xs
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For C1 and in the modem1 (resp. m2), {ls1 = S} (resp.
{lsc1

1 = R}) acts as sender and{R, ls
c1

2 = D} (resp.{S,D})
are the receivers. ForC2 and in the modem1 (resp. m2),
{ls1 = S} (resp.{ls2 = R}) acts as the sender and{R, ls

c2

1 =
D} (resp.{S,D}) are the receivers. Therefore we have :

Rc1 ≤ t1 · I(Xs
1 ;Ysc1
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)

Rc2 ≤ t1 · I(Xs
1 ;Ysc2

ls1
) + t2 · I(Xs

2 ;Ysc2
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)

The same arguments can be used for the multi-relay case
which leads us to the cut-set bound.


