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Abstract

We consider in this paper a network that consists of two senders and two receivers. We further assume that
each sender could act as a relay for other communications. All channels connecting these nodes are supposed to
be erasure channels where symbols are received correctly (error-free), or lost. This model is realistic for many
practical scenarios in the context of wireless and sensor networks.

In a previous works, we have addressed the capacity region of this network under physically degraded
hypothesis. The non-degraded case is addressed in this paper. We derive a capacity bound for the proposed network
and we show that it can be reached through a practical coding scheme based on MDS codes. We make also a
comparison of the achieved rates compared to a simple time sharing of single sender relay channels.

I. I NTRODUCTION

Wireless networks consist of senders, receivers and intermediate nodes that more or less collaborate to
achieve a communications. An important problem in this context consists of finding the best possible nodes
collaboration scheme which maximize the transferred information. Information theory aims toward finding
the set of transfer rate that are ultimately achievable for any given scenario. Recently network coding [15],
[11], [21] has been proposed as a new paradigm to look at the issue of network capacity. Network coding
defines a new type of collaboration schemes which consists of mixing the received information through
a coding scheme defined for each node and forwarding the encoded version. Cooperative diversity idea
presented in [18], [19], [14] is also relevant to the wireless networks. Cooperative diversity is a new form
of spatial diversity whereby diversity gains are achieved via the nodes cooperation

In this paper we present a network coding scheme achieving the capacity bound for a scenario consisting
of two sender that want to send different information to two receivers. Each sender can act also as a relay
for the other communication. We assume here that all channels connecting the four nodes are erasure
channels where symbols are received correctly (error-free), or lost. The analyzed scenario is different
from the classical multi-user channel as the two communications to a single receiver are not allowed to
interfere with each other. Interferences between different simultaneous communications are managed by
using separated physical channels or through time scheduling (centralized or distributed using a Medium
Access protocol as CSMA/CA). This simplification might allow the establishment of the capacity of
relay channels, as shown in [5] for example for the discrete-memoryless relay channel with orthogonal
components.

Moreover; from the viewpoint of higher layer where applications stand, wireless networks appear as
erasure channels. Sender sends packets that might be received by the destination nodes or be erased because
of transmission errors, collisions, or buffer overflows. Under erasure channel hypothesis, simple closed
form bound can be derived. In [16] a simple form capacity bound is derived for the single sender-receiver
multi-relay channel and under perfect side information hypothesis at the decoder. The side information is
provided in the form of the exact erasure pattern overevery link in the network. The capacity bound is
achieved through a random coding scheme, but it seems that the achievability is only valid under degraded
hypothesis. In [17] the capacity of a general stationary and ergodic broadcast erasure channel is derived
that leads to a simple linear capacity bound. This bound can be achieved optimally through a simple time
sharing mechanism called Priority Encoding Technique. In [8] and [7] the capacity of the single relay
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Fig. 1. Multi-sender relay Channel

erasure channel is derived under degraded and non degraded hypothesis. A coding schemes based on a
practical MDS code are provided that achieves this capacity without need to any side information. The
proposed scheme does not need the exact erasure pattern over every link in the channel, and knowing the
average packet loss over links is enough to construct this scheme. The general packet loss matrix of the
channel is a statistic parameter of channel, and could be estimated by error modeling schemes [1], [6].
Extension of the results to the more general case of multi-relay erasure channel has been proposed in [9].

However; in all of these work the simplified case of single transmitter has been considered. The more
general case of multi-sender multi-receiver has been rarely addressed in the literature, as it is much more
difficult to handle. In [10] a collaboration scheme in a simple communication scenario where two senders
want to send different informations to two receivers (see Fig. 1) is presented. The cut-set bound is derived
and is shown to be achievable under degraded hypothesis by a practical coding scheme. The main idea of
the proposed collaboration scheme consists of exchanging enough information between source nodes such
that the information in each sender become correlated. In this case, we fall in the context of Slepian-Wolf
coding [20] where there are two correlated sources that have to be transferred to a common receiver. We
developed a Slepian-Wolf type coding based on MDS code that enables the efficient transfer of the two
sources over an erasure channel. It is shown that the proposed scheme achieve the cut-set bound under
the degraded hypothesis,i.e. we assume that the two senders access to the same information through
information exchange.

In this paper, we will analyze the more general case of non-degraded multi-input relay channel. In
this case we are not anymore assuming that the two senders can have access to the same information by
exchanging information. We present a collaboration scheme that can use incomplete information exchanged
between the senders to achieved the capacity bound.

The paper is organized as follow. Section II gives the capacity bound of an erasure multi-sender erasure
relay channel. In the section III we show that this bound is achievable through a practical coding scheme.
Some practical comments and conclusion will be presented finally.

II. T HEORETICAL BOUND

The specific multi-sender relay network that will be studied in this paper is a network composed of
two senders (S1 and S2) and two receivers (D1 andD2) as shown in Fig. 1. The senderSi, i = 1, 2
sends information to the two receiversDj, j = 1, 2. Simultaneously each sender might acts as a relay for
the other sender. The Multi-sender relay channel can be described with 8 random variablesXi, i = 1, 2
representing the symbols sent by the sender,Yij, i, j = 1, 2 representing symbols received from each



sender by each receiver andY s
i representing the symbol received by senderi from the other sender. The

conditional probability density functionp (yij, y
s
i i, j = 1, 2|xi) i = 1, 2)2 defines the multi-sender relay

channel. This last function gives the probability that whenxi is sent bySi, i = 1, 2, (yi1, yi2) are received
at Di andys

i is received at senderi. We further defineYj = (Y1j, Y2j, j = 1, 2) as the total information
received atDj. This description assumes that each receiver is linked to the senders through two separated
channels. The separation of the two channels might be achieved by using different physical channel or
by using time scheduling. We further assume that information send by a sender might be received by all
receivers as well as the other sender.

The considered multi-sender relay channel consists of 2 separate erasure broadcast channel (as defined in
[17]) (Xi; Y

s
i , Yi1, Yi2), i = 1, 2 and two erasure relay channels (as defined in [8])(X1; Y

s
2 : X2; Y12, Y22)

and(X2; Y
s
1 : X1; Y11, Y21). The loss probability betweenSi andDj is defined aspij and the loss probability

between the two sender is supposed to be equal top in the two direction (as shown in Fig. 1). This last
assumption is for clarity sake, however the results might be extended straightforwardly to take in account
possible asymmetry between the two senders. No memoryless assumption on the loss statistics over the
channel is needed and all the results given here are valid for all stationary and ergodic erasure channels.

Let’s suppose that the total rate of information betweenSi andDj to be defined asRij. As said before
we have two broadcast channels in the multi-sender scenario described in Fig. 1. The total rateRij could
be splitted in two components : a private information rateRp

ij which is the rate of information being sent
from i only to j and a common information rateRc

ij which is the rate that will be decodable jointly by
the two receivers. In this paper we assume as in [12], [17] a degraded message-set to be sent over each
broadcast channel,i.e. one receiver receives the private and common information and the other receives
only the common information. Let’s therefore suppose that the private information rate sent bySi is equal
to Rp

i and that the common information rate isRc
i . In other terms, let us suppose that for exampleD1

have to receive private and common information sent byS1 andD2 have to receive only the common
information. We have thereforeR11 = Rp

1+Rc
1 andR12 = Rc

1. However, it is shown in [17] that one cannot
do better than time-sharing for broadcast erasure channels. Meaning that there is a trade-off between the
rate of private and common information. Larger private information rate means lower common rate and
therefore lower reception rate for the receiver receiving only common information. This means that it is
sound to suppose that all information are broadcasted as common information and private information
to each receivers are sent through time sharing. Therefore, we will assume that there is only common
information to be broadcasted by the senders to all receivers with rateR∗

i , i being the index of the sender.

Theorem 1 (Capacity region bound) Under the hypothesis thatX1 and X2 being independent the ca-
pacity region of multiple-Input relay channel in Fig. 1 is bounded by :

R∗
1 ≤ I(X1; Y

s
2 , Y11, Y12)

R∗
2 ≤ I(X2; Y

s
1 , Y21, Y22)

R∗
1 + R∗

2 ≤ I(X1; Y11) + I(X2; Y21)
R∗

1 + R∗
2 ≤ I(X1; Y12) + I(X2; Y22)

Moreover, in the special case of degraded channel when(Y11, Y12) are physically degraded versions ofY s
2

(resp.(Y11, Y12) are physically degraded versions ofY s
1 ) the two first terms of the bound are remplaced

by : R∗
1 ≤ I(X1; Y

s
2 ) and R∗

2 ≤ I(X2; Y
s
1 ) as shown in [10].

Proof. See the proof in appendix.
However; as we say before we are only considering the transfer of common information,i.e. the

information sent byS1 (resp.S2) should be send toD1 andD2. Moreover,D1 andD2 do not participate
in the relaying process. Under such a situation the two first bound of the capacity bound are changed to :

R∗
1 ≤ min{I(X1; Y

s
2 , Y11), I(X1; Y

s
2 , Y12)}

R∗
2 ≤ min{I(X2; Y

s
1 , Y21), I(X2; Y

s
1 , Y22)}



The capacity bound might be simplified thanks to the erasure nature of channels and the Shearer
theorem :

Theorem 2 (Shearer Theorem [4])LetXn be a collection ofn random variables andZn be a collection
of n boolean random variable, such that for eachi, 1 ≤ i ≤ n, E {Zi} = 1 − C̃. If Xn(Zn) is a sub-
collection containing theith random variableXi if Zi = 1. ThenE {H (Xn(Zn))} ≥ C̃H(Xn) 2.

The theorem can be extended to conditional entropy as well. It can be shown thanks to this theorem that
the capacity of a stationary and ergodic point to point erasure channel with an erasure processZ have a
very simple form[17],C̃ = 1−E {Zi}, whereE {Zi} = 1− C̃ is the average erasure probability on the
channel. Using this theorem the capacity bound is simplified to :

Theorem 3 The capacity region bound over a multiple-Input erasure relay channel is bounded as :
R∗

1 ≤ min{(1− p · p11), (1− p · p12)}
R∗

2 ≤ min{(1− p · p21), (1− p · p22)}
R∗

1 + R∗
2 ≤ (1− p11) + (1− p21)

R∗
1 + R∗

2 ≤ (1− p12) + (1− p22)

(1)

In the special case of degraded channel, the first two terms of the bound are degraded to :R∗
1 ≤ (1− p)

and R∗
2 ≤ (1− p).

The first two bounds in this theorem, are constraints bounding the rate available for collaboration between
the two senders. The two last bounds are bounding the amount of information coming in the receiver. In
the next section, we will provide a coding scheme achieving the given bound.

III. A CHIEVABILITY AND CODING METHOD

In this section we propose a coding scheme which attains the capacity bound shown in theorem 3. The
proposed coding scheme is a combination of basic techniques as Slepian-Wolf partitioning, cooperative
coding for relay channel and block markov decoding. We first describe the coding scheme for the degraded
case and then we extend it to the non-degraded hypothesis.

Let’s describe the characteristics of the class of Maximal Distance Separable (MDS) codes [22] that
will be used thereafter. Let’s suppose a systematic(n, k) MDS code takingk information symbols and
generatingn encoded symbols. Now this code has the property that the initialk information symbols can
be retrieved from any combination ofk encoded symbols out of then symbols constituting the block,
i.e the MDS code can retrieve up ton − k erasure in a block ofn packets. A MDS code can achieve
the capacity of a stationary and ergodic point to point erasure channel asymptotically with a block size
n → ∞ if its rate R is less than the capacity of the channel. Maximal Distance Separable (MDS) code
leads to sphere packing codes for erasure channels.

A. Coding scheme description: Degraded case

We assumeL + 1 block of transmission. We also consider at each senderSi, L blocks of data each
containingki information symbols (packets)Bi = {si

1, . . . , s
i
ki
}. Let’s suppose that at the end of blockl we

have been able to decode atS1, thelth block of the message sent byS2 (B2
l = (s2

l·k2
, s2

l·k2+1, . . . , s
2
l·k2+k2−1)).

We will validate this hypothesis further. Moreover, let’s assume that the(l + 1)th block of message sent
by S1 is B1

l+1 = (s1
(l+1)·k1

, s2
(l+1)·k1+1, . . . , s

2
(l+1)·k1+k1−1).

Now let’s define an MDS code with an encoding matrixG1
(k1+k2)×n. It generates then encoded packets

of the (l + 1)th block from thek1 + k2 given packets consisting of thek1 packets of the(l + 1)th block
of message ofS1 andk2 packets of the(l)th block of message send byS2 and received in the previous
block, i.e. X1

l+1 = [B1
l+1 B2

l ]×G1.
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SenderS2 can easily decode the block(l + 1) broadcasted byS1, if it has received enough packets
over the erasure channel connectingS1 to S2. As it have in memory thek2 values inB2

l , this happen if
n(1− p) > k1, i.e. asymptotically if the rate of the MDS code used atS1 is less(1− p). The rate of the
MDS code is equal toR∗

1 = k1

n
as out of thek1 + k2 symbols used at the encoder input,k2 of them are

redundant (have been sent before over the channel). The decoded blockB1
l+1 is to be used in the next

transmission block combined with blockB1
l+2 constructingX2

l+2. As the initiation block we can use an
all-zero blockBj

0, j = 1, 2 know to everybody in the network. SenderS2 encodes its proper information
and mixes them with the information received fromS1 using exactly the same mechanism but with a
different encoding matrixG2. With the same arguments we haveR∗

2 = k2

n
≤ (1− p). We will choose the

encoding matrixG1 andG2 such that[G1 |G2] defines an MDS code,i.e. each sub-matrix of[G1 |G2] is
invertible.

Now let’s see what happen at the receiver side when senders use such a coding schemes. At each receiver
we will receive some packets coming from each sender. Asymptotically with largen, in each block of
transmission containing, each receiverDj will receive n(1 − p1j) + n(1 − p2j) packets. In transmission
block l, the packets received from the senders are a combination ofB1

l , B2
l , B1

l−1 andB2
l−1. Clearly the

decoding can not be done using only the information received in blockl. TheL-block Markov decoding
technique can be applied. The idea is to do the decoding after reception ofL blocks. Let suppose that
the encoding matrix[G1 G2] is rewritten as:

[G1 G2] =

[
G11 G21

G12 G22

]
whereGij is a k × n matrix with the MDS property.

After receivingL blocksDj we will receive a sub-sequence (because of erased symbols)Y L
0 (Z2Ln

ij ),
where Z2Ln

ij is the loss process observed over erasure channel going fromSi to Dj during the2Ln
transmissions ofL blocks.Y L

0 is vector of length2nL symbols obtained as in Eq. 2. The obtainedL-
block code of rateR∗ = (k1+k2)L

2nL
(as the first block[B0

1 , B
0
2 ] is known) is still an MDS code code as every

sub-matrix of the encoding matrix will be invertible. Asymptotically, we will receive at each receiver
nL(1 − p1j) + nL(1 − p2j) packets. The MDS code can be decoded ifnL(1 − p1j) + nL(1 − p2j) >
(k1 + k2)(L + 1), in other term if L+1

L
(R∗

1 + R∗
2) < (1 − p1j) + (1 − p2j). We can see therefore that the

proposed coding scheme achieves the capacity bound under degraded hypothesis whenL →∞.

B. Coding scheme description: Non Degraded case

In this section we will present a coding schemes applicable without the degraded assumption. The
main difference between this situation and the degraded case is that senderSi is not supposed to know all
information sent by the other sender. In the other term,Y11 andY12 might have some relevant information
that have not been received byS2, where under the degraded assumption all information available atD1

andD2 are also available atS2.
Let’s suppose thatS1 use a MDS code with block sizen. Asymptotically with largen, n(1 − p)

(resp.n(1 − p11) and n(1 − p12)) packets are received atS2 (resp.D1 andD2). Out of these packets



n(1 − p)(1 − p11)(1 − p12) are received at the three receiverS2, D1 andD2, andnp11p12(1 − p) (resp.
npp12(1− p11) andnpp11(1− p12)) packets are received only atS2 (resp.D1 andD2). S2 has to forward
enough packets to eliminate ambiguity at the receivers. However,S2, D1 andD2 are not aware of the
packets they have respectively received.

Let’s suppose that at the end of blockl, S1 has receivedk∗2 = n(1 − p) packets of the codewordX2
l

sent byS2. We call these packetsB1∗
l . Let’s also assume that the(l +1)th block of message sent byS1 is

B1
l+1. The symbols sent byS1 over block(l + 1) are defined asX1

l+1 = [B1
l+1 B2∗

l ]×G1. In block l + 1,
k∗1 = n(1−p) packets of the codewordX1

l+1 received atS2 (B1∗
l+1) would be used in the next transmission

block to combined withB1
l+2 and constructX2

l+2.
The first constraint on this coding scheme only a proportionp11 (resp.p12) of the packets received at

S2 are independent from those received atD1 (resp.D2). Nevertheless, the total number of independent
packets received atS2 andD1 (resp.D2) must be larger thank1 to guarantee thatB1

l+1 could be decoded
at the receiver nodes,i.e. n(1−p11p) > k1 andn(1−p12p) > k1. The same arguments can be also applied
whenS2 is sender. This results to the first two terms of the bound presented in theorem3.

In transmission blockl, the packets received at the receivers are a combination ofB1
l , B2

l , B1∗
l−1 and

B2∗
l−1 where B1∗

l−1 (resp. B2∗
l−1) is also a combination ofB1

l−1 and B2∗
l−2 (resp. B2

l−1 and B1∗
l−2). If we

consider each information symbol as an unknown variable, the decoding process in the receiver consists
of resolving a linear equation system withL(k1 + k2) unknow variablessi

j, i = 1, 2 j ∈ [1, (L + 1)ki]. As
the encoded packets sent byS1 andS2 are independent from each others by construction, if the number of
received packets received at the receivers (leading to an independent equation) are more than the number
of unknown variables, the equation could be solved and the initial packets can be decoded. Therefore, if
nL(1− p1j) + nL(1− p2j) > (k1 + k2)(L + 1), j = 1, 2 the decoding process can be successful in each
receiver. This prove the achievability of the capacity bound.

IV. PRACTICAL COMMENTS

The proposed coding scheme is original from several perspectives. It provides a practical and simple
way of doing Slepian-Wolf coding in the context of erasure channels. In place of sending the information
independently fromS1 andS2, we send an index obtained by mixing information coming from the two
senders. By doing this we reduce the amount of information to be sent by each sender and we reach a
collaboration gain. Moreover, in this setting all symbols received over the multicast channel are useful to
decode the final information.

Up to now we have considered the case where all the sent information are common information. Now
if one want to send private information he might use a simple time sharing scheme. Let’s suppose that
we want to send with a rateRij from Si to Dj. The cut-set bound become equal to

R11 + R12 ≤ min{(1− p · p11), (1− p · p12)}
R21 + R22 ≤ min{(1− p · p21), (1− p · p22)}
R11 + R21 ≤ (1− p11) + (1− p21)
R12 + R22 ≤ (1− p12) + (1− p22)}

Under this situation it would be possible to design a time-sharing mechanism based on the proposed
coding scheme, sending information fromSi to Dj a proportion of time equal to Rij

R1j+R2j
. This time

sharing mechanism achieves the cut-set bound, meaning that the previous coding scheme can be applied
even in the case that private information is to be send to the received.

It is noteworthy mentioning that the decoding process of MDS code has aO(n) log n complexity. This
can be reduced to a linear complexity through use of Tornado codes that are almost-MDS [13]. The main
drawback of the method is large decoding delay at receiver that comes from the fact that we have to wait
till reception ofL block before decoding. However, there is a trade-off between rate efficiency and delay,
through the choice ofL; largerL Leads to larger rates but larger delays andvice-versa.



As the last point, let’s compare the obtained capacity region with the scenario that two relay channels,
(S1,S2,Dj), j = 1, 2 and (S2,S1,Dj), j = 1, 2 , use a time-sharing to transmit over channel. Let us
α being the proportion of time one uses the relay channel. Now the achievable rate is governed by the
capacity region of the degraded erasure relay channel [7]. Using this capacity bound we have :

R∗
1 ≤ α min{(1− pp11), (1− pp12)}

R∗
2 ≤ (1− α) min{(1− pp21), (1− pp22)}

R∗
1 ≤ (1− α) min{(1− p11) + (1− p21), (1− p12) + (1− p22)}

R∗
2 ≤ α min{(1− p11) + (1− p21), (1− p12) + (1− p22)}

Adding the two last bounds obtained in scenario 2, we have :

R∗
1 + R∗

2 ≤ min{(1− p11) + (1− p21), (1− p12) + (1− p22)}

Therefore; using the time-sharing between single-input erasure relay channels the rate available for
collaboration between the two senders is lower than proposed coding scheme.

V. CONCLUSION

We have presented here a capacity region for the non-degraded multi-sender erasure relay channel. We
first derive the capacity bound for the proposed scenario, and then we propose a coding scheme based on
MDS code achieving the capacity of this channel. This coding scheme provides a practical and simple
way of doing Slepian-Wolf coding in the context of erasure channels. We also show that this coding
scheme can achieve the rate higher than a simple time sharing of single sender relay channels.
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APPENDIX

Let’s W1 andW2 the messages sent byS1 andS2. Let’s further assume that they are independent and
chosen randomly (uniformly) over the sets of integersW1 = {1, 2, .., 2nR∗

1} andW2 = {1, 2, .., 2nR∗
2}. The

rateR∗
1 can then bound as :

nR∗
1 = H(W1)

(a)
= H(W1|W2)
= I(W1; Y

s
2

n, Y n
11, Y

n
12|W2) + H(W1|Y s

2
n, Y n

11

, Y n
12, W2)

(b)

≤ I(W1; Y
s
2
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where (a) follows from the independence ofW1 andW2, (b) follows from Fano’s inequality, (c) from the
chain rule and definition of mutual information, (d) from the fact that removing conditioning increase the
first term and conditioning reduces the second term, (e) from the fact thatYi = (Y 2

si, Y11i, Y12i) depends
only on the current symbolX1i andX1i [2] by the memoryless property of the channel, (f) from the fact
thatYi is the received vector message ifX1i is sent over the channel. Also based on the definition of relay
channel [3]X2i only depends on the past received symbols andW2. Therefore at the transmission timei,
the received vectorYi only depends onX1i and conditionally is independent fromX2i (also note thatX2i

send over a channel different fromX1i), (g) by definingX1
∆
= X1Q, Y s

2
∆
= Y s

2Q, Y11
∆
= Y11Q andY12

∆
= Y12Q

as the new random variable whereQ → X1 → (Y 2
s , Y11, Y12) for |Q| ≤ min{|X1|, |Y2

s |, |Y11|, |Y12|}, and
(h) from the Markov chain properties.

With the same argument we can show thatR∗
2 ≤ I(X2; Y

s
1 , Y21, Y22) which leads us to the two first

terms of the capacity bound of theorem1.
At the receiver side we use the cut-set bound defined in [2] and we have :{

C3 : R∗
1 + R∗

2 ≤ I(X1, X2; Y11, Y21)
C4 : R∗

1 + R∗
2 ≤ I(X1, X2; Y12, Y22)

(3)

As said before, the nodes transmit over the physically separated channel. From the point of view ofD1

(resp.D2) the channel can be modeled by two point to point channelS1−D1 andS2−D1 (resp.S1−D2 and
S2−D2). Under this hypothesis the maximum ofR∗

1+R∗
2 achieve ifS1 andS2 send independent codeword



over these two independent channel. This lead to the maximum ofI(X1, X2; Y11, Y21) being equal to
I(X1; Y11) + I(X2; Y21) and maximum ofI(X1, X2; Y12, Y22) being equal toI(X1; Y12) + I(X2; Y22). In
other term, the collaboration between the sender and the relay reduces to ensuring that the variable sent
by S1, X1, andS2, X2, are independent from each other but are still complementary to enable a maximal
rate at receiver. This leads to the two last terms of the capacity bound of theorem 12.


