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A voltammetric methodology to determine the standard Gibbs energy of transfer of highly hydrophobic
and hydrophilic ions has been developed. The electrochemical cell used includes a water|1,2-dichloroeth-
ane micro-interface supported on a microhole in a thin polymer film separating an electrolyte-free aque-
ous phase and an organic phase with an electrolyte at low concentrations. The limiting current and the
half-wave potential of these organic ions were determined by fitting the initial part of the ion transfer
wave. The methodology was validated using ions with known thermodynamic data, and applied to very
hydrophobic and very hydrophilic ions that usually cannot be observed within the potential window.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Because of its relevance in the understanding of ion transfer
across cellular channels and in solvent extraction processes among
others fields, the kinetic and thermodynamic aspects of charge
transfer processes at the interface between two immiscible electro-
lyte solutions (ITIES) have been widely investigated by electrochem-
ical techniques [1–4]. In particular, liquid|liquid micro-interfaces
offer several advantages in comparison with larger interfaces such
as a significant reduction of the ohmic potential drop, a reduction
of the capacitive currents, and steady-state responses [5–8]. Indeed,
whether using micro-ITIES supported by a laser-drilled microhole in
a thin film [6–12] or at the tip micropipettes [9,13–15] it has been
shown that these micro-interfaces are very useful both for thermo-
dynamic and kinetic measurements [5–8,11,12,16]. By comparison
with microholes, voltammetric studies with micropipettes have to
consider asymmetric diffusion fields and account for a relatively
high electrical resistance within the pipette [8].

In charge-transfer kinetic studies, an excess of the supporting
electrolyte is normally used in both phases [14]. However, it has
been shown that Oldham’s theory for steady-state voltammetry
at hemispherical electrodes [17] can be applied for micro-ITIES
systems with low concentration or in absence of supporting elec-
trolyte [5,6,8–10,14,18]. The difference between these two stea-
dy-state systems is that in the case of metallic electrodes, the
transport of species toward the electrode is given only by diffusion
and the charged product is transported from the electrode by dif-
ll rights reserved.

: +41 21 693 3667.
lt).
fusion and migration, whilst it is the opposite in the case of mi-
cro-ITIES under conditions of diluted supporting electrolyte in
the organic phase [6].

The transfer potential of the supporting electrolyte ions in
either phase determines the size of the potential window at ITIES
[3,6,14]. Taking into account that such transfer potential is given
by the Gibbs energy of transfer (DG00

tr ), ions with large absolute val-
ues of DG00

tr (i.e. highly hydrophilic and lipophilic ions) are usually
chosen in order to increase the size of the potential window
[3,6,14]. For instance, organic ions like tetrakis(4-chlorophenyl)-
borate (TPBCl�) [14,15], tetrakis-(pentafluorophenyl)-borate
(TB�) [12,19,20] and bis(triphenylphosphoranylidene)-ammonium
(BA+) [19,20] are used as supporting electrolytes in the organic
phase. The knowledge of the standard transfer potential of these
ions is necessary to calculate the Galvani potential difference
across the liquid–liquid interfaces when it is controlled by the dis-
tribution of all of ions in the system as in shake-flask experiments
[19,20]. However, such potentials have not been reported so far
due to the difficulty in investigating the transfer of such a lipophilic
ions [6]. To circumvent this difficulty, micro-ITIES in the absence of
supporting electrolyte, either in the aqueous or in the organic
phase, have been suggested [6,14]. In this way, Wilke et al. [6] have
developed a theoretical model to determine the DG00

tr of highly
hydrophilic ions as Li+, K+ and Na+ at water|nitrobenzene micro-
interfaces with and without supporting electrolyte in the aqueous
phase and with a 10 mM solution of bis(triphenylphosphoranylid-
ene)ammonium dicarbollyl-cobaltate (III) (PNPDCC) as supporting
electrolyte in the organic phase [6]. The model is based on Old-
ham’s theory [17,21], in which the migration of the ions is taken
into account for systems under unsupported conditions.

http://dx.doi.org/10.1016/j.jelechem.2010.03.030
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In this work, the DG00

tr of ions that usually limit the potential win-
dow (BA+, TB�, OH� and H+) was determined at the water|DCE mi-
cro-ITIES without supporting electrolyte in the aqueous phase and
with a very low concentration of electrolyte in the organic phase
(BATPBCl and BATB 0.5 mM and 0.05 mM). Taking into account that
the limiting current and therefore the half-wave potential of these
ions are not directly available from the voltammograms, these
parameters were determined by fitting the onset of the transfer
waves, where the current–potential curve is linear, using the model
developed by Wilke [6] In order to validate the values obtained by
the methodology proposed in this work, we also determined the
DG00

tr of hydrophilic ions such as, Cs+, Li+, I�, Br�, Cl�, CIO�4 and the
DG00

tr of lipophilic ions such as TBA+, THA+ and TOA+ (tetra-(butyl,
hexyl and octyl)-ammonium). The DG00

tr values obtained agree with
those reported by other authors [19,22–24]. The best results are ob-
tained when the separation between the DG00

tr of the ions transfer-
ring consecutively is between 0.35 and 0.45 V approximately. The
DG00

tr values of BA+ and TB� obtained from the different systems
studied differ only in ±4 kJ mol�1, and the slope values obtained
from the fitting are equal to the theoretical value of F/RT, i.e.
39.6 V�1 (at 20 �C). This suggests that the methodology proposed
in this work is reliable to determine the DG00

tr of either highly hydro-
phobic or hydrophilic ions.

2. Experimental

2.1. Chemicals and reagents

All solvents and chemicals were used as received without fur-
ther purification. Bis(triphenylphosphoranylidine)ammonium
chloride (BACl 98%), potassium tetrakis(4-chlorophenyl)-borate
(KTPBCl 98%), lithium tetrakis(pentafluorophenyl)-borate ethyl
etherate (LiTB purum), tetradecylammonium chloride (TDACl
95%), sodium tetraphenylborate (NaTPB 99.5%), tetramethylammo-
nium chloride (TMACl 98%), tetrabutylammonium bromide (TBABr
99%), lithium hydroxide (99%) and diethyl ether (99.5%) were pur-
chased from Fluka. Tetrahexylammonium bromide (THABr 99%)
and tetraoctylammonium bromide (TOABr 98%) were obtained
from Acros. Chlorhydric acid (37–38%) and 1,2-dicholoroethane
(grade HPLC) were purchased from Merck and Applichem respec-
tively. Bis(triphenylphosphoranylidine)ammonium tetrakis(4-
chlorophenyl)-borate (BATPBCl), bis(triphenylphosphoranyli-
dine)ammonium tetrakis(pentafluorophenyl)-borate (BATB) and
tetradecylammonium tetraphenylborate were prepared by
metathesis of 1:1 mixtures of BACl and KTPBCl, BACl and LiTB,
and TDACl and NaTPB respectively in methanol–water mixtures
(V:V = 2.1), followed by recrystallization from acetone. In order to
transfer TBA+, THA+ and TOA+ from the organic to the aqueous
phase, tetrabutylammonium tetrakis(pentafluorophenyl)-borate
(TBATB), tetrahexyl-ammonium tetrakis(pentafluorophenyl)-bo-
rate (THATB) and tetraoctylammonium tetrakis(pentafluorophe-
nyl)-borate (TOATB) were prepared by metathesis 1:1 of TBABr,
THABr and TOABr with LiTB in mixtures ethanol–water
(V:V = 2:1, 2:1 and 1:4, respectively). The THATB and TOATB are
room-temperature ionic liquids which were separated from the
reaction mixture by liquid|liquid extraction with diethyl ether fol-
lowed by washing with ultra pure water (18.2 MX cm�1) until Br�

was not detected by addition of AgNO3 solution in the washing
solution. The solvent was evaporated using a vacuum pump at
30 �C overnight. In this work, these ionic liquids were dissolved



Fig. 2. Cyclic voltammogram obtained at the water|DCE interface with (a) cell I and
(b) cell II. Scan rate: 10 mV s�1. The voltammograms were calibrated with respect to
the Dw

o /1=2 of TMA+ (0.18 V [22]).

Fig. 1. Schematic diagram of a typical two-electrode cell used in the experiments.
The microhole was drilled into a 25 lm thick film of polyamide (Kapton�). W:
water phase; O: organic phase.
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in DCE in order to use them as supporting electrolytes in the organ-
ic phase, however, they can be used directly to form water|ionic li-
quid interfaces [25–28]. All the aqueous solutions were prepared
with ultra pure water. The solution of LiOH 5 mM (pH = 13.7)
was prepared with water degassed with argon in order to displace
the CO2 from the solution.

2.2. Electrochemical cell

The micro-interface between the two immiscible solutions
(water|DCE) was supported in a microhole drilled in a 25 lm thick
polyamide film (Kapton�, Dupont) purchased from Goodfellow
(UK) by UV-photoablation through a metallic mask using a
193 nm ArF excimer laser beam (Lambda Physik, Göttingen, Ger-
many, fluence = 0.2 J, frequency = 50 Hz). As a consequence of the
drilling by photoablation the actual shape of the microhole is con-
ical. The diameters of the laser entrance and exit were determined
to be 24 lm and 12 lm (±1 lm) respectively. In all the experi-
ments the aqueous phase was introduced first than the organic
phase [2] and the smallest diameter opening was located on the or-
ganic side.

The microhole was located in vertical position between the two
immiscible solutions (water|DCE) using a Teflon cell with two
AgjAgCl reference electrodes (Fig. 1). For all the experiments, the
voltammetric scan rate was 10 mV/s and the temperature was
20 �C. IR compensation for IR drop was not applied.

The transfer of BA+ was studied using the cells I–III and that of
TB� was studied using the cells IV–VI. The transfer of H+ and OH�

was studied using the cells VII and VIII, respectively.

3. Results

Taking into account that in all the cases the cell was filled by the
aqueous phase first, it is assumed the micro-interface was located
on the organic side, in accordance with Peulon et al. [2]. In addi-
tion, being the ratio between the diameter of the microhole and
its longitude (d/L) less than 1, one can ensure a good reproducibil-
ity of the obtained data [2].

In order to determine the limiting current (Ilim), the half-wave
potential (Dw

o /1=2) and the slope theoretically equal to F/RT con-
stant for each ion in the cells, the model described by Wilke [6]
for systems under unsupported conditions was used. In which, be-
cause of the migration of the ions, the actual half-wave potential
(Dw
o /1=2 obtained by I = Ilim/2) is shifted with respect to the usual

half-wave potential (Dw
o /1=2) [21], according to the following [6]:

Dw
o /01=2;i � Dw

o /1=2;i ¼
RT
ziF

ln 2�zi=zj 1� zi

zj

� �� �
ð1Þ

where izi+and jzj� are electrolytes present only in the aqueous phase,
R is the constant of the ideal gases, T the temperature and F the Far-
aday constant.Taking into account that the condition zi = �zj is ful-
filled in all the systems under study, the Ilim for a planar microdisk-
shaped interface can be expressed as [21,29,6]:

Ilim ¼ 8ziFDi;wci ð2Þ

where Di,w and ci are the diffusion coefficient and the concentration
of ion i respectively. And the total potential difference (Dw

o /1=2) as a
function of the cell current, can be expressed as:

Dw
o / ¼ Dw

o /1=2;i þ
RT
ziF

ln 2
I

Ilim � I

� �
Ilim

Ilim � I

� �� �
ð3Þ

In this way, the current as a function of the potential difference
reads [6]:

I ¼ Ilim 1þ exp
ziF
RT

Dw
o /� Dw

o /1=2;i

� �� ��

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ exp

ziF
RT

Dw
o /� Dw

o /1=2;i

� �� �� �2

� 1

s 3
5 ð4Þ

The parameters ziF/RT, Dw
o /1=2 and Ilim, were determined using

the Eq. (4) by fitting of the initial part of the transfer of the corre-
sponding ion (linear section before reaching the limiting current).
The program used to fit the data was Mathematica 7.0.

Finally, knowing the Dw
o /1=2;, the standard Gibbs transfer energy

is defined as:

DG00 ;o!w
tr;i ¼ �ziFDw

o /1=2; ð5Þ



Table 1
Results obtained from the fitting using Eq. (4) for cells I and II. The potential window
was calibrated with respect to the Dw

o /1=2 of TMA+ (0.18 V [22]). For all systems
(TMAI, TMABr and TMACl) the limiting current of TMA+ is around 2.3 nA.

Cell I (BATPBCl 0.5 mM) Cell II (BATPBCl 0.05 mM)

Ion I� Br� Cl� I� Br� Cl�

Ilim/nA –3.4 –3.7 –4.1 –4.1 –4.6 –3.9
Dw

o /1=2 (V) –0.32 –0.46 –0.53 –0.36 –0.49 –0.56

F/RT (V�1) 39.6 36.2 34.7 31.7 28.2 30.1

DG00 ;w!o
tr (kJ mol�1) 30.9 44.3 51.1 34.7 47.2 54.0

Ion BA+ BA+ BA+ BA+ BA+ BA+

Ilim (nA) –7.0 –7.4 –7.4 –4.6 –4.4 –4.4
Dw

o /1=2 (V) –0.67 –0.70 –0.70 –0.67 –0.71 –0.70

F/RT (V�1) 39.6 28.7 28.9 24.4 29.6 29.3

DG00 ;w!o
tr (kJ mol�1) –64.6 –67.5 –67.5 –64.6 –68.5 –67.5
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Fig. 2a and b shows the voltammograms obtained for the systems in
cells I and II, respectively. In all the cases the fitting were made tak-
ing the first 160 mV of the linear section of the current–potential
curve for each ion. A reference ion whose Dw

o /1=2 is known to be less
positive to the one of interest (e.g. Cs+ was chosen as reference ion
to study the transfer of TB�) was introduced for two reasons: In or-
der to calibrate the potential window with respect to the Dw

o /1=2 ob-
tained from the fitting of the reference ion, and, because the Ilim

obtained for the reference ion is subtracted from the second wave
corresponding to the target ion, in order to do the fitting for this
wave using the same approach. As a result, reliable standard ion
transfer potentials can be obtained since direct evaluation of the
slope theoretically equal to F/RT is done for an standard case as well
as for the target ion.

As an example, Fig. 3 illustrates the fitting obtained for the
transfer of I�, Br� and BA+ in the cell I. It is clear that the obtained
fittings are in agreement with the experimental data, which was
observed for all the systems. Table 1 summarizes the results ob-
tained for the ions in cells I and II. We can see that the dispersion
of the Dw

o /1=2 for all the ions is ±5 mV, which is in the order of the
experimental error. Despite the absence of electrolyte in the aque-
ous phase and considering that the concentration of the organic
electrolyte is very low (0.5 mM and 0.05 mM), the half-wave
potentials obtained for I�, Br� and Cl� in the cell I as well as in cell
II are in agreement with the values reported by other authors:
�0.34, �0.45 and �0.53 [23], respectively.

The slope obtained for TMA+ is equal to the theoretical value
39.6 V�1 for all the systems in cell I (using TMAI, TMABr or TMACl
in the aqueous phase), which indicates that the ion transfer process
is reversible. On the other hand, for the systems in cell II where the
concentration of the supporting electrolyte is 10 times lower com-
pared to cell I, the obtained constants are between 30 V�1 and
35 V�1, indicating simultaneous influence of the IR drop and the
migration mass transport. Consequently, for the other experiments
the concentration of the supporting electrolyte in the organic
phase was kept constant at 0.5 mM, where these effects are
negligible.

In the case of cell I, only the transfer of BA+ using TMAI in the
aqueous phase yielded a slope of 39.6 V�1. When using TMABr or
TMACl in the aqueous phase, the values obtained were lower. This
indicates that the transfer of the ions Br� and Cl� is too close to the
Fig. 3. Fittings (dashed line) obtained for the forward wave of the voltamm
transfer of BA+ and both currents interfere with each other. Conse-
quently, it is clear that in order to ensure the measurement of reli-
able data, the transfer potentials of ions transferring consecutively
should be separated enough, as has been observed previously [14].
In addition, taking into account that the Ilim of the reference ion is
subtracted from the wave of the target ion, the separation between
the two ions should not be too large in order to distinguish the two
waves easily. Therefore, in order to obtain reliable Dw

o /1=2 values, a
separation between 0.35 V and 0.45 V is suggested. This was taken
into account for the following experiments.

The Dw
o /1=2 of the TPBCl� was not determined since it was not

possible to collect enough reliable data for the fitting due to the
noisy current recorded. This is a consequence of the remarkable
tendency of TPBCl� to form ion pairs [19,30,31], which leads to
adsorption processes and interfacial instability upon its desorption
from the interface.

Fig. 4 and Table 2 summarize the results obtained for cell II. In
this case the dispersion in the values of Dw

o /1=2 for all the ions is
±4 mV. The slope for the transfer of BA+ presents the same behavior
as that in cell I, since with I� the constant for both ions (BA+ and I�)
is equal to 39.6 V�1, while with Cl� this value decreases. This con-
firms the observation made before about the adequate separation
of the transfer potentials.
ograms (full line) of cell I. (a) I� (b) I� and BA+ (c) Br� (d) Br�and BA+.



64 A.J. Olaya et al. / Journal of Electroanalytical Chemistry 644 (2010) 60–66
Taking into account such differences, Cs+ was chosen in order to
study the transfer of TB+ considering the Dw

o /1=2 for Cs+ reported by
other authors (between 0.37 [4] and 0.39 V [4,19]). However, in Ta-
ble 2, the Dw

o /1=2 obtained is 90 mV higher (0.48 V). Consequently,
it is not surprising that the slope for the transfer of Cs+ and TB� is
lower than the theoretical value, since the actual difference be-
tween the Dw

o /1=2 of Cs+ and TB�, is just 0.23 V. Moreover, it is rea-
sonable to expect Cs+ can form ion-pairs with TB�, as strongly ion-
pairing with other hydrophobic anions such as TPB� [14,30,32] and
Fig. 5. Cyclic voltammograms obtained at the water|DCE interface with cells IV–VI.
Scan rate: 10 mV s�1. The potential windows were calibrated with respect to the
Dw

o /1=2 of the corresponding aqueous anions I�, Cl� and ClO�4 (�0.34 V [23], �0.53 V
and �0.15 [24] respectively).

Table 2
Results obtained from the fitting using Eq. (4) for cell III. The potential windows were
calibrated with respect to the corresponding aqueous anions, i.e. I� or Cl� (�0.34 V
[23] and �0.53 V [23] respectively).

CsI CsCl

Ion Cs+ I� Cs+ Cl�

Ilim (nA) 3.1 –3.2 2.6 –3.8
Dw

o /1=2 (V) 0.48 –0.34 0.48 –0.53

F/RT (V�1) 35.7 39.6 34.6 32.8

DG00 ;w!o
tr (kJ mol�1) 46.3 32.8 46.3 51.1

Ion TB� BA+ TB� BA+

Ilim (nA) 5.9 –6.5 5.5 –6.2
Dw

o /1=2 (V) 0.71 –0.67 0.71 –0.70

F/RT (V�1) 30.1 39.6 28.2 37.6

DG00 ;w!o
tr (kJ mol�1) –68.5 –64.6 –68.5 –67.5

Fig. 4. Cyclic voltammogram obtained at the water|DCE interface with cell III. Scan
rate: 10 mV s�1. The potential windows were calibrated with respect to the Dw

o /1=2

of the aqueous anions I� or Cl� (�0.34 V and �0.53 V [23] respectively).
TPBCl� [19,30] has been reported for this cation. However, taking
into account TB� mainly behaves as a non-coordinating anion
[33], the ion pair formation would be much less significant than
that with other organic anions (e.g. TPBCl� and TPB�). Accordingly,
its influence in the determination of the Dw

o /1=2 can be neglected.
Furthermore, when comparing the Dw

o /1=2 of BA+, I� and Cl� ob-
tained using cell II (Table 1) with the values obtained for cell I,
we can observe that the mentioned decrease of the slope in cell
II, does not have a significance effect on the determination of the
Dw

o /1=2. This suggests that despite the fact that the slope for TB�

is lower than the theoretical value, the Dw
o /1=2 determined for this

ion is still reliable.
In order to validate the results obtained with the methodology

proposed in this work, we studied the transfer of TBA+, THA+ and
TOA+ from the organic to the aqueous phase using cells IV–VI.
Table 3
Results obtained from the fitting using Eq. (4) for the ions in cells IV–VI. The potential
windows were calibrated with respect to the corresponding aqueous anions, i.e. I�,
Cl� and ClO�4 (�0.34 V [23], �0.53 V [23] and �0.15 [24] respectively).

TBATB THATB TOATB

Ion Cs+ Cl� Li+ ClO�4 Cs+ I�

Ilim (nA) 2.7 –8.1 2.0 –2.4 3.0 –2.1
Dw

o /1=2 (V) 0.45 –0.53 0.65 –0.15 0.44 –0.34

F/RT (V�1) 37.4 38.5 35.6 39.6 38.9 39.6

DG00 ;w!o
tr (kJ mol�1) 43.4 51.1 62.7 14.5 42.5 32.8

Ion TB� TBA+ THA+ TB+ TOA+

Ilim (nA) 6.5 –2.3 –2.5 7.1 –6.2
Dw

o /1=2 (V) 0.70 –0.27 –0.47 0.67 –0.69

F/RT (V�1) 35.6 37.8 39.6 34.8 39.6

DG00 ;w!o
tr (kJ mol�1) –68.5 –27.0 –45.3 –64.6 –66.6

Fig. 6. Correlation between the number of carbon atoms in the ions TMA+, TBA+,
THA+ TOA+ their Dw

o /1=2.

Fig. 7. Cyclic voltammograms obtained at the water|DCE interface with cell VII.
Scan rate: 10 mV s�1. The potential windows were calibrated with respect to the
Dw

o /1=2 of TPB� (�0.34 V) [19].



Table 4
Results obtained from the fitting using Eq. (4) for cells VII and VIII. The potential
windows were calibrated with respect to the Dw

o /1=2 of TPB� [19] and TBA+

respectively.

VII VIII

Ion H+ TPB� TBA+ OH�

Ilim (nA) 6.5 3.2 �0.8 �1.2
Dw

o /1=2; (V) 0.58 0.34 �0.27 �0.70

F/RT (V�1) 31.2 39.6 32.0 33.0

DG00 ;w!o
tr (kJ mol�1) 56.0 �33.0 �26.0 67.6

Fig. 8. Cyclic voltammograms obtained at the water|DCE interface with cell VIII. Scan rate: 10 mV s�1. The potential windows were calibrated with respect to the Dw
o /1=2 of

TBA+ (0.27 V): (a) full voltammogram (b) forward wave.
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Fig. 5 and Table 3 summarize the obtained results. For the transfer
of THA+ and TOA+, the slope is equal to the theoretical value, which
agrees with the hypothesis concerning the separation between
transfer potentials, given that such separation between these ions
and the corresponding ion transferred from the aqueous phase
ðClO�4 and I� respectively) is around 0.35 V. On the other hand,
for the transfer of TBA+, such difference is only 0.27 V explaining
the decrease of the slope. The transfer of Cs+ and TB� follows the
same behavior observed in cell III for these ions.

Fig. 6 correlates the number of carbon atoms of the series TMA+,
TBA+, THA+ and TOA+ and their Dw

o /1=2. As it was expected, the cor-
relation is linear, confirming the reliability of the results.

Figs. 7 and 8 and Table 4 summarize the results obtained for the
cell VII and VIII.

In order to avoid the interference from CO2 in the determination
of the Dw

o /1=2 for OH�, the water used to prepare the solution of
LiOH was degassed with argon in order to displace the CO2 and
all the solutions employed were also freshly prepared. Moreover,
all the values calculated for hydroxide ions were extracted from
the first scan of the voltammogram (Fig. 8). Thus, our experiments
were proved to be reproducible and therefore any possible inter-
ference from the reaction between CO2 and OH� can be ruled out.

The slopes in the case of OH� (Table 4), are lower than the the-
oretical value, which could be due to the adsorption of TBAOH at
the interface. This explains the big difference between the forward
peak and the reverse peak and the low limiting current obtained
for the TBA+ in comparison with the value obtained in the cell IV
(Table 3). However, taking into account that the fitting is always
made with the forward peak, we can say that the value of Dw

o /1=2

determined for the OH� is likely to be reliable. In the case of H+

the value of Dw
o /1=2 determined is in agreement with the value re-

ported (0.54 V [23]).
Knowing the DG00 ;w!DCE

tr of H+ and OH� (Table 4) the dissociation
constant of water in DCE (DGDCE

diss;water) can be calculated as follows:

DGDCE
diss;water ¼ DGwater

diss;water þ DG00 ;w!DCE
tr;Hþ þ DG00 ;w!DCE

tr;OH� � DG00 ;w!DCE
tr;water ð6Þ

where DG00 ;w!DCE
tr;water is the standard Gibbs energy of transfer of H2O

across the water/DCE interface 15.4 kJ mol�1 [34]. As a result, the
DGDCE
diss;water was found to be 187 kJ mol�1 and consequently, the dis-

sociation of water in DCE would be 5.6 � 10�34. This value has spe-
cial relevance in reactions in which water and DCE are at the
equilibrium and the protons are being consumed in the organic
phase. In such a way, the initial concentration of protons without
any common ion or application of an external potential can be
estimated.

The fact that the Dw
o /1=2 determined for the ions studied in this

work are in agreement with the values reported, and that the dis-
persion was just ±4 mV in all studied systems, indicate that the
methodology proposed in this work allows determining reliable
values of DG00

tr for highly hydrophobic or hydrophilic ions.

4. Conclusions

In this work, Wilke’s methodology to determine the DG00

tr of
highly lipophilic and hydrophilic ions, using a low concentration
of supporting electrolyte in the organic phase and not supporting
electrolyte in the aqueous phase was applied and validated. In or-
der to obtain reliable results, the separation between the transfer
potentials of ions transferring consecutively was found to be be-
tween 0.35 and 0.45 V. In addition, the minimum concentration
of supporting electrolyte in the organic phase must be 0.5 mM in
order to avoid a non-negligible IR drop resistance in the system.
The obtained values for the H+ and OH� allowed us to calculate
the dissociation constant of water in DCE.
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