On the capacity of multiple input erasure relay
channels: The Non-degraded case

Ramin Khalili, Kave Salamatian
LIP6-CNRS, Universi Pierre et Marie Curie, Paris, France
{ramin.khalili, kave.salamatian } @lip6.fr

Abstract

We consider in this paper a network that consists of two senders and two receivers. We further assume that
each sender could act as a relay for other communications. All channels connecting these nodes are supposed to
be erasure channels where symbols are received correctly (error-free), or lost. This model is realistic for many
practical scenarios in the context of wireless and sensor networks.

In a previous works, we have addressed the capacity region of this network under physically degraded
hypothesis. The non-degraded case is addressed in this paper. We derive a capacity bound for the proposed network
and we show that it can be reached through a practical coding scheme based on MDS codes. We make also a
comparison of the achieved rates compared to a simple time sharing of single sender relay channels.

I. INTRODUCTION

Wireless networks consist of senders, receivers and intermediate nodes that more or less collaborate tc
achieve a communications. An important problem in this context consists of finding the best possible nodes
collaboration scheme which maximize the transferred information. Information theory aims toward finding
the set of transfer rate that are ultimately achievable for any given scenario. Recently network coding [15],
[11], [21] has been proposed as a new paradigm to look at the issue of network capacity. Network coding
defines a new type of collaboration schemes which consists of mixing the received information through
a coding scheme defined for each node and forwarding the encoded version. Cooperative diversity idea
presented in [18], [19], [14] is also relevant to the wireless networks. Cooperative diversity is a new form
of spatial diversity whereby diversity gains are achieved via the nodes cooperation

In this paper we present a network coding scheme achieving the capacity bound for a scenario consisting
of two sender that want to send different information to two receivers. Each sender can act also as a relay
for the other communication. We assume here that all channels connecting the four nodes are erasure
channels where symbols are received correctly (error-free), or lost. The analyzed scenario is different
from the classical multi-user channel as the two communications to a single receiver are not allowed to
interfere with each other. Interferences between different simultaneous communications are managed by
using separated physical channels or through time scheduling (centralized or distributed using a Medium
Access protocol as CSMA/CA). This simplification might allow the establishment of the capacity of
relay channels, as shown in [5] for example for the discrete-memoryless relay channel with orthogonal
components.

Moreover; from the viewpoint of higher layer where applications stand, wireless networks appear as
erasure channels. Sender sends packets that might be received by the destination nodes or be erased beca
of transmission errors, collisions, or buffer overflows. Under erasure channel hypothesis, simple closed
form bound can be derived. In [16] a simple form capacity bound is derived for the single sender-receiver
multi-relay channel and under perfect side information hypothesis at the decoder. The side information is
provided in the form of the exact erasure pattern aaggry link in the network. The capacity bound is
achieved through a random coding scheme, but it seems that the achievability is only valid under degraded
hypothesis. In [17] the capacity of a general stationary and ergodic broadcast erasure channel is derivec
that leads to a simple linear capacity bound. This bound can be achieved optimally through a simple time
sharing mechanism called Priority Encoding Technique. In [8] and [7] the capacity of the single relay



Fig. 1. Multi-sender relay Channel

erasure channel is derived under degraded and non degraded hypothesis. A coding schemes based on
practical MDS code are provided that achieves this capacity without need to any side information. The

proposed scheme does not need the exact erasure pattern over every link in the channel, and knowing th:
average packet loss over links is enough to construct this scheme. The general packet loss matrix of the
channel is a statistic parameter of channel, and could be estimated by error modeling schemes [1], [6].
Extension of the results to the more general case of multi-relay erasure channel has been proposed in [9]

However; in all of these work the simplified case of single transmitter has been considered. The more
general case of multi-sender multi-receiver has been rarely addressed in the literature, as it is much more
difficult to handle. In [10] a collaboration scheme in a simple communication scenario where two senders
want to send different informations to two receivers (see Fig. 1) is presented. The cut-set bound is derived
and is shown to be achievable under degraded hypothesis by a practical coding scheme. The main idea o
the proposed collaboration scheme consists of exchanging enough information between source nodes suc
that the information in each sender become correlated. In this case, we fall in the context of Slepian-Wolf
coding [20] where there are two correlated sources that have to be transferred to a common receiver. We
developed a Slepian-Wolf type coding based on MDS code that enables the efficient transfer of the two
sources over an erasure channel. It is shown that the proposed scheme achieve the cut-set bound und
the degraded hypothesise. we assume that the two senders access to the same information through
information exchange.

In this paper, we will analyze the more general case of non-degraded multi-input relay channel. In
this case we are not anymore assuming that the two senders can have access to the same information L
exchanging information. We present a collaboration scheme that can use incomplete information exchangec
between the senders to achieved the capacity bound.

The paper is organized as follow. Section Il gives the capacity bound of an erasure multi-sender erasure
relay channel. In the section Il we show that this bound is achievable through a practical coding scheme.
Some practical comments and conclusion will be presented finally.

Il. THEORETICAL BOUND

The specific multi-sender relay network that will be studied in this paper is a network composed of
two senders & andS,) and two receiversT}; and D;) as shown in Fig. 1. The sendé, i = 1,2
sends information to the two receivels, j = 1, 2. Simultaneously each sender might acts as a relay for
the other sender. The Multi-sender relay channel can be described with 8 random vaXiables 1,2
representing the symbols sent by the sendigt, 7,5 = 1,2 representing symbols received from each



sender by each receiver anff representing the symbol received by send&om the other sender. The
conditional probability density functiop (v;;, vf 4,5 = 1,2|z;) ¢ = 1,2)2 defines the multi-sender relay
channel. This last function gives the probability that wheris sent bysS;, i = 1,2, (y;1, y;2) are received
at D; andy; is received at sender We further definel; = (Y3,, Ys;, j = 1,2) as the total information
received atD;. This description assumes that each receiver is linked to the senders through two separated
channels. The separation of the two channels might be achieved by using different physical channel or
by using time scheduling. We further assume that information send by a sender might be received by all
receivers as well as the other sender.
The considered multi-sender relay channel consists of 2 separate erasure broadcast channel (as defined
[17]) (X;;Y", Y, Ye), ¢ = 1,2 and two erasure relay channels (as defined in (8]); Y5 : Xy; Yia, Ya2)
and(X,; Yy : Xq; Y11, Ys1). The loss probability betwee$} andD; is defined ap;; and the loss probability
between the two sender is supposed to be equalitothe two direction (as shown in Fig. 1). This last
assumption is for clarity sake, however the results might be extended straightforwardly to take in account
possible asymmetry between the two senders. No memoryless assumption on the loss statistics over th
channel is needed and all the results given here are valid for all stationary and ergodic erasure channels
Let's suppose that the total rate of information betwégrandD; to be defined as;;. As said before
we have two broadcast channels in the multi-sender scenario described in Fig. 1. The tdta| catald
be splitted in two components : a private information rBfgwhich is the rate of information being sent
from 7 only to j and a common information ratg; which is the rate that will be decodable jointly by
the two receivers. In this paper we assume as in [12], [17] a degraded message-set to be sent over eac
broadcast channel.e. one receiver receives the private and common information and the other receives
only the common information. Let’s therefore suppose that the private information rate s&nisbgqual
to R? and that the common information rate &. In other terms, let us suppose that for exaniple
have to receive private and common information sentShyand D, have to receive only the common
information. We have therefor®,; = R} + R{ and R, = RS. However, it is shown in [17] that one cannot
do better than time-sharing for broadcast erasure channels. Meaning that there is a trade-off between the
rate of private and common information. Larger private information rate means lower common rate and
therefore lower reception rate for the receiver receiving only common information. This means that it is
sound to suppose that all information are broadcasted as common information and private information
to each receivers are sent through time sharing. Therefore, we will assume that there is only common
information to be broadcasted by the senders to all receivers withi¥atebeing the index of the sender.

Theorem 1 (Capacity region bound) Under the hypothesis that; and X, being independent the ca-
pacity region of multiple-Input relay channel in Fig. 1 is bounded by :

RT S [<Xl;}/237}/117}/12)
Ry < I(X2; Y, Ya1, Yao)
Ry & R < I(Xy; Vi) + [(Xo; Yar)
Ry + Ry < 1(X1; Y1) + I(Xy; Yao)

Moreover, in the special case of degraded channel whén Yi.) are physically degraded versions Bf
(resp. (Y11, Y12) are physically degraded versions Bf) the two first terms of the bound are remplaced
by : Ry < I(X3;Y5) and R} < I(X»;Yy®) as shown in [10].

Proof. See the proof in appendix.
However; as we say before we are only considering the transfer of common informiagiothe
information sent byS; (resp.S,) should be send t®; andD,. Moreover,D; and D, do not participate
in the relaying process. Under such a situation the two first bound of the capacity bound are changed to :
Ry <min{l(X; Y5, Yn), [(X1; Y5, Yiz)}
Ry < min{I(Xy; Yy, Y1), I(Xo; Y7, Yao) }



The capacity bound might be simplified thanks to the erasure nature of channels and the Shearer
theorem :

Theorem 2 (Shearer Theorem [4])Let X" be a collection of: random variables and™ be a collection
of n boolean random variable, such that for eaghl <i < n, E{Z;} =1 C. If X"(Z") is a sub-
collection containing the'h random variableX; if Z; = 1. ThenE {H (X"(Z"))} > CH(X™) O.

The theorem can be extended to conditional entropy as well. It can be shown thanks to this theorem that
the capacity of a stationary and ergodic point to point erasure channel with an erasure groeessa

very simple form[17],C =1 — E{Z;}, whereE{Z;} =1 — C is the average erasure probability on the
channel. Using this theorem the capacity bound is simplified to :

Theorem 3 The capacity region bound over a multiple-Input erasure relay channel is bounded as :

Ry <min{(1 —p-p11),1 —p-p12)}

Ry <min{(1—p-px), (1 —p-pa)} (1)
R+ Ry < (1—pu) + (1 —px)

R} + R5 < (1 —pig) + (1 — pao)

In the special case of degraded channel, the first two terms of the bound are degrad&g t0 (1 — p)
and R} < (1 —p).

The first two bounds in this theorem, are constraints bounding the rate available for collaboration between
the two senders. The two last bounds are bounding the amount of information coming in the receiver. In
the next section, we will provide a coding scheme achieving the given bound.

[11. ACHIEVABILITY AND CODING METHOD

In this section we propose a coding scheme which attains the capacity bound shown in theorem 3. The
proposed coding scheme is a combination of basic techniques as Slepian-Wolf partitioning, cooperative
coding for relay channel and block markov decoding. We first describe the coding scheme for the degraded
case and then we extend it to the non-degraded hypothesis.

Let’'s describe the characteristics of the class of Maximal Distance Separable (MDS) codes [22] that
will be used thereafter. Let’'s suppose a systemgitid:) MDS code takingk information symbols and
generating: encoded symbols. Now this code has the property that the ihitislormation symbols can
be retrieved from any combination &f encoded symbols out of the symbols constituting the block,

i.e the MDS code can retrieve up to— & erasure in a block ofi packets. A MDS code can achieve

the capacity of a stationary and ergodic point to point erasure channel asymptotically with a block size
n — oo if its rate R is less than the capacity of the channel. Maximal Distance Separable (MDS) code
leads to sphere packing codes for erasure channels.

A. Coding scheme description: Degraded case

We assumel + 1 block of transmission. We also consider at each setef. blocks of data each
containingk; information symbols (packetd)’ = {st, ..., s}, 1. Let's suppose that at the end of bldoke
have been able to decodet the!™ block of the message sent By (B2 = (s}, 571,415 -+ Stagihg—1))-
We will validate this hypothesis further. Moreover, let's assume thatthel)" block of message sent
by 8118 Blyy = (810> S0ttt - S 1)y —1)-

Now let's define an MDS code with an encoding ma@y, ., ... It generates the encoded packets
of the (I + 1)™ block from thek; + k, given packets consisting of thig packets of thgl + 1) block
of message o, andk, packets of thg!)" block of message send ki, and received in the previous

block,i.e. X', = [Bl, B] x G".



[ G11 G21 0 O O 0 T
G12 G22 G11 Ggl RPN O 0
0 0 G12 G22 e 0 0
Yl =[BY BY B! B)...BF BI : : : _— : : (2)
0O 0 0 0 ... Gy Gu
L 0 0 0 0 ... Gy G |

SenderS, can easily decode the blogk + 1) broadcasted by, if it has received enough packets
over the erasure channel connectifigto S,. As it have in memory thé, values inB?, this happen if
n(1 —p) > ki, i.e. asymptotically if the rate of the MDS code used$tis less(1 — p). The rate of the
MDS code is equal ta?} = % as out of thek; + k, symbols used at the encoder inpiy,of them are
redundant (have been sent before over the channel). The decodedAjlqcls to be used in the next
transmission block combined with blodk},, constructingX? ,. As the initiation block we can use an
all-zero bIockBg, j =1,2 know to everybody in the network. Sendgr encodes its proper information
and mixes them with the information received frash using exactly the same mechanism but with a
different encoding matrix;*. With the same arguments we hai¢ = %2 < (1 — p). We will choose the
encoding matrixG!' and G* such thafG' |G?] defines an MDS code.e. each sub-matrix ofG* |G?] is
invertible.

Now let’'s see what happen at the receiver side when senders use such a coding schemes. At each receivi
we will receive some packets coming from each sender. Asymptotically with large each block of
transmission containing, each recei@y will receive n(1 — py;) + n(1 — py;) packets. In transmission
block I, the packets received from the senders are a combinatid} 087, B} , and B? ;. Clearly the
decoding can not be done using only the information received in blo€ke L-block Markov decoding
technique can be applied. The idea is to do the decoding after receptibrblafcks. Let suppose that
the encoding matrixG' G?] is rewritten as:

1 27 Gll G21
& G]—{Glg G22}

whereG;; is ak x n matrix with the MDS property.

After receiving L blocks D; we will receive a sub-sequence (because of erased synﬂjﬁ( 2Ln)
where ZQL" is the loss process observed over erasure channel going $fota D; during the 2Ln
transmlssmns of. blocks. Y is vector of length2nL symbols obtained as in Eq. 2. The obtainkd
block code of rateR* = % (as the first blockBY, BY] is known) is still an MDS code code as every
sub-matrix of the encoding matrix will be invertible. Asymptotically, we will receive at each receiver
nL(1 — p1j) + nL(1 — py;) packets. The MDS code can be decodedif(1 — p;;) + nL(1 — py;) >
(k1 + k2)(L + 1), in other term if 2L (R} + R3) < (1 — pyy) + (1 — pa;). We can see therefore that the
proposed coding scheme achieves the capacity bound under degraded hypothesis-when

B. Coding scheme description: Non Degraded case

In this section we will present a coding schemes applicable without the degraded assumption. The
main difference between this situation and the degraded case is that seimlapt supposed to know all
information sent by the other sender. In the other téfp,andY;, might have some relevant information
that have not been received 5y, where under the degraded assumption all information availati® at
and D, are also available af.

Let's suppose thasS; use a MDS code with block size. Asymptotically with largen, n(1 — p)
(resp.n(1 — p11) andn(l — p1)) packets are received &, (resp.D; and D,). Out of these packets



n(l —p)(1 — p11)(1 — p12) are received at the three receiw®y, D; and Dy, andnpipi2(1 — p) (resp.
npp12(1 — p11) andnppi1(1 — p12)) packets are received only & (resp.D; andDs). S, has to forward
enough packets to eliminate ambiguity at the receivers. How&serD, and D, are not aware of the
packets they have respectively received.
Let's suppose that at the end of blotkS; has received:; = n(1 — p) packets of the codeword?
sent byS,. We call these packet8!*. Let's also assume that tt{e+ 1)™ block of message sent k8 is
B}l,,. The symbols sent b, over block(l + 1) are defined as(}',, = [B},, B7*] x G*. In block!+1,
ki = n(1—p) packets of the codewordl}', , received atS, (B/;;) would be used in the next transmission
bIock to combined withB},, and constructX?,,.
The first constraint on this coding scheme only a proportign(resp.p;2) of the packets received at
S, are independent from those receivedlat (resp.D;). Nevertheless, the total number of independent
packets received &, andD; (resp.D,) must be larger thah, to guarantee thaB/, ; could be decoded
at the receiver nodege. n(1—py1p) > k1 andn(1—p1op) > ki. The same arguments can be also applied
whensS, is sender. This results to the first two terms of the bound presented in theorem3.
In transmission block, the packets received at the receivers are a combinatids) o7, B}*, and
B#*, where B}*, (resp. B?*) is also a combination oB} , and B?*, (resp. B? , and B}*,). If we
consider each information symbol as an unknown variable, the decoding process in the receiver consists
of resolving a linear equation system witl{k, + k;) unknow variables, i = 1,2 j € [1, (L 4 1)k]. As
the encoded packets sent 8yandsS, are independent from each others by construction, if the number of
received packets received at the receivers (leading to an independent equation) are more than the numbe
of unknown variables, the equation could be solved and the initial packets can be decoded. Therefore, if
nL(1 — pij) +nL(l — py;) > (k1 + ko)(L + 1), j = 1,2 the decoding process can be successful in each
receiver. This prove the achievability of the capacity bound.

V. PRACTICAL COMMENTS

The proposed coding scheme is original from several perspectives. It provides a practical and simple
way of doing Slepian-Wolf coding in the context of erasure channels. In place of sending the information
independently fromS; and S,, we send an index obtained by mixing information coming from the two
senders. By doing this we reduce the amount of information to be sent by each sender and we reach &
collaboration gain. Moreover, in this setting all symbols received over the multicast channel are useful to
decode the final information.

Up to now we have considered the case where all the sent information are common information. Now
if one want to send private information he might use a simple time sharing scheme. Let's suppose that
we want to send with a rat&;; from S, to D,. The cut-set bound become equal to

Ry + Ry <min{(1 —p-pn),(1 —p-p12)}
Ro1 + Roy <min{(1 —p-pa1), (1 —p-p2n)}
Riy+ Roy < (1 —p1) + (1 —par)

Ris+ Rys < (1 = p12) + (1 —pa2)}

Under this situation it would be possible to design a time-sharing mechanism based on the proposed
coding scheme, sending information frafy to D; a proportion of time equal teﬁ This time
sharing mechanism achieves the cut-set bound, meaning that the previous codlng scheme can be applie
even in the case that private information is to be send to the received.

It is noteworthy mentioning that the decoding process of MDS code & alog n complexity. This
can be reduced to a linear complexity through use of Tornado codes that are almost-MDS [13]. The main
drawback of the method is large decoding delay at receiver that comes from the fact that we have to wait
till reception of L. block before decoding. However, there is a trade-off between rate efficiency and delay,
through the choice of; larger L. Leads to larger rates but larger delays amzk-versa



As the last point, let's compare the obtained capacity region with the scenario that two relay channels,
(51,82, D;), 5 = 1,2 and (S, 851,D;), 7 = 1,2, use a time-sharing to transmit over channel. Let us
« being the proportion of time one uses the relay channel. Now the achievable rate is governed by the
capacity region of the degraded erasure relay channel [7]. Using this capacity bound we have :

R} < amin{(1 — pp11), (1 — pp12)}

Ry < (1 —a)min{(1 — ppa1), (1 — pp2a)}

R} < (1 —a)min{(1 - pu1) + (1 = par), (1 — p12) + (1 — pa2)}
Ry < amin{(1 —p11) + (1 = pa1), (1 = p12) + (1 — pa2)}

Adding the two last bounds obtained in scenario 2, we have :
Ry + Ry <min{(1 — pi1) + (1 = pa1), (1 = p12) + (1 — pa2)}

Therefore; using the time-sharing between single-input erasure relay channels the rate available for
collaboration between the two senders is lower than proposed coding scheme.

V. CONCLUSION

We have presented here a capacity region for the non-degraded multi-sender erasure relay channel. Wi
first derive the capacity bound for the proposed scenario, and then we propose a coding scheme based o
MDS code achieving the capacity of this channel. This coding scheme provides a practical and simple
way of doing Slepian-Wolf coding in the context of erasure channels. We also show that this coding
scheme can achieve the rate higher than a simple time sharing of single sender relay channels.
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APPENDIX

Let's W, and W, the messages sent I andS,. Let’s further assume that they are independent and
chosen randomly (uniformly) over the sets of intege/s= {1,2,..,2"%1} andW, = {1,2,..,2"%}. The
rate R} can then bound as :

nR: = H(W)

2 HW W)
T(W3 V5", Y, Yl Wa) + HOWL Y3, Vi
9 Yi%y WQ)

I(Wla Yéan Yvﬁ7 Yfé’Wﬂ + ney

Z?:l H(}/égz? }/112'7 Yl?i'|}/28i7‘17 }/12;17 }Gi517 WZ)
_H(Yésza }/ll’h )/121'|Y281717 }/111_17 Y122_17 le WQ)
“+ne,

< Z?:l H(}/QSZ7Y'11Z7m2’L) - H<}/2§7Yr11i7Y12i‘
}/281_17 }qulu }/‘11271’ le W27 X1i7 XQZ) + ney

(e) "
< Yo H(YS, Y, Yie) — H(Ys, Yiu, Yol
Xii, Xo;) + ney,

= Z?:l H(3/2§>3/11¢,}/12i) - H(Yﬁ»Ylli,leﬂ
Xli) —|— ney
Z?zl I( Xy YZ, Yi1i, Yi2i) + ne,

22;1 I(Xig; Y;%p Yiig, Yi24|Q = i) + ne,,

nl(X1g; Yf@; Yi1g, Y120|Q) + ney
nl(X1; Y5, Y11, Y12|Q) + ne,

nl(X1; Yy, Y11, Yi2) + ne,

where (a) follows from the independenceldi andW,, (b) follows from Fano’s inequality, (c) from the
chain rule and definition of mutual information, (d) from the fact that removing conditioning increase the
first term and conditioning reduces the second term, (e) from the factthat(Y2, Y11, Yio;) depends
only on the current symbak;; and X;; [2] by the memoryless property of the channel, (f) from the fact
thatY; is the received vector messageXif; is sent over the channel. Also based on the definition of relay
channel [3]X5; only depends on the past received symbols Bad Therefore at the transmission time
the received vectoy; only depends onX;; and conditionally is independent froixi,; (also note thatXs;
send over a channel different froiy;), (g) by definingX; 2 X0, Y5 2 Yoo, Y 2 Y110 andYi, 2 Yia0
as the new random variable whefe— X; — (Y2, Y1, Y1) for |Q] < min{|Xy|, V2|, |V, [Mi2|}, and
(h) from the Markov chain properties.

With the same argument we can show tligt < I(X,; Y, Yoy, Yoo) which leads us to the two first
terms of the capacity bound of theorem1.

At the receiver side we use the cut-set bound defined in [2] and we have :

Cs: R+ Ry < I(Xy, Xo; Y11, Y1) (3)
Cy: Ry + Ry < I(Xy, Xo; Yia, Ya9)

As said before, the nodes transmit over the physically separated channel. From the point of #lew of
(resp.D,) the channel can be modeled by two point to point chashelD; andS,; —D; (resp.S;—D-, and
S>—Ds). Under this hypothesis the maximum Bf + R; achieve ifS; andS, send independent codeword
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over these two independent channel. This lead to the maximud(®f, X,; Y11, Ys) being equal to

I(X1; Y1) + 1(Xs; Ysr) and maximum ofl (X, X»; Vi, Yoe) being equal tol (Xi; Yia) + I(Xa; Yas). In

other term, the collaboration between the sender and the relay reduces to ensuring that the variable sen
by S1, X1, andS,, X5, are independent from each other but are still complementary to enable a maximal
rate at receiver. This leads to the two last terms of the capacity bound of thedrem 1



