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This article examines the risk-return trade-off of a mixed-asset portfolio that
includes real estate using copula functions. In particular, it analyses the role of
direct as opposed to securitised real estate in terms of diversification when the
dependence structure is modelled by an appropriate copula. The empirical analysis
is conducted using Swiss data for the period 1987–2003. It is shown that a better
portfolio diversification is obtained with indirect than with direct real estate. This
finding has important practical consequences for asset allocation decisions.

Keywords: Real estate finance; portfolio diversification; copulas; tail dependence
modelling

1 Indroduction

The beneficial effects of real estate inclusion in an institutional portfolio have been
well dcumented in the literature. Hoesli, Lekander & Witkiewicz (2004), based on
portfolio allocation models in a mean-variance framework, showed that the inclusion
of real estate in a mixed-asset portfolio enables the portfolio’s standard deviation to
be reduced by 10–20%. In these studies, co-variances or correlation coefficients
between financial assets and real estate have a significant impact on the amount of risk
reduction achieved through diversification. Indeed, several studies, such as that of
Liang, Chatrath & McIntosh (1996), concluded that real estate returns are weakly
(positively or negatively) correlated to those of stocks and bonds.

The assumption of multivariate normally distributed observations lies at the
heart of traditional portfolio models. In this framework, where each asset is charac-
terised by the mean and variance of its return, the natural tool and most applied
concept for quantifying dependence structure between real estate and financial asset
returns, corresponding to the way in which several random variables are interlinked,
is Pearson’s correlation coefficient. However, since Fama (1965), we know that
stock returns are leptokurtic and as, we explain in the next step, the linear correla-
tion or Pearson’s correlation coefficient is not an accurate dependency measure in a
non-Gaussian world.

These distributional characteristics of asset returns have led to suggestions that
portfolio allocation models, including real estate, should use a risk measure other than
variance, and a structure of dependence other than correlation coefficients. Bond and
Patel (2003) proposed the use of a semi-variance risk measure; Hamelink and Hoesli
(2004) used the maximum drawdown risk measure. With very few exceptions in real
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266  M. Dulguerov

estate literature, empirical analysis of the dependence structure relies on correlation
coefficients. However, new methodologies have been applied to quantify dependence
between real estate and financial assets. For example, Chaudhry, Myer & Webb
(1999), using cointegration techniques, found that stocks tend to have an inverse long-
term relationship with real estate.

In the financial literature, copulas have been applied to model the inter-dependence
between financial assets. The copula approach, introduced in the financial context by
Embrechts, McNeil & Straumann (1999), allows a joint distribution of multiple vari-
ables to be defined describing the totality of the dependence structure. Copulas have
been used in a number of studies in various forms. For instance, Di Clemente and
Romano (2004) presented a methodology for optimising the credit risk of a loan port-
folio adopting a copula-based approach. Geman and Kharoubi (2003), using copula
functions, showed that the diversification effect attributed to hedge funds is over-
estimated because of the non-normality of marginal distribution and the non-Gaussian
dependence structure.

Although this is the first time a copula-based approach has been implemented to
evaluate the risk-return trade-off of a mixed-asset portfolio including direct real estate,
Knight, Lizieri & Satchell (2006) also used a copula function in a real estate frame-
work. Their study examined the links between real estate and equity markets during
extreme events, assuming the copula without performing a test to select the best
copula. Using the Joe–Clayton copula they found that direct real estate is unrelated to
the equity market, whereas the tail dependence between securitised real estate and
stocks is greater in the lower than in the upper tail.

Our objective is to gauge the risk-return trade-off of a mixed-asset portfolio that
includes real estate, taking into account the non-normality of marginal distributions
and an appropriate structure of dependence. Special attention is devoted to the ques-
tion of whether direct real estate is a portfolio diversifier compared with securitised
real estate.

This paper is structured as follows. Section 2 outlines the deficiencies of Pearson’s
correlation coefficient as a measure of dependency. Section 3 discusses the assump-
tion of normality concerning the data under consideration. Section 4 presents a
copula-based framework for quantifying dependence. Section 5 shows the results
regarding parameters and copula choice. This latter section additionally examines
both the relative contribution of marginal distributions and dependence structure in
risk estimation, together with the role of direct and indirect real estate as portfolio
diversifiers. Finally, Section 6 contains some concluding remarks.

2 Linear correlation as dependence measure

This section discusses the validity of the linear correlation as a dependence measure.
It is worth noting that the dependence between two time series could be quantified
with a covariance, but since the number representing covariance depends on the
measurement unit of the data, it is nonsense to compare covariances among data sets
having different units.

Thus, owing to interpretation problems, the dependence is usually described by
Pearson’s correlation coefficient that addresses this issue by normalising the covari-
ance to the product of the standard deviations of the variables, creating a dimension-
less quantity. Pearson’s correlation coefficient assesses the extent to which random
variables are linearly correlated and can be interpreted as the percentage of variation
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Journal of Property Research 267

of a variable that can be attributed to another one. The linear correlation coefficient
between two random variables X1 and X2 is commonly denoted by ρ(X1, X2) 

where Cov(X1, X2) is the covariance between X1 and X2, and σ2(X1). σ
2(X2) denote the

variance of X1 and X2. The linear correlation coefficient has the following properties:
for all (X1, X2) it ranges between −1 and 1 and in the case of independent random vari-
ables ρ(X1, X2) = 0.

We must be cautious in the interpretation of the correlation coefficient, which,
despite its popularity, has serious deficiencies. First, variances have to be finite for
Pearson’s correlation measure to be defined. We know, of course, that this is not
always the case in finance in which long tails are commonly observed. Second, this
measure is founded on the assumption of multivariate normally distributed observa-
tions. Indeed, a zero correlation coefficient means independence between variables in
a Gaussian framework exclusively. Thus, this measure is ill-suited for capturing a
non-linear dependence relationship. Third, correlation is not an invariant measure
under increasing non-linear transformations. This last deficiency originates from the
computational formula of the coefficient of correlation which is defined in relation to
the volatilities of the various series. Hence, it is not possible to assess dependence
independently of volatilities.

To suggest an alternative statistical tool as a measure of dependence between real
estate and financial assets, the univariate distributional characteristics of the data must
be studied. In the next section, we will determine whether the assets under scrutiny
respect the normality assumption of Pearson’s correlation coefficient and whether the
real estate index differs from other market indices.

3 Risk characteristics of assets: empirical evidence

This section is devoted to the empirical study of statistical properties of Swiss market
data. The dataset comprised quarterly stocks, bonds, securitised real estate and direct
real estate for the period ranging from the first quarter of 1988 through to the last quar-
ter of 2008. All series were based on nominal total returns, i.e. they include the capital
gain and income return components. The Swiss stock and bond1 indices are taken from
Bloomberg. As a proxy for the Swiss stock and bond market, we used respectively the
SPI and the Citigroup indices.2

The Swiss securitised real estate index is the net wealth-weighted index from Rüd
Blass, which is constructed on the basis of data pertaining to the largest Swiss real
estate mutual funds. In Switzerland, real estate mutual funds and property companies
are the two vehicles of investment in securitised real estate where shares are traded on
a stock exchange. To track direct real estate, a hedonic index for income-producing
property is taken from the IAZI/CIFI.

3.1 Behaviour of index returns

For practical reasons we will divide each closing value by its value in the previous
quarter and then compute the logarithm of this ratio; we will therefore work with

p X X
Cov X X

X X
( , )

( , )

( ) ( )
( )1 2

1 2
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1
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σ σ
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268  M. Dulguerov

continous compunding returns. In this section we will focus on the distributional char-
acteristics of returns. For the financial and real estate indices we have estimated a
number of characteristics. These include the average return, standard deviation, maxi-
mum, minimum, skewness and kurtosis. The descriptive statistics of the three series
are presented in Table 1.

Comparing the return and volatility of real estate indices with the return and vola-
tility of financial assets, we find that the securitised real estate index is characterised
by a higher return and a higher volatility than the direct real estate and bond index but
by a lower return and volatility than the stock index. As expected, direct real estate
exhibits favourable risk and return characteristics compared with stocks but unfavour-
able compared with bonds. This feature is due to the impact of the bearish real estate
period of the late 1980s–early 1990s. In contrast, the bullish real estate market of the
1970s is not included in the sample period, since the IAZI/CIFI index was not avail-
able prior to 1988. The third distributional characteristic is referred to as skewness.
Both stocks and direct real estate show significant negative skewness but securitised
real estate and bonds are positive. Moreover, all the indices demonstrate fat tails,
namely a higher percentage of very low and very high returns than would be expected
with a normal distribution. Kurtosis is particularly high with regard to securitised real
estate, implying that extreme returns on securitised real estate have a high probability
of occurrence. Thus, the distribution of securitised real estate returns is highly peaked
and positively skewed. The results suggest that the returns are not normally distrib-
uted. The Jarque–Bera normality test confirms the suggestion as, with the exception
of the bond index, all series fail to pass the Jarque–Bera normality test at the level of
significance of 5%.

We can therefore reject the multivariate normality assumption underlying
Markowitz’s portfolio model (1952), and conclude that, in this framework of heavy-
tailed distributions, copula functions are more suitable for modelling tail dependence
than correlation coefficients.

In the next section, the main properties of copulas and the methodology followed
in the paper will be presented.

4 Properties of copulas

The goal of this section is to link marginal distributions to form a joint distribution that
better models reality than the normal distribution. A copula is the selected instrument
to construct a multivariate distribution where the univariate margins can be separated
from the dependence structure represented by a copula. More specifically, a copula is
a multivariate distribution function with uniform marginals. If U1, U2, …, Un are
uniform random variables, then the function C from [0, 1]n into [0, 1] defined by 

Table 1. Quaterly descriptive statistics of the data.

Mean S.D. Max. Min. Skew. Kurt. J–B (p-value)

Direct real estate 0.0073 0.0201 0.0648 −0.0578 −0.1016 1.3027 0.0400
Securitised real estate 0.0150 0.0465 0.1938 −0.1039 0.6812 3.4116 0.0000
Bonds 0.0110 0.0206 0.0638 −0.0313 0.0127 −0.4185 0.8175
Stocks 0.0285 0.0943 0.1971 −0.2895 −1.1837 2.4220 0.0000
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is a copula whose properties are: 

● ∀ui ∈ [0, 1] and i ∈ {1, …, n}, C(1, …, 1, ui, 1, …, 1) = ui,
● ∀ui ∈ [0, 1], C(u1, …, un) = 0 if at least one of the ui equals zero,
● C(u1, …, un) is increasing in each component of ui.

When applying Sklar’s theorem, we may define the copula function in terms of the
different cumulative distribution functions, such that: 

with F1(x1), F2(x2), …, Fn(xn) being continuous uniform random variables and F(x1,
x2, …, xn) taken as the multivariate cumulative distribution function evaluated at x1,
x2, …, xn. Moreover, Sklar provides proof of the ‘unique copula’. Indeed, if
marginal distributions are continous, then the copula is unique, but if there are
discontinuities in one or more marginals then there is more than one copula repre-
sentation for marginal distributions. From the joint cumulative distribution func-
tion, it is possible to determine the joint density. Let f be the density of joint
distribution F: 

where fi is the univariate density function associated to the cumulative Fi and c is the
density of the copula given by the expression 

4.1 Copulas used

In Section 3, we showed that real estate and financial assets are characterised by heavy
tails. The question of dependence between these tails involves the concept of tail
dependence which measures the probability of extreme events occurring jointly.
Dependencies between extreme returns of same sign are an important issue for port-
folio management because of their negative impact on diversification strategies geared
to acquiring assets that may be used to counterbalance the losses of other portfolio
elements. Thus, in the presence of tail dependence, diversification strategies become
less effective since the benefits of the diversification may be lower at times when they
are needed most.

Since it is important to determine whether it is more probable that extreme events
will occur independently or simultaneously, and since this issue cannot be resolved
with the Pearson’s correlation coefficient but requires the employment of copula func-
tions, this study investigates five parametric copulas. The copulas included in this
empirical investigation were selected according to their tail characteristics and since
economic agents are particularly averse to extreme negative returns, we ensured that
some of the copulas model the dependence between these returns. 

P U u U u U u C u u un n n[ ,   , , ] ( , , ,  ) ( )1 1 2 2 1 2 2≤ ≤ ≤ =L L

F x x x C F x F x F xn n n[ , , , ) ( ( ), ( ), ,  ( )) ( )1 2 1 1 2 2 3L L=
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270  M. Dulguerov

(1) The function given by: 

with α > 0 belongs to the Clayton (1978) family and it is sometimes referred
to as the Cook–Johnson copula.

(2) Gumbel (1960) copula: 

with α ≥ 1.
(3) Frank (1979) copula: 

with α ≠ 0.
(4) Gaussian copula: 

with φn
ρ is an n-variate normal distribution, ρ is the correlation matrix and

φ−1 is the inverse of the univariate standard normal distribution.
(5) Student-t copula: 

where  is an n-variate Student-t distribution with ν degrees-of-freedom
and shape parameter matrix Σ. tν

1 is the inverse of the univariate Student-t
distribution.

The Frank copula exhibits neither lower nor upper tail dependence like the
Gaussian copula unless ρ = 1. The Gumbel copula has an asymptotic upper depen-
dence but has no lower-tail dependence; the Clayton copula has an asymptotic lower
dependence but no upper-tail dependence, while Student-t copula has symmetric tail
dependence.

Figure 1 illustrates the diversity of density forms obtained with the copulas used.3
Figure 1. Graphical representation of copula density

4.2 Estimation of copulas

Copulas can be estimated in three ways, by using fully parametric,4 semi-parametric
and non-parametric methods. The first two methods are explained in Shih and Louis
(1995) and Genest, Ghoudi & Rivest (1995) respectively, while the third method is
described in Fermanian and Scaillet (2002). In this study we have adopted the semi-
parametric approach, known as ‘conditional maximum likelihood’. This is a two-
step procedure in which we first estimated the marginal distribution using the non-
parametric empirical distribution function, and then estimated the parameter of the
copula using the maximum likelihood method.
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Figure 1. Graphical representation of copula density.
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272  M. Dulguerov

4.2.1 Non-parametric estimation of marginals. The unknown marginal distribution
functions are constructed with the empirical distribution function defined by: 

where 1{·} is the indicator function which is equal to 1 if the argument is true and 0 if
it is false. After obtaining the empirical marginal distribution function, we performed

the usual probability transformation. Indeed, the data  were trans-
formed into corresponding empirical distributions Fn(xn) to obtain standard uniform
marginal distributions 

4.2.2 Parametric estimation of copulas. We applied the likelihood approach to esti-
mate the parameters of copulas. The empirical likelihood function of the copula is: 

Equivalently and for maximisation reasons, we were working with the log-likelihood
function defined as follows: 

The estimator of the copula could then be calculated by maximising the log-likelihood
using the equation: 

The advantage of this approach compared with a parametric estimate of the
marginals is that we avoided the mis-specification of the marginals, which could have
a significant impact on parameter estimation.

4.3 Copulas selection

A common assumption of financial models is the Gaussian distribution. In Section 3,
we showed that the marginals are not normally distributed. Now we will investigate
whether the dependence structure between real estate and financial assets is Gaussian.

Parametric copula selection is an open question in the literature and many tests
have recently been proposed. Genest, Rémillard & Beaudoin (2007) divided the liter-
ature on the copula selection into three groups. Firstly, the procedures that can be
applied for testing specific dependence structure, such as the Gaussian copula
(Malevergne and Sornette, 2003). Second, the statistics that can be used to test the
goodness-of-fit of any class of copulas but require strategic choices for their use as,
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for example, the specification of arbitrary parameters or kernels (Scaillet, 2007).
Third, the tests applicable to all copula functions and requiring no strategic choice for
their use, known as ‘blanket tests’.

To find the most fitting copula, we used the ‘blanket test’ procedure from Genest
and Rémillard (2008), based on the empirical process comparing the empirical
copula with a parametric estimate of the copula derived under the null hypothesis H0:
C ∈ C 0 for some class C0 of copulas. Approximate p-values for the test statistic were
obtained using the parametric bootstrap.

5 Empirical results

In this section, we assess the dependence structure of a portfolio containing four vari-
ables, namely bonds, stocks, direct and securitised real estate, using the methodology
described in the previous section and quantify the impact of non-Gaussian assumptions
on the risk.

Parameter estimates of the Clayton, Gumbel and Frank copulas are listed in
Table 2 while the parameters of the Gaussian and Student-t copula are shown in Table
3; the estimates of their standard error are in parentheses. Table 4 shows the results of
the goodness-of-fit test for copulas under consideration. In spite of being unable to
reject the null hypothesis for the copulas under study, we conclude that the Student-t
copula provides the best fit to model the dependence structure between bonds, stocks
and direct and securitised real estate. Indeed, the p-value of the goodness-of-fit test is
greater for the Student-t copula than for the other copula functions.

Table 2. Estimated parameters of Clayton, Gumbel and Frank copula for the portfolio
containing bonds, stocks, direct and securitised real estate.

Clayton Gumbel Frank

0.1272 (0.0779) 1.0739 (0.0441) 0.6549 (0.3159)

Table 3. Estimated parameters of Gaussian and Student-t copula for the portfolio containing
direct and securitised real estate bonds and stocks.

Gaussian copula
Direct real 

estate
Securitised real 

estate Bonds Stocks

Direct real estate −0.1880 (0.1146) −0.1666 (0.1167) 0.0386 (0.1207)
Securitised real estate 0.4209 (0.0902) 0.3686 (0.0965)
Bonds 0.1902 (0.1129)
Stocks

Student-t copula with 
v = 5

Direct real 
estate

Securitised real 
estate Bonds Stocks

Direct real estate −0.1327 (0.1147) −0.1426 (0.1172) 0.0865 (0.1168)
Securitised real estate 0.4140 (0.0985) 0.3285 (0.1059)
Bonds 0.1554 (0.1173)
Stocks
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This finding provides a new perspective for market integration studies which
investigate how real estate behaves as compared with stocks and bonds. Previous stud-
ies considered that real estate and financial assets are either integrated or segmented.
In addition, the focus of past work was almost exclusively on the degree of integration
among these assets, with little attention given to the stability of the relationship across
markets conditions. It is often mentioned that direct real estate is segmented whereas
securitised real estate is integrated with financial assets. Because the Student-t copula
exhibits weak dependence in normal market conditions and strong dependence in
extreme market conditions, we can argue that real estate and financial assets are both
integrated and segmented depending on the market situation. More precisely, the rela-
tionship between real estate and financial assets is non-linear over the market period
since real estate is integrated with stocks and bonds during periods in which markets
are turbulent, and segmented at other times.

We discuss below some reasons that could explain why the kind of real estate
considered in this study, and financial assets thrive and crash simultaneously. Real
estate and financial markets are becoming increasingly integrated as a result of dereg-
ulation and market liberalisation, thereby facilitating investment and divestment.
Generally, real estate investors will borrow money from banks to leverage their invest-
ments. If the price of these investments surges far enough, the bank will increase the
loan and the investors will buy, for example, securities to invest their money. By
contrast, if the value of these investments drops far enough, the bank calls in the loan
and the real estate investors have to sell securities to refund it. The dependence, during
extreme markets, between real estate and financial assets is fed with this deregulated
linkage between the banking and real estate industry. Another element favouring
cross-asset dependence derives from the herd behaviour often found in financial and
real estate markets. This occurs when many people simply follow the actions of others,
rather than acting according to a personal information-based strategy. Cross-asset
dependence increases when abnormal returns occur among a given asset class. In such

Table 5. Comparison of quaterly conditional value-at-risk estimates.

Three months CVaR at 99% confidence level

Margins Copula
Low-risk 

allocation (%)
Medium-risk 
allocation (%)

High-risk 
allocation (%)

Non-parametric Gaussian −1.766 −11.235 −25.435
Non-parametric Student-t −1.873 −11.669 −25.671
Gaussian Student-t −3.924 −9.586 −19.959

Table 4. Goodness-of-fit test of Clayton, Gumbel, Frank, Gaussian and Student-t copula.

Statistic p-value

Clayton 0.0430 0.1963
Gumbel 0.0377 0.3081
Frank 0.0389 0.3701
Gaussian 0.0321 0.4260
Student-t 0.0268 0.6928

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
l
g
u
e
r
o
v
,
 
M
a
t
t
h
i
e
u
]
 
A
t
:
 
0
6
:
4
9
 
1
8
 
M
a
y
 
2
0
1
0



Journal of Property Research 275

situations people lose confidence and tend to succumb to the temptation simply to
follow what appears to be the prevailing market consensus. Such herding behaviour is
further amplified by new information technologies broadcasting the same information
to a large number of people.

Such findings will have important practical consequences for asset allocation deci-
sions since the Student-t copula implies an effective portfolio diversification, when
the returns fluctuate around the centre of the distribution, but a reduction in benefits
arising from the portfolio diversification during extreme markets. The next section
examines the optimal portfolio allocation when the best fitting copula is taken into
account and analyses the allocation discrepancy existing when the Student-t copula is
used instead of the Gaussian copula.

5.1 Risk-return analysis by Monte Carlo simulations

Risk-return analysis in a non-Gaussian world cannot be carried out using any risk
measure. Artzner, Delbaen, Eber & Heath (1999) established the axioms of coherence.
A coherent risk measure satisfies four properties, namely monotonicity, positive
homogeneity, translation invariance and sub-additivity. The diversification effect is
closely linked to the latter of these. Contrary to the conditional value-at-risk (CVaR),5

the commonly used value-at-risk (VaR) is not a coherent risk measure because it is not
sub-additive. Sub-additivity is important because it makes sure that the diversification
principle of portfolio theory holds. Indeed, a sub-additive measure would always
return a lower risk measure for a diversified portfolio than a non-diversified portfolio.6

Consequently, to gauge the risk-return trade-off of a mixed-asset portfolio that
includes real estate, we generated scenarios. The simulations were done with the help
of the best fitting copula as well as the non-parametric marginal distributions. Then,
we minimised CVaR subject to a given level of return and the constraints that the asset
weights were all non-negative and added up to one. The confidence level used in the
CVaR function was 95%. In addition, the same simulation and optimisation proce-
dures have been performed with the Gaussian copula.

Table 6 contains the asset allocation for the low-, medium- and high-risk case where
portfolios are optimised in mean-CVaR space. The low-risk portfolio has the highest
exposure to direct real estate (84.8%) and a significant allocation to bonds (15.2%).
For the medium- and high-risk portfolio, the weight of direct real estate was equal to
zero, suggesting that as risk increases, the likelihood of an asset with a return as low
as direct real estate entering the optimal portfolios is unlikely. The medium-risk port-
folio has the highest exposure to bonds (51.9%), with a significant allocation to stocks
(34.1%) and a lower weighting of securitised real estate (14.0%). This portfolio is the
only one that is dominated by bonds, reflecting the low return of direct real estate and
the higher risk of the other two options. Clearly, stocks dominate the high-risk portfolio
at 85.52%, since, in the long range, stocks are more risky but out-perform bonds and
direct property. Surprisingly, for the high-risk portfolio, securitised real estate is
14.48%.

When the analysis is altered to consider the Gaussian instead of the Student-t
copula, the optimal mean-CVaR portfolios demonstrate results with somewhat vary-
ing allocations. The main result is that the allocation to real estate is reduced when the
Gaussian copula is used instead of the best fitting copula. The Gaussian copula under-
estimates the risk associated with real estate and financial assets, by not considering
the likelihood of a simultaneous crash, and then neglects the importance of direct real
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estate for the low-risk portfolio and securitised real estate for the medium- and high-
risk portfolio. Thus, the assumption of normality can be an important source of error
for fund managers.

Table 6 contains as well the optimal allocation of portfolios resulting from
Markowitz assumptions, which assumed multivariate normal distribution,7 and an opti-
mization done in a mean-standard deviation (mean-SD) space. For low and medium
level of risk, typically those portfolios of interest to institutional investors, the optimal
holding in direct real estate under Markowitz’s assumptions is much higher than what
is obtained under mean-CVaR with Student-t copula and non-parametric marginals.
The over-weighting of real estate stems from three causes: the optimization in mean-
SD space, the normality of marginal distributions and the dependence structure itself.
This last result helps reconcile the discrepancy between optimal allocations to real
estate suggested by academic studies and actual allocations by institutional investors,
which is far below the academic findings (Hoesli, Lekander & Witkiewicz, 2003).

5.2 Diversification effects of direct versus securitised real estate investments

To examine which type of real estate is more profitable in a portfolio, we adopted
the methodology described previously by comparing two optimal portfolios
constructed with the most fitting copula and non-parametric marginal distributions
for the following: 

(1) Direct real estate, bonds and stocks.
(2) As above, except with direct real estate replaced by securitised real estate.

In both cases, the Student-t copula provides the best fit to model the dependence
structure. The efficient frontiers are traced out in Figure 2. It is striking to note that
inclusion of securitised real estate in place of direct real estate has a measurable bene-
fit. Indeed, Figure 2 shows that investors would have obtained greater benefit by
including securitised real estate rather than direct real estate. Thus, we can conclude

Table 6. Optimal portfolio composition.

Return (%) Risk (%) Direct REa (%) Securitised RE (%) Bonds (%) Stocks (%)

Mean-CVaR portfolio with non-parametric margin and Student-t copula
0.80 3.34 84.76 0.00 15.24 0.00
1.80 8.83 0.00 14.00 51.90 34.10
2.70 21.51 0.00 14.48 0.00 85.52

Mean-CVaR portfolio with non-parametric margin and Gaussian copula
0.80 3.20 80.04 0.00 19.96 0.00
1.80 9.49 0.00 9.47 53.31 37.22
2.70 22.72 0.00 9.33 0.00 90.67

Mean-SD portfolio with Gaussian margin and copula
0.80 2.78 87.97 5.22 6.81 0.00
1.80 3.30 7.16 11.58 53.15 28.10
2.70 8.85 0.00 0.00 3.27 96.73

aNo illiquidity premium for property.
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that securitised real estate is a better diversifier than direct real estate when normality
assumptions are dismissed. Moreover, if the in-depth knowledge of local legislation
required for managing direct real estate and the time necessary for selling a property
are included in the analysis, the benefit from including securitised real estate instead
of direct real estate should be even greater than that which is observed in Figure 2.
Figure 2. Efficient frontiers with Student- t copula.The superiority of securitised real estate, on which we focus, to direct real estate,
in a mixed asset portfolio derives from the local institutional and legal context. Swiss
real estate mutual funds are governed by the Federal Law on Mutual Funds of October

Figure 2. Efficient frontiers with Student-t copula.
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19, 1994 and its Ordinances. The law (Article 66.2) allows for requesting redemption
at the close of the annual accounting period, provided a 12-month notice period has
been given. The redemption price (Article 80) will be the monetary counterpart of the
net asset value (NAV) based on regular appraisals of the properties by independent
real estate experts (Article 64.2). The market price of real estate mutual fund shares
can theoretically fluctuate below, at, or above the redemption price. The downside risk
is linked to the market situation in the direct real estate market, while the upside
opportunity follows partially the stock market. This particularity of Swiss real estate
mutual funds explains both the superiority of real estate mutual funds compared with
direct real estate in a mixed asset portfolio and why the distribution of real estate
mutual funds is positively skewed.

5.3 Dependence impact on the risk

Thus far, we have been modelling the dependence structure between bonds, stocks,
direct and securitised real estate, analysing its impact on the portfolio allocation and
examining which type of real estate is more profitable in a portfolio. However, these
results do not provide us with any opportunity to quantify the importance of the
dependence structure in terms of risk in comparison with a Gaussian copula. To quan-
tify this relationship, 100 000 Monte Carlo simulations were run with the objective of
computing the CVaR for portfolios weighted according to the results found previously
in a mean-CVaR space when the most fitting copula and non-parametric marginal
distributions are used.

The results in Table 5 demonstrate the importance of the structure of dependence
on the CVaR. Compared to an appropriate dependence structure, the Gaussian copula
underestimates the risk by 10.7, 43.4 and 23.6 basis points respectively for the low-,
medium- and high-risk portfolio. However, the Gaussian assumption made on the
marginal distributions has a greater impact on the CVaR than on the dependence struc-
ture and strongly reduces the CVaR. Indeed the difference in terms of risk between a
Student-t copula with non-parametric marginals and a Student-t copula with Gaussian
marginals is −94.9, −208.3 and −571.2 basis points respectively for the low, medium
and high-risk portfolio. The underestimation due to Gaussian marginals is explained
by the fact that the series are leptokurtic (see Section 3). As shown above, the under-
estimation due to Gaussian assumptions distorts the optimal portfolio choice.

6 Conclusion

In this report, it is shown that the Gaussian assumption made on marginal distributions
and dependence structure leads to misleading inferences in terms of risk, and distorts
the optimal level of diversification.

Since the data under scrutiny are not Gaussian, we modelled the relationship
between financial assets and real estate returns for the Swiss market using copula
functions. We found that the dependence structure between bonds, stocks, direct and
securitised real estate is best modelled by a Student-t copula. We have examined the
optimal portfolio allocation when the best fitting copula is taken into account. In addi-
tion, we have analysed the allocation discrepancy existing when the Student-t copula
and non-parametric marginals are used, instead of the Gaussian copula, in a mean-
CVaR space, and when the Student-t copula and non-parametric marginals are used
instead of the multivariate normal distribution in a mean-SD space. The results reveal
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that direct real estate is a good portfolio diversifier only for low-risk portfolios,
whereas securitised real estate plays an important diversification role for medium and
high-risk portfolios.

The essential purpose of this paper has been to calculate the effect of non-normality
on the risk of a portfolio including real estate and the efficient frontiers where risk is
defined as the CVaR. Our results show that dependence structure has less influence on
portfolio risk than marginal distributions and that Gaussian assumptions underestimate
the risk. Moreover, separating the influence of direct and indirect real estate, we have
found that securitised real estate diversifies a portfolio better than direct real estate.
Similar methodology will be applicable for further research in other countries and for
other periods of time.
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Notes
1. Bond index contained domestic and international bonds of excellent quality denominated

in Swiss francs for all maturities.
2. The Bloomberg ticker symbols for the stock and bond indices are respectively SPI and

SBSZL.
3. The graphic representation of copula density is constructed with a beta kernel and based on

Monte Carlo simulation of u1 and u2.
4. This method is known under the term ‘inference functions for margins’ (IFM).
5. The CVaR describes the expected loss conditional on the losses exceeding or equal to the

VaR and the VaR is the maximal portfolio loss for a given confidence level over a specified
time horizon.

6. A risk measure ψ is sub-additive if the following is true: ψ(x1 + x2) ≤ ψ(x1) + ψ(x2)
7. Normal copula with normal marginals is equivalent to a multivariate normal distribution.
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