000148792 001__ 148792
000148792 005__ 20180913055753.0
000148792 0247_ $$2doi$$a10.1007/s11579-010-0026-x
000148792 022__ $$a1862-9679
000148792 037__ $$aARTICLE
000148792 245__ $$aContinuity Properties of Law-Invariant (Quasi-)Convex Risk Functions on L∞
000148792 269__ $$a2010
000148792 260__ $$bSpringer Verlag$$c2010
000148792 336__ $$aJournal Articles
000148792 520__ $$aWe study continuity properties of law-invariant (quasi-)convex functions                       f : L1(Ω,F, P) to ( ∞,∞] over a non-atomic probability space (Ω,F, P) .This is a supplementary note to [12]
000148792 6531_ $$alaw-invariant (quasi-)convex risk measures
000148792 6531_ $$aduality
000148792 6531_ $$aFatou property
000148792 700__ $$aSvindland, Gregor
000148792 773__ $$j3$$k1$$q39–43$$tMathematics and Financial Economics
000148792 8564_ $$s296727$$uhttps://infoscience.epfl.ch/record/148792/files/Continuity%20Properties%20of%20Law-Invariant.pdf$$yn/a$$zn/a
000148792 909C0 $$0252280$$pCSF$$xU12115
000148792 909CO $$ooai:infoscience.tind.io:148792$$pCDM$$particle
000148792 917Z8 $$x193874
000148792 917Z8 $$x148230
000148792 917Z8 $$x148230
000148792 917Z8 $$x148230
000148792 937__ $$aEPFL-ARTICLE-148792
000148792 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000148792 980__ $$aARTICLE